第二章热力学第二定律
热力学第二定律
第二章热力学第二定律§2.1 热力学第二定律2.1.1 自发过程1、物质自发变化过程的方向与限度——自发过程A、温度不同的两个物体相互接触热总是从高温物体传到低温物体,直到两物体温度相等达到平稳为止。
相反,热不会自动从低温物体传给高温物体,使温差增大。
B、气箱中充有压力不等的空气,抽去隔板空气必定从压力大的左边向压力小的右边扩散,直到整个气箱中压力相等达到平稳为止。
相反,空气不会自动地从低压向高压方向移动,使压力差增大。
C、水总是自发的从高处向低处流动,直到各处的水位相等。
相反,水绝不会自动倒流。
D、锌片投入硫酸铜溶液中,自动地发生置换反应,生成Cu和ZnSO4。
相反,其逆过程是不会自动发生。
…………以上实例说明:自然界中自动发生的过程是自然地朝着一定方向变化而趋向平衡。
结论:一切自发过程都有方向性和限度。
、自发过程特点⇨局限性:热力学不可逆性(过程)(单向,趋向平衡)区别于不可能倒着来(以上过程均可以倒着来进行,但环境必须对系统做功。
)3、自发过程的热力学不可逆性——不可逆过程Ex1. 理想气体的真空膨胀(恒温槽中),自发过程。
(1)过程L:W=0、△T=0、△U=0、Q=0;环境没有变化;系统:若要使系统复原,我们可以对系统进行等温可逆压缩L`,使系统回复到始态。
(2)过程L`:环境对系统做功W,由热力学第一定律:0=△U=Q +W∴Q= -W 系统散失了热Q。
环境:损失了功- W、得到了热-Q,总能量不变。
(3)系统经真空膨胀L和等温可逆压缩过程L`的循环后:系统:回复到始态环境:损失了功W、得到了热-Q,总能量不变。
要使环境也复原,就要:从环境(单一热源)中取出热-Q,全部转变为功W,而不留下任何痕迹(即不引起其他变化)。
——是不可能的。
∴理想气体的真空自由膨胀是热力学不可逆过程。
Ex2.高温物体自发传热给低温物体自发过程高温物体T1(环境)传给低温物体T2(系统)热量Q1,达到平衡。
热工基础-2-(3)热力学第二定律-
低温热源没变化,唯有高温热源放出了热量: QHA -QHB>0, 并对外输出了净功Wo= WA-WB 说明联合运转的机器:是一个单一热源的热机, 违背了热力学第二定律开尔文的说法。
故而不可能实现。 因此开始的假设不成立。 定理一得证。
TL hc = 1 TH
(1) 卡诺循环等所有的可逆循环的热效率仅取决
⑴ 循环过程
1 2
绝热压缩
2 3
等温吸热
3 4
绝热膨胀
4 1
等温放热
热工基础—第2章
⑵ 热效率
可证明,采用理想气
体为工质时的卡诺循环的 热效率η c,仅与热源温度TH 和冷源温度TL有关,为:
hc = W0 / QH = (QH - QL ) / QH = 1 - TL / TH
可逆过程熵变的计算:
设有一可逆过程12 ,其熵变及比熵变为:
2、热力学第二定律的数学表达式
克劳修斯积分等式 是循环可逆的 一种判据,那么如何判断循环不可逆呢?
(1)克劳修斯积分不等式
如图不可逆循环1-A-2-B-1, 其中虚线表示循环中的不可逆过 程。
用无数条可逆绝热过程线将循环分成无穷多
个微元循环。
力过程却未必都能自动发生。
自发过程:能够独立地、可以无条件自动发生的
过程称为自发过程;反之是非自发过程。
自发过程的反方向过程即为非自发过程。
因此,热力过程的方向性,说明自发过程具
有方向性。
!!!注意: 非自发过程,不能自动发生,强调的是自 动,并没有说非自发过程不能发生——需补偿。 事实上,许多实际过程都是非自发过程。
克劳修斯不等式: 讨论 克劳修斯不等式,可以作为判断循环是否
第二章 热力学第二定律
p r ir B V A
δQir δQr ,故 dS > 又 dS = T T δQir δQr 将 dS = 与 dS > 合并, 合并, T T
得: d S
ir ≥ r
δQ T
第2定律的数学表达式 定律的数学表达式 T是环境还是系统温度? 是环境还是系统温度? 是环境还是系统温度
=C
n m
特点: 数学概率大;故体系自动 特点: >1, 大,数学概率大;故体系自动 , 从概率小的状态向概率大的状态移动, 从概率小的状态向概率大的状态移动,其逆过 程不可能自动实现. 程不可能自动实现.
二,规定熵
δQr nC p ,m = dT 定压下:dS = 定压下: T T
则: S = ∫T
T2
1
nC p ,m T
dT
T2 ln T1
理想气体: 理想气体: S
= nC
p ,m
δ 恒容可逆变温: ★ 恒容可逆变温: Qr = dUV
= nCV ,m dT
则: S = ∫T
T2
1
nC V ,m T
dT
理想气体: 理想气体: S
= nC V ,m
T2 ln T1
★可逆变T,p,V 可逆变 , ,
§4. 熵的物理意义和规定熵
一,熵的物理意义 理想气体等温混合熵变△ 理想气体等温混合熵变△mixS = - R∑nilnxi > 0 说明:混合后系统熵值大于混合前系统熵值; 说明:混合后系统熵值大于混合前系统熵值; 混合后: , 气体混在一起 不易区分,混乱; 气体混在一起, 混合后:A,B气体混在一起,不易区分,混乱; 混合前: , 气体分别放置 容易区分,有序; 气体分别放置, 混合前:A,B气体分别放置,容易区分,有序; 由教材中的例题可得: 由教材中的例题可得: 蒸发过程△ 例3.3 → 蒸发过程△S > 0,则同物质 Sg > Sl; , 升温过程△ 例3.5 → 升温过程△S > 0,则同物质 S高温>S低温; , 膨胀过程△ 例3.6 → 膨胀过程△S > 0,则同物质 S低压>S高压; , 结论: 结论:更混乱的状态熵值大于相对有序状态熵值
章热力学第二定律
任意可逆循环热温商的加和等于零,即:
i
(
Qi Ti
)R
0
或
Q ( T )R
0
证明如下:(1)在如图所示的任意可逆
循环的曲线上取很靠近的PQ过程;
(2)通过P,Q点分别作RS和TU两条可逆绝热膨胀线,
(3)在P,Q之间通过O点作等温可逆膨胀线VW,使两个 三角形PVO和OWQ的面积相等,
这样使PQ过程与PVOWQ过程所作的功相同。
则有
( i
Q T )IR,AB
A Q
( BT
)R
0
A B
(
Q T
)R
SA
SB
或
SB SA ( i
Q T
)IR,A
B
Q
SAB (
i
T )IR,AB 0
如AB为可逆过程
SAB (
i
Q T
)R,AB
0
Q
将两式合并得 Clausius 不等式:
SAB (
i
T )AB 0
上一内容 下一内容 回主目录
过程1:等温(Th ) 可逆膨胀由 p1V1 到 p V2 2 (A B)
U1 0
W1
V2 V1
P外 dV
V2 V1
RTh V
dV
RTh ln V2 V1
Qh W1
所作功如AB曲线下的面积所示。
上一内容 下一内容 回主目录
返回
2024/6/21
一、卡诺循环(Carnot cycle)
上一内容 下一内容 回主目录
第二章 热力学第二定律
2.9 变化的方向和平衡条件 2.10 G的计算示例 2.11 几个热力学函数间的关系 2.12 克拉贝龙方程 2.13 热力学第三定律与规定熵
第二章 热力学第二定律
从而使众多 小卡诺循环的总 效应与任意可逆 循环的封闭曲线 相当,所以任意 可逆循环的热温 商的加和等于零, 或它的环程积分 等于零。
对于任意可逆循环,可用一连串极小的卡诺循环来代替。 (Qi ) R (Qi ) R 0 0 因此, 或
TI
TI
任意可逆循环的热温商之和等于零。
若任意一循环由可逆过程Ⅰ (A→B ) 和Ⅱ( B → A )构成, 则必有
V2 R(T2 T1 ) ln V1 T2 T1 T1 W R 1 V Q2 T2 T2 RT2 ln 2 V1
ηR 只与T1 、 T2 有关;热机须工作于两热源( 以T 为标志 )间,
否则η =0 ;0 K 不可能达到,故η <1 。
第四节
卡诺定理: 1、ηR ≥ η任意 ;
∵
T2V2γ-1 = T1V3γ-1
T2V1γ-1 = T1V4 γ-1 ∴ (V2/ V1) = (V3 / V4 ) W = -(Q1 +Q2 ) = RT2 ln(V2/ V1) -RT1 ln (V3 / V4 )
= R(T2 - T1 ) ln(V2/ V1)
热机从高温(T2 ) 热源吸热Q2 ,作功为W ,向低温(T1 ) 热源 放热Q1 。则热机效率η 为
ΔS体=
第六节 B Q R
熵变的计算
ΔS环= -
A
Q实际 T环
T
一、等温过程中熵变的计算 (一) 理想气体等温过程 ΔU = 0 ,QR = Wmax
ΔS体=
例 1 ΔS体 ΔS环
pdV p1 V2 = nR ln = nR ln T p2 V1
( 无论可逆或不可逆过程,将体系始终态的 p V T 变化代入上式计算) 。故始终态相同, ΔS体相同。 ( 按实际过程计算Q实际 )
第二章 热力学第二定律(简明教程物理化学)
§2.1 热力学第二定律的经典表述
1. Clausius说法:不可能把热从低温物体传到高温物 体而不引起其它变化。 2. Kelvin & Plank说法:不可能从单一热源吸热使之 完全变为功而没有任何其它变化。 3.第二类永动机是不可能造成的。 第二类永动机乃是一种能够从单一热源吸热,并 将所吸收的热全部变为功而无其他影响的机器。 强调说明: 1. 第二类永动机是符合能量守恒原理的; 2. 热可以完全变为功,注意其限制条件; 3. 可以判断过程进行的方向。
T2
2.卡诺热机的效率只与热源温度有关,而与工作 介质无关。 卡诺定理告诉人们:提高热机效率的有效途径是加 大两个热源之间的温差。 单一热源:T1=T2, = 0,即热不能转化为功。
证明卡诺定理1:
反证法 假定I > R , 则|W’ | > | W |
高温热源T2
吸热Q2 吸热 Q 22 放热 Q
* 不同种理气 (或理想溶液)的等温混合过程,并 V 符合分体积定律,即 xB B
V总
1mol A,T,V
1mol B,T,V
n=nA + nB T, 2V
mix S R nB ln xB
B
二、定容或定压变温过程
定容
S
T2
T1
Qr
T
nCV ,m
T1
T2
若CV,m为常数
第二章 热力学第二定律
不可能把热从低温 物体传到高温物体, 而不引起其它变化
化学与材料科学学院
§2.1 自发过程的共同特征
自发过程:能够自动发生的过程。
经验说明:自然界中一切自发过程都是有方向和限度的。
如: 方向 热: 高温低温 电流:高电势低电势 气体:高压低压 钟摆:动能热
大学课程《物理化学》第二章(热力学第二定律)知识点汇总
VB ,m
V nB T , p ,n jB
H nB T , p ,n jB G nB T , p ,n jB
U B ,m
U nB T , p ,n jB
S nB T , p ,n jB
T2 p1 dT S S '1 S '2 nR ln C p p2 T1 T
dU TdS pdV
T p V S S V
dH TdS Vdp
( U )V T S
T V p S S p
S系统 S B S A
Qr
T
S孤立=S系统 S环境 0
A
熵变的计算
总则
S环境
Q实际 T环境
理想气体等温过程的熵变
S S B S A
B
Qr
A
Q ( )r T T
Wmax Qr S T T
可逆相变过程的熵变
V2
V1
dG SdT Vdp B dnB
B
dU TdS pdV B dnB
B
U dU TdS pdV dnB nB S ,V ,n j B
B
U H F G nB S ,V ,n j B nB S , p ,n j B nB T ,V ,n j B B nB T , p ,n j B
B
dG SdT Vdp B dnB
B
纯理想气体的化学势
Gm Vm p T p T
[笔记]第二章热力学第二定律
第二章热力学第二定律一、基本要求(1)了解热力学第二定律与卡诺定律的联系。
理解克劳休斯不等式的重要性。
(2)理解热力学第二、第三定律的叙述及数学表达式。
(3)明确热力学熵、亥姆霍茨函数和吉布斯函数等热力学函数以及标准摩尔熵、标准生成吉布斯函数等概念和对熵的微观理解。
(4)掌握熵增原理和各种平衡判据。
(5)掌握单纯p,V,T变化过程,相变化过程系统熵变的计算。
(6)理解环境熵变的计算(7)掌握化学反应标准摩尔熵变的计算。
(8)理解亥姆霍茨函数及吉布斯函数的定义。
(9)理解亥姆霍茨函数判据及吉布斯函数判据。
(10)理解人类学基本方程的表达式及应用条件。
(11)了解由热力学基本方程分别加上相应条件(如定容,定熵;定压,定熵;定容,定温;定压,定温)得到的偏微熵与相应的热力学函数的关系。
(12)掌握单纯p,V,T变化(定温下p,V变化)、相变化过程ΔA,ΔG 的计算。
(13)了解利用热力学函数的基本关系式即热力学基本方程、麦克斯韦关系式,焓、熵、亥姆霍茨函数。
(14)教熟练地运用吉布斯——亥姆霍茨公式、克拉贝龙方程式。
(15)明确偏摩尔量和化学势的意义,了解它们之间的区别。
二、主要概念、定理及公式(一)自发过程的共同特征1.自发过程的定义自发过程就是在指定的条件下不消耗外力,而仅由体系的内在性质决定的一类热力学过程。
此过程是可以自动进行的。
2.宏观过程的不可逆性自然界中一切实际发生的宏观过程,总是:非平衡平衡态(为止)而不可能由平衡态非平衡态结论:自然界中发生的一切实际过程(指宏观过程,下同)都有一定方向和限度。
不可能自发按照原过程逆向进行,即自然界中一切实际发生的过程都是不可逆的。
3.可逆过程的共同特征(1)自发过程有方向性和限度性。
所有自发过程都有方向和限度,其反过程虽然并不逆反能量守恒定律,但不能无条件自发进行。
(2)自发过程是不可逆性。
总的来说,自发过程的共同特征是不可逆的,这一不可逆性的本质是功与热转换的不可逆性。
第二章:热力学第二定律(物理化学)
精选可编辑ppt
31
克劳修斯不等式的意义
克劳修斯不等式引进的不等号,在热力学上可以
作为变化方向与限度的判据。
dS Q T
dSiso 0
“>” 号为不可逆过程 “=” 号为可逆过程
“>” 号为自发过程 “=” 号为处于平衡状态
I < 20% 1度电/1000g煤
高煤耗、高污染(S、N氧化物、粉尘和热污染)
精选可编辑ppt
16
火力发电厂的能量利用
400℃
550℃
ThTC67330055%
Th
673
I < 40% 1度电/500g煤
ThTC82330063%
Th
823
精选可编辑ppt
17
火力发电厂的改造利用
精选可编辑ppt
十九世纪,汤姆荪(Thomsom)和贝塞罗特(Berthlot) 就曾经企图用△H的符号作为化学反应方向的判据。他们认 为自发化学反应的方向总是与放热的方向一致,而吸热反应 是不能自动进行的。虽然这能符合一部分反应,但后来人们 发现有不少吸热反应也能自动进行,如众所周知的水煤气反 应就是一例。这就宣告了此结论的失败。可见,要判断化学 反应的方向,必须另外寻找新的判据。
精选可编辑ppt
4
2.2 自发变化不可逆症结
T1高温热源 Q1
M
W
Q2
T2低温热源
精选可编辑ppt
5
2.3 热力学第二定律(The Second Law of Thermodynamics)
开尔文(Kelvin) :“不可能从单一热源取出热使之完全 变为功,而不发生其它的变化。”
热力学第二定律
1、 气、液、固体的定p或定V的变T 过程
定压变温过程:由δQp=dH=nCp,mdT
得:S= 2 Qr T2 nC p,m dT ;
1T
T1 T
视C
为常
p,m
数
S
nC
p ,m n
T2 T1
(2-4-1)
定容变温过程:由δQV=dU=nCV,mdT
同理得:S
nCV ,mn
自发
S孤立 0 或 dS孤立 0平衡
(2-3-4) (2-3-5)
熵增加原理:系统经绝热过程由一状态到达另一状态, 熵值不减少;自发变化的结果,必使孤立系统的熵增加 (孤立系统中可以发生的实际过程都是自发过程)。
方向:孤立系统的熵增加
限度:孤立系统熵值达到最大——平衡态。
二、 熵增原理及平衡的熵判据
mix
S
SA nARn
S 1 yA
BnBnRARnny1VB AVAVnBRBnByRBnnyVBAV(B2V-4B-6)
∵yB < 1,∴ΔmixS > 0
结论:定T定p理气混 合过程系统熵增加
nA, V + nB, V 定温定容 nA+nB, V
AT
BT
BQir BQr S
AT
AT
得:S BQ
AT
或
dS
Q
T
不可逆 可逆
(2-3-3)
——热力学第二定律的数学表达式 依具体情况方向判据的形式
二、 熵增原理及平衡的熵判据
绝热过程,δQ=0,则有
S绝热 0
或
不可逆
dS绝热 0 可逆
物理化学 第二章 热力学第二定律
101.325kPa,变到100℃,253.313 kPa,计
算△S。
S
p S1
S2
T
分析:此题是p、V、T三者都变的过程,若要计 算熵变,需要设计成两个可逆过程再计算。先等 压变温,再等温变压。
S
p S1
S2
T
S
S1
S2
C pm
ln T2 T1
R ln
p1 p2
5 R ln 37315 R ln 101325 114J K 1
-5℃苯(l)→5℃苯(l)
S1
278 Cpm(l) dT 268 T
C pm(l )
ln
T2 T1
126g77 ln 278 268
4 64J K 1
(2) 相变点的相变 5℃苯(l)→5℃苯(s)
S2
H T
9916 08 278
35 66J
K 1
(3) 恒压变温 5℃苯(S)→-5℃苯(S)
4.绝热可逆缩D(p4V4)→A(p1V1)
下面计算每一步的功和热 以1mol理想气体为体系
第一步: U1 0
W1
Q2
RT2
ln V2 V1
第二步:
T1
Q 0 W2 U2 CVmdT
T2
第三步: U3 0 第四步: Q 0
W3
Q1
RT1
ln
V4 V3
T2
W4 U4 CVmdT
T1
解:(1)
S体
nR ln V2 V1
8314 ln10 19 15J
K 1
S环
QR T
nR ln V2 V1
19 15J gK 1
S体 S环 0
热力学第二定律
W Q1 Q2
Q1
Q1
nR(T1
T2
)
ln
V2 V1
nR T1
ln
V2 V1
T1 T2 1 T2
T1
T1
卡诺热机推论:
1 可逆热机的效率与两热源的温度有关,两热源的温差越 大,热机的效率越大,热量的利用越完全;两热源的温差 越小,热机的效率越低。 2 热机必须工作于不同温度两热源之间,把热量从高温热 源传到低温热源而作功。当T1 T2= 0 ,热机效率等于零。 3 当T2 → 0k,可使热机效率→100%,但这是不能实现 的,因热力学第三定律指出绝对零度不可能达到,因此
绝热(Q=0)可逆膨胀,由p2V2T1 到 p3V3T2 (BC)
C(p3V3)
W2 U2
T2 T1
CV dT
nCV ,m (T2
T1)
所作功如BC曲线下的面积所示。
V1
V2
V
卡诺循环第二步
步骤3
等温(T2)可逆压缩,由 p3V3到 p4V4 (CD)
U 3 0
Q2 W3
V4 pdV
1mol理想气体的卡诺循环在pV 图上可以分为四步:
步骤1:等温可逆膨胀,由p1V1到p2V2(AB)
U1 0
Q1 W1
V2 V1
pdV
nRT1
ln
V2 V1
所作功如AB曲线下的面积所示
p A(p1V1) Q1
B(p2V2)
V1
V2 V
卡诺循环第一步
步骤2
p A(p1V1) Q2 B(p2V2)
第二章 热力学第二定律
第一节 自发过程的特征 第二节 热力学第二定律经典表述
第一节 自发过程的共同特征-不可逆性
热力学第二定律
第五节 熵(entropy)
一、熵的概念 据第一定律: I: ∆ UI=Qr +Wr II: ∆ UII=Qir +Wir Qr +Wr = Qir +Wir Qr–Qir=-(Wr –Wir )>0 Qr>Qir
等温过程: I:可逆
始态
终态
II:不可逆
除以T:
Qr > Qir
TT
1. 恒压变温过程:始态(P1,V1,T1)
终态(P1,V2,T2)
变温过程中 无相变
S
T2 δQr T T1
T2 T1
C pdT T
Cp
ln T2 T1
2. 恒容变温过程: 始态(P1,V1,T1)
终态(P2,V1,T2)
S
T2 Qr
T T1
T2 T1
CV dT T
CV
ln T2 T1
2244.8 300
7.48
J
K 1
100
S孤立=S系统+S环境=19.14-7.48=11.66 J K1 0
(2) S只决定于始终态,与过程无关, 所以 S系统 = 1914 JK1
由于 p外= 0,所以 Q = W = 0 , S环境= 0
S孤立=S系统+S环境=19.14 J K1 0
若T2>T1,则S >0,S高温>S低温
二、变温过程中熵变的计算
等容过程 等压过程
ΔS =
C T2
T1 v
dT T
ΔS =
T2 T1
C
p
dT T
S高温 >S低温
七、不可逆相变系统熵变的计算
∆S总=∆S体+∆S环境≧0
第二章 热力学第二定律
高温热源
Q1>0
(T1)
W<0
Q2<0 低温热源 (T2)
U= Q1 +W+ Q2 =0
def W Q1 Q2 Q1 Q1
图 热转化为功的限度
问题:能否 Q2 =0,– W = Q1 ,
=100 ?
2、卡诺循环 卡诺(Carnot)循环是一个特殊的循环过程,它是以理想气体为
§3—1 热力学第二定律
1、自发过程 系统中无需环境施加影响就可以自动进
行的过程称为自发过程(spontaneous process) 。 自发过程的共同特征:不可逆性 例如:热传递过程; 气体的膨胀过程; 化学反应过程; 水从高处流向低处; 溶液从高浓度向低浓度扩散。
• 在绝热条件下系统发生一个变化后系统
的熵值永不会减小,这个结论叫做熵增 原理(principle of entropy increasing)。 • 在绝热过程或孤立系统中熵永不减少。
根据熵增原理,对于绝热过程可以利用系统本
身熵变值的符号来判别过程的可逆性; 在孤立系统中可以用熵的增量来判断过程的自 发和平衡。
S
2
Q r
T
1
2
1
T2 C p , m dH dT T1 T T
S nC p , m ln
T2 T1
S (3 29.1 ln
300 )J K 1 25.1J K 1 400
• 由于等压热δQp与焓变dH相等,而dH与等压过程是否
可逆无关,即有δQp=dH=δQr, • 上式对理想气体的等压可逆过程和不可逆过程都是适 用的。
热力学第二定律
第二节 热力学第二定律
一、热力学第二定律形成的历史背景 二、热力学第二定律的各种表述
1、Clausius的表述: 热不能自动地由低温物体流向高温 物体而不引起其它变化。 2、Kelvin的表述 : 从单一热源取出热使之完全变为功, 而不发生其它变化是不可能的; 第二类永动机是不能 制成的。 3、其它的表述:一定条件下,任何体系都自发地趋向平 衡;孤立体系中自发过程趋向于熵增大; 一切自发过 程是不可逆的。
2. PVT同时变化的过程
例: 态1(T1分为两步: 态1(T1、V1) → 态3(T2、V1)) → ΔvS=∫T1T2 (nCv,m/T)dT, ΔTS=∫12(dU+pdV)/T ΔS=ΔvS+ΔTS 对于理想气体且Cv,m为常数,则 ΔS= nCv,mln(T2/T1)dT+nRln(V2/V1)
态2(T2,V2)
态1(P1、T1) →态3(P1、T2) →态2(P2,T2) ΔS= nCp,mln (T2/T1)dT+nRln(P1/P2) 态1(P1、V1) →态3(P2、V1) →态2(P2,V2) ΔS= nCv,mln (P2/P1)dT+ nCp,mln (V2/V1)
第七节 熵函数的物理意义
(2)相同的物理状态下,复杂的分子比简单的 分子具有更高的熵值。 (3)温度不同时,S高温>S低温。 (4)对于气态物质,压力不同时,S低压>S 高压 。 压力的改变对固态和液态物质的熵值影响不 大。
二、熵与概率 S=klnΩ
第八节 热力学第三定律和规定熵
一、Nernst热定理 (1906年提出) T→0K所发生的过程是一恒熵变过程 W.H.Nernst (德国物理化学家,1864-1941) 二、热力学第三定律(Lewis & Gibson于1920 年提出) 在绝对零度时,任何物质完整晶体的熵等于 零。
热力学第二定律
dS 0
不可逆、自发 可 逆、平衡
S 0
S(隔)=S(系统)+S(环境)≥0
四、亥姆霍兹自由能及其判据
Helmholz function and its criteria
1. 亥姆霍兹自由能判据
dS
δQ T( 环 )
不可逆 可逆
T(环)dS δQ
T(环)dS dU δW
自发方向 T1>T2,T1T2 p1>p2,p1p2 h1>h2,h1h2 C1>C2,C1C2 E1>E2,E1E2 ?请思考 ?请思考
推动力 限度
T T0 p p0 h h0 C C0 E E0 ? ?0 ? ?0
二、自发过程的共性 The characteristic of spontaneous processes
Q1
Q1
Q1
-W系统对外作的功(在一个循环过程中) Q1从高温热源吸热 Q2传给低温热源热
二、卡诺循环
卡诺为研究热机效率设计了工作物质为理想 气体的四个可逆步骤组成的循环
1. 恒温可逆膨胀
(p1V1T1)——(p2V2T1) p/[P] p1V1T1 2. 绝热可逆膨胀
(p2V2T1)——(p3V3T2)
nRT2
ln
V2 V1
T1 T2
nRT1ln
V2 V1
T1
Q1 Q2 T1 T2
Q1
T1
Q1 Q2 0 T1 T2
由卡诺循环可知:可逆热机热温商之和等于零
卡诺循环结论:
1、卡诺循环后系统复原,系统从高温热源吸热部 分转化为功,其余的热流向低温热源。热机效 率<1
2、卡诺热机效率只与热源的温度T1 、T2有关,两 热源温差越大,热机效率越高
物理化学-热力学第二定律PPT课件
(2) 当T2-T1=0, (3) 当T1=0K,
=0 =100%
表述
第四节 卡诺定理
1. 所有工作在相同的高温热源与低温热源 之间的任意热机以卡诺热机的效率最大。
2.卡诺热机的效率只与两热源的温度有关, 而与工作物质无关
证明:
卡诺定理的数学表达式 R≧ I
T2–T1 ≧ T2
Q2+Q1 Q2
Q1 + T1
低电位
逆过程称为非自发过程
(2)不可逆性 理想气体真空膨胀 Q=0 W=0 U=0 再等温可逆压缩回去 U=0 Q=W 系统恢复,环境失W,而得Q
环境恢复,Q能否全部转变W
自发过程能否成为可逆过程,可归结为: 在不引起其它任何变化条件下,热能
否全部变为功。 焦尔的热功当量测定实验
一切自发过程都是不可逆过程
二、热力学第二定律数学表达式 ——克劳修斯不等式
U=0
W=Q1+Q2
W=W1+W2+W3+W4
=
nRT2ln(V2/V1)
-∫
T1 T2
CV
dT
+
nRT1ln(V4/V3)
-∫
T2 T1
CV
dT
W= nRT2ln(V2/V1) + nRT1ln(V4/V3) (2) 绝热膨胀
T2V2 -1 = T1V3 -1 (3) 绝热压缩
T2V1 -1 = T1V4 -1
式中, K1, K2, K 3 均为常数, Cp /CV
绝热功的求算
理想气体绝热可逆过程的功
W V2 pdV V1
=
K V2 V V1
dV
=
K
(1
热力学第二定律
等温过程中熵的变化值
(2)等温、等压可逆相变(若是不可逆相变,应设 计始终态相同的可逆过程)
H (相变) S (相变) T (相变)
等温过程中熵的变化
例1:1 mol理想气体在等温下通过:(1)可逆膨胀, (2)真空膨胀,体积增加到10倍,分别求其熵变,并 判断过程的可逆性。 解:(1)可逆膨胀
dT
Cp S T T p
S
T2
nC p ,m dT T
T1
2.4.2 非等温过程中熵的变化 (3)一定量的物质从 p1,V1,T1 到 p2 ,V2 ,T2 的过程。 这种情况无法一步计算,要分两步计算。
有多种分步方法:
T2 nCV ,m dT V2 1. 先等温后等容 S nR ln( ) T1 V1 T
熵增加原理
对于绝热系统 Q 0 dS 0 所以Clausius 不等式为 等号表示绝热可逆过程,不等号表示绝热不
可逆过程。 熵增加原理可表述为:在绝热条件下,趋向于平 衡的过程使系统的熵增加。
或者说在绝热条件下,不可能发生熵减少的过程 如果是一个隔离系统,环境与系统间既无热的 交换,又无功的交换,则熵增加原理可表述为: 一个隔离系统的熵永不减少。
胀线就是下一循环的绝热可
逆压缩线(如图所示的虚线
部分),这样两个绝热过程 的功恰好抵消。 从而使众多小Carnot循环的总效应与任意可逆 循环的封闭曲线相当 所以任意可逆循环的热温商的加和等于零,或
它的环程积分等于零。
任意可逆循环分为小Carnot循环
任意可逆循环分为小Carnot循环
Q2
T2
§2.2
Clausius 的说法:
热力学第二定律
02热力学第二定律
Q
Q
四、热力学第二定律数学表达式
Clausius不等式:S 意义:
δQi δQ 或dS Ti T
(1)在热力学可逆过程中, dS δQR
注意: (1) Q是实际过程热,可逆过程与不可逆过程中的Q 不同。 (2)式中的T是环境的温度,可逆过程中, T体系 T环境
T (2)在热力学不可逆过程中, dS > δQIR T (3) dS < δQ 的过程不存在。 T
(3)熵S是广度性质的状态函数,不守恒。
五.熵增加原理
δQi δQ Clausius不等式:S 或dS Ti T 1.绝热过程
δQ 0
S (绝热) 0或dS (绝热) 0 结论:绝热过程中,封闭体系的熵永不减少。 如果过程是可逆的,则熵的数值不变;如果过程 是不可逆的,则熵的数值增加。 思考题:熵变是否与过程有关?
气体流动 溶质扩散
P高P低 c高c低
两处P相等 两处C相等
压力差 浓度差
自发过程的逆过程不能自动发生,但可由环境来完成。
二、热力学第二定律的经典表述
1.开尔文说法:
不可能从单一热源取热使之全部变为功而不产生其它 的变化。
2.克劳修斯说法:
不可能把热从低温物体传到高温物体而不发生其它 变化。
3.Ostwald说法:
T T相
T相
T
例1:1mol金属银在定容下由273.2K加热到303.2K,求 ΔS。 CV ,m 24.48J K -1 mol-1 。 已知在该温度区间银的 解:
T2 303.2 S nCV,m ln 1 24.48 ln T1 273.2 2.531(J K -1 )
绝热可逆过程和绝热不可逆过程所到达的最终状态是不同 的,因而熵也不同,因而不能错误地理解为熵变与过程有关。
热力学第二定律
(1) 焦耳热功当量中功自动转变成热;
(2) 气体向真空膨胀; (3) 热量从高温物体传入低温物体; (4) 浓度不等的溶液混合均匀; (5) 锌片与硫酸铜的置换反应等。 自发变化的方 向是由什么因 素决定的?
决定自发变化方向的共同因素是什么?
例如1气缸中理想气体作等温膨胀时,气体从恒温
热源吸收的热量就可以全部用来对外做功(即从单 一热源吸热作功),但气体p、V发生了变化!
p p1
p2
1 ( p1 ,V1 , T )
( p2 ,V2 , T )
QT
2
E
U 0 Q W
W
W
V1
o
V2
V
卡诺循环(Carnot cycle)
1824 年,法国工程师
N.L.S.Carnot (1796~1832)设计
了一个循环,以理想气体为
工作物质,从高温 (Th )热源吸 收 Qh 的热量,一部分通过理 想热机用来对外做功W,另一 部分 Qc的热量放给低温 (Tc ) 热
源。这种循环称为卡诺循环。
§2.2
卡诺(Carnot )定理
二、热机效率(efficiency of the engine )
§ 2.2 热力学第二定律
Clausius说法
• 说明⑴: Clausius表述中强调了“在不引起
其它变化的条件下,热量不可能自动地从低温 物体传向高温物体。” • 说明⑵:如果允许“其它变化”,例如,利用 致冷机做功,热量便可以从低温物体传向高温 物体,而致冷机做功就属于“其它变化”。
§ 2.2 热力学第二定律
22.4 mix S S (O2 ) S (N2 ) R ln R ln 2 12.2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 热力学第二定律;选择题1.ΔG=0 的过程应满足的条件是(A) 等温等压且非体积功为零的可逆过程 (B) 等温等压且非体积功为零的过程 (C) 等温等容且非体积功为零的过程(D) 可逆绝热过程 答案:A2.在一定温度下,发生变化的孤立体系,其总熵(A )不变 (B)可能增大或减小(C)总是减小(D)总是增大答案:D 。
因孤立系发生的变化必为自发过程,根据熵增原理其熵必增加。
3.对任一过程,与反应途径无关的是(A) 体系的内能变化 (B) 体系对外作的功 (C) 体系得到的功 (D) 体系吸收的热答案:A 。
只有内能为状态函数与途径无关,仅取决于始态和终态。
4.下列各式哪个表示了偏摩尔量: (A),,j i T p n U n ⎛⎫∂ ⎪∂⎝⎭ (B) ,,j i T V n H n ⎛⎫∂ ⎪∂⎝⎭ (C) ,,j i T V n A n ⎛⎫∂ ⎪∂⎝⎭ (D) ,,ji i T p n n μ⎛⎫∂ ⎪∂⎝⎭ 答案:A 。
首先根据偏摩尔量的定义,偏导数的下标应为恒温、恒压、恒组成。
只有A和D 符合此条件。
但D 中的i μ不是容量函数,故只有A 是偏摩尔量。
5.氮气进行绝热可逆膨胀ΔU=0 (B) ΔS=0 (C) ΔA =0 (D) ΔG=0 答案:B 。
绝热系统的可逆过程熵变为零。
6.关于吉布斯函数G, 下面的说法中不正确的是(A)ΔG ≤W'在做非体积功的各种热力学过程中都成立(B)在等温等压且不做非体积功的条件下, 对于各种可能的变动, 系统在平衡态的吉氏函数最小(C)在等温等压且不做非体积功时, 吉氏函数增加的过程不可能发生(D)在等温等压下,一个系统的吉氏函数减少值大于非体积功的过程不可能发生。
答案:A 。
因只有在恒温恒压过程中ΔG ≤W'才成立。
7.关于热力学第二定律下列哪种说法是错误的(A)热不能自动从低温流向高温(B)不可能从单一热源吸热做功而无其它变化(C)第二类永动机是造不成的(D 热不可能全部转化为功答案:D 。
正确的说法应该是,热不可能全部转化为功而不引起其它变化8.关于克劳修斯-克拉佩龙方程下列说法错误的是(A) 该方程仅适用于液-气平衡 (B) 该方程既适用于液-气平衡又适用于固-气平衡(C) 该方程假定气体的体积远大于液体或固体的体积(D) 该方程假定与固相或液相平衡的气体为理想气体 答案:A9.关于熵的说法正确的是(A) 每单位温度的改变所交换的热为熵 (B) 可逆过程熵变为零 (C) 不可逆过程熵将增加(D) 熵与系统的微观状态数有关答案:D 。
(A )熵变的定义/r dS Q T δ=⎰其中的热应为可逆热;(B )与(C )均在绝热系统中才成立。
10.在绝热条件下,迅速推动活塞压缩气筒内空气,此过程的熵变(A) 大于零(B) 小于零(C) 等于零(D) 无法确定答案:A。
绝热不可逆过程熵要增加。
11.氢气进行不可逆循环ΔU>0(B) ΔS=0(C) ΔS>0(D) ΔS<0答案:B。
循环过程状态函数不变。
12.氢气和氧气在绝热钢瓶中生成水(A)ΔS=0 (B) ΔG=0 (C) ΔH=0 (D) ΔU=0答案:D。
绝热钢瓶中进行的反应无热交换、无体积功,即Q=W=0,故ΔU=0。
此过程为绝热不可逆过程故ΔS>0。
此过程恒容ΔH=ΔU+Δ(pV)=VΔp,因Δp不等于零故ΔH亦不为零。
恒温、恒压不做其它的可逆过程ΔG=0,上述过程并非此过程。
13.下述过程,体系的ΔG何者为零(A) 理想气体的等温膨胀 (B) 孤立体系的任意过程 (C) 在100℃,101325Pa下1mol水蒸发成水汽 (D) 绝热可逆过程答案:C。
可逆相变ΔG为零。
14.关于熵的性质, 下面的说法中不正确的是(A) 环境的熵变与过程有关 (B) 某些自发过程中可以为系统创造出熵 (C) 熵变等于过程的热温商(D) 系统的熵等于系统内各部分熵之和答案:C。
正确的说法应为熵变等于过程的可逆热温商。
15.关于亥姆霍兹函数A, 下面的说法中不正确的是(A) A的值与物质的量成正比 (B)虽然A具有能量的量纲, 但它不是能量 (C)A是守恒的参量 (D)A的绝对值不能确定答案:C16.关于热力学基本方程dU=TdS-pdV, 下面的说法中准确的是(A) TdS是过程热 (B)pdV是体积功(C) TdS是可逆热 (D)在可逆过程中, pdV等于体积功, TdS即为过程热答案:D17.理想气体在自由膨胀过程中, 其值都不为零的一组热力学函数变化是(A) ΔU、ΔH、ΔS、ΔV (B)ΔS、ΔA、ΔV、ΔG (C) ΔT、ΔG、ΔS、ΔV (D)ΔU、ΔA、ΔH、ΔV答案:B。
理想气体自由膨胀过程中不做功亦不放热,故ΔU=0,ΔT=0。
18.在一绝热恒容箱中, 将NO(g)和O2(g)混合,•假定气体都是理想的, 达到平衡后肯定都不为零的量是(A) Q, W, ΔU (B) Q, ΔU, ΔH (C) ΔH, ΔS, ΔG (D) ΔS, ΔU, W答案:C。
此条件下Q、W和ΔU都为零。
由ΔH=ΔU+Δ(pV)可见反应前后压力有变化故ΔH不为零,微观状态数有变化故ΔS不为零,ΔG=ΔH-Δ(TS)亦不为零。
19.在下列过程中, ΔG=ΔA的是(A) 液体等温蒸发 (B) 气体绝热可逆膨胀 (C) 理想气体在等温下混合 (D) 等温等压下的化学反应答案:C。
由ΔG=ΔA+Δ(pV)可知若Δ(pV)=0则ΔG=ΔA。
20一卡诺热机在两个不同温度之间的热源之间运转, 当工作物质为气体时, 热机效率为42%, 若改用液体工作物质, 则其效率应当(A) 减少(B) 增加(C) 不变(D) 无法判断答案:C21.理想气体绝热向真空膨胀,则(A) dS = 0,dW = 0 (B) dH = 0,dU = 0(C) dG = 0,dH = 0 (D) dU =0,dG =0 答案:B22.对于孤立体系中发生的实际过程,下式中不正确的是(A) W = 0 (B) Q = 0 (C) dS > 0 (D) dH = 0 答案:D23.理想气体经可逆与不可逆两种绝热过程,则(A) 可以从同一始态出发达到同一终态。
(B) 不可以达到同一终态。
(C) 不能确定以上A、B中哪一种正确。
(D) 可以达到同一终态,视绝热膨胀还是绝热压缩而定。
答案:B24.求任一不可逆绝热过程的熵变dS,可以通过以下哪个途径求得(A)始终态相同的可逆绝热过程。
(B)始终态相同的可逆恒温过程。
(C)始终态相同的可逆非绝热过程。
(D) B 和C 均可。
答案:C25.在绝热恒容的系统中,H2和Cl2反应化合成HCl。
在此过程中下列各状态函数的变化值哪个为零(A) ΔrHm (B) ΔrUm (C) ΔrSm (D) ΔrGm 答案:B。
因Q=0,W=0。
26. 1mol Ag(s)在等容下由加热到。
已知在该温度区间内Ag(s)的Cv,m=·K-1·mol-1则其熵变为:(A)·K-1 (B) ·K-1 (C) ·K-1 (D) ·K-1答案:A。
303.2,273.2303.224.48ln 2.55273.2V mC dTST∆===⎰27.理想气体经历等温可逆过程,其熵变的计算公式是:(A) ΔS =nRTln(p1/p2) (B) ΔS =nRTln(V2/V1) (C) ΔS =nRln(p2/p1) (D) ΔS =nRln(V2/V1) 答案:D28.在标准压力下,90℃的液态水气化为90℃的水蒸汽,体系的熵变为:(A)ΔS体>0 (B)ΔS体<0 (C)ΔS体=0 (D)难以确定答案:A。
液态变为气态时,混乱度增加,故熵增加。
29.在下,385K的水变为同温下的水蒸汽。
对于该变化过程,下列各式中哪个正确:(A) ΔS体+ΔS环 > 0 (B) ΔS体+ΔS环 < 0 (C) ΔS体+ΔS环 = 0 (D) ΔS 体+ΔS环的值无法确定答案:A。
因该变化为自发过程。
30.在标准压力p和时,冰变为水,体系的熵变ΔS 体应:(A) 大于零(B) 小于零(C) 等于零(D) 无法确定答案:A。
因固体变液体混乱度增加。
31.1mol理想气体从p1,V1,T1分别经:(1) 绝热可逆膨胀到p2,V2,T2;(2) 绝热恒外压下膨胀到p2′,V2′,T2′,若p2 = p2′ 则:(A)T2′= T2, V2′= V2, S2′= S2(B)T2′> T2, V2′< V2, S2′< S2(C)T2′>T2, V2′> V2, S2′> S2(D)T2′< T2, V2′< V2, S2′< S2答案:C。
恒外压膨胀较可逆膨胀做出的功要少,且绝热,故过程(2)内能的减少要小一些,所以T2′> T2。
终态压力相同因此V2′> V2。
又根据熵增原理,可判定S2′> S2。
32.理想气体在恒温条件下,经恒外压压缩至某一压力,此变化中体系的熵变ΔS体及环境的熵变ΔS环应为:(A) ΔS体 > 0, ΔS环 < 0 (B) ΔS体 < 0, ΔS环 > 0 (C) ΔS体 > 0, ΔS环 = 0 (D) ΔS体 < 0, ΔS环 = 0答案:B。
理想气体恒温压缩混乱度减小,故熵减小;而理想气体恒温压缩时内能不变,得到的功要以热的形式释放给环境,故环境得到热ΔS环 > 0。
33.理想气体在绝热条件下,经恒外压压缩至稳态,此变化中的体系熵变ΔS体及环境熵ΔS环应为:(A) ΔS体 > 0, ΔS环 < 0 (B) ΔS体 < 0, ΔS环 > 0 (C) ΔS体 > 0, ΔS环 = 0 (D) ΔS体 < 0, ΔS环 = 0答案:C。
该过程为绝热不可逆过程,故ΔS体 > 0;又因绝热过程,故ΔS环 = 0。
34.在下,110℃的水变为110℃水蒸气,吸热Qp,在该相变过程中下列哪个关系式不成立(A) ΔS体 > 0 (B) ΔS环不确定 (C) ΔS体+ΔS环 > 0 (D) ΔG体< 0答案:B。
环境的熵变是确定的,可由ΔS环=-Qp/T来求算。
35.一个由气相变为凝聚相的化学反应在恒温恒容下自发进行,问下列各组答案中哪一个是正确的:(A) ΔS体 > 0, ΔS环 < 0 (B) ΔS体 < 0, ΔS环 > 0 (C) ΔS体 < 0, ΔS环 =0 (D) ΔS体 > 0, ΔS环 = 0答案:B。