第三章 热力学第二定律重要公式
第三章 热力学第二定律
第三章热力学第二定律热力学第一定律过程的能量守恒热力学第二定律过程的方向和限度§3.1 热力学第二定律(1)过程的方向和限度自发过程:体系在没有外力作用下自动发生的变化过程,其有方向和限度。
例如:水位差、温度差、压力差等引起的变化过程。
自发过程,有做功能力方向:始态终态反自发过程,需消耗外力平衡状态限度:始态终态无做功能力自发过程的共同特征:不可逆性(2)热力学第二定律的表达式经典表述:人们不能制造一种机器(第二类永动机),这种机器能循环不断地工作,它仅仅从单一热源吸取热量均变为功,而没有任何其它变化。
一般表述:第二类永动机不能实现。
§3.2 卡诺循环1824年,法国工程师卡诺(Carnot)使一个理想热机在两个热源之间,通过一个特殊的可逆循环完成了热→功转换,给出了热机效率表达式。
这个循环称卡诺循环。
(1)卡诺循环过程设热源温度T1 > T2,工作物质为理想气体。
卡诺循环1. 恒温可逆膨胀(A → B ):0U 1=∆ 12111V V lnnRT W Q == 2. 绝热可逆膨胀(B → C ):0q =, )T T (nC U W 21V 22-=∆-=3. 恒温可逆压缩(C → D ):0U 3=∆, 342322V V lnnRT W q Q ==-= 4. 绝热可逆压缩(D → A ):0q =, )T T (nC U W 12V 44-=∆-=整个循环过程的总功为:34212112V 34221V 1214321V Vln nRT V V lnnRT )T T (nC V Vln nRT )T T (nC V V ln nRT W W W W W +=-++-+=+++= 热机循环一周有:0U =∆, W q Q Q Q Q 2121=-=+=热机效率:1213421211V V ln nRT V Vln nRT V V lnnRT Q W+==η对于绝热可逆膨胀:k12312V V T T -⎪⎪⎭⎫ ⎝⎛=对于绝热可逆压缩: k14121V V T T-⎪⎪⎭⎫ ⎝⎛=比较得:1423V V V V =或 4312V V V V = 则: 121121Q Q Q T T T +=-=η η— 卡诺热机效率(2) 卡诺定理卡诺定理:一切工作于高温热源T 1与低温热源T 2之间的热机效率,以可逆热机的效率为最大。
热力学第一第二定律的数学表达式
热力学第一第二定律的数学表达式
热力学第一定律表达式为:ΔU=Q-W,其中ΔU为系统内能变化量,Q为系统吸收的热量,W为系统做功。
热力学第二定律表达式有多种,其中较常见的是卡诺循环效率公式:η = (T1 - T2) / T1,其中η为卡诺循环效率,T1和T2分别为高温热源和低温热源的温度。
另一种常见的表达式为熵变公式:ΔS = Qrev / T,其中ΔS为系统熵变,Qrev为系统在可逆过程中吸收的热量,T为热源的温度。
这些数学表达式是热力学基本原理的重要体现,对于热力学学科的深入理解具有重要意义。
- 1 -。
热力学第二定律 概念及公式总结
热力学第二定律一、 自发反应-不可逆性(自发反应乃是热力学的不可逆过程)一个自发反应发生之后,不可能使系统和环境都恢复到原来的状态而不留下任何影响,也就是说自发反应是有方向性的,是不可逆的。
二、 热力学第二定律1. 热力学的两种说法:Clausius:不可能把热从低温物体传到高温物体,而不引起其它变化Kelvin :不可能从单一热源取出热使之完全变为功,而不发生其他的变化2. 文字表述: 第二类永动机是不可能造成的(单一热源吸热,并将所吸收的热完全转化为功)功 热 【功完全转化为热,热不完全转化为功】(无条件,无痕迹,不引起环境的改变) 可逆性:系统和环境同时复原3. 自发过程:(无需依靠消耗环境的作用就能自动进行的过程)特征:(1)自发过程单方面趋于平衡;(2)均不可逆性;(3)对环境做功,可从自发过程获得可用功三、 卡诺定理(在相同高温热源和低温热源之间工作的热机)ηη≤ηη (不可逆热机的效率小于可逆热机)所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关四、 熵的概念1. 在卡诺循环中,得到热效应与温度的商值加和等于零:ηηηη+ηηηη=η 任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关热温商具有状态函数的性质 :周而复始 数值还原从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数2. 热温商:热量与温度的商3. 熵:热力学状态函数 熵的变化值可用可逆过程的热温商值来衡量ηη :起始的商 ηη :终态的熵 ηη=(ηηη)η(数值上相等) 4. 熵的性质:(1)熵是状态函数,是体系自身的性质 是系统的状态函数,是容量性质(2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和(3)只有可逆过程的热温商之和等于熵变(4)可逆过程热温商不是熵,只是过程中熵函数变化值的度量(5)可用克劳修斯不等式来判别过程的可逆性(6)在绝热过程中,若过程是可逆的,则系统的熵不变(7)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,所以在隔离系统中,一切能自动进行的过程都引起熵的增大。
物理化学重要概念公式总结
第一章 热力学第一定律一、基本概念系统与环境,状态与状态函数,广度性质与强度性质,过程与途径,热与功,内能与焓。
二、基本定律热力学第一定律:ΔU =Q +W 。
焦耳实验:ΔU =f (T ) ; ΔH =f (T ) 三、基本关系式1、体积功的计算 δW = -p e d V恒外压过程:W = -p e ΔV可逆过程: W =nRT 1221ln ln p p nRT V V =2、热效应、焓等容热:Q V =ΔU (封闭系统不作其他功) 等压热:Q p =ΔH (封闭系统不作其他功) 焓的定义:H =U +pV ; d H =d U +d(pV )焓与温度的关系:ΔH =⎰21d p T TT C3、等压热容与等容热容热容定义:V V )(TUC ∂∂=;p p )(T H C ∂∂= 定压热容与定容热容的关系:nR C C =-V p热容与温度的关系:C p =a +bT +c’T 2四、第一定律的应用1、理想气体状态变化 等温过程:ΔU =0 ; ΔH =0 ; W =-Q =⎰-p e d V 等容过程:W =0 ; Q =ΔU =⎰T Cd V; ΔH =⎰T C d p等压过程:W =-p e ΔV ; Q =ΔH =⎰T C d p; ΔU =⎰T Cd V可逆绝热过程:Q =0 ; 利用p 1V 1γ=p 2V 2γ求出T 2,W =ΔU =⎰T Cd V;ΔH =⎰TC d p不可逆绝热过程:Q =0 ;利用C V (T 2-T 1)=-p e (V 2-V 1)求出T 2,W =ΔU =⎰T Cd V;ΔH =⎰TC d p2、相变化可逆相变化:ΔH =Q =n Δ_H ;W=-p (V 2-V 1)=-pV g =-nRT ; ΔU =Q +W 3、热化学物质的标准态;热化学方程式;盖斯定律;标准摩尔生成焓。
摩尔反应热的求算:)298,()298(B H H m f B m r θθν∆=∆∑反应热与温度的关系—基尔霍夫定律:)(])([,p B C T H m p BB m r ∑=∂∆∂ν。
物化各种公式概念总结
第一章热力学第一定律一、基本概念系统与环境,状态与状态函数,广度性质与强度性质,过程与途径,热与功,内能与焓。
二、基本定律 热力学第一定律:ΔU =Q +W 。
三、基本关系式1、体积功的计算 δW = -p 外d V恒外压过程:W = -p 外ΔV定温可逆过程(理想气体):W =nRT 1221ln ln p p nRT V V = 2、热效应、焓:等容热:Q V =ΔU (封闭系统不作其他功)等压热:Q p =ΔH (封闭系统不作其他功)焓的定义:H =U +pV ; ΔH =ΔU +Δ(pV )焓与温度的关系:ΔH =⎰21d p T T T C3、等压热容与等容热容:热容定义:V V )(T U C ∂∂=;p p )(T H C ∂∂= 定压热容与定容热容的关系:nR C C =-V p热容与温度的关系:C p ,m =a +bT +cT 2四、第一定律的应用1、理想气体状态变化等温过程:ΔU =0 ; ΔH =0 ; W =-Q =⎰-p 外d V等容过程:W =0 ; Q =ΔU =⎰T C d V ; ΔH =⎰T C d p等压过程:W =-p e ΔV ; Q =ΔH =⎰T C d p ; ΔU =⎰T C d V可逆绝热过程:Q =0 ; 利用p 1V 1γ=p 2V 2γ求出T 2,W =ΔU =⎰T C d V ;ΔH =⎰T C d pC V (㏑T 2-㏑T 1)=nR(㏑V 1-㏑V 2)(T 与V 的关系)C p (㏑T 2-㏑T 1)=nR(㏑P 2-㏑P 1) (T 与P 的关系)不可逆绝热过程:Q =0 ;利用C V (T 2-T 1)=-p 外(V 2-V 1)求出T 2,W =ΔU =⎰T C d V ;ΔH =⎰T C d p2、相变化 可逆相变化:ΔH =Q =n ΔH ; W=-p (V 2-V 1)=-pV g =-nRT ; ΔU =Q +W3、实际气体节流膨胀:焦耳-汤姆逊系数:μJ-T (理想气体在定焓过程中温度不变,故其值为0;其为正值,则随p 降低气体T 降低;反之亦然)4、热化学标准摩尔生成焓:在标准压力和指定温度下,由最稳定的单质生成单位物质的量某物质的定压反应热(各种稳定单质在任意温度下的生成焓值为0) 标准摩尔燃烧焓:…………,单位物质的量的某物质被氧完全氧化时的反应焓第二章 热力学第二定律一、基本概念 自发过程与非自发过程二、热力学第二定律热力学第二定律的数学表达式(克劳修斯不等式)T Q dS δ≥ “=”可逆;“>”不可逆三、熵(0k 时任何纯物质的完美结晶丧子为0)1、熵的导出:卡若循环与卡诺定理(页522、熵的定义:T Q dS r δ=3、熵的物理意义:系统混乱度的量度。
热力学第二定律
(“<” 表示实际热机为不可逆热机, “ =”表示 实际 热机为可逆热机) 或
Q1 Q2 不可逆 0 ( ) 可逆 T1 T2
dQ1 dQ2 0 T T2 1
(29)
对 无限小循环
3-1 热力学第二定律
3-1-3 Carnot 定理
2. Carnot定理推论: 在T1和T2两热源间工作的所有可逆热机, 其效率必相等,与工作物质及其变化种类无 关。
d Q实=0 不可逆 ΔS绝热≥0 ( ) 可逆 熵增原理:在绝热不可逆过程中系统的熵增加,直至系 统熵最大时,达到平衡。若变化在孤立系统中进行, 则 dQ实=0, dW=0 dQ实 式(32) 可写为 (32)’ ΔS 0
Δ S孤 Δ S系 Δ S环 0
Δ S孤
T环 0
不可逆 ( ) (33) 可逆
SB (T ) Δ S p (B) SB (T ) SB (0K)
* ( SB (0K) 0)
标准摩尔熵 Sm(B) —物质B在标准状态下的规定熵。
3-4-2 标准反应熵—化学反应的熵变 1 标准摩尔反应熵 ΔrSm: 有化学反应 aA+bB=lL+mM 当参加反应物质均处于某温度下的标准态时,发生 ξ=1mol 上述反应时的熵变称为标准摩尔反应熵。
3-2 熵函数的导出及热力
学第二定律的数学表达式
3-2-1 熵函数的导出及热力学第二定律的数学表达式
3 Clausius 不等式—热力学第二定律的数学表达式。 任意不可逆循环热温商之和小于零。 ( dQ ) 0(不可逆)
A
不可逆 可逆
A dQ dQiR 数
3-5-1 Helmholtz函数与Gibbs函数
第三章热力学第二定律
第三章 热力学第二定律一.基本要求1.了解自发变化的共同特征,熟悉热力学第二定律的文字和数学表述方式。
2.掌握Carnot 循环中,各步骤的功和热的计算,了解如何从Carnot 循环引出熵这个状态函数。
3.理解Clausius 不等式和熵增加原理的重要性,会熟练计算一些常见过程如:等温、等压、等容和,,p V T 都改变过程的熵变,学会将一些简单的不可逆过程设计成始、终态相同的可逆过程。
4.了解熵的本质和热力学第三定律的意义,会使用标准摩尔熵值来计算化学变化的熵变。
5.理解为什么要定义Helmholtz 自由能和Gibbs 自由能,这两个新函数有什么用处?熟练掌握一些简单过程的,,H S A ΔΔΔ和G Δ的计算。
6.掌握常用的三个热力学判据的使用条件,熟练使用热力学数据表来计算化学变化的,和r m H Δr m S Δr m G Δ,理解如何利用熵判据和Gibbs 自由能判据来判断变化的方向和限度。
7.了解热力学的四个基本公式的由来,记住每个热力学函数的特征变量,会利用d 的表示式计算温度和压力对Gibbs 自由能的影响。
G 二.把握学习要点的建议自发过程的共同特征是不可逆性,是单向的。
自发过程一旦发生,就不需要环境帮助,可以自己进行,并能对环境做功。
但是,热力学判据只提供自发变化的趋势,如何将这个趋势变为现实,还需要提供必要的条件。
例如,处于高山上的水有自发向低处流的趋势,但是如果有一个大坝拦住,它还是流不下来。
不过,一旦将大坝的闸门打开,水就会自动一泻千里,人们可以利用这个能量来发电。
又如,氢气和氧气反应生成水是个自发过程,但是,将氢气和氧气封在一个试管内是看不到有水生成的,不过,一旦有一个火星,氢气和氧气的混合物可以在瞬间化合生成水,人们可以利用这个自发反应得到热能或电能。
自发过程不是不能逆向进行,只是它自己不会自动逆向进行,要它逆向进行,环境必须对它做功。
例如,用水泵可以将水从低处打到高处,用电可以将水分解成氢气和氧气。
热力学第二定律 概念及公式总结
(不可逆热机的效率小于可逆热机)
所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关
四、熵的概念
1.在卡诺循环中,得到热效应与温度的商值加和等于零:
任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关
热温商具有状态函数的性质 :周而复始 数值还原
五、克劳修斯不等式与熵增加原理
不可逆过程中,熵的变化量大于热温商
1.某一过程发生后,体系的热温商小于过程的熵变,过程有可能进行不可逆过程
2.某一过程发生后,热温商等于熵变,则该过程是可逆过程
3.热温商大于熵变的过程是不可能发生的
4.热力学第二定律的数学表达式:
5. 隔离系统中, (一个隔离系统的熵永不减少)
6.熵增加原理:
7.隔离系统中有: 【根据熵增加原理知,若从体系的熵值变化量判断过程一定是自发过程,那么该过程一定是隔离系统】
六、热力学基本方程式与T-S图
1.热力学基本方程:
2.根据热二定律基本方程得: 可逆过程中有
3.绝热可逆过程:
七、 熵变的计算
1.等温过程中熵的变化值:
(1)理想气体等温可逆变化: 、 、
从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数
2.热温商:热量与温度的商
3. 熵:热力学状态函数 熵的变化值可用可逆过程的热温商值来衡量 (数值上相等)
4. 熵的性质:
(1)熵是状态函数,是体系自身的性质是系统的状态函数,是容量性质
(2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和
(2)等温、等压可逆相变:
I :在标准压力下,任何物质之间的熔沸点之间的相变为可逆相变;
第三章 热力学第二定律
小结
第二定律的目的:系统状态发生变化时,变 化过程的方向与限度的判定.
克劳修斯不等式 熵增原理
第二定律经典表述卡诺热机效率与卡诺定理 引出熵函数S(描述第二定律的物理量): def Q R dS T 第二定律的数学表达式(判据): 2 Q 2 Q r
S
dU nCv,mdT Qr 2 dU pdV S { 1 1 T T pV nRT T2 nCV, m dT V2 nRdV T1 V1 T V T2 V2 S=f(T,V) S nCV, m ln nRln T1 V1
2
W ' 0
T2 V2 S nCV, m ln nRln T1 V1
主要内容
卡诺循环 (Carnot, Sadi 热力学第二定律 熵 (Entropy),熵变的计算 热力学第三定律 Helmholtz 函数及Gibbs 函数 热力学基本方程及 Maxwell 关系式
第二定律应用举例-Clapeyron 方程
§3.1 热机与卡诺循环
( steam engine and Carnot’Cycle) 1. 热机与热机效率
W4 ΔU 4 nCv,m (T1 T2 )
Q1 Q 2 0 T1 T2
§3.2 热力学第二定律 (The Second Low of Thermodynamics )
1.自发过程及其共同特征 自发过程--无需外力帮助即可进行的过程(重力场除外)。 举例 (1)水从高水位流向低水位;
对可逆绝热过程: V3 V 2
1
V2 Q1 W1 nRT 1V4 T1 V3 V2 V T V4 V1 2 1
1
第三章热力学第二定律
第三章热力学第二定律第三章 热力学第二定律(一)主要公式及其适用条件1、热机效率1211211/)(/)(/T T T Q Q Q Q W -=+=-=η式中:Q 1及Q 2分别为工质在循环过程中从高温热源T 1所吸收的热量和向低温热源T 2所放出的热量,W 为在循环过程中热机对环境所作的功。
此式适用于在两个不同温度的热源之间所进行的一切可逆循环。
2、卡诺定理的重要结论⎩⎨⎧<=+不可逆循环可逆循环,0,0//2211T Q T Q不论是何种工作物质以及在循环过程中发生何种变化,在指定的高、低温热源之间,一切要逆循环的热温商之和必等于零,一切不可逆循环的热温商之和必小于零。
3、熵的定义式TQ dS /d r def = 式中:r d Q 为可逆热,T 为可逆传热r d Q 时系统的温度。
此式适用于一切可逆过程熵变的计算。
4、克劳修斯不等式⎰⎩⎨⎧≥∆21)/d (可逆过程不可逆过程T Q S上式表明,可逆过程热温商的总和等于熵变,而不可逆过程热温商的总和必小于过程的熵变。
5、熵判据∆S (隔) = ∆S (系统) + ∆S (环境)⎩⎨⎧=>系统处于平衡态可逆过程能自动进行不可逆,,0,,0 此式适用于隔离系统。
只有隔离系统的总熵变才可人微言轻过程自动进行与平衡的判据。
在隔离系统一切可能自动进行的过程必然是向着熵增大的方向进行,绝不可能发生∆S (隔)<0的过程,这又被称为熵增原理。
6、熵变计算的主要公式⎰⎰⎰-=+==∆212121r d d d d d T p V H T V p U T Q S对于封闭系统,一切可逆过程的熵变计算式,皆可由上式导出。
(1)∆S = nC V ,m ln(T 2/T 1) + nR ln(V 2/V 1)= nC p,m ln(T 2/T 1) + nR ln(p 2/p 1)= nC V ,m ln(p 2/p 1) + nC p,m ln(V 2/V 1)上式适用于封闭系统、理想气体、C V ,m =常数、只有pVT 变化的一切过程。
物理化学重要概念公式总结
第一章 热力学第一定律一、基本概念系统与环境,状态与状态函数,广度性质与强度性质,过程与途径,热与功,内能与焓。
二、基本定律热力学第一定律:ΔU =Q +W 。
焦耳实验:ΔU =f (T ) ; ΔH =f (T )三、基本关系式1、体积功的计算 δW = -p e d V恒外压过程:W = -p e ΔV可逆过程: W =nRT 1221ln ln p p nRT V V =2、热效应、焓等容热:Q V =ΔU (封闭系统不作其他功)等压热:Q p =ΔH (封闭系统不作其他功)焓的定义:H =U +pV ; d H =d U +d(pV )焓与温度的关系:ΔH =⎰21d p T T T C3、等压热容与等容热容 热容定义:V V )(T U C ∂∂=;p p )(T H C ∂∂=定压热容与定容热容的关系:nR C C =-V p热容与温度的关系:C p =a +bT +c’T 2四、第一定律的应用1、理想气体状态变化等温过程:ΔU =0 ; ΔH =0 ; W =-Q =⎰-p e d V 等容过程:W =0 ; Q =ΔU =⎰T C d V ; ΔH =⎰T C d p 等压过程:W =-p e ΔV ; Q =ΔH =⎰T C d p ; ΔU =⎰T C d V可逆绝热过程:Q =0 ; 利用p 1V 1γ=p 2V 2γ求出T 2,W =ΔU =⎰T C d V ;ΔH =⎰T C d p不可逆绝热过程:Q =0 ;利用C V (T 2-T 1)=-p e (V 2-V 1)求出T 2,W =ΔU =⎰T C d V ;ΔH =⎰T C d p2、相变化可逆相变化:ΔH =Q =n Δ_H ;W=-p (V 2-V 1)=-pV g =-nRT ; ΔU =Q +W3、热化学物质的标准态;热化学方程式;盖斯定律;标准摩尔生成焓。
摩尔反应热的求算:)298,()298(B H H m f B mr θθν∆=∆∑ 反应热与温度的关系—基尔霍夫定律:)(])([,p B C T H m p BB m r ∑=∂∆∂ν。
物理化学热力学第二定律总结
热二定律总结一、热力学第二定律克劳修斯说法:热不能自动从低温物体传给高温物体而不产生其他变化开尔文说法:不可能从单一热源吸热使之全部对外做功而不产生其他变化典型例题:判断:1、某体系从单一热源吸收100 kJ热量,对外做功100 kJ,该过程不符合热力学第二定律。
(X)2、某循环过程,体系从环境吸收100 kJ热量,对外做功100 kJ,该过程不符合热力学第二定律。
(X)3、某过程体系从环境吸收100 kJ热量,对外做功100 kJ,同时,系统复原,该过程不符合热力学第二定律。
(X)二、热机和卡诺循环任意热机效率:η = -W/Q1 = (Q1+Q2)/Q1卡诺循环:1、等温可逆膨胀;2、绝热可逆膨胀(等熵膨胀);3、等温可逆压缩;4、绝热可逆压缩(等熵压缩)可逆热机(卡诺热机)效率:η = 1-T2/T1对可逆热机,有Q1/T1 + Q2/T2 = 0卡诺定理:在两个不同温度的热源之间工作的所有热机,以可逆热机效率最大。
推论:所有卡诺热机的效率都相等。
典型例题:1、理想气体卡诺循环的图为下列四种情况中的哪一种?2、 判断:真实气体做为热机工质,经卡诺循环后,其热机效率低于以理想气体做为工质的可逆热机的效率。
三、 熵与克劳修斯不等式熵的定义:注意:熵是可逆热温商的积分,熵和热没有直接关系!克劳修斯不等式:(>,不可逆,=,可逆)如果是绝热过程: ΔS ≥0 (>,不可逆,=,可逆)(熵增原理)如果把系统及其相连的环境看成一个整体,则:ΔS iso =ΔS sys +ΔS amb ≥ 0(>,不可逆,=,可逆)(熵判据:判断过程是否自发)注意此公式的应用条件:绝热系统,或把系统和与之相连环境看成一个大的孤立系统。
不可只计算环境熵变,并以此判断过程自发与否。
典型例题:1、 判断:冰在0℃,101.325 kPa 下转变为液态水,其熵变>0,所以该过程为自发过程。
2、 判断:相变过程的熵变可由 计算。
热力学第二定律的数学表达式
热力学第二定律的数学表达式
热力学第二定律的数学表达式是:ds≥δQ/T。
热力学第二定律的数学表达式:ds ≥δQ/T,又称克劳修斯不等式。
由克劳修斯不等式知,将体系熵变量的大小与过程热温熵值进行比较就可以判断过场可逆与否。
对于绝热可逆过程,ds=δQ/T=0。
热力学第二定律是热力学基本定律之一,克劳修斯表述为:热量不能自发地从低温物体转移到高温物体。
热力学第二定律的意义:
热力学第二定律的数学表达式表明所有可逆循环的克劳修斯积分值都等于零,所有不可逆循环的克劳修斯积分值都小于零。
故本不等式可作为判断一切任意循环是否可逆的依据。
应用克劳修斯不等式还可推出如下的重要结论,即任何系统或工质经历一个不可逆的绝热过程之后,其熵值必将有所增大。
第三章 热力学第二定律
滨州学院化工与安全学院
2.吉布斯自由能判据
如果系统在恒温、恒压、且不作非膨胀功的条件下,
dGT , p,W / =0 0 GT , p,W / =0 0
=
可逆
平衡
不可逆 自发
不能自发
即恒温、恒压不做非体积功的系统中,自发变化总是 朝着吉布斯自由能减少的方向进行,直到达到平衡为 止。
=
可逆
平衡
不可逆 自发
不能自发
在恒温、恒容、不做非体积功的条件下,自发变化 总是朝着亥姆霍兹自由能减少的方向进行,直到达到平 衡为止。
物理化学
滨州学院化工与安全学院
(三)吉布斯自由能 1.吉布斯自由能函数
G def H −TS
G称为吉布斯自由能(Gibbs free energy),是 状态函数,具有容量性质。
S = QR T
S = nR ln(V2 ) = nR ln( p1 )
V1
p2
(2)理想气体(或理想溶液)的等温混合过程,并
符合分体积定律,即
mixS = −R nB
xB =
ln xB
VB V总
B
(3)等温等压可逆相变(若是不可逆相变,应设计
可逆过程)
S
(相变)=
H (相变) T (相变)
物理化学
ln
T2 T1
物理化学
滨州学院化工与安全学院
(3)一定量理想气体从 p1,V1,T1 到 p2 ,V2 ,T2 的过程。
a. 先等温后等容 S = nR ln(V2 ) + T2 nCV ,mdT
⎯若⎯CV⎯,m =常 ⎯⎯数→
S
=
nR
ln
V2 V1
第三章 热力学第二定律
物理化学The Second Law of Thermodynamics 版权所有:武汉科技大学化学工程与技术学院Copyright © 2015 WUST. All rights reserved.•掌握热机效率的表达、卡诺循环及其重要结论;•掌握热力学第二定律以及由第二定律导出卡诺定理的方法,卡诺定理的推论;•掌握克劳修斯等式和状态函数-熵,克劳修斯不等式和熵增原理,熵判据;•掌握系统熵变(简单pVT变化、相变过程、化学变化)及环境熵变的计算;•掌握热力学第三定律的普朗克表述及熵的物理意义,理解规定摩尔熵、标准摩尔熵、标准摩尔反应熵及能斯特热定理。
•掌握亥姆霍兹自由能和吉布斯自由能定义、亥姆霍兹自由能判据、吉布斯自由能判据,理解亥姆霍兹自由能变和吉布斯自由能变的物理意义及计算,理解可逆与平衡、不可逆与自发的关系;•理解热力学基本方程和热力学关系式(麦克斯韦关系、对应系数关系,其它重要关系);•掌握热力学第二定律应用实例——克拉佩龙方程、克劳修斯-克拉佩龙方程。
本章主要内容§3.1 卡诺循环§3.2 热力学第二定律§3.3 熵增原理§3.4 单纯pVT变化熵变的计算§3.5 相变过程熵变的计算§3.6 热力学第三定律和化学变化过程熵变计算§3.7 亥姆霍兹函数和吉布斯函数§3.8 热力学基本方程§3.9 克拉佩龙方程§3.10 吉布斯-亥姆霍兹方程和麦克斯韦关系式§3.1 热力学第二定律•自发过程举例•自发过程逆向进行必须消耗功•自发过程的共同特征•热力学第二定律出现问题1.符号:宏观量与微观量2.单位:3.公式4.解题过程:d d δ δU H W Q U H W Q ∆∆d d W Q W Q U H∆∆不带单位计算;单位混用;简写Rδd amb W p V =- () =W pV W pV W pV H U W==-=∆∆∆-缺少必要说明、过程错结果正确amb d W p V=-,m 21amb 21()()V nC T T p V V -=--222p V nRT =由于绝热Q = 0,故∆U =W)1(22)1(11γγγγ--=p T p T W = ∆U = n C V , m (T 2-T 1)2211d d V V amb V V nRT W p V V V=-=-⎰⎰W = -p amb ∆V(1)(2)(3)(4)1. 自发过程举例自发变化某种变化有自动发生的趋势,一旦发生就无需借助外力,可以自动进行,这种变化称为自发变化。
热力学第二定律公式
热力学第二定律公式
热力学第二定律是一种基本的物理定律,它描述了物质在发生热力学过程时所表现出的一般性规律。
它的公式表达式为ΔS ≥ δQ/T,其中ΔS代表热力学系统的熵增量,δQ代表系统受到的热量,T代表系统的绝对温度。
它的定义如下:当一个物质在发生热力学过程时,物质的熵增量ΔS必须大于系统受到的热量δQ除以系统的绝对温度T,即ΔS ≥ δQ/T。
这一定律表明,当物质发生热力学过程时,物质的熵总是在增加,而不会减少,即熵增量ΔS必须大于等于零,而不能小于零。
当一个物质发生热力学过程时,熵增量ΔS可能会大于δQ/T,这表明物质的熵增量不仅是由外加的热量所决定,还受到系统的温度影响,即熵增量也受到温度的影响,这也是热力学第二定律的一个重要内容。
热力学第二定律是一个重要的物理定律,它描述了物质在发生热力学过程时的一般规律,即物质的熵总是在增加,而不会减少,而且熵增量的大小也受到系统的温度的影响。
鉴于热力学第二定律的重要性,它已经成为热力学研究的基础,它在很多热力学相关问题的研究中都发挥着重要作用。
热力学第二定律 概念及公式总结
一、自发反应-不可逆性(自发反应乃是热力学的不可逆过程)一个自发反应发生之后,不可能使系统和环境都恢复到原来的状态而不留下任何影响,也就是说自发反应是有方向性的,是不可逆的。
二、热力学第二定律1.热力学的两种说法:Clausius:不可能把热从低温物体传到高温物体,而不引起其它变化Kelvin:不可能从单一热源取出热使之完全变为功,而不发生其他的变化2.文字表述:第二类永动机是不可能造成的(单一热源吸热,并将所吸收的热完全转化为功)功热【功完全转化为热,热不完全转化为功】(无条件,无痕迹,不引起环境的改变)可逆性:系统和环境同时复原3.自发过程:(无需依靠消耗环境的作用就能自动进行的过程)特征:(1)自发过程单方面趋于平衡;(2)均不可逆性;(3)对环境做功,可从自发过程获得可用功三、卡诺定理(在相同高温热源和低温热源之间工作的热机)(不可逆热机的效率小于可逆热机)所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关四、熵的概念1.在卡诺循环中,得到热效应与温度的商值加和等于零:任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关热温商具有状态函数的性质:周而复始数值还原从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数2. 热温商:热量与温度的商3. 熵:热力学状态函数熵的变化值可用可逆过程的热温商值来衡量(数值上相等)4. 熵的性质:(1)熵是状态函数,是体系自身的性质是系统的状态函数,是容量性质(2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和(3)只有可逆过程的热温商之和等于熵变(4)可逆过程热温商不是熵,只是过程中熵函数变化值的度量(5)可用克劳修斯不等式来判别过程的可逆性(6)在绝热过程中,若过程是可逆的,则系统的熵不变(7)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,所以在隔离系统中,一切能自动进行的过程都引起熵的增大。
热力学第二定律.
S f
2 dQ 1T
系统熵的变化量与熵流之差定义为熵产,用“Sg”表示
Sg S2 S1 S f
(S2 S1) S f Sg
熵流是由于系统与外界的发生热交换而引起的,其取 值可正可负可为零,而熵产是过程不可逆性的度量, 可逆过程熵产为零,不可逆过程熵产大于零,任何过 程的熵产不可能小于零。
• (2)若把此热机当制冷机使用,同样由克劳修斯积分 判断
Q Q1 Q2 2000 800 0.585 kJ / K 0
T T1 T2 973 303
工质经过任意不可逆循环,克劳修斯积分必小于零, 因此循环不能进行。
• 若使制冷循环能从冷源吸热800kJ,假设至少 耗功Wmin,根据孤立系统熵增原理有△Siso=0:
因为工质恢复到原来状态,所以工质熵变
△SE=0
对热源而言,由于热源放热,所以
SH
Q1 T1
2000 973
2.055 kJ / K
• 对冷源而言,冷源吸热
S L
Q2 T2
800 303
2.64 k J
/K
代入得:
Siso (2.055) 2.64 0 0.585 kJ / K 0
2 Q
1T
对于微元过程:
ds
(
dq T
) re v
或 dS
dQ
( T
) re v
mds
由于熵是状态参数,所以不论过程是否可逆,熵 变只由初终状态决定。
可逆与不可逆的情况
S2
S1
2 1
Q
T
第三章热力学第二定律主要公式及其适用条件
第三章热力学第二定律主要公式及使用条件1. 热机效率〃=-W/Q =(e1+e2)/e1二⑺一“”刁式中0和。
2分别为工质在循环过程中从高温热源厂吸收的热量和向低温热源乃放出的热。
W为在循环过程中热机中的工质对环境所作的功。
此式适用于在任意两个不同温度的热源之间一切可逆循环过程。
2.卡诺定理的重要结论Q\ 6 +Q2 /Ty v =0,可逆循环<0,不可逆循环任意可逆循环的热温商之和为零,不可逆循环的热温商之和必小于零。
3. 矯的定义dS = bQJT4.克劳修斯不等式(=8e/r,可逆dS[>dQ/T,不可逆5. 爛判据A5iso=AS sys + AS amb(>0,不可逆(=0,击遗式中iso, sys和amb分别代表隔离系统、系统和环境。
在隔离系统中,不可逆过程即自发过程。
可逆,即系统内部及系统与环境之间皆处于平衡态。
在隔离系统中,一切自动进行的过程,都是向爛增大的方向进行,这称之为爛增原理。
此式只适用于隔离系统。
6. 环境的熾变△Samb = Oamb/^mb =~Qsy7-癇变计算的主要公式di/ + /?dV _ f—Vd”T Ji 7对于封闭系统,一切刃v=o的可逆过程的朋计•算式,皆可山上式导出(1)△S = nC V m ln(7;/7])+ H/?\n(V2 /V,)△S = nC p m \n(T2 IT x) + nR ln(p1 / p2)△S = /iC V m ln(p2//?,) + nC p m ln(V2 / %)上式只适用于封闭系统、理想气体、G m为常数,只有〃"卩变化的一切过程(2)AS T=nR \n(V2 / V, )=/?/? ln(p / p2)此式使用于n—定、理想气体、恒温过程或始末态温度相等的过程。
(3)AS=/?C pm ln(7;/7])此式使用于"一定、-口为常数、任意物质的恒压过程或始末态压力相等的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 热力学第二定律1. 卡诺定理卡诺热机效率hc h c h 11T T Q Q Q W−=+=−=η 卡诺定理:工作于高温热源T h 与低温热源T c 之间的热机,可逆热机效率最大。
卡诺定理推论:所有工作于高温热源T h 与低温热源T c 之间的可逆热机,其热机效率都相等,与热机的工作物质无关。
卡诺循环中,热温商之和等于零0cch h =+T Q T Q 任意可逆循环热温商之和也等于零,即0R=⎟⎟⎠⎞⎜⎜⎝⎛∑i iiT Q 或 0δR =⎟⎠⎞⎜⎝⎛∫T Q 2. 热力学第二定律的经典表述克劳休斯说法:不可能把热由低温物体传到高温物体, 而不引起其他变化。
开尔文说法:不可能从单一热源吸热使之完全转化为功, 而不发生其他变化。
热力学第二定律的各种说法的实质:断定一切实际过程都是不可逆的。
各种经典表述法是等价的。
3. 熵的定义TQ S revδd =或∫=ΔB ArevδTQ S熵是广度性质,其单位为。
系统状态变化时,要用可逆过程的热温商来衡量熵的变化值。
1K J −⋅4. 克劳修斯不等式T QS δd irrev ≥ 或 ∫≥ΔB A ir rev δT Q S 等号表示可逆,此时环境的温度T 等于系统的温度,为可逆过程中的热量;不等号表示不可逆,此时T 为环境的温度,为不可逆过程中的热量。
Q δQ δ5. 熵增原理0)d (irrev≥绝热S 或0)(irrev≥Δ绝热S 等号表示绝热可逆过程,不等号表示绝热不可逆过程。
在绝热条件下,不可能发生熵减少的过程。
0)d (irrev≥孤立S 或0)(irrev≥Δ孤立S 等号表示可逆过程或达到平衡态,不等号表示自发不可逆过程。
可以将与系统密切相关的环境部分包括在一起,作为一个隔离系统,则有:0irrev sur sys iso ≥Δ+Δ=ΔS S S6. 熵变计算的主要公式计算熵变的基本公式: ∫∫∫−=+=δ=−=Δ2 12 12 1rev12d d d d TpV H T V p UTQ S S S 上式适用于封闭系统,一切非体积功过程。
0f =W 不论过程是否可逆,都必须通过可逆过程的热温商来计算熵变。
如果过程是不可逆的,应设计一个与该不可逆过程的始、终态相同的可逆过程来计算。
(1)封闭系统、理想气体、为常数,只有p、V 、T 变化的过程熵变计算 m ,m ,p V C C 、 1212m ,ln ln V VnR T T nC S V +=Δ2112m ,ln ln p p nR T T nC S p +=Δ12m ,12m ,ln lnp p nC V V nC S V p +=Δ(2) 对于液态、固态,当压力变化不太大时 ∫∫≈=Δ2121d d m ,m ,TT p TT V TTnC TTnC S(3). 相变过程的熵变 相变相变T H S Δ=Δ式中为可逆相变时的相变焓,为可逆相变温度。
若是不可逆相变,则需设计一个可逆过程来计算。
相变H Δ相变T 7. 亥姆霍兹函数TS U A −=,T A W )d (δ≥T A W )(Δ≥封闭系统经过一个等温可逆过程,系统的亥姆霍兹函数的增加等于环境对系统所做的功;而经过一个等温不可逆过程,系统的亥姆霍兹函数的增加小于环境对系统所做的功。
最大功原理:封闭系统在等温可逆过程中所做的功最大。
8. 吉布斯函数 TS H TS pV U G −=−+=p T G W ,f )d (≥δp T G W ,f )(Δ≥经过一个等温等压可逆过程,系统的吉布斯函数的增加等于环境对系统所做的非体积功;而经过一个等温等压不可逆过程,吉布斯函数的增加小于环境对系统所做的非体积功。
p T G ,)(Δ可理解为等温等压条件下系统做非体积功的能力。
9. ΔA 和ΔG 的计算(1) 由定义式计算)()(1122S T S T U TS U A −−Δ=Δ−Δ=Δ)()(1122S T S T H TS H G −−Δ=Δ−Δ=Δ(2) 等温过程的ΔA 和ΔG 的计算S T U A Δ−Δ=Δ S T H G Δ−Δ=Δ (3)利用最大功W max 来计算(适用等温、可逆过程) max )(W A T =Δ)()(1122V p V p A pV A G −+Δ=Δ+Δ=Δ(4)利用最大非体积功计算 max f,W (适用于等温、等压、可逆过程)max f,W G =Δ)()(1122V p V p G pV G A −−Δ=Δ−Δ=Δ只要始、终态确定了,不论其间进行的是可逆过程还是不可逆过程,其ΔA 、ΔG 都是确定的。
10.过程判据(1)熵判据(只适用于孤立系统)⎪⎩⎪⎨⎧<=>Δ不可能发生平衡态标志或可逆过程自发过程孤立 0 00 )(S ⎪⎩⎪⎨⎧<=>Δ+Δ=Δ不可能发生平衡态标志或可逆过程自发过程环境系统总0 00 )()()(S S S环境的熵变的计算TQ T Q T Q S −===Δ环环环ir rev )( 式中Q 表示系统实际吸收的热量。
(2)(等温、等容、不做非体积功)⎪⎩⎪⎨⎧>=<Δ=不可能发生平衡态标志或可逆过程自发过程 0 00 )(0,,f W V T A (3)(等温、等压、不做非体积功)⎪⎩⎪⎨⎧>=<Δ=不可能发生平衡态标志或可逆过程自发过程 0 00 )(0,,f W p T G 11. 热力学基本方程式, V p S T U d d d −=p V S T H d d d += ,V p T S A d d d −−=p V T S G d d d +−=上述热力学基本方程适用于不做非体积功的封闭系统。
不仅适用于一定量的单相纯物质,或组成恒定的多组分系统发生单纯p , V , T 变化的过程,也可适用于相平衡或化学平衡的系统。
12. 对应系数关系式 若,则),(y x f z =y y z x x z z x y d )/(d )/(d ∂∂+∂∂=,由热力学基本方程可得到 ()S V U p ∂∂−=/(V S U T ∂∂=/)()p S H T ∂∂=/ ()S p H V ∂∂=/()V T A S ∂∂−=/(T V A p ∂∂−=/)()p T G S ∂∂−=/ ()T p G V ∂∂=/13. 麦克斯韦关系式若,),(y x f z =y N x M y y z x x z z x y d d d )/(d )/(d +=∂∂+∂∂=,则y x x N y M )/()/(∂∂=∂∂。
由热力学基本方程可得到麦克斯韦关系式 V S S p V T )/()/(∂∂−=∂∂p S S V p T )/()/(∂∂=∂∂V T T p V S )/()/(∂∂=∂∂p T T V p S )/()/(∂∂−=∂∂利用麦克斯韦关系式可将实验可测偏微商来代替那些不易直接测定的偏微商。
14. 温度与ΔG 的关系(吉布斯—亥姆霍兹方程)()2/TH T T G p Δ−=⎥⎦⎤⎢⎣⎡∂Δ∂ 若H Δ与温度无关⎟⎟⎠⎞⎜⎜⎝⎛−Δ=Δ−Δ12112211)()(T T H T T G T T G 若H Δ与温度有关,则需要用到热容,产物与反应物热容之差为,则,H 2cT bT a C p ++=2cT bT a C p Δ+Δ+Δ=Δ0d H T C H p +Δ=Δ∫0是积分常数,可由某一温度下已知的反应焓变求出,再将ΔH 代入吉布斯—亥姆霍兹方程。
15. 压力与ΔG 的关系 V p G T=⎟⎟⎠⎞⎜⎜⎝⎛∂∂ 压力为p 时∫Ο+=Οpp p V T G T p G d )(),()(O T G 是标准态(温度为T 、压力为Οp 的纯物质)的吉布斯函数,称标准吉布斯函数。
对于理想气体ΟΟ+=ppnRT T G T p G ln )(),(16. 热力学第三定律温度趋于0K 时,任何完美晶体的熵值都等于零。
0)(K0lim =→T S T 17. 规定熵规定在0K 时完整晶体的熵值为零,从0K 到温度T 进行积分,这样求得的熵值称为规定熵。
在标准状态下一摩尔物质的规定熵称为标准摩尔规定熵,简称标准摩尔熵,记作)(Om T S 。
一般手册上给出98.15K)2(Om S 的值,温度T 时的规定熵:T TC S T S Tp d )K 15.298()(98.15K2m ,Om O m ∫+=18. 标准摩尔反应熵标准状态下,按化学反应计量方程 ∑=BB B 0ν 进行一个单位反应时,反应系统的熵变称为标准摩尔反应熵。
)(B,298.15K (298.15K)Om BB O m r S S ∑=Δν(νB 对反应物取负值,产物取正值)任意温度T 时的标准摩尔反应熵∫∑νΔ=ΔT p T TC S T S 298.15K m ,BB Om r O mr d )B (+98.15K)2()(。