勾股定理易错题训练
勾股定理易错题整理(可交作业)
勾股定理易错题整理(可交作业)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1.直角三角形的两边长分别是6,8,则第三边的长为()A.10 B.2 C.10或2D.无法确定【答案】C【解析】第三边不一定是最长边,需要分类讨论,不能按照惯性思维。
2.已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的面积是()A.2n﹣2B.2n﹣1C.2n D.2n+1【分析】根据△ABC是边长为1的等腰直角三角形分别求出Rt△ABC、Rt△ACD、Rt△ADE的面积,找出规律即可.【解答】解:∵△ABC是边长为1的等腰直角三角形,∴S△ABC=×1×1==21﹣2;AC==,AD==2…,∴S △ACD=××=1=22﹣2;S△ADE=×2×2=1=23﹣2…∴第n个等腰直角三角形的面积是2n﹣2.故选A.3.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A2的边长为6cm,正方形B的边长为5cm,正方形C的边长为5cm,则正方形D的面积是cm2.【分析】根据勾股定理的几何意义可直接解答.【解答】解:根据正方形的面积公式结合勾股定理,得正方形A2,B,C,D的面积和等于最大的正方形的面积,所以正方形D的面积=100﹣36﹣25﹣25=14cm2.4.如图,要将楼梯铺上地毯,则需要米的地毯.【分析】地毯的长显然是两条直角边的和;根据勾股定理,得另一条直角边的长.【解答】解:根据勾股定理,另一直角边==3,∴3+4=7,故应填7.5.已知△ABC中,AB=17,AC=10,BC边上的高AD=8,则边BC的长为()A.21 B.15C.6 D.以上答案都不对【分析】高线AD可能在三角形的内部也可能在三角形的外部,本题应分两种情况进行讨论.分别依据勾股定理即可求解.【解答】解:在直角三角形ABD中,根据勾股定理,得BD=15;在直角三角形ACD中,根据勾股定理,得CD=6.当AD在三角形的内部时,BC=15+6=21;当AD在三角形的外部时,BC=15﹣6=9.则BC的长是21或9.故选D.6.一个等腰三角形的腰长为5,底边上的高为4,这个等腰三角形的周长是()A.12 B.13 C.16 D.18【分析】首先根据勾股定理和等腰三角形的性质,确定出底边的长,进而求出其周长.【解答】解:如图,作高AD,△ABC中,AB=AC=5,AD⊥BC,AD=4;Rt△ABD中,AB=5,AD=4;根据勾股定理,得:BD==3;∴BC=2BD=6;所以△ABC的周长=5+5+6=16;故选C.7.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,若∠A:∠B:∠C=1:2:3.则a:b:c=()A.1::2 B.:1:2 C.1:1:2 D.1:2:3【解答】解:若∠A:∠B:∠C=1:2:3,则根据三角形的内角和定理,得∠A=30°,∠B=60°,∠C=90°.设a=x,根据30°所对的直角边是斜边的一半,得c=2x,再根据勾股定理,得b=x,则a:b:c=1::2.故选A.8.在△ABC中,AB边上的中线CD=3,AB=6,BC+AC=8,则△ABC的面积为7.【分析】本题考查三角形的中线定义,根据条件先确定△ABC为直角三角形,再求得△ABC的面积.【解答】解:如图,在△ABC中,CD是AB边上的中线,∵CD=3,AB=6,∴AD=DB=3,∴CD=AD=DB,∴∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴∠1+∠3=90°,∴△ABC是直角三角形,∴AC2+BC2=AB2=36,又∵AC+BC=8,∴AC2+2AC?BC+BC2=64,∴2AC?BC=64﹣(AC2+BC2)=64﹣36=28,又∵S△ABC=AC?BC,∴S△ABC==7.9.如图是由4个边长为1的正方形构成的“田字格”.只用没有刻度的直尺在这个“田字格”中最多可以作出以格点为端点、长度为的线段8条..【分析】如图,由于每个小正方形的边长为1,那么根据勾股定理容易得到长度为的线段,然后可以找出所有这样的线段.【解答】解:如图,所有长度为的线段全部画出,共有8条.。
中考数学考点大串讲(北师大版):勾股定理必刷易错30题(解析版)
专题01勾股定理(易错30题3种题型)一、探索勾股定理1.(2023春·辽宁抚顺·八年级统考期末)在ABC 中,5AB AC ,6BC ,D 是BC 的中点,则ABC 的面积为()A .12B .24C .10D .20【答案】A【分析】如图,过A 作AD BC 于,D 证明224,3,CD BD AD AC CD再利用三角形的面积公式可得答案.【详解】解:如图,过A 作AD BC 于,D 5,6AB AC BC ,∴223,4,CD BD AD AC CD ∴116412.22ABC S BC AD 故选A .【点睛】本题考查的是等腰三角形的性质,勾股定理的应用,证明CD BD 是解本题的关键.2.(2023春·山东临沂·八年级校考阶段练习)如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别是3、5、2、3,则最大正方形E 的面积是()A .13B .14C .15D .26【答案】A 【分析】分别设正方形F 、G 、E 的边长为x 、y 、z ,由勾股定理得出29x ,26y ,222z x y ,即最大正方形E 的面积为2z .【详解】解:如图,分别设正方形F 、G 、E 的边长为x 、y 、z ,则由勾股定理得:2358x ,2235y ,222z x y ,即最大正方形E 的面积为:28513z .故选:A .【点睛】本题考查了勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.3.(2023春·辽宁营口·八年级校考阶段练习)如图,在ABC 中,CE 平分ACB 交AB 于点E ,CF 平分ACD ,EF BC ∥,EF 交AC 于点M ,若5CM ,则22CE CF ()A .75B .100C .120D .125【答案】B 【分析】根据角平分线的定义推出ECF △为直角三角形,然后根据勾股定理即可求得222CE CF EF ,进而可求出22CE CF 的值.【详解】解:CE ∵平分ACB ,CF 平分ACD ,12ACE ACB ,12ACF ACD ,即1()902ECF ACB ACD ,EFC 为直角三角形,又EF BC ∥∵,CE 平分ACB ,CF 平分ACD ,ECB MEC ECM ,DCF CFM MCF ,5CM EM MF ,10EF ,由勾股定理可知222100CE CF EF .故选:B .【点睛】本题考查角平分线的定义,直角三角形的判定以及勾股定理的运用,解题的关键是首先证明出ECF △为直角三角形.4.(2023春·安徽合肥·八年级校考期中)在ABC 中,A B C 、、所对的边分别为a b c 、、,且4,5,7a b c ,则ABC 的面积为.【答案】46【分析】作CD AB 于点D ,设AD x ,则7BD x ,先根据2222AC AD BC BD 求出x ,再求出CD ,然后根据三角形的面积公式计算即可.【详解】解:作CD AB 于点D ,设AD x ,则7BD x ,由勾股定理得,2222AC AD BC BD ,∴ 2222547x x ,解得297x =,∴22222986577CD AC AD,∴ABC 的面积为∶1186746227AB CD .故答案为:46.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解答本题的关键.在直角三角形中,如果两条直角边分别为a 和b ,斜边为c ,那么222 a b c .也就是说,直角三角形两条直角边的平方和等于斜边的平方.5.(2023春·海南海口·八年级统考开学考试)如图,在Rt ABC △中,90BAC ,4BC ,分别以AB AC 、为直径作半圆,面积分别记为1S 、2S ,则12S S .【答案】2π【分析】根据半圆面积公式结合勾股定理,知12S S 等于以斜边为直径的半圆面积.【详解】解:2222121111228228AB AC S AB S AC ,所以 2221211288S S AC AB BC ,故答案为:2π.【点睛】此题根据半圆的面积公式以及勾股定理证明:以直角三角形的两条直角边为直径的半圆面积和等于以斜边为直径的半圆面积,重在验证勾股定理.6.(2022秋·山东泰安·七年级统考期中)如图,把一块等腰直角三角形零件(ABC ,其中90ACB ),放置在一凹槽内,三个顶点A 、B 、C 分别落在凹槽内壁上,已知90ADE BED ,测得3cm 4cm AD BE ,,该三角形零件的面积为2cm .【答案】12.5/1122/252【分析】先证明ACD CBE ≌得到4cm CD BE ,利用勾股定理求出5cm AC ,再根据三角形面积公式进行求解即可.【详解】解:∵90ACB ,∴90DCA ECB ,∵90ADE BED ,∴90DAC DCA ,∴DAC ECB ,又∵AC CB ,∴ AAS ACD CBE △≌△,∴4cm CD BE ,在Rt ADC 中,由勾股定理得225cm AC AD CD ,∴2112.5cm 2ABC S AC BC △,∴该三角形零件的面积为212.5cm ,故答案为:12.5.【点睛】本题主要考查了全等三角形的性质与判定,勾股定理,证明ACD CBE ≌得到4cm CD BE 是解题的关键.7.(2023春·湖北恩施·八年级统考期中)如图,在55 的正方形网格中,每一个小正方形的顶点为格点,且每一个小正方形的边长为1四边形ABCD 为格点四边形.(1)求AD 的长;(2)仅用无刻度的直尺过点C 作CE AD ,垂足为E ,并简单说明理由.【答案】(1)5(2)见解析【分析】(1)利用勾股定理即可求解;(2)选取格点,,,F H G M ,作射线,MF GH ,两射线的交点为I ,连接CI 交AD 于点E ,则点E 为所求的点.【详解】(1)解:由图可知,AD 是直角边分别为3,4的直角三角形的斜边故22345AD (2)解:选取格点,,,F H G M ,作射线,MF GH ,两射线的交点为I ,连接CI 交AD 于点E ,则点E 为所求的点.取格点,K L ,∵4,3,90IK AL CK DL CKI DLA∴IKC ALD△≌△KIC DAC90DAC ACE KIC ACECE AD【点睛】本题考查了勾股定理、全等三角形的判定与性质.熟记相关数学结论是解题关键.8.(2023春·广西贺州·八年级统考期中)如图,在Rt ABC △中,90C ,AM 是中线,MN AB ,垂足为点N ,求证:222AN BN AC .【答案】见解析【分析】在直角三角形BNM 和ANM 中利用勾股定理可以得到222BN BM MN ,222AN AM MN ,然后得到22222222()()BN AN BM MN AM MN BM AM ;又在直角三角形AMC 中,222AM AC CM ,代入前面的式子中即可得出结论.【详解】解:证明:MN AB ∵于N ,222BN BM MN ,222AN AM MN 2222BN AN BM AM ,又90C ∵,222AM AC CM 22222BN AN BM AC CM ,又BM CM ∵,222BN AN AC ,即222AN BN AC .【点睛】本题考查了勾股定理、三角形的中线;熟练掌握勾股定理,并能进行推理论证是解决问题的关键.9.(2023秋·河南南阳·八年级校考期末)如图,长方形ABCD 中,点E 在边AB 上,将长方形ABCD 沿直线DE 折叠,点A 恰好落在边BC 上的点F 处,若5AE ,3BF ,求CD 的长【答案】9【分析】由折叠的性质可知5EF AE ,再结合勾股定理即可求解.【详解】解:由折叠的性质可知5EF AE .∵四边形ABCD 为长方形,∴90B Ð=°,AB CD ,∴2222534BE EF BF ,∴549CD AB AE BE .即CD 的长为9.【点睛】本题考查折叠的性质,勾股定理,解题的关键是掌握折叠前后对应边相等.10.(2023春·陕西商洛·八年级校考期中)如图,一文物C (看作一点)被探明位于地面A 点垂直往下36米处,由于A 点下有障碍物,考古人员不能垂直下挖,他们从距离A 点15米的B 处斜着挖掘,已知障碍物不在线段BC 上,则要取出文物C 至少要挖()A .39米B .3119米C .42米D .51米【答案】A 【分析】根据题意可知:14,4890AB AC BAC ,,然后根据勾股定理求解即可.【详解】解:∵14,4890AB AC BAC ,,∴2222153639BC AB AC .故选:A .【点睛】本题考查了勾股定理的应用,将实际问题抽象成勾股定理是解题的关键.11.(2023春·河北保定·八年级校考期中)利用四个全等的直角三角形可以拼成如图所示的图形,这个图形被称为弦图,在用弦图验证勾股定理时,用到的面积相等关系是()A .ABH EFGHS S 正方形△B .ABCD EFGH S S 正方形正方形C .4ABH EFGH ABCDS S S 正方形正方形△D .2ABH ABCD EFGHS S S 正方形正方形△【答案】C 【分析】设DE AH BG CF a ,AE BH CG DF b ,根据题意求出224ABH EFGH S S a b 正方形 ,22ABCD S a b 正方形,进而求解即可.【详解】设DE AH BG CF a ,AE BH CG DF b ,∴ 2221442ABH EFGH S S b a ab a b 正方形 ,22222ABCD S AD DE AE a b 正方形,∴4ABH EFGH ABCD S S S 正方形正方形△.故选:C .【点睛】此题考查了勾股定理的证明,解题的关键是熟练掌握以上知识点.12.(2023秋·全国·八年级专题练习)边长为1的正方形OABC 在数轴上的位置如图所示,点B 表示的数是()A .1B .2C .3D .5【答案】B 【分析】由于正方形OABC 的边长为1,可知OAB 为等腰直角三角形,可利用勾股定理求出OB 的长,即可得到B 点表示的数.【详解】解:∵正方形OABC 的边长为1,∴在等腰直角OAB 中,22112OB =+=.故选:B .【点睛】本题考查了勾股定理,根据四边形OABC 为正方形判断出OAB 为直角三角形是解题的关键.13.(2023春·河南新乡·八年级统考期中)《九章算术》卷九中记载:今有立木,系索其末,委地四尺,引索却行,去本八尺而索尽,问索长几何?译文:今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有4尺,牵着绳索(绳索头与地面接触)退行,在距木柱根部8尺处时绳索用尽,问绳索长是()A .5尺B .6尺C .8尺D .10尺【答案】D【分析】根据题意得,绳索,木桩形成直角三角形,根据勾股定理,即可求出绳索长.【详解】解:设绳索长为x 尺∴根据题意得: 22248x x 解得10x .∴绳索长为10尺,故选:D .【点睛】本题考查勾股定理的知识,解题的关键是理解题意,运用勾股定理解决实际问题.14.(2023春·重庆忠县·八年级校考阶段练习)如图,这是某种牛奶的长方体包装盒,长、宽、高分别为5cm 、4cm 、12cm ,插吸管处的出口到相邻两边的距离都是1cm ,为了设计配套的直吸管,要求插入碰到底面后,外露的吸管长度要在3cm 至5cm 间(包括3cm 与5cm ,不计吸管粗细及出口的大小),则设计的吸管总长度L 的范围是.【答案】16cm 17cmL 【分析】当吸管与长方体上、下底面垂直时,位于盒体内的长度最短,为12cm ,则15cm 17cm L ;如图,当吸管底端位于点A 时,位于盒体内的长度最长,经过点A ,D ,E 的截面如下图1,根据勾股定理分别求得,5cm DE ,Rt ADE △中,13cm AE ,则16cm 18cm L ;综上,吸管垂直于底面时外露的部分最长,底端底端位于点A 时,外露的部分最短,所以吸管长度范围为16cm 17cm L .【详解】解:当吸管与长方体上、下底面垂直时,位于盒体内的长度最短,为12cm ,外露的吸管长度要在3cm 至5cm 间,则15cm 17cm L ;如图,当吸管底端位于点A 时,位于盒体内的长度最长,经过点A ,D ,E 的截面如下图1,如图2为长方体上底面,5cm DG ,4cm CG ,1cm EH CH JG ,∴4cm DJ DG JG ,3cm JE GH CG CH ,∴225cm DE DJ JE .如图1,Rt ADE △中,222212513(cm)AE AD DE ,外露的吸管长度要在3cm 至5cm 间,则16cm 18cm L ;综上,吸管垂直于底面时外露的部分最长,底端位于点A 时,外露的部分最短,所以吸管长度范围为16cm 17cm L .【点睛】本题考查长方体的截面图,勾股定理;具备一定的空间想象能力,熟练勾股定理的运用是解题的关键.15.(2023春·广东惠州·八年级校考开学考试)直角三角形的斜边长为13,其中一条直角边长为12,把四个相同的直角三角形拼成如图所示的正方形,则阴影部分的面积为.【答案】120【分析】根据勾股定理求出AE 的长度,再根据三角形的面积公式求出AEF △的面积,即可求出阴影部分面积.【详解】解:在Rt AEF 中,222213125AE EF AF ,∴110251232AEF S AE AF ,∴阴影部分的面积430120 .故答案是:120.【点睛】本题主要考查了勾股定理,解题的关键是掌握直角三角形两直角边平方和等于斜边平方.16.(2023春·全国·八年级期末)如图,长方形ABCD 的边AD 在数轴上,若点A 与数轴上表示数1 的点重合,点D 与数轴上表示数4 的点重合,1AB ,以点A 为圆心,对角线AC 的长为半径作弧与数轴负半轴交于一点E ,则点E 表示的数为.【答案】110 /101【分析】根据勾股定理计算出AC 的长度,进而求得该点与点A 的距离,再根据点A 表示的数为1﹣,可得该点表示的数.【详解】解:在长方形ABCD 中,1(4)31AD AB CD ,,∴22223110AC AD CD ,则点A 到该交点的距离为10,∵点A 表示的数为1 ,∴该点表示的数为:110 ,故答案为:110 .【点睛】此题主要考查了勾股定理的应用,解决本题的关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方和一定等于斜边长的平方.17.(2023秋·河南省直辖县级单位·八年级校联考期末)对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.(1)如图1所示的大正方形,是由两个正方形和两个形状大小完全相同的长方形拼成的.用两种不同的方法计算图中空白部分的面积,可以得到的数学等式是_______;(2)将图1中两个阴影的长方形沿着对角线切开,则可以得到四个全等的直角三角形,其中两直角边长分别为,a b ,斜边长为c ,将这四个直角三角形拼成如图2所示的大正方形时,中间空白图形是边长为c 的正方形.试通过两种不同的方法计算中间正方形的面积,并探究a b c 、、之间满足怎样的等量关系.(3)应用:已知直角三角形两条直角边长为6和8,求这个直角三角形斜边上的高.【答案】(1)2222()a b ab a b (2)222c a b(3)245【分析】(1)空白部分是两个正方形的面积和,空白部分也可以看出大正方形的面积减去两个长方形的面积即可得出答案;(2)中间的是边长为c 的正方形,因此面积为2c ,也可以从边长为()a b 正方形面积减去四个直角三角形的面积即可;(3)利用(2)中等式求出斜边,再利用面积法求出结果.【详解】(1)解:方法一:空白部分是两个正方形的面积和,即22a b ;方法二:空白部分也可以看作边长为()a b 的面积,减去两个长为a ,宽为b 的长方形面积,即2()2a b ab ,由两种方法看出2222()a b ab a b ,故答案为:2222()a b ab a b ;(2)中间正方形的边长为c ,因此面积为2c ,也可以看作从边长为()a b 的面积减去四个两条直角边分别a 、b 的面积,即22()2c a b ab ,整理得:222c a b ;(3)∵6a ,8b ,∴斜边226810c ,∴斜边上的高为6824105 ,答:斜边的长为245.【点睛】本题考查完全平方公式的几何背景,勾股定理的证明,解题的关键是结合图形,利用面积得出等量关系.18.(2023春·山西忻州·八年级统考期末)阅读与思考阅读下列材料并完成相应的任务.我国是最早了解和应用勾股定理的国家之一,古代印度、希腊、阿拉伯等许多国家也都很重视对勾股定理的研究和应用,古希腊数学家毕达哥拉斯首先证明了勾股定理,在西方,勾股定理又称为“毕达哥拉斯定理”.关于勾股定理的研究还有一个很重要的内容是勾股数组,在课本中我们已经了解到“能够成为直角三角形三条边的三个正整数称为勾股数”.以下是毕达哥拉斯等学派研究出的确定勾股数组的两种方法:方法1:若m 为奇数 3m ,则a m , 2112b m 和2112c m 是勾股数.方法2:若任取两个正整数m 和 n m n ,则22a m n ,2b mn ,22c m n 是勾股数.任务:(1)在以上两种方法中任选一种,证明以a ,b ,c 为边长的ABC 是直角三角形.(2)学校园林设计师按照如图所示的方式摆放兰花,已知这四个直角三角形全等,且直角三角形的三边是勾股数,较短的直角边长为7m ,要求在每个直角三角形的三个顶点处需要摆放一盆兰花,每个直角三角形的三条边间隔1米摆放一盆兰花,请你计算出总共需要的兰花数量.【答案】(1)见解析(2)总共需要兰花220盆【分析】(1)方法一:21(1)02m c a ,10c b 得c a ,c b ,进行计算得222221=(1)2a b m c,即可得;方法二:先求出a 、b 、c 的平方,即可作答,(2)根据这四个直角三角形全等,且直角三角形的三边是勾股数,较短的直角边长为7m 得角三角形的三边长为7m 24m 25m ,,,则方形AHFD 的边长为31m ,正方形BCEG 的边长为25m ,根据个直角三角形的三个顶点处需要摆放一盆兰花,每个直角三角形的三条边间隔1米摆放一盆兰花,即可得正方形AHFD 上摆放兰花的盆数,方形BCEG 上摆放兰花的盆数,即可得【详解】(1)解:方法一:∵ 222111121(1)0222c m m m c m a m,10c b ,∴c a ,c b ,222224222211(+21)=1(121)42a b m m m m c m ,∴a ,b ,c 为边长的ABC 是直角三角形;方法二:∵22a m n ,2b mn ,22c m n ,∴424222m m a n n ,2224b m n ,422242c m m n n ,∴222 a b c ,∴a ,b ,c 为边长的ABC 是直角三角形;(2)解:∵这四个直角三角形全等,且直角三角形的三边是勾股数,较短的直角边长为7m ,∴直角三角形的三边长为7m 24m 25m ,,,∴正方形AHFD 的边长为:7+24=31(m),正方形BCEG的边长为:25m,∵在每个直角三角形的三个顶点处需要摆放一盆兰花,每个直角三角形的三条边间隔1米摆放一盆兰花,∴正方形AHFD上摆放兰花的盆数为:32+31+31+30=124(盆),正方形BCEG上摆放兰花的盆数为:244=96(盆),∴总共需要的兰花数量为:124+96=220(盆),答:总共需要兰花220盆.【点睛】本题考查了勾股数的应用,解题的关键是理解题意,掌握这些知识点.19.(2023秋·全国·八年级专题练习)问题情境:勾股定理是一个古老的数学定理,它有很多种证明方法.下面利用拼图的方法探究证明勾股定理.定理表述:(1)请你结合图1中的直角三角形,叙述勾股定理(可以选择文字语言或符号语言叙述);尝试证明:(2)利用图1中的直角三角形可以构造出如图2的直角梯形,请你利用图2证明勾股定理.定理应用:(3)某工程队要从点A向点E铺设管道,由于受条件限制无法直接沿着线段AE铺设,需要绕道沿着矩形的边AB和BC铺设管道,经过测量16BE 米,已知铺设每米管道需资金1000元,请你帮助工AB 米,12程队计算绕道后费用增加了多少元?【答案】(1)见解析;(2)见解析;(3)8000元【分析】(1)根据题意可直接进行求解;(2)根据等积法可进行求解;(3)利用勾股定理可进行求解.【详解】解:(1)如果直角三角形的两条直角边长分别为,a b ,斜边长为c ,那么222a b c (2) 21122S a b a b a b 梯形,2ABE ABCS S S 梯形211222c ab 212c ab ,∴221122a b c ab ,∴222 a b c ;(3)在Rt ABE △中,2220AE AB BE ,∴ 16122010008000 (元);答:增加了8000元.【点睛】本题主要考查勾股定理的应用,熟练掌握勾股定理是解题的关键.20.(2023春·浙江台州·八年级统考期末)如图,池塘边有两点A ,B ,点C 是与BA 方向成直角的AC 方向上一点,测得18m,30m AC BC .求A ,B 两点间的距离.【答案】A ,B 两点间的距离是24m【分析】直接由勾股定理求出AB 的长即可.【详解】解:由题意可知,90,18m,30m BAC AC BC ,∴ 2222301824m AB BC AC ,答:A ,B 两点间的距离是24m .【点睛】本题考查了勾股定理的应用,解答本题的关键是明确题意,利用勾股定理求出AB 的长.三、勾股定理的应用21.(2023秋·安徽芜湖·九年级校考开学考试)如图是放在地面上的一个长方体盒子,其中18cm AB ,12cm BC ,10cm BF ,点M 在棱AB 上,且6cm AM ,N 是FG 的中点,一只蚂蚁要沿着长方体盒子的表面从点M 爬行到点N ,它需要爬行的最短路程为()A .20cmB .2106cmC . 12234cmD .18cm【答案】A 【分析】利用平面展开图有两种情况,画出图形利用勾股定理求出MN 的长即可.【详解】解:如图1,∵18cm AB ,12cm BC GF ,N 是FG 的中点,∴16cm 2FN FG ,∴ 18612cm BM , 10616cm BN ,∴ 22121620cm MN ;如图2,∵18cm AB ,12cm BC GF ,N 是FG 的中点,∴16cm 2FN FG ,∴ 186618cm PM ,10cm NP ,∴2218424210610MN .∵202106 ,∴蚂蚁沿长方体表面从点M 爬行到点N 处的最短路程为20cm .故选:A .【点睛】此题主要考查了平面展开图的最短路径问题和勾股定理的应用,利用展开图有两种情况分析得出是解题关键.22.(2023春·山东临沂·八年级校考阶段练习)一艘轮船以16海里/时的速度离开港口向东南方向航行,另一艘轮船同时以12海里/时的速度离开港口向西南方向航行,经过1.5小时后它们相距()A .25海里B .30海里C .40海里D .32海里【答案】B【分析】根据题意,画出图形,且东北和东南的夹角为90 ,根据题目中给出的1.5小时和速度可以计算AC ,BC 的长度,在直角ABC 中,已知AC ,BC 可以求得AB 的长.【详解】解:如图,作出图形,因为东南和西南的夹角为90 ,所以ABC 为直角三角形.在Rt ABC △中,16 1.524(km)AC ,121.518(km)BC ,则2222241830(km)AB AC BC故选:B .【点睛】本题考查了勾股定理在实际生活中的应用,本题中确定ABC 为直角三角形,并且根据勾股定理计算AB 是解题的关键.23.(2023春·河南信阳·八年级校联考阶段练习)某数学兴趣小组开展了关于笔记本电脑的张角大小的实践探究活动.如图,当张角为BAF 时,顶部边缘B 处离桌面的高度BC 为7cm ,此时底部边缘A 处与C 处间的距离AC 为24cm ,小组成员调整张角的大小继续探究,最后发现当张角为DAF 时(点D 是点B 的对应点),顶部边缘D 处到桌面的距离DE 为15cm ,则底部边缘A 处与E 之间的距离AE 为()A .20cmB .18cmC .12cmD .10cm【答案】A 【分析】勾股定理解Rt ABC △得出25cm AB ,勾股定理解Rt ADE △即可求解.【详解】解:依题意,247AC BC ,,在Rt ABC △中, 2225cm AB AC BC ,∵AB AD 25 ,15DE ,在Rt ADE △中, 2222251520cm AE AD DE,故选:A .【点睛】本题考查了勾股定理的应用,掌握勾股定理是解题的关键.24.(2023春·四川南充·八年级校考期中)如图由于台风的影响,一棵树在离地面6m 处折断,树顶落在离树干底部8m 处,则这棵在折断前(不包括树根)长度是.【答案】16m /16米【分析】根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.【详解】解:如图,由题意得m ,8m 6BC AC ,在直角三角形ABC 中,根据勾股定理得:226810AB (米).所以大树的高度是10616 (米).故答案为:16m .【点睛】本题考查了勾股定理的应用,关键是熟练掌握勾股定理:直角三角形中,两直角边的平方和等于斜边的平方.25.(2023春·湖北咸宁·八年级统考期末)如图,一梯子AB 斜靠在竖直的墙AO 上,测得5m AO ,若梯子的顶端沿墙下滑1m ,这时梯子的底端也沿水平方向向外滑动1m ,梯子到CD 的位置,则梯子的长度为m .【答案】41【分析】设m BO x ,利用勾股定理用x 表示出AB 和CD 的长,进而求出x 的值,然后由勾股定理求出AB 的长度.【详解】解:设m BO x ,由题意得:1m AC ,1m BD ,5m AO ,在Rt AOB △中,根据勾股定理得:222225AB AO OB x ,在Rt COD 中,根据勾股定理得: 22222511CD CO OD x ,∴ 22225511x x ,解得:4x ,∴ 22225441m AB AO BO ,即梯子AB 的长为41m .故答案为:41.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理,由勾股定理得出方程是解题的关键.26.(2023秋·八年级课时练习)《九章算术》是中国传统数学的重要著作之一,奠定了中国传统数学的基本框架,其中记载了一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意:一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?设折断处离地面x 尺,则根据题意列方程为:.【答案】 222310x x 【分析】设折断处离地面x 尺,根据勾股定理建立方程即可求解.【详解】解:如图,设折断处离地面x 尺,根据题意可得:2223(10x)x ,.故答案为:2223(10x)x 【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.27.(2023春·河北保定·八年级统考期末)如图,矩形ABCD 中,8cm AB ,12cm BC ,动点P 从点A 出发沿A B C D A 运动,速度是2cm /秒;点Q 从点C 出发沿C B A D C 运动,速度是4cm /秒,设它们的运动时间为t 秒.(1)当1t 时,连接PQ ,PQcm ;(2)若P 、Q 两点第一次相遇时,t秒;第2次相遇时,t 秒.【答案】1010310【分析】(1)先求得8216BP ,12418BQ ,再利用勾股定理即可求解;(2)根据相遇时间=总路程÷速度和得出第一次相遇的时间,再求出第二次相遇的时间即可.【详解】解:(1)当1t 时,8216BP ,12418BQ ,∴226810PQ ,故答案为:10(2)若P 、Q 两点第一次相遇时,10812243t (秒),从第一次相遇到第二次相遇需要的时间为: 202812243,故P 、Q 两点第2次相遇时,10201033t(秒)故答案为:103;10.【点睛】本题考查了勾股定理的应用、行程问题中的相遇问题.抓住“相遇时间=路程和÷速度和”是解题关键.28.(2023秋·河南郑州·八年级郑州市扶轮外国语学校校考开学考试)如图,长方体的长15cm BE ,宽10cm AB ,高20cm AD ,点M 在CH 上.且5cm CM .(1)求线段DM的长;(2)一只蚂蚁如果耍沿着长方体的表面从点A爬到点M,需要爬行的最短距离是多少?【答案】(1)55DM(2)蚂蚁爬行的最短距离是25cmCD ,利用勾股定理即可求解;【分析】(1)根据长方体的性质求出10(2)将立体图形展开成平面图形,然后根据两点之间线段距离最短,利用根据勾股定理进行求解,根据立体展开成平面图形情况分类讨论进行进行比较.【详解】(1)解:10CM ,AB CD∵,52222,10555DM CD CM线段DM的长为55.(2)解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如第1个图∵长方体的宽为10cm,高为20cm,点B离点C的距离是5cm22AM2010525cm要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如第2个图:22AM20510529cm只要把长方体的上表面剪开与左面所在的平面形成一个长方形,如第个图32220105537cmAM∵25529537∴蚂蚁爬行的最短距离是25cm.【点睛】本题考查了勾股定理的拓展应用,“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.29.(2020秋·广东佛山·八年级校考阶段练习)如图,小巷左右两侧是竖直的墙,巷子宽5米,一架梯子斜靠在左墙时,梯子顶端到地面的距离AC 为3米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离ED 为2米,则CB 的长度为多少?【答案】CB 的长度为2米.【分析】根据勾股定理222AC BC AB ,222BD DE BE ,列方程即可得到结论.【详解】解:根据勾股定理得,222AC BC AB ,222BD DE BE ,∵AB BE ,∴2222AC BC BD DE ,∴ 2222352BC BC ,∴2BC ,答:CB 的长度为2米.【点睛】本题主要考查了勾股定理的应用,解题的关键是掌握勾股定理.30.(2023春·云南昭通·八年级统考期中)如图,四边形ABCD 为某街心花园的平面图,经测量50m AB BC AD ,503m CD ,且90B Ð=°.(1)试判断ACD 的形状,并说明理由;(2)若射线BA 为公园的车辆进出口道路(道路的宽度忽略不计),工作人员想要在点D 处安装一个监控装置来监控道路BA 的车辆通行情况,且被监控的道路长度要超过65m .已知摄像头能监控的最大范围为周围50m (包含50m ),请问该监控装置是否符合要求?并说明理由.(参考数据2 1.4 ,3 1.7 )【答案】(1)直角三角形,见解析(2)符合要求,见解析【分析】(1)根据90B Ð=°,勾股定理求出AC ,再根据勾股定理的逆定理,即可;(2)过点D 作DE BA 于点E ;作A 点关于DE 的对称点A ,连接DA ,根据直角三角形的性质,得45BAC ,根据90DAC ,则45DAE ∠,三角形ADE 是等腰直角三角形,根据勾股定理求出AE ,可推出AA ,即可.【详解】(1)解:(1)ACD 是直角三角形.理由如下:∵90B Ð=°,50m AB BC AD ,∴在Rt ABC △中222AB BC AC ,∵25000AC ,∵22502500AD , 25037500CD ,∴227500AD AC ,∴22AD AC CD ,∴CAD 是直角三角形.(2)符合要求,理由如下:过点D 作DE BA 于点E ;作A 点关于DE 的对称点A ,连接DA ,∴90DEA ,∵90B Ð=°,AB BC ,∴45BAC ,∵90DAC ,∴45DAE ∠,∴DE AE ,∴在Rt DEA V 中222DE EA AD ,∴222500AE ,∴252AE ,∴50270m AA ,∵70m 65m ,∴该监控装置符合要求.。
八年级数学勾股定理重点易错题
(每日一练)八年级数学勾股定理重点易错题单选题1、以下列各组数为三角形的边长,能构成直角三角形的是()A.2、3、4B.5、5、6C.2、√3、√5D.√2、√3、√5答案:D解析:根据勾股定理的逆定理得出选项A、B、C不能构成直角三角形,D选项能构成直角三角形,即可得出结论.解:A、22+32≠42,不符合勾股定理的逆定理,故不正确;B、52+52≠62,不符合勾股定理的逆定理,故不正确;C、22+(√3)2≠(√5)2,不符合勾股定理的逆定理,故不正确;D、(√2)2+(√3)2=(√5)2,符合勾股定理的逆定理,能构成直角三角形,故正确.故选D.小提示:本题考查了勾股定理的逆定理;在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.2、如图,圆柱的底面周长是24,高是5,一只在A点的蚂蚁想吃到B点的食物,沿着侧面需要爬行的最短路径是()A.9B.13C.14D.25答案:B解析:画出该圆柱的侧面展开图,根据两点之间线段最短,可知沿着侧面需要爬行的最短路径即为AB,然后根据勾股定理求出AB即可求出结论.解:该圆柱的侧面展开图,如下图所示,根据两点之间线段最短,可知沿着侧面需要爬行的最短路径即为AB,AB恰为一个矩形的对角线,该矩形的长为圆柱的底面周长的一半,即长为24÷2=12,宽为5,∴AB=√52+122=13,即沿着侧面需要爬行的最短路径长为13.故选:B.小提示:此题考查的是勾股定理与最短路径问题,解题的关键是掌握勾股定理和两点之间线段最短.3、以下列各组数为三角形的边长,能构成直角三角形的是()A.2、3、4B.5、5、6C.2、√3、√5D.√2、√3、√5答案:D解析:根据勾股定理的逆定理得出选项A、B、C不能构成直角三角形,D选项能构成直角三角形,即可得出结论.解:A、22+32≠42,不符合勾股定理的逆定理,故不正确;B、52+52≠62,不符合勾股定理的逆定理,故不正确;C、22+(√3)2≠(√5)2,不符合勾股定理的逆定理,故不正确;D、(√2)2+(√3)2=(√5)2,符合勾股定理的逆定理,能构成直角三角形,故正确.故选D.小提示:本题考查了勾股定理的逆定理;在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4、如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是()A.a+b B.a⋅b C.√a2+b22D.√a2−b22答案:C解析:根据全等三角形的性质,设CD=AH=x,DE=AG=BC=y,由CE=a,HG=b建立方程组,求解即可得出CD=x= a−b,BC=y=a+b,然后借助勾股定理即可表示BD.解:根据图象是由四个全等的直角三角形拼成,设CD=AH=x ,DE=AG=BC=y , ∵CE =a ,HG =b , ∴{x +y =a y −x =b 解得:{x =a−b2y =a+b 2,故CD =a−b 2,BC =a+b 2在RtΔBCD 中,根据勾股定理得:BD 2=BC 2+CD 2=(a+b 2)2+(a−b 2)2=a 2+b 22,∴BD =√a 2+b 22.故选:C. 小提示:本题考查勾股定理,全等三角形的性质,能借助方程思想用含a ,b 的代数式表示CD 和BC 是解决此题的关键. 5、在△ABC 中,a ∶ b ∶ c =1 ∶ 1 ∶ √2,那么△ABC 是( ) A .等腰三角形B .钝角三角形C .直角三角形D .等腰直角三角形 答案:D 解析:根据等腰三角形的判定和勾股定理逆定理得出三角形的形状即可. ∵a :b :c =1:1:√2,∴三角形ABC 是等腰三角形. 设三边长为a,a,√2a∵a 2+a 2=(√2a )2,∴三角形ABC 是直角三角形. 综上所述:△ABC 是等腰直角三角形.故选D.小提示:本题考查了等腰三角形的判定和勾股定理逆定理.此题关键是利用勾股定理的逆定理解答.6、勾股定理是历史上第一个把数与形联系起来的定理,其证明是论证几何的发端.下面四幅图中不能证明勾股定理的是()A.B.C.D.答案:D解析:利用两个以a和b为直角边三角形面积与一个直角边为c的等腰直角三角形面积和等于上底为a,下第为b,高为(a+b)的梯形面积推导勾股定理可判断A,利用以a与b为两直角边四个全等三角形面积与边长为c的小正方形面积和等于以a+b的和为边正方形面积推导勾股定理可判断B,利用以a与(a+b)为两直角边四个全等三角形面积与边长为b的小正方形面积和等于以c为边正方形面积推导勾股定理可判断C,利用四个小图形面积和等于大正方形面积推导完全平方公式可判断D.解: A、两个以a和b为直角边三角形面积与一个直角边为c的等腰直角三角形面积和等于上底为a,下第为b,高为(a+b)的梯形面积,故12ab+12ab+12c2=12(a+b)2,整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、以a与b为两直角边四个全等三角形面积与边长为c的小正方形面积和等于以a+b的和为边正方形面积,故4×12ab+c2=(a+b)2,整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、以a与(a+b)为两直角边四个全等三角形面积与边长为b的小正方形面积和等于以c为边正方形面积,a(a+b)+b2=c2,整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;4×12D、四个小图形面积和等于大正方形面积,2ab+a2+b2=(a+b)2,根据图形证明完全平方公式,不能证明勾股定理,故本选项符合题意;故选:D.小提示:本题考查利用面积推导勾股定理与完全平方公式,掌握利用面积推导勾股定理与完全平方公公式是关键.7、如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米答案:C解析:在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选:C .小提示:本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.8、如图,在△ABC 中,∠ACB =90°,分别以点A 和点B 为圆心,以相同的长(大于 12 AB )为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交BC 于点E .若AC =3,AB =5,则DE 等于( )A .2B .103C .158D .152答案:C 解析:根据勾股定理求出BC ,根据线段垂直平分线性质求出AE=BE ,根据勾股定理求出AE ,再根据勾股定理求出DE 即可.解:在RtABC 中,由勾股定理得:BC=√52−32=4, 连接AE ,从作法可知:DE 是AB 的垂直评分线,根据性质AE=BE ,在Rt △ACE 中,由勾股定理得:AC 2+CE2=AE2,即32+(4-AE )2=AE2,解得:AE=258,在Rt △ADE 中,AD=12AB=52,由勾股定理得:DE 2+(52)2=(258)2,解得:DE=158.故选C.“点睛”:本题考查了线段垂直平分线性质,勾股定理的应用,能灵活运用勾股定理得出方程是解此题的关键. 填空题9、如图,数字代表所在正方形的面积,则A 所代表的正方形的面积为_________.答案:100. 解析:三个正方形的边长正好构成直角三角形的三边,根据勾股定理得到字母A 所代表的正方形的面积A =36+64=100. 解:由题意可知,直角三角形中,一条直角边的平方=36,一条直角边的平方=64,则斜边的平方=36+64. 所以答案是:100. 小提示:本题考查了正方形的面积公式以及勾股定理.10、如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑________米.答案:0.5解析:结合题意可知AB=DE=2.5米,BC=1.5米,BD=0.5米,∠C=90°,∴AC=√AB2−BC2=√2.52−1.52=2(米).∵BD=0.5米,∴CD=2米,∴CE=√DE2−CD2=√2.52−22=1.5(米),∴AE=AC-EC=0.5(米).故答案为0.5.点睛:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.11、如图,在RtΔABC中,∠ABC=90∘,AB=3,BC=4,RtΔMPN,∠MPN=90∘,点P在AC上,PM交AB 于点E,PN交BC于点F,当PE=2PF时,AP=________.答案:3解析:如图作PQ⊥AB于Q,PR⊥BC于R.由△QPE∽△RPF,推出PQPR =PEPF=2,可得PQ=2PR=2BQ,由PQ∥BC,可得AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x,可得2x+3x=3,求出x即可解决问题.如图,作PQ⊥AB于Q,PR⊥BC于R.∵∠PQB=∠QBR=∠BRP=90°,∴四边形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴PQPR =PEPF=2,∴PQ=2PR=2BQ.∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x,∴2x+3x=3,∴x=35,∴AP=5x=3.故答案为3.小提示:本题考查了相似三角形的判定和性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.12、如图,在高为6米,坡面长度AB为10米的楼梯表面铺上地毯,则至少需要地毯______米.答案:14解析:将楼梯表面向下和右平移,则地毯的总长=两直角边的和,已知斜边和一条直角边,根据勾股定理即可求另一条直角边,计算两直角边之和即可解题.解:将楼梯表面向下和右平移,则地毯的总长=两直角边的和,由题意得:∠ACB=90°,AB=10米,AC=6米,由勾股定理得BC=√AB2−AC2=√102−62=8(米),则AC+BC=14(米),所以答案是:14.小提示:本题考查了勾股定理的应用,本题中把求地毯长转化为求两直角边的长是解题的关键.13、若直角三角形的两直角边长为a、b,且满足√a2−6a+9+|b−4|=0,则该直角三角形的斜边长为_____.答案:5解析:解:∵√a2−6a+9+|b−4|=0,∴a2−6a+9=0,b-4=0,解得a=3,b=4.∵直角三角形的两直角边长为a、b,∴该直角三角形的斜边长=√a2+b2=√32+42=5.所以答案是:5解答题14、如图,已知∠ABD=90°,AB=8 m,AD=17 m,DC=20 m,BC=25 m.(1)求BD的长度;1112(2)求四边形ABCD 的面积.答案:(1)BD =15(2) 210m 2.解析:(1)根据勾股定理即可求出BD 的长;(2)先根据勾股定理的逆定理判断△BDC 是直角三角形,然后根据四边形ABCD 的面积等于△ABD 和△BDC 的面积和即可得出答案.解:(1)∵∠ABD =90°,∴AB 2+BD 2=AD 2, ∴82+BD 2=172, ∴BD =15;(2)∵BD =15,DC =20,BC =25,∴BD 2+DC 2=BC 2, ∴∠BDC =90°,∴四边形ABCD 的面积=12AB ×BD +12CD ×BD=12×8×15+12×20×15=210m 2.小提示:本题考查了勾股定理和勾股定理的逆定理的应用,根据勾股定理的逆定理判断出△BDC是直角三角形是解决此题的关键.15、如图,在△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求△ABC的面积.答案:84解析:先根据AB=10,BD=6,AD=8,利用勾股定理的逆定理求证ΔABD是直角三角形,再利用勾股定理求出CD 的长,然后利用三角形面积公式即可得出答案.解:∵BD2+AD2=62+82=102=AB2,∴ΔABD是直角三角形,∴AD⊥BC,在RtΔACD中,CD=√AC2−AD2=15,∴BC=BD+CD=6+15=21,∴SΔABC=12BC·AD=12×21×8=84.因此ΔABC的面积为84.故答案为84.小提示:此题主要考查学生对勾股定理和勾股定理的逆定理的理解和掌握,解答此题的关键是利用勾股定理的逆定理求证ΔABD是直角三角形.13。
《勾股定理》易错题集
第14章《勾股定理》易错题集(03):14.2勾股定理的应用第14章《勾股定理》易错题集(03):14.2 勾股定理的应用选择题1.工人师傅从一根长90cm的钢条上截取一段后恰好与两根长分别为60cm、100cm的钢条一起焊接成一个直角三角形钢架,则截取下来的钢条长应为()A.80cm B.C.80cm或D.60cm2.现有两根铁棒,它们的长分别为2米和3米,如果想焊一个直角三角形铁架,那么第三根铁棒的长为()A.米B.米C.米或米D.米3.现有两根木棒的长度分别为40厘米和50厘米,若要钉成一个直角三角形框架,那么所需木棒的长一定为()A.30厘米B.40厘米C.50厘米D.以上都不对4.(2005•贵阳)如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的表面爬行到点C的最短路程大约是()A.6cm B.12cm C.13cm D.16cm5.有一长、宽、高分别是5cm,4cm,3cm的长方体木块,一只蚂蚁要从长方体的一个顶点A处沿长方体的表面爬到长方体上和A相对的顶点B处,则需要爬行的最短路径长为()A.5cm B.cm C.4cm D.3cm6.如图所示,是一个圆柱体,ABCD是它的一个横截面,AB=,BC=3,一只蚂蚁,要从A点爬行到C点,那么,最近的路程长为()A.7 B. C.D.57.如图是一个长4m,宽3m,高2m的有盖仓库,在其内壁的A处(长的四等分)有一只壁虎,B处(宽的三等分)有一只蚊子,则壁虎爬到蚊子处最短距离为()A.4.8 B. C.5 D.填空题8.有一棵9米高的大树,树下有一个1米高的小孩,如果大树在距地面4米处折断(未完全折断),则小孩至少离开大树_________米之外才是安全的.9.如图,一棵大树在一次强台风中于离地面3m处折断倒下,树干顶部在根部4米处,这棵大树在折断前的高度为_________m.10.在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且>AD,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A处,到达C处需要走的最短路程是_________米.(精确到0.01米)11.长方体的长、宽、高分别为8cm,4cm,5cm.一只蚂蚁沿着长方体的表面从点A爬到点B.则蚂蚁爬行的最短路径的长是_________cm.12.如图所示一棱长为3cm的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm,假设一只蚂蚁每秒爬行2cm,则它从下底面点A沿表面爬行至侧面的B点,最少要用_________秒钟.13.如图,一个长方体盒子,一只蚂蚁由A出发,在盒子的表面上爬到点C1,已知AB=5cm,BC=3cm,CC1=4cm,则这只蚂蚁爬行的最短路程是_________cm.第14章《勾股定理》易错题集(03):14.2 勾股定理的应用参考答案与试题解析选择题1.工人师傅从一根长90cm的钢条上截取一段后恰好与两根长分别为60cm、100cm的钢条一起焊接成一个直角三角形钢架,则截取下来的钢条长应为()A.80cm B.C.80cm或D.60cm考点:勾股定理的应用。
勾股定理复习易错题四套题由简到难(附带答案)
勾股定理练习卷姓名一、填空题1.三角形的三边满足a2=b2+c2,这个三角形是三角形,它的最大边是.2.在直角三角形中,∠C=90°,=24,=7,=.3.在△中,若其三条边的长度分别为9、12、15,则以两个这样的三角形所拼成的四边形的面积是.4.如图1所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7,正方形A,B,C的面积分别是82,102,142,则正方形D的面积是2.5.如图2,在△中,∠C=90°,=60,=80,一只蜗牛从C点出发,以每分钟20的速度沿→→的路径再回到C点,需要分钟的时间.6.已知x、y为正数,且|x2-4|+(y2-16)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为.7.在布置新年联欢会的会场时,小虎准备把同学们做的拉花用上,他搬来了一架高为2.5米的梯子,要想把拉花挂在高2.4米的墙上(设梯子上端要到达或超过挂拉花的高度才能挂上),小虎应把梯子的底端放在距离墙米处.8.如图3是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为和.(注:两直角边长均为整数)二、选择题1.下列各组数为勾股数的是()A.6,12,13 B.3,4,7 C.4,7.5,8.5 D.8,15,16 2.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m,顶端离地面12m,则梯子的长度为()A.12m B.13m C.14m D.15m3.直角三角形两直角边边长分别为6和8,则连接这两条直角边中点的线段长为()A.10 B.3 C.4 D.54.若将直角三角形的两直角边同时扩大2倍,则斜边扩大为原来的()A.2倍B.3倍C.4倍D.5倍5.下列说法中,不正确的是()A.三个角的度数之比为1∶3∶4的三角形是直角三角形B.三个角的度数之比为3∶4∶5的三角形是直角三角形C.三边长度之比为3∶4∶5的三角形是直角三角形D.三边长度之比为9∶40∶41的三角形是直角三角形6.三角形的三边长满足关系:()22+2,则这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形7.某直角三角形的周长为30,且一条直角边为5,则另一直角边为()A.3 B.4 C.12 D.138.如果正方形的面积为29,则对角线的长度为()A.23B.49C.23D.29三、简答题1.(10分)如图4,你能计算出各直角三角形中未知边的长吗?2.(10分)如图5所示,有一条小路穿过长方形的草地,若=60m,=84m,=100m,则这条小路的面积是多少?3.(10分)如图6,在△中,∠=120°,∠B=30°,⊥,垂足为A,=1,求的长.4.(10分)小芳家门前有一个花圃,呈三角形状,小芳想知道该三角形是不是一个直角三角形,请问她可以用什么办法来作出判断?你能帮她设计一种方案吗?5.(10分)如图7,在△中,==25,点D在上,=24,=7,试问平分∠吗?为什么?6.(10分)如图8所示,四边形中,1,2,2,3,且⊥.求证:⊥.参考答案:一、1.直角,a2.25 3.108 4.17 5.12 6.20 7.0.7 8.4,6二、1~4. 5~8.三、1.(1)5x=;(2)24x=2.2240m34.略5.所以AD平分BAC∠,理由略6.证明略四、(1)84,85.(2)任意一个大于1的奇数的平方可以拆成两个连续整数的和,并且这两个连续整数与原来的奇数构成一组勾股数.(3)略.八年级下册第十八《勾股定理》水平测试一、填空题(每小题3分,共24分)1.一个三角形的三个内角之比为1∶2∶3,则三角形是三角形;若这三个内角所对的三边分别为a、b、c(设最长边为c),则此三角形的三边的关系是.2.已知等腰直角三角形的斜边长为2,则直角边长为,若直角边长为2,则斜边长为.3.在△中,∠C=90°,①若=41,=9,则=;②若=1.5,=2,则=.4.已知两条线段的长分别为11和60,当第三条线段的长为时,这3条线段能组成一个直角三角形.5.如图1,将一根长24厘米的筷子,置于底面直径为6厘米,高为8厘米的圆柱形水杯中,则筷子露在杯子外面的长度至少为厘米.6.如图2,⊥,==13,=5,=7,那么=.7.等腰直角三角形有一边长为8,则底边上的高是,面积是.8.如图3,一个机器人从A点出发,拐了几个直角的弯后到达B点位置,根据图中的数据,点A和点B的直线距离是.二、选择题(每小题3分,共24分)1.如图4,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.642.小丽和小芳二人同时从公园去图书馆,都是每分钟走50米,小丽走直线用了10分钟,小芳先去家拿钱再去图书馆,小芳到家用了6分钟,从家到图书馆用了8分钟,小芳从公园到图书馆拐了个(设公园到小芳家及小芳家到图书馆都是直线)()A.锐角B.直角C.钝角D.不能确定3.一直角三角形的一条直角边长是7,另一条直角边与斜边长的和是49,则斜边的长()A.18 B.20 C.24 D.254.如图5,四边形是正方形,垂直于,且3,4,则阴影部分的面积是()A.16 B.18 C.19 D.215.在直角三角形中,斜边与较小直角边的和、差分别为18、8,则较长直角边的长为()A.20 B.16 C.12 D.86.在△中,若=15,=13,高=12,则△的周长是()A.42 B.32 C.42或32 D.37或337.如图6,在单位正方形组成的网格图中标有、、、四条线段,其中能构成一个直角三角形三边的线段是()A.、、B.、、C.、、D.、、8.如图7,在△中,∠C=90°,D为边的中点,⊥于E,则22等于()A.2 B.2C.2 D.2三、简答题(共58分)1.一个三角形三条边的比为5∶12∶13,且周长为60,求它的面积.2293.如图8,是一个四边形的边角料,东东通过测量,获得了如下数据:=3,=12,=13,=4,东东由此认为这个四边形中∠A恰好是直角,你认为东东的判断正确吗?如果你认为他正确,请说明其中的理由;如果你认为他不正确,那你认为需要什么条件,才可以判断∠A是直角?4.如图9,一游泳池长48米,小方和小朱进行游泳比赛,小方平均速度为3米/秒,小朱为3.1米/秒.但小朱一心想快,不看方向沿斜线游,而小方直游,俩人到达终点的位置相距14米.按各人的平均速度计算,谁先到达终点?5.如图10(1)所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图10(2)所示.已知展开图中每个正方形的边长为1.求在该展开图中可画出最长线段的长度?这样的线段可画几条?四、拓广探索(本题14分)已知:在△中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,设△的面积为S,周长为l.(1)填表:三边a、b、c a+b-cSl3、4、5 25、12、13 48、15、17 6(2)如果a+b-c=m,观察上表猜想:l(用含有m的代数式表示).(3)证明(2)中的结论.参考答案:一、1.直角,222a b c += 2.1,2 3.40,2.5 4.615.14 6.12 7.4或4,16或32 8.10二、1~4. 5~8. 三、1.2120cm 2.图略3.不正确,可添加DB BC ⊥或5cm DB = 4.小方先到达终点 5.最长的线段长为4条四、解:(1)从上往下依次填12,1,32;(2)4S ml =; (3)证明略.1点击《勾股定理》之特色题本文将在各地课改实验区的中考试题中,涉及《勾股定理》知识内容的特色创新题采撷几例,供读者学习鉴赏.一.清新扮靓的规律探究题例1(成都市)如图,如果以正方形的对角线为边作第二个正方形, 再以对角线为边作第三个正方形,如此下去,…,已知正方形的面积1S 为1,按上述方法所作的正方形的面积依次为23S S ,,…,S n (n 为正整数),那么第8个正方形的面积8S =.【解析】:求解这类题目的常见策略是:“从特殊到一般”.即是先通过观察几个特殊的数式中的变数与不变数,得出一 般规律,然后再利用其一般规律求解所要解决的问题.对于 此题,由勾股定理、正方形的面积计算公式易求得:2111S ==, 222S ==2324S == 248S ==照此规律可知:25416S ==,新 课 标第 一网观察数1、2、4、8、16易知:0123412,22,42,82,162=====,于是可知12n n S -=因此,817822128S -===二.考查阅读理解能力的材料分析题例2(临安)阅读下列题目的解题过程:A BC D EF GH IJ已知a 、b 、c 为的三边,且满足,试判断的形状. 解:2222222222()()()()()ABC c a b a b a b B c a b C ∆∴-=+-∴=+∴是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号: ;(2)错误的原因为: (3)本题正确的结论为: .【解析】:材料阅读题是近年中考的热点命题,其类型多种多样,本题属于“判断纠错型”题目.集中考查了因式分解、勾股定理等知识.在由得到等式2222222()()()c a b a b a b -=+-没有错,错在将这个等式两边同除了一个可能为零的式子22a b -.若220a b -=,则有()()0a b a b +-=,从而得a b =,这时,ABC V 为等腰三角形.因此:(1) 选C .(2) 没有考虑220a b -=(3) ABC ∆是直角三角形或等腰三角形三.渗透新课程理念的图形拼接题例3(长春)如图,在△中,∠C = 90°, = 4, = 3.在△的外部拼接一个合适的直角三角形,使得拼成的图形是一个等腰三角形,如图所示.要求:在答题卡的两个备用图中分别画出两种与示例不同的拼接方法,并在图中标明拼接的直角三角形的三边长.(请同学们先用铅笔画现草图,确定后再用0.5毫米的黑色签字笔画出正确的图形)示例图备用图【解析】:要在△的外部拼接一个合适的直角三角形,使得拼成的图形是一个等腰三角形,关键是腰与底边的确定;要求在图中标明拼接的直角三角形的三边长,这需要用到勾股定理知识.下面四种拼接方法可供参考.四.极具“热点”的动态探究题例4(泉州):如图1,一架长4米的梯子斜靠在与地面垂直的墙壁上,梯子与地面的倾斜角α为60.⑴求与的长;⑵若梯子顶端A 沿下滑,同时底端B 沿向右滑行. 如图2,设A 点下滑到C 点,B 点向右滑行到D 点,并且2:3,试计算梯子顶端A 沿下滑多少米?X k b1 o m【解析】:对于没有学习解直角三角形知识的同学而言,求解此题有一定的难度.但若是利用等边三角形就可以推出的一个性质:“在直角三角形中,如果一个锐角等于30o ,那么它所对的直角边等于斜边的一半”,结合勾股定理求解,还是容易解答的.⑴AOB Rt ∆中,∠90o ,∠α=ο60 ∴,∠ο30,又AB=4米, ∴122OB AB ==米.由勾股定理得:OA ===. ⑵设2,3,AC x BD x ==在COD Rt ∆中,2,23,4OC x OD x CD ==+=根据勾股定理:222OC OD CD +=∴()()2222234x x ++= - ∴(213120x x +-=∵0x ≠ ∴0381213=-+x∴1213x =所以, 22413即梯子顶端A 沿下滑了2413米.勾股定理中的常见题型例析勾股定理是几何计算中运用最多的一个知识点.考查的主要方式是将其综合到几何应用的解答题中,常见的题型有以下几种:一、探究开放题例1如图1,设四边形是边长为1的正方形,以正方形的对角线为边作第二个正方形,再以第二个正方形的对角线为边作第三个正方形,如此下去…….法 (1)记正方形的边长为1a =1,依上述方求所作的正方形的边长依次为2a ,3a ,4a ,…,n a ,出2a ,3a ,4a 的值.(2)根据以上规律写出第n 个正方形的边长n a 的表达式.分析:依次运用勾股定理求出a 2,a 3,a 4,再观察、归纳出一般规律. 解:(1)∵四边形为正方形,∴1. 222AB BC += 同理,2, 22 a 22,a 3=2,a 4= 22(2) ∵011(2)a ==, 122(2)a =, 232(2)a ==, 3422(2)a ==, ∴1(2)n n a -= ()1,n n ≥是自然数.点拨:探究开放题形式新颖、思考方向不确定,因此综合性和逻辑性较强,它着力于考查观察、分析、比较、归纳、推理等方面的能力,对提高同学们的思维品质和解决问题的能力具有十分重要的作用.二、动手操作题例2如图2,图(1)是用硬纸板做成的两个全等的直角三角形,两条直角边长分别为a 和b ,斜边长为c .图(2)是以c 为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能证明勾股定理的图形.(1)画出拼成的这个图形的示意图,写出它是什么图形; (2)用这个图形证明勾股定理; (3)假设图(1)中的直角三角形有苦干个,你能运用图(1)所给的直角三角形拼出另一种能证明勾股定理的图形吗?请画出拼后的示意图(无需证明).解:(1)所拼图形图3所示,它是一个直角梯形.(2)由于这个梯形的两底分别为a 、b ,腰为(),所以梯形的面积为211()()()22a b a b a b ++=+.又因为这个梯形的面积等于三个直角三角形的面积和,所以梯形的面积又可表示为:2111222ab ab c ++. b1∴221111()2222a b ab ab c +=++. ∴222a b c +=. (3)所拼图形如图4.点拨:动手操作题内容丰富,解法灵活,有利于考查解题者的动手能力和创新设计的才能。
勾股定理十大易错题(带答案)
勾股定理十大经典易错题1. 如图,在一棵树的10米高B 处有两只猴子,其中一只爬下树走向离树20米的池塘C ,而另一只爬到树顶D 后直扑池塘C ,结果两只猴子经过的距离相等,问这棵树有多高?露在杯子外边的长度为cm h ,则h 的取值范围为 .3. 如图,在 △ABC 中,∠C =90∘,AC =2,点 D 在 BC 上,∠ADC =2∠B ,AD =√,则 BC 的长为 .A . √3−1B . √3+1C . √5−1D . √5+1【答案】D4. 如图为一个棱长为1的正方体的展开图,A 、B 、C 是展开后小正方形的顶点,则∠ABC 的度数为( )5. ABC 的面积为 .6. 在Rt ABC ∆中,90C ∠=︒,若54a b c +==,,则ABC S ∆= .7. 如图,梯子AB 斜靠在墙面上,AC BC AC BC ⊥=,,当梯子的顶端A 沿AC 方向下滑x米时,梯足B 沿CB 方向滑动y 米,则x 与y 的大小关系是( )A .x y =B .x y >C .x y < D8.如图网格中的△ABC ,若小方格边长为1,请你根据所学的知识(1)求△ABC 的面积;(2)判断△ABC 是什么形状?并说明理由.9. 如图,在长方形纸片 ABCD 中,已知 AD =8,折叠纸片使点 B 落在对角线 AC 上的点 F 处,折痕为 AE ,且 EF =3,求 AB 的长.10. 如图,有一个长、宽、高分别为3cm 、4cm 、5cm 的长方体,有一只蚂蚁想沿着外侧壁从A 点爬到C 1处,请你帮助小蚂蚁计算出最短路线.C A2. 【答案】1112h ≤≤3. 【答案】D4. 【答案】B5. 【解析】借助网格计算面积【答案】3.5 6. 【解析】 在Rt ABC ∆中,由勾股定理得,222a b c +=.又有()2222a b ab ab +=++,∴ ()222a b c ab +-= ∴1924ABC S ab ∆==. 【答案】94ABC S ∆=7. 化简得()2220a x y x y -=+>,x y >.【答案】B8. 解:(1)△ABC 的面积=4×4-1×2÷2-4×3÷2-2×4÷2=16-1-6-4=5.故△ABC 的面积为5;(2)∵小方格边长为1,∴AB2=12+22=5,AC 2=22+42=20,BC 2=32+42=25,∴AB 2+AC 2=BC 2,∴△ABC 为直角三角形.9. 【答案】610.【解析】我们将六个面标上:正、背、左、右、上、下,蚂蚁从A 到C 至少要走两个面,①正-右②正-上③左-上④左-背⑤下-背⑥下-右, 其中④⑤⑥和前面三种是重复的,比如①④,将拉伸长方体得棱AA 1和CC 1得到长方形AA 1C 1C ,两种路径是一样的,下面分情况讨论:①正-右:7457222121=+=+=CC AC AC ;②正-上:10393222121=+=+=BC AB AC ;③左-上:54482221121=+=+=C B AB AC【答案】cm 74。
2024八年级数学上册期末复习1勾股定理2易错专项训练习题课件新版北师大版
10
m.
1
2
3
4
5
易错点4 没有明确直角顶点,考虑不全面出错
4. 同一平面内有 A , B , C 三点, A , B 两点之间的距离为
5 cm,点 C 到直线 AB 的距离为2 cm,且△ ABC 为直角三
角形,则满足上述条件的点 C 有
1
2
3
4
5
8
个.
易错点5 不证明直角直接应用其性质缺少步骤出错
5. 如图,在△ ABC 中, D 是△ ABC 内一点,连接 AD ,
BD ,且 AD ⊥ BD . 已知 AD =4, BD =3, AC =13,
BC =12.求图中阴影部分的面积.
1
2
3
4
5
解:因为 AD ⊥ BD ,
所以 AB2= AD2+ BD2,
因为 AD =4, BD =3,
所以 AB =5.
BD - DC =4. 综上所述, BC 的长为14或4.
1
2
3
4
5
易错点3 求立体图形中两点之间的最短距离时无法找到正确
的展开方式出错
3. 【新考法·展开法】如图是一个长8 m,宽7 m,高5 m的
仓库,在其内的点 A 处有一只壁虎, B 处有一只蚊子,已
知 CA =2 m, PB =4 m,则壁虎沿仓库内爬到蚊子处的
1
2
3
4
5
在Rt△ ABD 中, AB =15, AD =12,由勾股定理得 BD2
= AB2- AD2=81,所以 BD =9.
在Rt△ ADC 中, AC =13, AD =12,由勾股定理得 DC2
= AC2- AD2=25,所以 DC =5.所以 BC = BD + DC =
勾股定理复习易错题四套题由简到难(附带答案)
勾股定理练习卷姓名一、填空题1.三角形的三边满足a2=b2+c2,这个三角形是三角形,它的最大边是.2.在直角三角形ABC中,∠C=90°,BC=24,CA=7,AB=.3.在△ABC中,若其三条边的长度分别为9、12、15,则以两个这样的三角形所拼成的四边形的面积是.4.如图1所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A,B,C的面积分别是8cm2,10cm2,14cm2,则正方形D的面积是 cm2.5.如图2,在△ABC中,∠C=90°,BC=60c m,CA=80c m,一只蜗牛从C点出发,以每分钟20c m的速度沿CA→AB→BC的路径再回到C点,需要分钟的时间.6.已知x、y为正数,且|x2-4|+(y2-16)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为.7.在布置新年联欢会的会场时,小虎准备把同学们做的拉花用上,他搬来了一架高为2.5米的梯子,要想把拉花挂在高2.4米的墙上(设梯子上端要到达或超过挂拉花的高度才能挂上),小虎应把梯子的底端放在距离墙米处.8.如图3是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为和.(注:两直角边长均为整数)二、选择题1.下列各组数为勾股数的是()A.6,12,13 B.3,4,7 C.4,7.5,8.5 D.8,15,162.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m,顶端离地面12m,则梯子的长度为()A.12m B.13m C.14m D.15m3.直角三角形两直角边边长分别为6cm 和8cm ,则连接这两条直角边中点的线段长为( )A .10cmB .3cmC .4cmD .5cm4.若将直角三角形的两直角边同时扩大2倍,则斜边扩大为原来的( )A .2倍B .3倍C .4倍D .5倍5.下列说法中, 不正确的是( )A .三个角的度数之比为1∶3∶4的三角形是直角三角形B .三个角的度数之比为3∶4∶5的三角形是直角三角形C .三边长度之比为3∶4∶5的三角形是直角三角形D .三边长度之比为9∶40∶41的三角形是直角三角形6.三角形的三边长满足关系:(a +b )2=c 2+2ab ,则这个三角形是( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形7.某直角三角形的周长为30,且一条直角边为5,则另一直角边为( )A .3B .4C .12D .138.如果正方形ABCD 的面积为29,则对角线AC 的长度为( )A .23B .49CD .29 三、简答题1.(10分)如图4,你能计算出各直角三角形中未知边的长吗?2.(10分)如图5所示,有一条小路穿过长方形的草地ABCD ,若AB =60m ,BC =84m ,AE =100m ,则这条小路的面积是多少?3.(10分)如图6,在△ABC 中,∠BAC =120°,∠B =30°,AD ⊥AB ,垂足为A ,CD =1c m ,求AB 的长.4.(10分)小芳家门前有一个花圃,呈三角形状,小芳想知道该三角形是不是一个直角三角形,请问她可以用什么办法来作出判断?你能帮她设计一种方案吗?5.(10分)如图7,在△ABC中,AB=AC=25,点D在BC上,AD=24,BD=7,试问AD平分∠BAC吗?为什么?6.(10分)如图8所示,四边形ABCD中,AB=1,BC=2,CD=2,AD=3,且AB⊥BC.求证:AC⊥CD.参考答案:一、1.直角,a2.25 3.108 4.17 5.12 6.207.0.7 8.4,6二、1~4.CBDA 5~8.BBCA三、1.(1)5x=;(2)24x=2.2240m34.略5.所以AD平分BAC∠,理由略6.证明略四、(1)84,85.(2)任意一个大于1的奇数的平方可以拆成两个连续整数的和,并且这两个连续整数与原来的奇数构成一组勾股数.(3)略.八年级下册第十八《勾股定理》水平测试一、填空题(每小题3分,共24分)1.一个三角形的三个内角之比为1∶2∶3,则三角形是三角形;若这三个内角所对的三边分别为a、b、c(设最长边为c),则此三角形的三边的关系是.2.已知等腰直角三角形的斜边长为2,则直角边长为,若直角边长为2,则斜边长为.3.在Rt△ABC中,∠C=90°,①若AB=41,AC=9,则BC=;②若AC=1.5,BC =2,则AB=.4.已知两条线段的长分别为11cm和60cm,当第三条线段的长为 cm时,这3条线段能组成一个直角三角形.5.如图1,将一根长24厘米的筷子,置于底面直径为6厘米,高为8厘米的圆柱形水杯中,则筷子露在杯子外面的长度至少为厘米.6.如图2,AC⊥CE,AD=BE=13,BC=5,DE=7,那么AC=.7.等腰直角三角形有一边长为8c m,则底边上的高是,面积是.8.如图3,一个机器人从A点出发,拐了几个直角的弯后到达B点位置,根据图中的数据,点A和点B的直线距离是.二、选择题(每小题3分,共24分)1.如图4,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.642.小丽和小芳二人同时从公园去图书馆,都是每分钟走50米,小丽走直线用了10分钟,小芳先去家拿钱再去图书馆,小芳到家用了6分钟,从家到图书馆用了8分钟,小芳从公园到图书馆拐了个(设公园到小芳家及小芳家到图书馆都是直线)()A.锐角B.直角C.钝角D.不能确定3.一直角三角形的一条直角边长是7cm,另一条直角边与斜边长的和是49cm,则斜边的长()A.18cm B.20cm C.24cm D.25cm4.如图5,四边形ABCD是正方形,AE垂直于BE,且AE=3,BE=4,则阴影部分的面积是()A.16 B.18 C.19 D.215.在直角三角形中,斜边与较小直角边的和、差分别为18、8,则较长直角边的长为()A.20 B.16 C.12 D.86.在△ABC中,若AB=15,AC=13,高AD=12,则△ABC的周长是()A.42 B.32 C.42或32 D.37或337.如图6,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GHC.AB、CD、GH D.AB、CD、EF8.如图7,在△ABC中,∠C=90°,D为BC边的中点,DE⊥AB于E,则AE2-BE2等于()A.AC2 B.BD2C.BC2 D.DE2三、简答题(共58分)1.一个三角形三条边的比为5∶12∶13,且周长为60c m,求它的面积.2的点.3.如图8,是一个四边形的边角料,东东通过测量,获得了如下数据:AB=3cm,BC=12cm,CD=13cm,AD=4cm,东东由此认为这个四边形中∠A恰好是直角,你认为东东的判断正确吗?如果你认为他正确,请说明其中的理由;如果你认为他不正确,那你认为需要什么条件,才可以判断∠A是直角?4.如图9,一游泳池长48米,小方和小朱进行游泳比赛,小方平均速度为3米/秒,小朱为3.1米/秒.但小朱一心想快,不看方向沿斜线游,而小方直游,俩人到达终点的位置相距14米.按各人的平均速度计算,谁先到达终点?5.如图10(1)所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图10(2)所示.已知展开图中每个正方形的边长为1.求在该展开图中可画出最长线段的长度?这样的线段可画几条?四、拓广探索(本题14分)已知:在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,设△ABC的面积为S,周长为l.(1)填表:(用含有m的代数式表示).(2)如果a+b-c=m,观察上表猜想:l(3)证明(2)中的结论.参考答案:一、1.直角,222a b c +=2.1,2 3.40,2.5 4.615.14 6.12 7.4或,16或32 8.10 二、1~4.DBDC 5~8.CCBA 三、1.2120cm2.图略3.不正确,可添加DB BC ⊥或5cm DB =4.小方先到达终点54条四、解:(1)从上往下依次填12,1,32; (2)4S m l =; (3)证明略.点击《勾股定理》之特色题本文将在各地课改实验区的中考试题中,涉及《勾股定理》知识内容的特色创新题采撷几例,供读者学习鉴赏.一.清新扮靓的规律探究题例1(成都市)如图,如果以正方形ABCD 的对角线AC 为边作第二个正方形ACEF , 再以对角线AE 为边作第三个正方形AEGH ,如此下去,…,已知正方形ABCD 的面积1S 为1,按上述方法所作的正方形的面积依次为23S S ,,…,S n (n 为正整数),那么第8个正方形的面积8S =_______.【解析】:求解这类题目的常见策略是:“从特殊到一般”.即是先通过观察几个特殊的数式中的变数与不变数,得出一 般规律,然后再利用其一般规律求解所要解决的问题.对于 此题,由勾股定理、正方形的面积计算公式易求得:2111S ==, 222S == 2324S == 248S ==照此规律可知:25416S ==,观察数1、2、4、8、16易知:0123412,22,42,82,162=====,于是可知12n n S -= 因此,817822128S -===二.考查阅读理解能力的材料分析题例2(临安)阅读下列题目的解题过程: 已知a 、b 、c 为的三边,且满足,试判断的形状.解:2222222222()()()()()ABC c a b a b a b B c a b C ∆∴-=+-∴=+∴是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号: ;(2)错误的原因为: (3)本题正确的结论为: .【解析】:材料阅读题是近年中考的热点命题,其类型多种多样,本题属于“判断纠错型”题目.集中考查了因式分解、勾股定理等知识.在由得到等式2222222()()()c a b a b a b -=+-没有错,错在将这个等式两边同除了一个可能为零的式子ABC D EFGHIJ22a b -.若220a b -=,则有()()0a b a b +-=,从而得a b =,这时,ABC 为等腰三角形.因此:(1) 选C .(2) 没有考虑220a b -=(3) ABC ∆是直角三角形或等腰三角形三.渗透新课程理念的图形拼接题例3(长春)如图,在Rt △ABC 中,∠C = 90°,AC = 4,BC = 3.在Rt △ABC 的外部拼接一个合适的直角三角形,使得拼成的图形是一个等腰三角形,如图所示.要求:在答题卡的两个备用图中分别画出两种与示例不同的拼接方法,并在图中标明拼接的直角三角形的三边长.(请同学们先用铅笔画现草图,确定后再用0.5毫米的黑色签字笔画出正确的图形)示例图 备用图【解析】:要在Rt △ABC 的外部拼接一个合适的直角三角形,使得拼成的图形是一个等腰三角形,关键是腰与底边的确定;要求在图中标明拼接的直角三角形的三边长,这需要用到勾股定理知识.下面四种拼接方法可供参考.四.极具“热点”的动态探究题例4(泉州):如图1,一架长4米的梯子AB 斜靠在与地面OM 垂直的墙壁ON 上,梯子与地面的倾斜角α为 60.⑴求AO 与BO 的长;⑵若梯子顶端A 沿NO 下滑,同时底端B 沿OM 向右滑行. 如图2,设A 点下滑到C 点,B 点向右滑行到D 点,并且AC:BD=2:3,试计算梯子顶端A 沿NO 下滑多少米?X k b1.c o m【解析】:对于没有学习解直角三角形知识的同学而言,求解此题有一定的难度.但若是利用等边三角形就可以推出的一个性质:“在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半”,结合勾股定理求解,还是容易解答的.⑴AOB Rt ∆中,∠O=90,∠α= 60 ∴,∠OAB= 30,又AB=4米,∴122OB AB ==米.由勾股定理得:OA ===. ⑵设2,3,AC x BD x ==在COD Rt ∆中,2,23,4OC x OD x CD ==+= 根据勾股定理:222OC OD CD +=∴()()2222234x x ++= -∴(213120x x +-= ∵0x ≠ ∴0381213=-+x∴x =所以,即梯子顶端A 沿NO .勾股定理中的常见题型例析勾股定理是几何计算中运用最多的一个知识点.考查的主要方式是将其综合到几何应用的解答题中,常见的题型有以下几种:一、探究开放题例1如图1,设四边形ABCD 是边长为1的正方形,以正方形ABCD 的对角线AC 为边作第二个正方形ACEF ,再以第二个正方形的对角线AE 为边作第三个正方形AEGH ,如此下去…….(1)记正方形ABCD 的边长为1a =1,依上述方法所作的4a 正方形的边长依次为2a ,3a ,4a ,…,n a ,求出2a ,3a ,的值.(2)根据以上规律写出第n 个正方形的边长n a 的表达式. 分析:依次运用勾股定理求出a 2,a 3,a 4,再观察、归纳出一般规律.解:(1)∵四边形ABCD 为正方形,∴AB=BC=CD=AD=1.由勾股定理,得AC同理,AE =2,EH = a 2a 3=2,a 4=(2) ∵011a ==, 12a ==, 232a ==, 34a ==,∴1n n a -= ()1,n n ≥是自然数.点拨:探究开放题形式新颖、思考方向不确定,因此综合性和逻辑性较强,它着力于考查观察、分析、比较、归纳、推理等方面的能力,对提高同学们的思维品质和解决问题的能力具有十分重要的作用.二、动手操作题例2如图2,图(1)是用硬纸板做成的两个全等的直角三角形,两条直角边长分别为a 和b ,斜边长为c .图(2)是以c 为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能证明勾股定理的图形. (1)画出拼成的这个图形的示意图,写出它是什么图形;(2)用这个图形证明勾股定理;(3)假设图(1)中的直角三角形有苦干个,你能运用图(1)所给的直角三角形拼出另一种能证明勾股定理的图形吗?请画出拼后的示意图(无需证明).解:(1)所拼图形图3所示,它是一个直角梯形.(2)由于这个梯形的两底分别为a 、b ,腰为(a +b ),所以梯形的面积为211()()()22a b a b a b ++=+.又因为这个梯形的面积等于三个直角三角形的面积和,所以梯形的面积又可表示为:2111222ab ab c ++.Xk b1.c om∴221111()2222a b ab ab c +=++. ∴222a b c +=. (3)所拼图形如图4.点拨:动手操作题内容丰富,解法灵活,有利于考查解题者的动手能力和创新设计的才能。
勾股定理(易错必刷30题6种题型专项训练)(原卷版)
第1章勾股定理(易错必刷30题6种题型专项训练)一.勾股定理(共12小题)1.(2022春•潮安区校级月考)如图,以直角三角形一边向外作正方形,其中两个正方形的面积为100和64,则正方形A的面积为.2.(2021秋•莱西市期中)如图,D为△ABC的边BC上一点,已知AB=13,AD=12,AC=15,BD=5,则BC的长为.3.(2023春•荔城区期末)若一直角三角形两直角边长分别为6和8,则斜边长为.4.(2023春•中宁县期末)如图,在△ABC中,∠ACB=90°,BC=15,AC=20,CD是高.(1)求AB的长;(2)求△ABC的面积;(3)求CD的长.5.(2022春•大荔县期末)如图,∠AOB=90°,点C在OA边上,OA=36cm,OB=12cm,点P从点A出发,沿着AO方向匀速运动,点Q同时从点B出发,以相同的速度沿BC方向匀速运动,P、Q两点恰好在C点相遇,求BC的长度?6.(2021•中原区开学)在△ABC中,AB=13cm,AC=20cm,高AD=12cm,则BC的长为cm.7.(2022•鄂尔多斯)如图,AB⊥BC于点B,AB⊥AD于点A,点E是CD中点,若BC=5,AD=10,BE =,则AB的长是.8.(2023春•宣城月考)如图,等腰△ABC的底边长为16cm,腰长为10cm,D是BC上一动点,当DA与腰垂直时,则AD=cm.9.(2023春•南宁月考)如图,已知在Rt△ABC中,∠ACB=90°,AC=8,BC=16,D是AC上的一点,CD=3,点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动.设点P的运动时间为t.过点D作DE⊥AP于点E.在点P的运动过程中,当t为时,能使DE=CD?10.(2023春•抚顺月考)如图,在△ABC中,AB=AC,BC=20,D是AB上一点,且CD=16,BD=12.(1)求证:CD⊥AB;(2)求AC的长.11.(2022秋•秦淮区期末)如图,在△ABC中,∠BAC=90°,AD平分∠BAC,AB=4,AC=3,则BD的长是.12.(2022秋•平湖市期末)已知直角三角形的一直角边长为17,另两边的长为自然数,则满足条件的所有三角形的面积之和为.二.勾股定理的证明(共2小题)13.(2022春•连城县校级月考)观察“赵爽弦图”(如图),若图中四个全等的直角三角形的两直角边分别为a,b,a>b,根据图中图形面积之间的关系及勾股定理,可直接得到等式()A.a(a﹣b)=a2﹣ab B.(a+b)(a﹣b)=a2﹣b2C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2=a2+2ab+b214.(2020秋•永嘉县校级期末)如图,四个全等的直角三角形围成正方形ABCD和正方形EFGH,即赵爽弦图.连接AC,分别交EF、GH于点M,N,连接FN.已知AH=3DH,且S正方形ABCD=21,则图中阴影部分的面积之和为()A.B.C.D.三.勾股定理的逆定理(共10小题)15.(2023春•滑县月考)下列四组线段中,能组成直角三角形的是()A.3,4,5B.2,3,4C.6,8,11D.7,23,2516.(2020秋•平山区校级月考)满足下列条件的△ABC,不是直角三角形的是()A.b2=c2﹣a2B.a:b:c=5:12:13C.∠C=∠A﹣∠B D.∠A:∠B:∠C=3:4:517.(2022秋•高陵区月考)如图,在4×4的正方形网格中(每个小正方形边长均为1),点A,B,C在格点上,连接AB,AC,BC,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定18.(2022秋•南城县校级月考)以下列三条线段为边能够组成直角三角形的有()个.(1)3,4,5(2)6.5,2.5,3(3)2.6,2.4,2(4)5,6,7A.1B.2C.3D.419.(2022秋•萍乡月考)下列满足条件的三角形中,不是直角三角形的是()A.在△ABC中,a=m2+n2,b=m2﹣n2,c=2mn,且m>n>0B.三边长的平方之比为1:2:3C.三内角的度数之比为3:4:5D.三边长分别为a,b,c,c=1+n2,b=n2﹣1,a=2n(n>1)20.(2022秋•南海区校级月考)已知a、b、c是△ABC的三边长,且满足关系(a2﹣c2+b2)2+|a﹣b|=0,则△ABC的形状为.21.(2022秋•高陵区月考)已知△ABC的三边a,b,c满足(a﹣9)2+(b﹣12)2+|c﹣15|=0,试判断△ABC的形状.22.(2022秋•浑南区月考)如图所示,已知△ABC中,CD⊥AB于D,AC=2,BC=1.5,DB=0.9.(1)求CD的长;(2)判断△ABC的形状,并说明理由.23.(2022秋•西湖区校级期中)如图,在△ABC中,CD⊥AB,AB=5,BC=,CD=2.(1)求DB的长;(2)求证:AC⊥BC.24.(2022秋•和平区校级期末)如图,有一张四边形纸片ABCD,AB⊥BC,经测得AB=3dm,BC=4dm,CD=2dm,AD=dm,求这张纸片的面积S.四.勾股数(共2小题)25.(2022秋•浑南区月考)下列各组数中,是勾股数的一组是()A.6,7,8B.5,12,13C.0.6,0.8,1D.2,4,526.(2022春•郾城区期末)如果正整数a、b、c满足等式a2+b2=c2,那么正整数a、b、c叫做勾股数,某同学将自己探究勾股数的过程列成下表,观察表中每列数的规律,可知x+y的值为()A.47B.62C.79D.98五.勾股定理的应用(共1小题)27.(2021秋•牡丹区期末)在一棵树的5米高B处有两个猴子为抢吃池塘边水果,一只猴子爬下树跑到A 处(离树10米)的池塘边.另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高米.六.平面展开-最短路径问题(共3小题)28.(2022秋•中原区校级月考)如图,长方体的长为15cm,宽为10cm,高为20cm,点B离点C5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖,需要爬行的最短距离是()cm.A.25B.20C.24D.1029.(2022秋•铁岭月考)如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(π取3)是.30.(2022秋•钦南区校级月考)如图,长方体的高为9dm,底面是边长为6dm的正方形.一只蚂蚁从顶点A开始爬向顶点B,那么它爬行的最短路程为()A.10dm B.12dm C.15dm D.20dm。
勾股定理易错题
错题一、折叠1、如图是一张直角三角形的纸片,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则BE的长为___________cm。
2、如图,折叠直角三角形纸片的直角,使点C落在AB上的点E处,已知AC=6,∠B=30°,则DE的长是___________。
3、如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点重合,折痕为MN,则线段BN的长为___________。
4、如图,长方形纸片ABCD沿对角线AC折叠,设点D落在D’处,BC交AD’于点E,AB=6cm,BC=8cm,求阴影部分的面积。
5、如图,已知矩形ABCD沿着直线BD折叠,使点C落在C’处,BC’交AD于E,AD=8,AB=4,则DE的长为___________.6、如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D 重合,折痕为EF,则△ABE的面积为____________.7、如图,有一个直角三角形纸片,两直角边AC=18cm,BC=24cm,现将直角边AC 沿直线AD折叠,使它落在斜边AB上,且与AE重合,你能求出BD的长吗?8、如图,在Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为__________.9、已知已知直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4。
如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D。
若折叠后点B 与点A重合,求点C的坐标。
10、如图,在Rt△ABC中,∠ABC=60°,DE是斜边AB的垂直平分线,分别交AC、AB 于D、E两点。
若BD=2,则AB的长是___________.11、如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B’重合,AE为折痕,则EB’=__________.12、如图,OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A 在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D、E两点的坐标.13、如图,在三角形纸片ABC中,BC=3,AB=6,∠BCA=90°,在AC上取一点E,以BE 为折痕,使AB的一部分与BC重合,点A与BC延长线上的点D重合,则DE的长度为____________.勾股定理的逆定理与面积1、如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积。
专题10 易错易混集训:勾股定理(原卷版)
专题10易错易混集训:勾股定理易错一没有明确斜边或直角时,考虑不全面而漏解易错二三角形形状不明时,考虑不全面而漏解易错三等腰三角形的腰和底不明时,考虑不全面而漏解易错四求立体图形中两点距离最短时无法找到正确的展开方式易错一没有明确斜边或直角时,考虑不全面而漏解例题:(2022·湖北·恩施市崔坝镇民族中学八年级阶段练习)若一个直角三角形的两边长为3和4,则它第三边的长为______.【变式训练】则该直角三角形的第三边为______.5.(2020·四川成都·八年级阶段练习)如图,点M,N把线段AB分割成AM,MN和NB,若以AM,MN,NB为边的三角形是一个直角三角形,则称点M,N是线段AB的“勾股分割点”.已知点M,N是线段AB的“勾股分割点”,若AM=3,MN=4,则BN的长为______.7.(2022·河南·郑州枫杨外国语学校八年级阶段练习)如图,在△ABC 中,∠ACB =90°,AC =6,BC =8,D 是斜边AB 上一个动点,E 是直线BC 上的一个动点,将△ABC 沿DE 折叠,使点B 的对应点F 落在直线AB 上,连接CF ,当△CEF 是直角三角形时,线段BD 的长为_____.易错二 三角形形状不明时,考虑不全面而漏解例题:(2021·北京市鲁迅中学八年级期中)在△ABC 中,AB =15,AC =20,BC 边上的高AD =12,则BC =___________.【变式训练】1.(2021·黑龙江牡丹江·八年级期末)在△ABC 中,若AC =15,BC =13,AB 边上的高CD =12,则△ABC 的周长为________________.2.(2022·山西·孝义市第六中学校八年级阶段练习)已知△ABC 中,AB =5,AC =8,BC 边上的高AD =4,则BC =__________.3.(2022·北京·101中学八年级期中)在Rt △ABC 中,∠ACB =90°,AC =4,AB =5.点P 在直线AC 上,且BP =6,则线段AP 的长为__________.4.(2022·安徽·宿城第一初级中学七年级期末)在ABC 中,90B ∠=︒,12cm AB =,9cm BC =,点D 是AB 的中点,点P 从A 点出发,沿线段AB 以每秒3cm 的速度运动到B .当点P 的运动时间t =______秒时,PCD 的面积为26cm .易错三 等腰三角形的腰和底不明时,考虑不全面而漏解例题:(2022·浙江绍兴·二模)在△ABC 中,AC =4,BC =2,AB 以AB 为边在△ABC 外作等腰直角△ABD ,连接CD ,则CD=_____.【变式训练】1.(2021·辽宁·沈阳市第一三四中学八年级阶段练习)如图,在Rt △ABC 中,∠ACB =90°,AB =5cm ,AC =3cm ,动点P 从点B 出发沿射线BC 以1cm /s 的速度移动,设运动的时间为t 秒,当△ABP 为等腰三角形时,t 的取值为_____.2.(2022·湖北武汉·八年级阶段练习)Rt △ABC 中,直角边AC =8,斜边AB =17,在直线AC 上取一点D ,使△ABD 为等腰三角形,则该等腰三角形的周长为 _____.3.(2022·辽宁朝阳·中考真题)等边三角形ABC 中,D 是边BC 上的一点,BD =2CD ,以AD 为边作等边三角形ADE ,连接CE .若CE =2,则等边三角形ABC 的边长为_____.易错四 求立体图形中两点距离最短时无法找到正确的展开方式例题:(2021·新疆伊犁·八年级阶段练习)如图,一只蚂蚁从长为4cm 、宽为3 cm ,高是12 cm 的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是___________cm .【变式训练】1.(2022·广东梅州·八年级期末)如图所示,ABCD 是长方形地面,长AB =20m ,宽AD =10m .中间竖有一堵砖墙高MN =2m .一只蚂蚱从A 点爬到C 点,它必须翻过中间那堵墙,则它至少要走________的路程.2.(2022·福建·武平县实验中学八年级期中)如图1,圆柱形容器高为6cm ,底面周长为6cm ,在杯内壁离杯底2cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到达内壁B 处的最短距离为_____.3.(2022·广东韶关实验中学八年级期中)如图,长方体的长15cm BE =,宽10cm AB =,高20cm AD =,点M 在CH 上,且5cm CM =,一只蚂蚁如果要沿着长方体的表面从点A 爬到点M ,需要爬行的最短距离是_________cm .4.(2022·全国·八年级)如图是一块长、宽、高分别为4cm、2cm和1cm的长方体木块,一只蚂蚁要从长方5.(2022·山东·潍坊市寒亭区教学研究室一模)云顶滑雪公园是北京2022年冬奥会7个雪上竞赛场馆中唯。
八上数学 第一章勾股定理知识点归纳+易错题精选(含答案)
八年级数学上册 第一章 勾股定理知识点+易错题精选1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
勾股定理 易错题精选一.选择题1.以下列各组线段为边作三角形,能构成直角三角形的是( )A .2,3,4B .6,8,10C .5,8,13D .12,13,142.用四个边长均为a 、b 、c 的直角三角板,拼成如图中所示的图形,则下列结论中正确的是( )A .c 2=a 2+b 2B .c 2=a 2+2ab+b 2C .c 2=a 2﹣2ab+b 2D .c 2=(a+b )2.3.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=6,AC=8,点D ,E ,F ,G ,H ,I 都是矩形KLMJ 的边上,则矩形KLMJ 的面积为( )A.360 B.400 C.440 D.4844.如图,甲是第七届国际数学教育大会(简称ICME~7)的会徽,会徽的主体图案是由如图乙的一连串直角三角形演化而成的其中OA1=A1A2=A2A3=…=A7A8=1,如果把图乙中的直角三角形继续作下去,那么OA1,OA2,…OA25这些线段中有多少条线段的长度为正整数()A.3 B.4 C.5 D.65.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c26.如图,在正方形网格中,每个小正方形的方格的边长均为1,则点A到边BC的距离为()A. B.C. D.37.满足下列条件的△ABC,不是直角三角形的是()A.b2﹣c2=a2 B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.∠A:∠B:∠C=9:12:158.某中学旁边有一块三角形空地,为了保持水土,美化环境,全校师生一齐动手,在空地的三条边上栽上了树苗(如图).已知三边上的树苗数分别为50、14、48,空地的三个角均有一棵树,且每条边上的树苗株距均为1米,那么这块空地的形状为()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定9.长方形门框ABCD中,AB=2m,AD=1.5m.现有四块长方形薄木板,尺寸分别是:①长1.4m,宽1.2m;②长2.1m,宽1.7m;③长2.7m,宽2.1m;④长3m,宽2.6m.其中不能从门框内通过的木板有()A.0块 B.1块 C.2块 D.3块10.如图铁路上A,B两点相距40千米,C,D为两村庄,DA⊥AB,CB⊥AB,垂足分别为A 和B,DA=24千米,CB=16千米.现在要在铁路旁修建一个煤栈E,使得C,D两村到煤栈的距离相等,那么煤栈E应距A点()A.20千米B.16千米C.12千米D.无法确定二.填空题11.已知直角三角形的三边分别为6、8、x,则x= .12.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.13.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为.14.观察下列式子:当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…根据上述发现的规律,用含n(n≥2的整数)的代数式表示上述特点的勾股数a= ,b= ,c= .15.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形的形状是三角形.16.已知一个三角形的三条边的长分别为、和,那么这个三角形的最大内角的大小为度.17.如图,在四边形ABCD中,∠C=90°,AB=12cm,BC=3cm,CD=4cm,AD=13cm.求四边形ABCD的面积= cm2.18.如图,在一次测绘活动中,某同学站在点A的位置观测停放于B、C两处的小船,测得船B在点A北偏东75°方向150米处,船C在点A南偏东15°方向120米处,则船B与船C之间的距离为米(精确到0.1m).19.上午8时,一条船从海岛A出发,以15海里/时的速度向正北航行,10时到达海岛B 处,从A、B望灯塔C,测得∠BAC=60°,点C在点B的正西方向,海岛B与灯塔C之间的距离是海里.20.如图是一段楼梯,∠A=30°,斜边AC是4米,若在楼梯上铺地毯,则至少需要地毯米.二.解答题21.如图,你能用它验证勾股定理吗?(提示:以斜边为边长的正方形的面积+四个三角形的面积=外正方形的面积)22.如图,四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13.试判断△ACD的形状,并说明理由.23.问题情境:在综合与实践课上,同学们以“已知三角形三边的长度,求三角形面积”为主题开展数学活动,小颖想到借助正方形网格解决问题.图1,图2都是8×8的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.操作发现:小颖在图1中画出△ABC,其顶点A,B,C都是格点,同时构造正方形BDEF,使它的顶点都在格点上,且它的边DE,EF分别经过点C,A,她借助此图求出了△ABC的面积.(1)在图1中,小颖所画的△ABC的三边长分别是AB= ,BC= ,AC= ;△ABC的面积为.解决问题:(2)已知△ABC中,AB=,BC=2,AC=5,请你根据小颖的思路,在图2的正方形网格中画出△ABC,并直接写出△ABC的面积.24.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上另一停靠站B的距离为400米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否而需要暂时封锁?请通过计算进行说明.25.某研究性学习小组进行了探究活动.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯AB=13m,梯子底端离墙角的距离BO=5m.(1)求这个梯子顶端A距地面有多高;(2)如果梯子的顶端A下滑4m到点C,那么梯子的底部B在水平方向上滑动的距离BD=4m吗?为什么?(3)亮亮在活动中发现无论梯子怎么滑动,在滑动的过程中梯子上总有一个定点到墙角O 的距离始终是不变的定值,会思考问题的你能说出这个点并说明其中的道理吗?26.如图,圆柱形容器高12cm,底面周长24cm,在杯口点B处有一滴蜂蜜,此时蚂蚁在杯外壁底部与蜂蜜相对的A处,(1)求蚂蚁从A到B处吃到蜂蜜最短距离;(2)若蚂蚁刚出发时发现B处的蜂蜜正以每秒钟1cm沿杯内壁下滑,4秒钟后蚂蚁吃到了蜂蜜,求蚂蚁的平均速度至少是多少?参考答案一.选择题1.【分析】只要验证两小边的平方和等于最长边的平方即可判断是直角三角形.【解答】解:A、22+32=13≠42,不能构成直角三角形,故本选项错误;B、62+82=100=102,能构成直角三角形,故本选项正确;C、52+82=89≠132,不能构成直角三角形,故本选项错误;D、122+132=313≠142,不能构成直角三角形,故本选项错误;故选:B.2.【分析】四个一样的直角三角板围成的四边形为正方形,其中小四边形也为正方形,大正方形的面积可以由边长的平方求出,也可以由四个直角三角形的面积与小正方形面积之和来求,两种方法得出的面积相等,利用完全平方公式展开,合并后即可得到正确的等式.【解答】解:由题意得到四个完全一样的直角三角板围成的四边形为正方形,其边长为c,里边的小四边形也为正方形,边长为b﹣a,则有c2=ab×4+(b﹣a)2,整理得:c2=a2+b2.故选:A.3.【分析】延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.【解答】解:如图,延长AB交KF于点O,延长AC交GM于点P,所以,四边形AOLP是正方形,边长AO=AB+AC=6+8=14,所以,KL=6+14=20,LM=8+14=22,因此,矩形KLMJ的面积为20×22=440.故选:C.4.【分析】OA1=1,OA2==,OA3==,找到OA n=的规律即可计算OA1到OA25中长度为正整数的个数.【解答】解:找到OA n=的规律,所以OA1到OA25的值分别为,,……,故正整数为=1, =2, =3, =4, =5.故选:C.5.【分析】在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角,根据此就可以直接判断A、B、C、D选项.【解答】解:在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角.A、不确定c是斜边,故本命题错误,即A选项错误;B、不确定第三边是否是斜边,故本命题错误,即B选项错误;C、∠C=90°,所以其对边为斜边,故本命题正确,即C选项正确;D、∠B=90°,所以斜边为b,所以a2+c2=b2,故本命题错误,即D选项错误;故选:C.6.【分析】首先利用勾股定理求出三角形的边长,然后得到三角形是等腰三角形,进而利用勾股定理求出AD的长即可.【解答】解:根据勾股定理可知:AB==,AC==,BC==,则△ABC是等腰三角形,过点A作AD⊥BC,垂足为D,即BD=CD=BC=,AD===,即点A到BC的距离为.故选:C.7.【分析】根据三角形内角和定理、勾股定理的逆定理对各个选项分别进行计算即可.【解答】解:b2﹣c2=a2则b2=a2+c2△ABC是直角三角形;a:b:c=3:4:5,设a=3x,b=4x,c=5x,a2+b2=c2,△ABC是直角三角形;∠C=∠A﹣∠B,则∠B=∠A+∠C,∠B=90°,△ABC是直角三角形;∠A:∠B:∠C=9:12:15,设∠A、∠B、∠C分别为9x、12x、15x,则9x+12x+15x=180°,解得,x=5°,则∠A、∠B、∠C分别为45°,60°,75°,△ABC不是直角三角形;故选:D.8.【分析】根据三边上的树苗的数分别求得三边的长为13、47、49,根据三边的长判断三角形的形状即可.【解答】解:∵三边上的树苗数分别为50、14、48,空地的三个角均有一棵树,且每条边上的树苗株距均为1米,∴三边的长分别为13米、47米、49米,假设为直角三角形且直角三角形的最长边为x,则:x2=132+472=2378,∵492=2401>2378,∴该三角形为钝角三角形.故选:B.9.【分析】求出长方形门框的对角线长,宽小于或等于长方形门框的对角线的长的木板就可通过.【解答】解:门框的对角线长是: =2.5m.宽小于或等于2.5m的有:①②③.故选:B.10.【分析】根据题意利用勾股定理得出AD2+AE2=BE2+BC2,进而求出即可.【解答】解:设AE=xkm,则BE=(40﹣x)km,∵DA⊥AB,CB⊥AB,C,D两村到煤栈的距离相等,∴AD2+AE2=BE2+BC2,故242+x2=(40﹣x)2+162,解得:x=16,则煤栈E应距A点16km.故选:B.二.填空题11.【分析】根据勾股定理的内容,两直角边的平方和等于斜边的平方,分两种情况进行解答.【解答】解:分两种情况进行讨论:①两直角边分别为6,8,由勾股定理得x==10,②一直角边为6,一斜边为8,由勾股定理得x==2;故答案为:10或2.12.【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,∴AF=AB﹣BF.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.13.【分析】根据∠ADC=2∠B,∠ADC=∠B+∠BAD判断出DB=DA,根据勾股定理求出DC的长,从而求出BC的长.【解答】解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴DB=DA=,在Rt△ADC中,DC===1,∴BC=+1.故答案为: +1.14.【分析】由n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5;n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10;n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…得出a=2n,b=n2﹣1,c=n2+1,满足勾股数.【解答】解:∵当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…∴勾股数a=2n,b=n2﹣1,c=n2+1.故答案为:2n,n2﹣1,n2+1.15.【分析】根据题目中的式子和勾股定理的逆定理可以解答本题.【解答】解:∵2ab=(a+b)2﹣c2,∴2ab=a2+2ab+b2﹣c2,∴a2+b2=c2,∵三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,∴此三角形是直角三角形,故答案为:直角.16.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形,进而可得答案.【解答】解:∵()2+()2=()2,∴三角形为直角三角形,∴这个三角形的最大内角度数为90°,故答案为:9017.【分析】连接BD,根据勾股定理求出BD,根据勾股定理的逆定理求出△CBD是直角三角形,分别求出△ABD和△CBD的面积,即可得出答案.【解答】解:连结BD,在△ABD中,∵∠A=90°,BC=3cm,DC=4cm,∴BD==5(cm),S△BCD=BC•DC=×3×4=6(cm2),在△ABD中,∵AD=13cm,AB=12cm,BD=5cm∴BD2+AB2=AD2,∴△ABD是直角三角形,∴S△ABD=AB•BD=×12×5=30(cm2),∴四边形ABCD的面积=S△ABD+S△BCD=6+30=36(cm2).故答案为:36.18.【分析】根据已知条件得到∠BAC=90°,AB=150米,AC=120米,由勾股定理即可得到结论.【解答】解:根据题意得:∠BAC=90°,AB=150米,AC=120米,在Rt△ABC中,BC=≈192.2米,故答案为:192.219.【分析】根据方位角可知船与海岛、灯塔的方向正好构成了直角.然后根据路程=速度×时间,再根据勾股定理,即可求得海岛B与灯塔C之间的距离.【解答】解:因为∠BAC=60°,点C在点B的正西方向,所以△ABC是直角三角形,∵AB=15×2=30海里,∠BAC=60°,∴AC=60海里,∴BC==30(海里)故答案为:3020.【分析】利用直角三角形中30°角对的直角边等于斜边的一半求出BC的长,再根据勾股定理求出AB的长,进而可得出结论.【解答】解:∵△ABC是直角三角形,∠A=30°,斜边AC是4米,∴BC=AC=2米,∴AB===2(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=(2)米.故答案为:2+2三.解答题(共6小题)21.【分析】根据题意,我们可在图中找等量关系,由中间的小正方形的面积等于大正方形的面积减去四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式.【解答】解:根据题意,中间小正方形的面积;化简得a2+b2=c2,即在直角三角形中斜边的平方等于两直角边的平方和.22.【分析】先根据勾股定理求出AC的长,在△ACD中,再由勾股定理的逆定理,判断三角形的形状.【解答】解:△ACD是直角三角形.理由是:∵∠B=90°,AB=3,BC=4,∴AC2=AB2+BC2=9+16=25,∴AC=5,又∵AC2+CD2=25+144=169,AD2=169,∴AC2+CD2=AD2,∴△ACD是直角三角形.23.【分析】根据勾股定理、矩形的面积公式、三角形面积公式计算.【解答】解:(1)AB==5,BC==,AC==,△ABC的面积为:4×4﹣×3×4﹣×1×4﹣×3×1=,故答案为:5;;;;(2)△ABC的面积:7×2﹣×3×1﹣×4×2﹣×7×1=5.24.【分析】如图,本题需要判断点C到AB的距离是否小于250米,如果小于则有危险,大于则没有危险.因此过C作CD⊥AB于D,然后根据勾股定理在直角三角形ABC中即可求出AB 的长度,然后利用三角形的公式即可求出CD,然后和250米比较大小即可判断需要暂时封锁.【解答】解:如图,过C作CD⊥AB于D,∵BC=400米,AC=300米,∠ACB=90°,∴根据勾股定理得AB=500米,∵AB•CD=BC•AC,∴CD=240米.∵240米<250米,故有危险,因此AB段公路需要暂时封锁.25.【分析】(1)在Rt△AOB中利用勾股定理求得AO的长即可;(2)在梯子长度不变的情况下,求出DO的长后减去BO的长求得BD即可作出判断;(3)由直角三角形斜边上的中线的性质回答问题.【解答】解:(1)∵AO⊥DO,∴AO=,=,=12m,∴梯子顶端距地面12m高;(2)滑动不等于4m,∵AC=4m,∴OC=AO﹣AC=8m,∴OD=,=,∴BD=OD﹣OB=,∴滑动不等于4m.(3)AB上的中点到墙角O的距离总是定值,因为直角三角形斜边上的中线等于斜边的一半.26.【分析】(1)先将圆柱的侧面展开,再根据勾股定理求解即可;(2)根据勾股定理得到蚂蚁所走的路程,于是得到结论.【解答】解:(1)如图所示,∵圆柱形玻璃容器,高12cm,底面周长为24cm,∴AD=12cm,∴AB===12(cm).答:蚂蚁要吃到食物所走的最短路线长度是12cm;(2)∵AD=12cm,∴蚂蚁所走的路程==20,∴蚂蚁的平均速度=20÷4=5(cm/s).。
勾股定理单元 易错题难题提优专项训练试题
勾股定理单元 易错题难题提优专项训练试题一、选择题1.如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①DFE △是等腰直角三角形;②四边形CDFE 不可能为正方形;③DE 长度的最小值为4;④四边形CDFE 的面积保持不变;⑤△CDE 面积的最大值为8.其中正确的结论是( )A .①④⑤B .③④⑤C .①③④D .①②③2.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为( )A .20B .24C .994D .5323.如图,已知AB 是⊙O 的弦,AC 是⊙O 的直径,D 为⊙O 上一点,过D 作⊙O 的切线交BA 的延长线于P,且DP⊥BP 于P.若PD+PA=6,AB=6,则⊙O 的直径AC 的长为( )A .5B .8C .10D .124.如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,BD 平分∠ABC ,E 是AB 中点,连接DE ,则DE 的长为( )A .102B .2C .512+D .325.如图,在ABC 中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若3CM =,则22CE CF +的值为( )A .36B .9C .6D .186.“折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)( )A .3B .5C .4.2D .4 7.在△ABC 中,AB =10,BC =12,BC 边上的中线AD =8,则△ABC 边AB 上的高为( )A .8B .9.6C .10D .12 8.在Rt△ABC 中,∠C=90°,AC=3,BC=4,则点C 到AB 的距离是( )A .34B .35C .45D .1259.如图,在ABC 中,13AB =,10BC =,BC 边上的中线12AD =,请试着判定ABC 的形状是( )A .直角三角形B .等边三角形C .等腰三角形D .以上都不对10.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.245B.5 C.6 D.8二、填空题11.如图,在矩形 ABCD 中,AB=10,BC=5,若点 M、N 分别是线段 AC、AB上的两个动点,则 BM+MN 的最小值为_____________________.12.如图所示的网格是正方形网格,则ABC ACB∠+∠=__________°(点A,B,C是网格线交点).13.如图,在四边形ABCD中,AB =AD,BC=DC,点E为AD边上一点,连接BD、CE,CE 与BD交于点F,且CE∥AB,若∠A =60°,AB=4,CE=3,则BC的长为_______.14.在△ABC中,AB=15,AC=13,高AD=12,则ABC∆的周长为_______________.15.如图,已知△DBC是等腰直角三角形,BE与CD交于点O,∠BDC=∠BEC=90°,BF=CF,若BC=8,2,则OF=______.16.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,若12315S S S ++=,则2S 的值是__________.17.在ABC 中,12AB AC ==,30A ∠=︒,点E 是AB 中点,点D 在AC 上,32DE =,将ADE 沿着DE 翻折,点A 的对应点是点F ,直线EF 与AC 交于点G ,那么DGF △的面积=__________.18.如图,把平面内一条数轴x 绕点O 逆时针旋转角θ(0°<θ<90°)得到另一条数轴y ,x 轴和y 轴构成一个平面斜坐标系.规定:已知点P 是平面斜坐标系中任意一点,过点P 作y 轴的平行线交x 轴于点A ,过点P 作x 轴的平行线交y 轴于点B ,若点A 在x 轴上对应的实数为a ,点B 在y 轴上对应的实数为b ,则称有序实数对(a ,b )为点P 的斜坐标.在平面斜坐标系中,若θ=45°,点P 的斜坐标为(1,2),点G 的斜坐标为(7,﹣2),连接PG ,则线段PG 的长度是_____.19.如图,在Rt ABC ∆中,90ACB ∠=,2AC BC ==,D 为BC 边上一动点,作如图所示的AED ∆使得AE AD =,且45EAD ∠=,连接EC ,则EC 的最小值为__________.20.如图的实线部分是由Rt ABC ∆经过两次折叠得到的.首先将Rt ABC ∆沿高CH 折叠,使点B 落在斜边上的点B '处,再沿CM 折叠,使点A 落在CB '的延长线上的点A '处.若图中90ACB ∠=︒,15cm BC =,20cm AC =,则MB '的长为______.三、解答题21.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?22.如图,已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B开始沿B C →方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)当2t =秒时,求PQ 的长;(2)求出发时间为几秒时,PQB ∆是等腰三角形?(3)若Q 沿B C A →→方向运动,则当点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.23.如图1,在△ABC 中,AB =AC ,∠BAC =90°,D 为AC 边上一动点,且不与点A 点C 重合,连接BD 并延长,在BD 延长线上取一点E ,使AE =AB ,连接CE .(1)若∠AED =20°,则∠DEC = 度;(2)若∠AED =a ,试探索∠AED 与∠AEC 有怎样的数量关系?并证明你的猜想; (3)如图2,过点A 作AF ⊥BE 于点F ,AF 的延长线与EC 的延长线交于点H ,求证:EH 2+CH 2=2AE 2.24.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 是BC 上一动点、连接AD ,过点A 作AE AD ⊥,并且始终保持AE AD =,连接CE ,(1)求证:ABD ACE ≅;(2)若AF 平分DAE ∠交BC 于F ,①探究线段BD ,DF ,FC 之间的数量关系,并证明;②若3BD =,4CF =,求AD 的长,25.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .(1)求证:AE =BD ;(2)试探究线段AD 、BD 与CD 之间的数量关系;(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:22,CD =36+,求线段AB 的长.26.Rt ABC ∆中,90CAB ∠=,4AC =,8AB =,M N 、分别是边AB 和CB 上的动点,在图中画出AN MN +值最小时的图形,并直接写出AN MN +的最小值为 .27.已知ABC ∆中,AB AC =.(1)如图1,在ADE ∆中,AD AE =,连接BD 、CE ,若DAE BAC ∠=∠,求证:BD CE =(2)如图2,在ADE ∆中,AD AE =,连接BE 、CE ,若60DAE BAC ∠=∠=,CE AD ⊥于点F ,4AE =,5EC =,求BE 的长;(3)如图3,在BCD ∆中,45CBD CDB ∠=∠=,连接AD ,若45CAB ∠=,求AD AB的值.28.如图,在ABC ∆中,90ACB ∠=︒,2BC AC =.(1)如图1,点D 在边BC 上,1CD =,5AD =,求ABD ∆的面积.(2)如图2,点F 在边AC 上,过点B 作BE BC ⊥,BE BC =,连结EF 交BC 于点M ,过点C 作CG EF ⊥,垂足为G ,连结BG .求证:2EG BG CG =+.29.如图,己知Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =,ED 为AB 垂直平分线,且23DE =,连接DB ,DA .(1)直接写出BC =__________,AC =__________;(2)求证:ABD ∆是等边三角形;(3)如图,连接CD ,作BF CD ⊥,垂足为点F ,直接写出BF 的长;(4)P是直线AC上的一点,且13CP AC=,连接PE,直接写出PE的长.30.如图1,在平面直角坐标系中,直线AB经过点C(a,a),且交x轴于点A(m,0),交y轴于点B(0,n),且m,n满足6m-+(n﹣12)2=0.(1)求直线AB的解析式及C点坐标;(2)过点C作CD⊥AB交x轴于点D,请在图1中画出图形,并求D点的坐标;(3)如图2,点E(0,﹣2),点P为射线AB上一点,且∠CEP=45°,求点P的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】作常规辅助线连接CF,由SAS定理可证△CFE和△ADF全等,从而可证∠DFE=90°,DF=EF.所以△DEF是等腰直角三角形;由割补法可知四边形CDFE的面积保持不变;△DEF 是等腰直角三角形2DF,当DF与BC垂直,即DF最小时,DE取最小值42,△CDE最大的面积等于四边形CDEF的面积减去△DEF的最小面积.【详解】连接CF;∵△ABC是等腰直角三角形,∴∠FCB=∠A=45°,CF=AF=FB;∵AD=CE,∴△ADF≌△CEF;∴EF=DF,∠CFE=∠AFD;∵∠AFD+∠CFD=90°,∴∠CFE+∠CFD=∠EFD=90°,∴△EDF是等腰直角三角形.当D. E分别为AC、BC中点时,四边形CDFE是正方形.∵△ADF≌△CEF,∴S△CEF=S△ADF,∴S四边形CEFD=S△AFC.由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;即当DF⊥AC时,DE最小,此时DF=12BC=4.∴22当△CEF面积最大时,此时△DEF的面积最小.此时S△CEF=S四边形CEFD−S△DEF=S△AFC−S△DEF=16−8=8,则结论正确的是①④⑤.故选A.【点睛】本题考查全等三角形的判定与性质, 等腰直角三角形性质.要证明线段或者角相等,一般证明它们所在三角形全等,如果不存在三角形可作辅助线解决问题.2.B解析:B【分析】设小正方形的边长为x,则矩形的一边长为(a+x),另一边为(b+x),根据矩形的面积的即等于两个三角形的面积之和,也等于长乘以宽,列出方程,化简再代入a,b的值,得出x2+7x=12,再根据矩形的面积公式,整体代入即可.【详解】设小正方形的边长为x,则矩形的一边长为(a+x),另一边为(b+x),根据题意得:2(ax+x2+bx)=(a+x)(b+x),化简得:ax+x2+bx-ab=0,又∵ a = 3 , b = 4 ,∴x2+7x=12;∴该矩形的面积为=(a+x )(b+x )=(3+x )(4+x )=x 2+7x+12=24.故答案为B.【点睛】本题考查了勾股定理的证明以及运用和一元二次方程的运用,求出小正方形的边长是解题的关键.3.C解析:C【解析】分析:通过切线的性质表示出EC 的长度,用相似三角形的性质表示出OE 的长度,由已知条件表示出OC 的长度即可通过勾股定理求出结果.详解:如图:连接BC ,并连接OD 交BC 于点E :∵DP ⊥BP ,AC 为直径;∴∠DPB=∠PBC=90°.∴PD ∥BC,且PD 为⊙O 的切线.∴∠PDE=90°=∠DEB,∴四边形PDEB 为矩形,∴AB ∥OE ,且O 为AC 中点,AB=6.∴PD=BE=EC.∴OE=12AB=3. 设PA=x ,则OD=DE-OE=6+x-3=3+x=OC ,EC=PD=6-x..在Rt △OEC 中:222OE EC OC +=,即:()()222363x x +-=+,解得x=2.所以AC=2OC=2×(3+x )=10.点睛:本题考查了切线的性质,相似三角形的性质,勾股定理. 4.A解析:A【解析】试题解析:如图,过D 作AB 垂线交于K ,∵BD 平分∠ABC ,∴∠CBD=∠ABD∵∠C=∠DKB=90°,∴CD=KD ,在△BCD 和△BKD 中,CD KD BD BD ⎧⎨⎩== ∴△BCD ≌△BKD ,∴BC=BK=3∵E 为AB 中点∴BE=AE=2.5,EK=0.5,∴AK=AE-EK=2,设DK=DC=x ,AD=4-x ,∴AD 2=AK 2+DK 2即(4-x )2=22+x 2解得:x=32∴在Rt △DEK 中,2222310=+0.5=2DK KE +()(). 故选A .5.A解析:A【分析】先根据角平分线的定义、角的和差可得90ECF ∠=︒,再根据平行线的性质、等量代换可得,ACE CEF ACF F ∠=∠∠=∠,然后根据等腰三角形的定义可得,EM CM FM CM ==,从而可得6EF =,最后在Rt CEF 中,利用勾股定理即可得.【详解】 CE 平分ACB ∠,CF 平分ACD ∠,,1122ACB ACD BCE ACE DCF ACF ∴∠∠=∠=∠=∠∠=,111(90222)ACB AC E D ACB ACD CF ACE ACF ∠=∠+∴∠+∠=∠∠∠=+=︒, //EF BC ,,BCE CEF DCF F ∠=∴∠∠=∠,,ACE CEF ACF F ∴∠=∠∠=∠,3,3EM CM FM CM ∴====,6EF EM FM ∴=+=,在Rt CEF 中,由勾股定理得:2222636CE CF EF +===,故选:A .【点睛】本题考查了角平分线的定义、平行线的性质、等腰三角形的定义、勾股定理等知识点,熟练掌握等腰三角形的定义是解题关键.6.C解析:C【分析】根据题意结合勾股定理得出折断处离地面的长度即可.【详解】解:设折断处离地面的高度OA 是x 尺,根据题意可得:x 2+42=(10-x )2,解得:x=4.2,答:折断处离地面的高度OA 是4.2尺.故选C .【点睛】此题主要考查了勾股定理的应用,根据题意正确应用勾股定理是解题关键.7.B解析:B【分析】如图,作CE AB ⊥与E,利用勾股定理的逆定理证明AD BC ⊥,再利用面积法求出EC 即可.【详解】如图,作CE AB ⊥与E.AD 是ABC ∆的中线,BC =12,∴BD=6,10,8,6,AB AD BD ===∴ 222AB AD BD =+,90,ADB ∴∠=,AD BC ∴⊥ 11,22ABC S BC AD AB CE ∆== 1289.6.10CE ⨯∴== 故选B. 【点睛】本题主要考查勾股定理的逆定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,学会面积法求三角形的高.8.D解析:D【解析】在Rt △ABC 中 ∠C=90°,AC=3,BC=4,根据勾股定理求得AB=5,设点C 到AB 的距离为h ,即可得12h×AB=12AC×BC ,即12h×5=12×3×4,解得h=125,故选D. 9.C解析:C【分析】利用勾股定理的逆定理可以推导出ABD △是直角三角形.再利用勾股定理求出A C ,可得出AB=AC ,即可判断.【详解】解:由已知可得CD=BD=5,22251213+=即222BD AD AB +=,ABD ∴是直角三角形,90ADB ∠=︒,90ADC ∴∠=︒ 222AD CD AC ∴+=2251213AC ∴+=13AB AC∴==故ABC是等腰三角形.故选C【点睛】本题考查了勾股定理和它的逆定理,熟练掌握定理是解题关键.10.A解析:A【分析】过C作CM⊥AB于M,交AD于P,过P作PQ⊥AC于Q,由角平分线的性质得出PQ=PM,这时PC+PQ有最小值,为CM的长,然后利用勾股定理和等面积法求得CM的长即可解答.【详解】过C作CM⊥AB于M,交AD于P,过P作PQ⊥AC于Q,∵AD是∠BAC的平分线,∴PQ=PM,则PC+PQ=PC+PM=CM,即PC+PQ有最小值,为CM的长,∵在Rt△ABC中,∠ACB=90°,AC=6,BC=8,∴由勾股定理得:AB=10,又1122ABCS AB CM AC BC==△,∴6824105 CM⨯==,∴PC+PQ的最小值为245,故选:A.【点睛】本题考查了角平分线的性质、最短路径问题、勾股定理、三角形等面积法求高,解答的关键是掌握线段和最短类问题的解决方法:一般是运用轴对称变换将直线同侧的点转化为异侧的点,从而把两条线段的位置关系转换,再根据两点之间线段最短或垂线段最短,使两条线段之和转化为一条直线来解决.二、填空题11.8【解析】如图作点B关于AC的对称点B′,连接B′A交DC于点E,则BM+MN的最小值等于的最小值作交于,则为所求;设,,由,,h+5=8,即BM+MN的最小值是8.点睛:本题主要是利用轴对称求最短路线,题中应用了勾股定理与用不同方式表示三角形的面积从而求出某条边上的高,利用轴对称得出M点与N点的位置是解题的关键.12.45【分析】∠+∠=∠,只需证△ADC是如下图,延长BA至网络中的点D处,连接CD. ABC ACB DAC等腰直角三角形即可【详解】如下图,延长BA至网络中的点D处,连接CD设正方形网络每一小格的长度为1则根据网络,555BC=5,∴5其中BD、DC、BC边长满足勾股定理逆定理∴∠CDA=90°∵AD=DC∴△ADC是等腰直角三角形∴∠DAC=45°故答案为:45°【点睛】本题是在网格中考察勾股定理的逆定理,解题关键是延长BA,构造处△ABC的外角∠CAD 13.7【分析】连接AC交BD于点O,由题意可证AC垂直平分BD,△ABD是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD,BO=OD,通过证明△EDF是等边三角形,可得DE=EF=DF,由勾股定理可求OC,BC的长.【详解】连接AC,交BD于点O,∵AB=AD,BC=DC,∠A=60°,∴AC垂直平分BD,△ABD是等边三角形,∴∠BAO=∠DAO=30°,AB=AD=BD=4,BO=OD=2,∵CE∥AB,∴∠BAO=∠ACE=30°,∠CED=∠BAD=60°,∴∠DAO=∠ACE=30°,∴AE=CE=3,∴DE=AD−AE=1,∵∠CED=∠ADB=60°,∴△EDF是等边三角形,∴DE=EF=DF=1,∴CF=CE−EF=2,OF=OD−DF=1,22∴-=OC CF OF322BC=OB+OC=7∴7【点睛】本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.14.32或42【分析】根据题意画出图形,分两种情况:△ABC是钝角三角形或锐角三角形,分别求出边BC,即可得到答案【详解】当△ABC是钝角三角形时,∵∠D=90°,AC=13,AD=12,∴2222=-=-=,CD AC AD13125∵∠D=90°,AB=15,AD=12,∴2222BD AB AD=-=-=,15129∴BC=BD-CD=9-5=4,∴△ABC的周长=4+15+13=32;当△ABC是锐角三角形时,∵∠ADC=90°,AC=13,AD=12,∴2222CD AC AD=-=-=,13125∵∠ADB=90°,AB=15,AD=12,∴2222=-=-=,BD AB AD15129∴BC=BD-CD=9+5=14,∴△ABC的周长=14+15+13=42;综上,△ABC的周长是32或42,故答案为:32或42.【点睛】此题考查勾股定理的实际应用,能依据题意正确画出图形分类讨论是解题的关键. 15.10【分析】过点F 作FG ⊥BE ,连接OF 、EF ,先根据等腰直角三角形的性质得出DC 的值,再用勾股定理求出OE 的值,然后根据中位线定理得出FG 的的值,最后再根据勾股定理得出OF 的值即可.【详解】过点F 作FG ⊥BE ,连接OF 、EF ,如下图所示:∵DBC ∆是等腰直角三角形,且BF CF =,8BC = ∴422DC DB ===∵2OD =∴32OC DC OD =-=∴2234OB BD DO +=设OE x =,∵∠BEC=90°则()2222OC OE BC OB OE -=-+∴33417OE = ∴221234EC OC EO =-=∵BF CF =,FG ⊥BE ,∠BEC=90° ∴1634217FG EC == ∴2034BE BO OE =+= ∴17342GO GE OE BE OE =-=-=∴OF =【点睛】本题主要考查了等腰直角三角形的性质、相似三角形、中位线定理、勾股定理等,综合度比较高,准确作出辅助线是关键.16.5【分析】根据图形的特征得出四边形MNKT 的面积设为x ,将其余八个全等的三角形面积一个设为y ,从而用x ,y 表示出1S ,2S ,3S ,得出答案即可.【详解】解:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , 正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,12310S S S ++=,∴得出18S y x ,24S y x ,3S x =, 12331215S S S x y ,故31215x y, 154=53x y , 所以245S x y , 故答案为:5.【点睛】 此题主要考查了图形面积关系,根据已知得出用x ,y 表示出1S ,2S ,3S ,再利用12315S S S ++=求出是解决问题的关键.17.9或9【分析】通过计算E 到AC 的距离即EH 的长度为3,所以根据DE 的长度有两种情况:①当点D 在H 点上方时,②当点D 在H 点下方时,两种情况都是过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,利用含30°的直角三角形的性质和勾股定理求出AH,DH 的长度,进而可求AD 的长度,然后利用角度之间的关系证明AG GE =,再利用等腰三角形的性质求出GQ 的长度,最后利用2DGF AED AEG SS S =-即可求解. 【详解】①当点D 在H 点上方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒ .30,6A AE ∠=︒=,132EH AE ∴== , 22226333AH AE EH ∴=-=-=. 32DE =,2222(32)33DH DE EH ∴=-=-= ,DH EH ∴=,333AD AH DH =-=,45EDH ∴∠=︒,15AED EDH A ∴∠=∠-∠=︒ .由折叠的性质可知,15DEF AED ∠=∠=︒,230AEG AED ∴∠=∠=︒ ,AEG A ∴∠=∠,AG GE ∴= . 又GQ AE ⊥ ,132AQ AE ∴== . 30A ∠=︒ ,12GQ AG ∴=. 222GQ AQ AG += , 即2223(2)GQ GQ +=, 3GQ ∴= .2DGF AED AEG S S S =- ,112(333)36363922DGF S ∴=⨯⨯-⨯-⨯⨯=-; ②当点D 在H 点下方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒.30,6A AE ∠=︒= ,132EH AE ∴== , 22226333AH AE EH ∴=-=-=.32DE =,2222(32)33DH DE EH ∴=-=-= ,DH EH ∴=,3AD AH DH =+=,45DEH ∴∠=︒ ,90105AED A DEH ∴∠=︒-∠+∠=︒ .由折叠的性质可知,105DEF AED ∠=∠=︒,218030AEG AED ∴∠=∠-︒=︒ ,AEG A ∴∠=∠,AG GE ∴= .又GQ AE ⊥ ,132AQ AE ∴== . 30A ∠=︒,12GQ AG ∴= . 222GQ AQ AG += , 即2223(2)GQ GQ +=,GQ ∴= .2DGF AED AEG S S S =- ,1123)36922DGF S ∴=⨯⨯⨯-⨯=,综上所述,DGF △的面积为9或9.故答案为:9或9.【点睛】本题主要考查折叠的性质,等腰三角形的判定及性质,等腰直角三角形的性质,勾股定理,含30°的直角三角形的性质,能够作出图形并分情况讨论是解题的关键.18.【分析】如图,作PA ∥y 轴交X 轴于A ,PH ⊥x 轴于H .GM ∥y 轴交x 轴于M ,连接PG 交x 轴于N ,先证明△ANP ≌△MNG (AAS ),再根据勾股定理求出PN 的值,即可得到线段PG 的长度.【详解】如图,作PA ∥y 轴交X 轴于A ,PH ⊥x 轴于H .GM ∥y 轴交x 轴于M ,连接PG 交x 轴于N .∵P (1,2),G (7.﹣2),∴OA =1,PA =GM =2,OM =7,AM =6,∵PA ∥GM ,∴∠PAN =∠GMN ,∵∠ANP =∠MNG ,∴△ANP ≌△MNG (AAS ),∴AN =MN =3,PN =NG ,∵∠PAH =45°,∴PH =AH =2,∴HN =1, ∴2222215PN PH NH =+=+=∴PG =2PN =5.故答案为5【点睛】本题考查了全等三角形的综合问题,掌握全等三角形的性质以及判定定理、勾股定理是解题的关键.19.22-【分析】根据已知条件,添加辅助线可得△EAC ≌△DAM (SAS ),进而得出当MD ⊥BC 时,CE 的值最小,转化成求DM 的最小值,通过已知值计算即可.【详解】解:如图所示,在AB 上取AM=AC=2,∵90ACB ∠=,2AC BC ==,∴∠CAB=45°,又∵45EAD ∠=,∴∠EAC+∠CAD=∠DAB+∠CAD=45°,∴∠EAC =∠DAB ,∴在△EAC 与△DAB 中AE=AD ,∠EAF =∠DAB ,AC =AM ,∴△EAC ≌△DAM (SAS )∴CE=MD ,∴当MD ⊥BC 时,CE 的值最小,∵AC=BC=2, 由勾股定理可得2222AB AC BC =+=,∴222=-BM ,∵∠B=45°,∴△BDM 为等腰直角三角形,∴DM=BD ,由勾股定理可得222+BD DM =BM∴DM=BD=22-∴CE=DM=22-故答案为:22-【点睛】本题考查了动点问题及全等三角形的构造,解题的关键是作出辅助线,得出全等三角形,找到CE 最小时的状态,化动为静.20.3【分析】根据题意利用折叠后图形全等,并利用等量替换和等腰三角形的性质进行综合分析求解.【详解】解:由题意可知','ACM A CM BCH B CH ≅≅,∵15cm BC =,20cm AC =,∴'15,'20,BC B C cm AC A C cm ====''20155A B cm =-=,∵90ACB ∠=︒,∴'A M AB ⊥(等量替换),CH AB ⊥(三线合一),∴25,AB cm = 利用勾股定理假设MB '的长为m ,'257AM AM m ==-,则有222(257)5m m +-=,解得3m =,所以MB '的长为3.【点睛】本题考查几何的翻折问题,熟练掌握并综合利用等量替换和等腰三角形的性质以及勾股定理分析是解题的关键.三、解答题21.(1)梯子顶端离地面24米(2)梯子底端将向左滑动了8米【解析】试题分析:(1)构建数学模型,根据勾股定理可求解出梯子顶端离地面的距离;(2)构建直角三角形,然后根据购股定理列方程求解即可.试题解析:(1)如图,∵AB=25米,BE=7米,梯子距离地面的高度AE=22257-=24米.答:此时梯子顶端离地面24米;(2)∵梯子下滑了4米,即梯子距离地面的高度CE=(24﹣4)=20米,∴22CD CE -222520-,∴DE=15﹣7=8(米),即下端滑行了8米. 答:梯子底端将向左滑动了8米.22.(1)132)83;(3)5.5秒或6秒或6.6秒【分析】(1)根据点P 、Q 的运动速度求出AP ,再求出BP 和BQ ,用勾股定理求得PQ 即可; (2)由题意得出BQ BP =,即28t t =-,解方程即可;(3)当点Q 在边CA 上运动时,能使BCQ ∆成为等腰三角形的运动时间有三种情况: ①当CQ BQ =时(图1),则C CBQ ∠=∠,可证明A ABQ ∠=∠,则BQ AQ =,则CQ AQ =,从而求得t ;②当CQ BC =时(图2),则12BC CQ +=,易求得t ;③当BC BQ =时(图3),过B 点作BE AC ⊥于点E ,则求出BE ,CE ,即可得出t .【详解】(1)解:(1)224BQ cm =⨯=,8216BP AB AP cm =-=-⨯=,90B ∠=︒,222246213()PQ BQ BP cm +=+=;(2)解:根据题意得:BQ BP =,即28t t =-, 解得:83t =; 即出发时间为83秒时,PQB ∆是等腰三角形;(3)解:分三种情况:①当CQ BQ =时,如图1所示:则C CBQ ∠=∠,90ABC ∠=︒,90CBQ ABQ ∴∠+∠=︒,90A C ∠+∠=︒,A ABQ ∴∠=∠BQ AQ ∴=,5CQ AQ ∴==,11BC CQ ∴+=,112 5.5t ∴=÷=秒.②当CQ BC =时,如图2所示:则12BC CQ +=1226t ∴=÷=秒.③当BC BQ =时,如图3所示:过B 点作BE AC ⊥于点E ,则68 4.8()10AB BC BE cm AC ⨯===3.6CE cm ∴==,27.2CQ CE cm ∴==,13.2BC CQ cm ∴+=,13.22 6.6t ∴=÷=秒.由上可知,当t 为5.5秒或6秒或6.6秒时,BCQ ∆为等腰三角形.【点睛】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.23.(1)45度;(2)∠AEC ﹣∠AED =45°,理由见解析;(3)见解析【分析】(1)由等腰三角形的性质可求∠BAE =140°,可得∠CAE =50°,由等腰三角形的性质可得∠AEC =∠ACE =65°,即可求解;(2)由等腰三角形的性质可求∠BAE =180°﹣2α,可得∠CAE =90°﹣2α,由等腰三角形的性质可得∠AEC =∠ACE =45°+α,可得结论;(3)如图,过点C 作CG ⊥AH 于G ,由等腰直角三角形的性质可得EH EF ,CH =CG ,由“AAS ”可证△AFB ≌△CGA ,可得AF =CG ,由勾股定理可得结论.【详解】解:(1)∵AB =AC ,AE =AB ,∴AB =AC =AE ,∴∠ABE =∠AEB ,∠ACE =∠AEC ,∵∠AED =20°,∴∠ABE =∠AED =20°,∴∠BAE =140°,且∠BAC =90°∴∠CAE =50°,∵∠CAE +∠ACE +∠AEC =180°,且∠ACE =∠AEC ,∴∠AEC =∠ACE =65°,∴∠DEC =∠AEC ﹣∠AED =45°,故答案为:45;(2)猜想:∠AEC ﹣∠AED =45°,理由如下:∵∠AED =∠ABE =α,∴∠BAE =180°﹣2α,∴∠CAE =∠BAE ﹣∠BAC =90°﹣2α,∵∠CAE +∠ACE +∠AEC =180°,且∠ACE =∠AEC ,∴∠AEC =45°+α,∴∠AEC ﹣∠AED =45°;(3)如图,过点C 作CG ⊥AH 于G ,∵∠AEC ﹣∠AED =45°,∴∠FEH =45°,∵AH ⊥BE ,∴∠FHE =∠FEH =45°,∴EF =FH ,且∠EFH =90°,∴EH 2EF ,∵∠FHE =45°,CG ⊥FH ,∴∠GCH =∠FHE =45°,∴GC =GH ,∴CH 2CG ,∵∠BAC =∠CGA =90°,∴∠BAF +∠CAG =90°,∠CAG +∠ACG =90°,∴∠BAF =∠ACG ,且AB =AC ,∠AFB =∠AGC ,∴△AFB ≌△CGA (AAS )∴AF =CG ,∴CH 2AF ,∵在Rt △AEF 中,AE 2=AF 2+EF 2, 2AF )2+2EF )2=2AE 2,∴EH 2+CH 2=2AE 2.【点睛】本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.24.(1)见详解(2)①结论:222BD FC DF +=,证明见详解②35【分析】(1)根据SAS ,只要证明BAD CAE ∠=∠即可解决问题;(2)①结论:222BD FC DF +=.连接EF ,进一步证明90ECF ∠=︒,DF EF =,再利用勾股定理即可得证;②过点A 作AG BC ⊥于点G ,在Rt ADG 中求出AG 、DG 即可求解.【详解】解:(1)∵AE AD ⊥∴90DAC CAE ∠+∠=︒∵90BAC ∠=︒ ∴90DAC BAD ∠+∠=︒ ∴BAD CAE ∠=∠∴在ABD △和ACE △中 AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴ABD △≌ACE △()SAS (2)①结论:222BD FC DF += 证明:连接EF ,如图:∵ABD △≌ACE △ ∴B ACE ∠=∠,BD CE = ∴90ECF BCA ACE BCA B ∠=∠+∠=∠+∠=︒ ∴222FC CE EF += ∴222FC BD EF += ∵AF 平分DAE ∠ ∴DAF EAF ∠=∠ ∴在DAF △和EAF △中 AD AE DAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴DAF △≌EAF △()SAS ∴DF EF =∴222FC BD DF += 即222BD FC DF += ②过点A 作AG BC ⊥于点G ,如图:∵由①可知222223425DF BD FC =+=+=∴5DF =∴35412BC BD DF FC =++=++=∵AB AC =,AG BC ⊥ ∴1112622BG AG BC ===⨯= ∴633DG BG BD =-=-=∴在Rt ADG 中,22223635AD DG AG =+=+=故答案是:(1)见详解(2)①结论:222BD FC DF +=,证明见详解②35【点睛】本题考查了全等三角形的判定和性质、直角三角形的判定和性质以及角平分线的性质.综合性较强,属中档题,学会灵活应用相关知识点进行推理证明.25.(1)见解析;(2)BD 2+AD 2=2CD 2;(3)AB =2+4.【分析】(1)根据等腰直角三角形的性质证明△ACE ≌△BCD 即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF ,设BD =x ,利用(1)、(2)求出EF=3x ,再利用勾股定理求出x ,即可得到答案.【详解】(1)证明:∵△ACB 和△ECD 都是等腰直角三角形∴AC =BC ,EC =DC ,∠ACB =∠ECD =90°∴∠ACB ﹣∠ACD =∠ECD ﹣∠ACD∴∠ACE =∠BCD ,∴△ACE ≌△BCD (SAS ),∴AE =BD .(2)解:由(1)得△ACE ≌△BCD ,∴∠CAE =∠CBD ,又∵△ABC 是等腰直角三角形,∴∠CAB =∠CBA =∠CAE =45°,∴∠EAD =90°,在Rt △ADE 中,AE 2+AD 2=ED 2,且AE =BD ,∴BD 2+AD 2=ED 2,∵ED =2CD , ∴BD 2+AD 2=2CD 2,(3)解:连接EF ,设BD =x ,∵BD :AF =1:22,则AF =22x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF =22AF AE +=22(22)x x +=3x ,∵AE 2+AD 2=2CD 2,∴222(223)2(36)x x x ++=+,解得x =1,∴AB =22+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.26.作图见解析,325【分析】作A 点关于BC 的对称点A',A'A 与BC 交于点H ,再作A'M ⊥AB 于点M ,与BC 交于点N ,此时AN+MN 最小,连接AN ,首先用等积法求出AH 的长,易证△ACH ≌△A'NH ,可得A'N=AC=4,然后设NM=x ,利用勾股定理建立方程求出NM 的长,A'M 的长即为AN+MN 的最小值.【详解】如图,作A 点关于BC 的对称点A',A'A 与BC 交于点H ,再作A'M ⊥AB 于点M ,与BC 交于点N ,此时AN+MN 最小,最小值为A'M 的长.连接AN ,在Rt △ABC 中,AC=4,AB=8,∴∵11AB AC=BC AH 22⋅⋅∴∵CA ⊥AB ,A 'M ⊥AB ,∴CA ∥A 'M∴∠C=∠A 'NH ,由对称的性质可得AH=A 'H ,∠AHC=∠A'HN=90°,AN=A'N在△ACH 和△A'NH 中,∵∠C=∠A 'NH ,∠AHC=∠A'HN ,AH=A 'H ,∴△ACH ≌△A'NH (AAS )∴A'N=AC=4=AN ,设NM=x ,在Rt △AMN 中,AM 2=AN 2-NM 2=222416-=-x x在Rt △AA'M 中,,A 'M=A 'N+NM=4+x∴AM 2=AA '2-A 'M 2=()224-+⎝⎭x∴()2224=16-+-⎝⎭x x 解得125x = 此时AN MN +的最小值=A'M=A'N+NM=4+125=325 【点睛】本题考查了最短路径问题,正确作出辅助线,利用勾股定理解直角三角形是解题的关键.27.(1)详见解析;(2;(3【分析】(1)证∠EAC=∠DAB.利用SAS 证△ACE ≌△ABD 可得;(2)连接BD ,证1302FEA AED ∠=∠=,证△ACE ≌△ABD 可得30FEA BDA ∠=∠=,CE=BD=5,利用勾股定理求解;(3)作CE 垂直于AC,且CE=AC,连接AE,则90,45ACE CAE ∠=∠=,利用勾股定理得AE =,,根据(1)思路得.【详解】(1) 证明:∵∠DAE=∠BAC ,∴∠DAE+∠CAD=∠BAC+∠CAD ,即∠EAC=∠DAB.在△ACE 与△ABD 中,AD AE EAC BAB AC AB =⎧⎪∠=∠⎨⎪=⎩, ∴△ACE ≌△ABD(SAS),∴BD CE =;(2)连接BD因为AD AE =, 60DAE BAC ∠=∠=,所以ADE ∆是等边三角形因为60DAE DEA EDA ∠=∠=∠=,ED=AD=AE=4因为CE AD ⊥ 所以1302FEAAED ∠=∠= 同(1)可知△ACE ≌△ABD(SAS),所以30FEA BDA ∠=∠=,CE=BD=5所以90BDE BDA ADE ∠=∠+∠=所以BE=22225441BD DE +=+=(3)作CE 垂直于AC,且CE=AC,连接AE,则90,45ACE CAE ∠=∠=所以222AB AC AC +因为AB AC =所以AE 2=又因为45CAB ∠=所以90ABE ∠=所以()222223BE AE AB AB AB AB =+=+= 因为45CBD CDB ∠=∠=所以BC=CD, 90BCD ∠=因为同(1)可得△ACD ≌△ECB(SAS)所以AD=BE=3AB 所以33AD AB AB AB==【点睛】考核知识点:等边三角形;勾股定理.构造全等三角形和直角三角形是关键.28.(1)3;(2)见解析.【分析】(1)根据勾股定理可得AC ,进而可得BC 与BD ,然后根据三角形的面积公式计算即可; (2)过点B 作BH ⊥BG 交EF 于点H ,如图3,则根据余角的性质可得∠CBG =∠EBH ,由已知易得BE ∥AC ,于是∠E =∠EFC ,由于CG EF ⊥,90ACB ∠=︒,则根据余角的性质得∠EFC =∠BCG ,于是可得∠E =∠BCG ,然后根据ASA 可证△BCG ≌△BEH ,可得BG =BH ,CG =EH ,从而△BGH 是等腰直角三角形,进一步即可证得结论.【详解】解:(1)在△ACD 中,∵90ACB ∠=︒,1CD =,5AD =∴222AC AD CD =-=,∵2BC AC =,∴BC=4,BD =3,∴1132322ABD S BD AC ∆=⋅=⨯⨯=; (2)过点B 作BH ⊥BG 交EF 于点H ,如图3,则∠CBG +∠CBH =90°, ∵BE BC ⊥,∴∠EBH +∠CBH =90°,∴∠CBG =∠EBH ,∵BE BC ⊥,90ACB ∠=︒,∴BE ∥AC ,∴∠E =∠EFC ,∵CG EF ⊥,90ACB ∠=︒,∴∠EFC +∠FCG =90°,∠BCG +∠FCG =90°,∴∠EFC =∠BCG ,∴∠E =∠BCG ,在△BCG 和△BEH 中,∵∠CBG =∠EBH ,BC=BE ,∠BCG =∠E ,∴△BCG ≌△BEH (ASA ), ∴BG =BH ,CG =EH , ∴222GH BG BH BG =+=,∴2EG GH EH BG CG =+=+.【点睛】本题考查了直角三角形的性质、全等三角形的判定和性质、等腰直角三角形的判定和性质、余角的性质和勾股定理等知识,属于常考题型,正确作出辅助线构造全等三角形是解题的关键.29.(1)2,232)证明见解析(3)2217(423221【分析】(1)根据含有30°角的直角三角形的性质可得BC=2,再由勾股定理即可求出AC 的长; (2)由ED 为AB 垂直平分线可得DB=DA ,在Rt △BDE 中,由勾股定理可得BD=4,可得BD=2BE ,故∠BDE 为60°,即可证明ABD ∆是等边三角形;(3)由(1)(2)可知,=23AC AD=4,进而可求得CD 的长,再由等积法可得BCD ACD ACBD S S S =+四边形,代入求解即可;(4)分点P 在线段AC 上和AC 的延长线上两种情况,过点E 作AC 的垂线交AC 于点Q ,构造Rt △PQE ,再根据勾股定理即可求解.【详解】(1)∵Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =, ∴122BC AB ==,∴22=23AC AB BC =- (2)∵ED 为AB 垂直平分线,∴ADB=DA ,在Rt △BDE 中, ∵122BE AE AB ===,23DE = ∴22=4BD BE DE =+,∴BD=2BE ,∴∠BDE 为60°,∴ABD ∆为等边三角形;(3))由(1)(2)可知,=23AC ,AD=4, ∴22=27CD AC AD =+∵BCD ACD ACBD S SS =+四边形, ∴111()222BC AD AC AC AD BF CD +⨯=⨯+⨯,∴2217BF =; (4)分点P 在线段AC 上和AC 的延长线上两种情况,如图,过点E 作AC 的垂线交AC 于点Q ,∵AE=2,∠BAC=30°,∴EQ=1, ∵=23AC ,∴=3CQ QA =,①若点P 在线段AC 上, 则23=3333PQ CQ CP =-=, ∴22233PE PQ EQ =+; ②若点P 在线段AC 的延长线上, 则2533333PQ CQ CP =+=, ∴22221=3PE PQ EQ =+; 综上,PE 23221. 【点睛】 本题考查勾股定理及其应用、含30°的直角三角形的性质等,解题的关键一是能用等积法表示并求出BF 的长,二是对点P 的位置要分情况进行讨论.30.(1)y =-2x +12,点C 坐标(4,4);(2)画图形见解析,点D 坐标(-4,0);(3)点P 的坐标(143-,643) 【分析】(1)由已知的等式可求得m 、n 的值,于是可得直线AB 的函数解析式,把点C 的坐标代入可求得a 的值,由此即得答案;(2)画出图象,由CD ⊥AB 知1AB CD k k =-可设出直线CD 的解析式,再把点C 代入可得CD 的解析式,进一步可求D 点坐标;(3)如图2,取点F(-2,8),易证明CE⊥CF且CE=CF,于是得∠PEC=45°,进一步求出直线EF的解析式,再与直线AB联立求两直线的交点坐标,即为点P.【详解】解:(1)∵6m-+(n﹣12)2=0,∴m=6,n=12,∴A(6,0),B(0,12),设直线AB解析式为y=kx+b,则有1260bk b=⎧⎨+=⎩,解得212kb=-⎧⎨=⎩,∴直线AB解析式为y=-2x+12,∵直线AB过点C(a,a),∴a=-2a+12,∴a=4,∴点C坐标(4,4).(2)过点C作CD⊥AB交x轴于点D,如图1所示,设直线CD解析式为y=12x+b′,把点C(4,4)代入得到b′=2,∴直线CD解析式为y=12x+2,∴点D坐标(-4,0).(3)如图2中,取点F(-2,8),作直线EF交直线AB于P,图2。
勾股定理错题集(八年级数学)
勾股定理错题集一、盲目套用勾股定理致错例1在△ABC 中,a ,b ,c 分别是△A ,△B ,△C 的对边,且a =3,b =4,且b <c .若c 为整数,则c =____________. 错解:填5.剖析:错解受“勾3,股4,弦5”的思维定势,将△ABC 当作直角三角形,盲目套用勾股定理计算,而本题并没有说△ABC 是直角三角形,因此只能运用三角形三边关系求解.正解:_______________.二、考虑不全发生漏解致错例2 若直角三角形的两边长分别为5和12,则该三角形的第三边长为____________.错解:填13.剖析:错解将第三边当成斜边直接计算,而本题中已知的两边并未说明是直角边还是斜边,因此要分类讨论. 正解:_______________.三、不理解勾股弦数的概念致错例3 下列各组数:△0.07,0.24,0.25;△6,8,10;△7,8,10;△53,54,1.其中是勾股数的有____________.(填序号)错解:填△△△.剖析:错解把勾股数理解为满足勾股定理的三个数即为勾股数,而勾股弦数不仅要满足勾股定理,还必须是一组正整数.正解:_______________.四、不验证勾股定理致错例4 有下列各组数:△3,4,5;△3,4,5;△32,42,52;△6,8,10.其中分别以它们为三边长的三角形中,是直角三角形的有( )A. 1组B. 2组C. 三组D. 4组错解:选D.剖析:错解并未验证各组数是否满足勾股定理,想当然地认为勾股数“3,4,5”及它们的倍数、平方数和开方后的数都满足勾股定理,而将勾股数同时平方或开方,得到新的一组数不再满足勾股定理.正解:_______________.例1 由三角形三边关系,得4-3<c <4+3,即1<c <7.因为b < c ,所以4< c < 7.又因为c 为整数,所以c 的值为5或6.故填5或6.例2 设该直角三角形的第三边长为x .当x 为斜边时,由勾股定理,得52+122=x 2,解得x =±13;(负值舍去)当x 为直角边时,由勾股定理,得52+x 2=122,解得x =±119.(负值舍去)故填13或119.例3 △ 例4 B。
勾股定理单元 易错题同步练习试题
一、选择题1.如果正整数a 、b 、c 满足等式222+=a b c ,那么正整数a 、b 、c 叫做勾股数.某同学将自己探究勾股数的过程列成下表,观察表中每列数的规律,可知x y +的值为( )A .47B .62C .79D .982.如图,是一长、宽都是3 cm ,高BC =9 cm 的长方体纸箱,BC 上有一点P ,PC =23BC ,一只蚂蚁从点A 出发沿纸箱表面爬行到点P 的最短距离是( )A .62cmB .33cmC .10 cmD .12 cm 3.一个直角三角形两边长分别是12和 5,则第三边的长是( ) A .13 B .13或15 C .13或119 D .154.下列命题中,是假命题的是( )A .在△ABC 中,若∠A:∠B:∠C=1:2:3,则△ABC 是直角三角形B .在△ABC 中,若a 2=(b +c) (b -c),则△ABC 是直角三角形C .在△ABC 中,若∠B=∠C=∠A,则△ABC 是直角三角形D .在△ABC 中,若a :b :c =5:4:3,则△ABC 是直角三角形5.如图,在△ABC 中,AB=8,BC=10,AC=6,则BC 边上的高AD 为( )A .8B .9C .245D .106.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( )A .4B .16C .34D .4或347.如图是我国一位古代数学家在注解《周髀算经》时给出的,曾被选为2002年在北京召开的国际数学家大会的会徽,它通过对图形的切割、拼接,巧妙地证明了勾股定理,这位伟大的数学家是( )A .杨辉B .刘徽C .祖冲之D .赵爽8.如图,在Rt △ABC 中,∠A=90°,AB=6,AC=8,现将Rt △ABC 沿BD 进行翻折,使点A 刚好落在BC 上,则CD 的长为( )A .10B .5C .4D .39.为了庆祝国庆,八年级(1)班的同学做了许多拉花装饰教室,小玲抬来一架2.5米长的梯子,准备将梯子架到2.4米高的墙上,则梯脚与墙角的距离是( )A .0.6米B .0.7米C .0.8米D .0.9米 10.已知三角形的两边分别为3、4,要使该三角形为直角三角形,则第三边的长为( )A .5B .7C .5或7D .3或4 二、填空题11.如图,Rt △ABC 中,∠ACB =90o ,AC =12,BC =5,D 是AB 边上的动点,E 是AC 边上的动点,则BE +ED 的最小值为 .12.如图,现有一长方体的实心木块,有一蚂蚁从A 处出发沿长方体表面爬行到C '处,若长方体的长4cm AB =,宽2cm BC =,高1cm BB '=,则蚂蚁爬行的最短路径长是___________.13.在ABC ∆中,10AB cm =,17AC cm =,BC 边上的高为8cm ,则ABC ∆的面积为______2cm .14.如图,在Rt △ABC 中,∠B=90°,以AC 为斜边向外作等腰直角三角形COA ,已知BC=8,OB=102,则另一直角边AB 的长为__________.15.如图,在ABC △中8,4,AB AC BC AD BC ===⊥于点D ,点P 是线段AD 上一个动点,过点P 作PE AB ⊥于点E ,连接PB ,则PB PE +的最小值为________.16.《算法统宗》中有一道“荡秋干”的问题,其译文为:“有一架秋千,当它静止时,踏板上一点A 离地1尺,将它往前推送10尺(水平距离)时,点A 对应的点B 就和某人一样高,若此人的身高为5尺,秋干的绳索始终拉得很直,试问绳素有多长?”根据上述条件,秋干绳索长为________尺.17.如图,在△ABC 中,AB =AC ,∠BAC =120°,AC 的垂直平分线交 BC 于 F ,交 AC 于 E ,交 BA 的延长线于 G ,若 EG =3,则 BF 的长是______.18.一块直角三角形绿地,两直角边长分别为3m ,4m ,现在要将绿地扩充成等腰三角形,且扩充时只能延长长为3m 的直角边,则扩充后等腰三角形绿地的面积为____m 2.19.如图,Rt△ABC 中,∠BCA =90°,AB =5,AC =2,D 为斜边AB 上一动点(不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,连接EF ,则EF 的最小值是_____.20.如图的实线部分是由Rt ABC ∆经过两次折叠得到的.首先将Rt ABC ∆沿高CH 折叠,使点B 落在斜边上的点B '处,再沿CM 折叠,使点A 落在CB '的延长线上的点A '处.若图中90ACB ∠=︒,15cm BC =,20cm AC =,则MB '的长为______.三、解答题21.如图1,在△ABC 中,AB =AC ,∠BAC =90°,D 为AC 边上一动点,且不与点A 点C 重合,连接BD 并延长,在BD 延长线上取一点E ,使AE =AB ,连接CE .(1)若∠AED =20°,则∠DEC = 度;(2)若∠AED =a ,试探索∠AED 与∠AEC 有怎样的数量关系?并证明你的猜想; (3)如图2,过点A 作AF ⊥BE 于点F ,AF 的延长线与EC 的延长线交于点H ,求证:EH 2+CH 2=2AE 2.22.阅读与理解:折纸,常常能为证明一个命题提供思路和方法.例如,在ABC 中,AB AC >(如图),怎样证明C B ∠>∠呢?分析:把AC 沿A ∠的角平分线AD 翻折,因为AB AC >,所以,点C 落在AB 上的点C '处,即AC AC '=,据以上操作,易证明ACD AC D '△△≌,所以AC D C '∠=∠,又因为AC D B '∠>∠,所以C B ∠>∠.感悟与应用:(1)如图(a ),在ABC 中,90ACB ∠=︒,30B ∠=︒,CD 平分ACB ∠,试判断AC 和AD 、BC 之间的数量关系,并说明理由;(2)如图(b ),在四边形ABCD 中,AC 平分BAD ∠,16AC =,8AD =,12DC BC ==,①求证:180B D ∠+∠=︒;②求AB 的长.23.如图,△ABC 中AC =BC ,点D ,E 在AB 边上,连接CD ,CE .(1)如图1,如果∠ACB =90°,把线段CD 逆时针旋转90°,得到线段CF ,连接BF , ①求证:△ACD ≌△BCF ;②若∠DCE =45°, 求证:DE 2=AD 2+BE 2;(2)如图2,如果∠ACB =60°,∠DCE =30°,用等式表示AD ,DE ,BE 三条线段的数量关系,说明理由.24.我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在ABC ∆中,AO 是BC 边上的中线,AB 与AC 的“广益值”就等于22AO BO -的值,可记为22AB AC OA BO ∇=-(1)在ABC ∆中,若90ACB ∠=︒,81AB AC ∇=,求AC 的值.(2)如图2,在ABC ∆中,12AB AC ==,120BAC ∠=︒,求AB AC ∇,BA BC ∇的值.(3)如图3,在ABC ∆中,AO 是BC 边上的中线,24ABC S ∆=,8AC =,64AB AC ∇=-,求BC 和AB 的长.25.如图,点A 是射线OE :y =x (x ≥0)上的一个动点,过点A 作x 轴的垂线,垂足为B ,过点B 作OA 的平行线交∠AOB 的平分线于点C .(1)若OA =52,求点B 的坐标; (2)如图2,过点C 作CG ⊥AB 于点G ,CH ⊥OE 于点H ,求证:CG =CH .(3)①若点A 的坐标为(2,2),射线OC 与AB 交于点D ,在射线BC 上是否存在一点P 使得△ACP 与△BDC 全等,若存在,请求出点P 的坐标;若不存在,请说明理由. ②在(3)①的条件下,在平面内另有三点P 1(2,2),P 2(2,22),P 3(2+2,2﹣2),请你判断也满足△ACP 与△BDC 全等的点是 .(写出你认为正确的点)26.如图1,在平面直角坐标系中,直线AB 经过点C (a ,a ),且交x 轴于点A (m ,0),交y 轴于点B (0,n ),且m ,n 满足6m -+(n ﹣12)2=0.(1)求直线AB 的解析式及C 点坐标;(2)过点C 作CD ⊥AB 交x 轴于点D ,请在图1中画出图形,并求D 点的坐标;(3)如图2,点E (0,﹣2),点P 为射线AB 上一点,且∠CEP =45°,求点P 的坐标.27.阅读下列一段文字,然后回答下列问题.已知在平面内有两点()111, P x y 、()222, P x y ,其两点间的距离()()22121212PP x x y y =-+-,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可化简为12x x -或1|y -2|y .(1)已知()2, 4A 、()3, 8B --,试求A 、B 两点间的距离______.已知M 、N 在平行于y 轴的直线上,点M 的纵坐标为4,点N 的纵坐标为-1,试求M 、N 两点的距离为______;(2)已知一个三角形各顶点坐标为()1, 6D 、()3, 3E -、()4, 2F ,你能判定此三角形的形状吗?说明理由.(3)在(2)的条件下,平面直角坐标系中,在x 轴上找一点P ,使PD PF +的长度最短,求出点P 的坐标及PD PF +的最短长度.28.(知识背景)据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾三、股四、弦五”.像3、4、5这样为三边长能构成直角三角形的三个正整数,称为勾股数.(应用举例)观察3,4,5;5,12,13;7,24,25;…可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且勾为3时,股14(91)2=-,弦15(91)2=+; 勾为5时,股112(251)2=-,弦113(251)2=+; 请仿照上面两组样例,用发现的规律填空:(1)如果勾为7,则股24= 弦25=(2)如果勾用n (3n ≥,且n 为奇数)表示时,请用含有n 的式子表示股和弦,则股= ,弦= .(解决问题)观察4,3,5;6,8,10;8,15,17;…根据应用举例获得的经验进行填空:(3)如果,,a b c 是符合同样规律的一组勾股数,2a m =(m 表示大于1的整数),则b = ,c = ,这就是古希腊的哲学家柏拉图提出的构造勾股数组的公式. (4)请你利用柏拉图公式,补全下面两组勾股数(数据从小到大排列)第一组: 、24、 :第二组: 、 、37.29.菱形ABCD 中,∠BAD =60°,BD 是对角线,点E 、F 分别是边AB 、AD 上两个点,且满足AE =DF ,连接BF 与DE 相交于点G .(1)如图1,求∠BGD 的度数;(2)如图2,作CH ⊥BG 于H 点,求证:2GH =GB +DG ;(3)在满足(2)的条件下,且点H 在菱形内部,若GB =6,CH =43,求菱形ABCD 的面积.30.在平面直角坐标系中,点A (0,4),B (m ,0)在坐标轴上,点C ,O 关于直线AB 对称,点D 在线段AB 上.(1)如图1,若m =8,求AB 的长;(2)如图2,若m =4,连接OD ,在y 轴上取一点E ,使OD =DE ,求证:CE =2DE ; (3)如图3,若m =43,在射线AO 上裁取AF ,使AF =BD ,当CD +CF 的值最小时,请在图中画出点D 的位置,并直接写出这个最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】依据每列数的规律,即可得到2221,,1a n b n c n =-==+,进而得出x y +的值. 【详解】解:由题可得:222321,42,521=-==+……2221,,1a n b n c n ∴=-==+当21658c n n =+==时,63,16x y ∴==79x y ∴+=故选C【点睛】本题为勾股数与数列规律综合题;观察数列,找出规律是解答本题的关键.2.A解析:A【解析】【分析】将图形展开,可得到安排AP 较短的展法两种,通过计算,得到较短的即可.【详解】解:(1)如图1,AD=3cm ,DP=3+6=9cm ,在Rt △ADP 中,AP=2239+=310cm((2)如图2, AC=6cm ,CP=6cm ,Rt △ADP 中,2266+62综上,蚂蚁从点A 出发沿纸箱表面爬行到点P 的最短距离是2cm .故选A .【点睛】题考查了平面展开--最短路径问题,熟悉平面展开图是解题的关键.3.C解析:C【分析】记第三边为c,然后分c为直角三角形的斜边和直角边两种情况,利用勾股定理求解即可.【详解】解:记第三边为c,若c为直角三角形的斜边,则2212513c=+=;若c为直角三角形的直角边,则22125119c=-=.故选:C.【点睛】本题考查了勾股定理,属于基本题目,正确分类、熟练掌握勾股定理是解题的关键.4.C解析:C【分析】一个三角形中有一个直角,或三边满足勾股定理的逆定理则为直角三角形,否则则不是,据此依次分析各项即可.【详解】A. △ABC中,若∠B=∠C-∠A,则∠C =∠A+∠B,则△ABC是直角三角形,本选项正确;B. △ABC中,若a2=(b+c)(b-c),则a2=b2-c2,b2= a2+c2,则△ABC是直角三角形,本选项正确;C. △ABC 中,若∠A∶∠B∶∠C=3∶4∶5,则∠,故本选项错误;D. △ABC中,若a∶b∶c=5∶4∶3,则△ABC是直角三角形,本选项正确;故选C.【点睛】本题考查的是直角三角形的判定,利用勾股定理的逆定理判断一个三角形是否是直角三角形的一般步骤:①确定三角形的最长边;②分别计算出最长边的平方与另两边的平方和;③比较最长边的平方与另两边的平方和是否相等.若相等,则此三角形是直角三角形;否则,就不是直角三角形.5.C解析:C【分析】本题根据所给的条件得知,△ABC是直角三角形,再根据三角形的面积相等即可求出BC边上的高.【详解】∵AB=8,BC=10,AC=6,∴62+82=102,∴△ABC是直角三角形,∠BAC=90°,则由面积公式可知,S△ABC=12AB⋅AC=12BC⋅AD,∴AD=245.故选C.【点睛】本题考查了勾股定理的逆定理,需要先证得三角形为直角三角形,再利用三角形的面积公式求得AD的值.6.D解析:D【解析】试题解析:当3和5当5.故选D.7.D解析:D【分析】3世纪,汉代赵爽在注解《周髀算经》时,通过对图形的切割、拼接、巧妙地利用面积关系证明了勾股定理.【详解】由题意,可知这位伟大的数学家是赵爽.故选D.【点睛】考查了数学常识,勾股定理的证明.3世纪我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.赵爽通过对这种图形切割、拼接,巧妙地利用面积关系证明了著名的勾股定理.8.B解析:B【分析】根据“在Rt△ABC中”和“沿BD进行翻折”可知,本题考察勾股定理和翻折问题,根据勾股定理和翻折的性质,运用方程的方法进行求解.【详解】∵∠A=90°,AB=6,AC=8,∴,根据翻折的性质可得A′B=AB=6,A′D=AD,∴A′C=10-6=4.设CD=x,则A′D=8-x,根据勾股定理可得x2-(8-x)2=42,解得x=5,故CD=5.故答案为:B.【点睛】本题考察勾股定理和翻折问题,根据勾股定理把求线段的长的问题转化为方程问题是解决本题的关键.9.B解析:B【解析】试题解析:依题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理得:梯脚与墙角距离:222.5 2.4-=0.7(米).故选B .10.C解析:C【分析】根据勾股定理和分类讨论的方法可以求得第三边的长,从而可以解答本题.【详解】由题意可得,当3和4为两直线边时,第三边为:2243+=5,当斜边为4时,则第三边为:2243-=7,故选:C【点睛】本题考查勾股定理,解答本题的关键是明确题意,利用勾股定理和分类讨论的数学思想解答.二、填空题11.【解析】 试题分析:作点B 关于AC 的对称点B′,过B′点作B′D ⊥AB 于D ,交AC 于E ,连接AB′、BE ,则BE+ED=B′E+ED=B′D 的值最小.∵点B 关于AC 的对称点是B′,BC=5,∴B′C=5,BB′=10.∵Rt △ABC 中,∠ACB=90°,AC=12,BC=5,∴22AC BC +,∵S △ABB′=12•AB•B′D=12•BB′•AC ,∴B′D=B 10121201313B AC AB '⋅⨯==,∴BE+ED= B′D=12013. 考点:轴对称-最短路线问题.12.5cm【分析】连接AC',分三种情况进行讨论:画出图形,用勾股定理计算出AC'长,再比较大小即可得出结果.【详解】解:如图展开成平面图,连接AC',分三种情况讨论:如图1,AB=4,BC'=1+2=3,∴在Rt△ABC'中,由勾股定理得AC'22+(cm),43如图2,AC=4+2=6,CC'=1∴在Rt△ACC'中,由勾股定理得AC'2261+37(cm),如图3,AD =2,DC'=1+4=5,∴在Rt△ADC'中,由勾股定理得AC'22+29(cm)25∵2937,∴蚂蚁爬行的最短路径长是5cm,故答案为:5cm.【点睛】本题考查平面展开-最短路线问题和勾股定理,本题具有一定的代表性,是一道好题,注意要分类讨论.13.36或84【分析】过点A作AD⊥BC于点D,利用勾股定理列式求出BD、CD,再分点D在边BC上和在CB的延长线上两种情况分别求出BC的长度,然后根据三角形的面积公式列式计算即可得解.【详解】解:过点A作AD⊥BC于点D,∵BC边上的高为8cm,∴AD=8cm,∵AC=17cm,由勾股定理得:2222=-=-=cm,1086BD AB AD222217815CD AC AD =-=-=cm ,如图1,点D 在边BC 上时,BC=BD+CD =6+15=21cm ,∴△ABC 的面积=12BC AD =12×21×8=84cm 2, 如图2,点D 在CB 的延长线上时,BC= CD −BD =15−6=9cm ,∴△ABC 的面积=12BC AD =12×9×8=36 cm 2, 综上所述,△ABC 的面积为36 cm 2或84 cm 2,故答案为:36或84.【点睛】本题考查了勾股定理,作辅助线构造出直角三角形是解题的关键,难点是在于要分情况讨论.14.12【分析】延长BA 至E ,使AE=BC ,并连接OE.证∆BCO ≅∠EAO ,再证三角形BOE 是等腰直角三角形,利用勾股定理可得BE=()()222210210220BO EO +=+=,可得AB=BE-AE.【详解】如图,延长BA 至E ,使AE=BC ,并连接OE.因为三角形COA 是等腰直角三角形所以CO=AO,∠AOC=∠BOC+∠AOB=90°因为∠ABC=90°,∠AOC=90°,所以∠BAO+∠BCO=180°,又∠BAO+∠OAE=180°所以∠BCO=∠OAE所以∆BCO ≅∠EAO所以BO=EO, ∠BOC=∠EOA所以,∠BOE=∠EOA+∠AOB=90°所以三角形BOE 是等腰直角三角形所以BE=()()222210210220BO EO +=+=所以AB=BE-AE=20-8=12故答案为:12【点睛】考核知识点:全等三角形,勾股定理.构造全等三角形是关键. 15.15【分析】根据题意点B 与点C 关于AD 对称,所以过点C 作AB 的垂线,与AD 的交点即点P ,求出CE 即可得到答案【详解】∵8,AB AC AD BC ==⊥∴点B 与点C 关于AD 对称过点C 作CE ⊥AB 于一点即为点P ,此时PB PE +最小∵8,4,AB AC BC AD BC ===⊥∴BD=2在Rt △A BC 中, 222282215AD AB BD =-=-= ∵S △ABC=1122BC AD AB CE ⋅⋅=⋅⋅ ∴42158CE ⨯=得15CE =故此题填15【点睛】此题考察最短路径,根据题意找到对称点,作直角三角形,利用勾股定理解决问题 16.5【分析】设绳索x 尺,过点B 向地面及AO 作垂线BE 、BC ,构成直角三角形OBE ,利用勾股定理求出x 的值【详解】如图, 过点B 作BC ⊥OA 于点C ,作BD 垂直于地面,延长OA 交地面于点D 由题意知AD=1,BE=5,BC=10设绳索x 尺,则OA=OB=x∴OC=x+1-5=x-4在Rt △OBC 中,OB 2=OC 2+BC 2∴222(4)10x x =-+得x=14.5(尺)故填14.5 ,【点睛】此题考察勾股定理的实际运用,理解题意作辅助线构建直角三角形是解题关键. 17.4【分析】根据线段垂直平分线得出AE=EC ,∠AEG=∠AEF=90°,求出∠B=∠C=∠G=30°,根据勾股定理和含30°角的直角三角形性质求出AE 和EF ,即可求出FG ,再求出BF=FG 即可【详解】∵AC 的垂直平分线FG ,∴AE=EC ,∠AEG=∠AEF=90°,∵∠BAC=120°,∴∠G=∠BAC-∠AEG=120°-90°=30°,∵∠BAC=120°,AB=AC ,∴∠B=∠C=12(180°-∠BAC )=30°, ∴∠B=∠G ,∴BF=FG ,∵在Rt △AEG 中,∠G=30°,EG=3,∴AG=2AE ,即(2AE )2=AE 2+32,∴3即3同理在Rt△CEF中,∠C=30°,CF=2EF,(2EF)2=EF2+(3)2,∴EF=1(负值舍去),∴BF=GF=EF+CE=1+3=4,故答案为4.【点睛】本题考查了勾股定理,含30°角的直角三角形性质,等腰三角形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.18.8或10或12或25 3【详解】解:①如图1:当BC=CD=3m时,AB=AD=5m,AC⊥BD,此时等腰三角形绿地的面积:12×6×4=12(m2);②如图2:当AC=CD=4m时,AC⊥CB,此时等腰三角形绿地的面积:12×4×4=8(m2);③如图3:当AD=BD时,设AD=BD=xm,在Rt△ACD中,CD=(x-3)m,AC=4m,由勾股定理,得AD2=DC2+CA2,即(x-3)2+42=x2,解得x=256,此时等腰三角形绿地的面积:12BD·AC=12×256×4=253(m2);④如图4,延长BC到D,使BD=AB=5m,故CD=2m,此时等腰三角形绿地的面积:12BD·AC=12×5×4=10(m2);综上所述,扩充后等腰三角形绿地的面积为8m2或12m2或10m2或253m2.点睛:此题主要考查了等腰三角形的性质以及勾股定理的应用,解决问题的关键是根据题意正确画出图形.1925【解析】试题分析:根据勾股定理可求出BC=1,然后根据∠BCA=90°,DE⊥AC,DF⊥BC,证得四边形CEDF是矩形,连接CD,则CD=EF,当CD⊥AB时,CD最短,即25.25点睛:本题考查了勾股定理的运用,矩形的判定和性质以及垂线段最短的性质,同时也考查了学生综合运用性质进行推理和计算的能力.20.3【分析】根据题意利用折叠后图形全等,并利用等量替换和等腰三角形的性质进行综合分析求解.【详解】解:由题意可知','ACM A CM BCH B CH ≅≅,∵15cm BC =,20cm AC =,∴'15,'20,BC B C cm AC A C cm ====''20155A B cm =-=,∵90ACB ∠=︒,∴'A M AB ⊥(等量替换),CH AB ⊥(三线合一),∴25,AB cm = 利用勾股定理假设MB '的长为m ,'257AM AM m ==-,则有222(257)5m m +-=,解得3m =,所以MB '的长为3.【点睛】本题考查几何的翻折问题,熟练掌握并综合利用等量替换和等腰三角形的性质以及勾股定理分析是解题的关键.三、解答题21.(1)45度;(2)∠AEC ﹣∠AED =45°,理由见解析;(3)见解析【分析】(1)由等腰三角形的性质可求∠BAE =140°,可得∠CAE =50°,由等腰三角形的性质可得∠AEC =∠ACE =65°,即可求解;(2)由等腰三角形的性质可求∠BAE =180°﹣2α,可得∠CAE =90°﹣2α,由等腰三角形的性质可得∠AEC =∠ACE =45°+α,可得结论;(3)如图,过点C 作CG ⊥AH 于G ,由等腰直角三角形的性质可得EH EF ,CH =CG ,由“AAS ”可证△AFB ≌△CGA ,可得AF =CG ,由勾股定理可得结论.【详解】解:(1)∵AB =AC ,AE =AB ,∴AB =AC =AE ,∴∠ABE =∠AEB ,∠ACE =∠AEC ,∵∠AED =20°,∴∠ABE =∠AED =20°,∴∠BAE =140°,且∠BAC =90°∴∠CAE =50°,∵∠CAE +∠ACE +∠AEC =180°,且∠ACE =∠AEC ,∴∠AEC =∠ACE =65°,∴∠DEC =∠AEC ﹣∠AED =45°,故答案为:45;(2)猜想:∠AEC﹣∠AED=45°,理由如下:∵∠AED=∠ABE=α,∴∠BAE=180°﹣2α,∴∠CAE=∠BAE﹣∠BAC=90°﹣2α,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=45°+α,∴∠AEC﹣∠AED=45°;(3)如图,过点C作CG⊥AH于G,∵∠AEC﹣∠AED=45°,∴∠FEH=45°,∵AH⊥BE,∴∠FHE=∠FEH=45°,∴EF=FH,且∠EFH=90°,∴EH2EF,∵∠FHE=45°,CG⊥FH,∴∠GCH=∠FHE=45°,∴GC=GH,∴CH2CG,∵∠BAC=∠CGA=90°,∴∠BAF+∠CAG=90°,∠CAG+∠ACG=90°,∴∠BAF=∠ACG,且AB=AC,∠AFB=∠AGC,∴△AFB≌△CGA(AAS)∴AF=CG,∴CH2AF,∵在Rt△AEF中,AE2=AF2+EF2,2AF)2+2EF)2=2AE2,∴EH2+CH2=2AE2.【点睛】本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.22.(1)BC−AC=AD;理由详见解析;(2)①详见解析;②AB=14【分析】(1)在CB上截取CE=CA,连接DE,证△ACD≌△ECD得DE=DA,∠A=∠CED=60°,据此∠CED=2∠CBA,结合∠CED=∠CBA+∠BDE得出∠CBA=∠BDE,即可得DE=BE,进而得出答案;(2)①在AB上截取AM=AD,连接CM,先证△ADC≌△AMC,得到∠D=∠AMC,CD=CM,结合CD=BC知CM=CB,据此得∠B=∠CMB,根据∠CMB+∠CMA=180°可得;②设BN=a,过点C作CN⊥AB于点N,由CB=CM知BN=MN=a,CN2=BC2−BN2=AC2−AN2,可得关于a的方程,解之可得答案.【详解】解:(1)BC−AC=AD.理由如下:如图(a),在CB上截取CE=CA,连接DE,∵CD平分∠ACB,∴∠ACD=∠ECD,又CD=CD,∴△ACD≌△ECD(SAS),∴DE=DA,∠A=∠CED=60°,∴∠CED=2∠CBA,∵∠CED=∠CBA+∠BDE,∴∠CBA=∠BDE,∴DE=BE,∴AD=BE,∵BE=BC−CE=BC−AC,∴BC−AC=AD.(2)①如图(b),在AB上截取AM=AD,连接CM,∵AC平分∠DAB,∴∠DAC=∠MAC,∵AC=AC,∴△ADC≌△AMC(SAS),∴∠D=∠AMC,CD=CM=12,∵CD=BC=12,∴CM=CB,∴∠B=∠CMB,∵∠CMB+∠CMA=180°,∴∠B+∠D=180°;②设BN =a ,过点C 作CN ⊥AB 于点N ,∵CB =CM =12,∴BN =MN =a ,在Rt △BCN 中,2222212CN BC BN a --==,在Rt △ACN 中,2222216(8)CN AC AN a --+==, 则22221216(8)a a --+=,解得:a =3,即BN =MN =3,则AB =8+3+3=14,∴AB=14.【点睛】本题考查了四边形的综合题,以及全等三角形的判定与性质、勾股定理、等腰三角形的判定与性质;本题有一定难度,需要通过作辅助线证明三角形全等才能得出结果.23.(1)①详见解析;②详见解析;(2)DE 2= EB 2+AD 2+EB ·AD ,证明详见解析【分析】(1)①根据旋转的性质可得CF=CD ,∠DCF=90°,再根据已知条件即可证明△ACD ≌△BCF ;②连接EF ,根据①中全等三角形的性质可得∠EBF=90°,再证明△DCE ≌△FCE 得到EF=DE 即可证明;(2)根据(1)中的思路作出辅助线,通过全等三角形的判定及性质得出相等的边,再由勾股定理得出AD ,DE ,BE 之间的关系.【详解】解:(1)①证明:由旋转可得CF=CD ,∠DCF=90°∵∠ACD=90°∴∠ACD=∠BCF又∵AC=BC∴△ACD ≌△BCF②证明:连接EF ,由①知△ACD ≌△BCF∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD ,BF=AD∴∠EBF=90°∴EF 2=BE 2+BF 2,∴EF2=BE2+AD2又∵∠ACB=∠DCF=90°,∠CDE=45°∴∠FCE=∠DCE=45°又∵CD=CF,CE=CE∴△DCE≌△FCE∴EF=DE∴DE2= AD2+BE2⑵DE2=EB2+AD2+EB·AD理由:如图2,将△ADC绕点C逆时针旋转60°,得到△CBF,过点F作FG⊥AB,交AB 的延长线于点G,连接EF,∴∠CBE=∠CAD,∠BCF=∠ACD, BF=AD∵AC=BC,∠ACB=60°∴∠CAB=∠CBA =60°∴∠ABE=120°,∠EBF=60°,∠BFG=30°∴BG=12BF,3∵∠ACB=60°,∠DCE=30°,∴∠ACD+∠BCE=30°,∴∠ECF=∠FCB+∠BCE=30°∵CD=CF,CE=CE∴△ECF≌△ECD∴EF=ED在Rt△EFG中,EF2=FG2+EG2又∵EG=EB+BG∴EG=EB+12 BF,∴EF2=(EB+12BF)2+3)2∴DE2=(EB+12AD)2+(32AD)2∴DE2=EB2+AD2+EB·AD【点睛】本题考查了全等三角形的性质与旋转模型,解题的关键是找出全等三角形,转换线段,并通过勾股定理的计算得出线段之间的关系.24.(1)AC=9;(2)AB ∇AC =-72,BA ∇BC =216;(3)BC=2OC=273,AB=10.【分析】(1)在Rt AOC ∆中,根据勾股定理和新定义可得AO 2-OC 2=81=AC 2;(2)①先利用含30°的直角三角形的性质求出AO =2,OB =23,再用新定义即可得出结论; ②先构造直角三角形求出BE ,AE ,再用勾股定理求出BD ,最后用新定义即可得出结论;(3)作BD ⊥CD,构造直角三角形BCD,根据三角形面积关系求出BD,根据新定义和勾股定理逆定理得出三角形AOD 是直角三角形,根据中线性质得出OA 的长度,根据勾股定理求出OC,从而得出BC,再根据勾股定理求出CD,再求出AD,再运用勾股定理求出AB.【详解】(1)已知如图:AO 为BC 上的中线,在Rt AOC ∆中, AO 2-OC 2=AC 2因为81AB AC ∇=所以AO 2-OC 2=81所以AC 2=81所以AC=9.(2)①如图2,取BC 的中点D ,连接AO ,∵AB =AC ,∴AO ⊥BC ,在△ABC 中,AB =AC ,∠BAC =120°,∴∠ABC =30°,在Rt △AOB 中,AB =12,∠ABC =30°,∴AO =6,OB 2222126AB AO -=-3∴AB ∇AC =AO 2﹣BO 2=36﹣108=﹣72,②取AC 的中点D ,连接BD ,∴AD =CD =12AC =6,过点B 作BE ⊥AC 交CA 的延长线于E ,在Rt △ABE 中,∠BAE =180°﹣∠BAC =60°,∴∠ABE =30°, ∵AB =12,∴AE =6,BE =222212663AB AE -=-=, ∴DE =AD +AE =12,在Rt △BED 中,根据勾股定理得,BD =()2222631267BE DE +=+=∴BA ∇BC =BD 2﹣CD 2=216;(3)作BD ⊥CD,因为24ABC S ∆=,8AC =,所以BD=26ABC S AC ∆÷=,因为64AB AC ∇=-,AO 是BC 边上的中线,所以AO 2-OC 2=-64, 所以OC 2-AO 2=64,由因为AC 2=82=64,所以OC 2-AO 2= AC 2所以∠OAC=90°所以OA=24228322ABC S AC ∆⨯÷=⨯÷= 所以22228373AC OA +=+所以73在Rt △BCD 中,()2222276163BC BD -=-=所以AD=CD-AC=16-8=8所以22228610AD BD +=+=【点睛】考核知识点:勾股定理逆定理,含30°直角三角形性质.借助辅助线构造直角三角形,运用勾股定理等直角三角形性质解决问题是关键.25.(1)(5,0);(2)见解析;(3)①P(4,2),②满足△ACP与△BDC全等的点是P1、P2,P3.理由见解析【分析】(1)由题意可以假设A(a,a)(a>0),根据AB2+OB2=OA2,构建方程即可解决问题;(2)由角平分线的性质定理证明CH=CF,CG=CF即可解决问题;(3)①如图3中,在BC的延长线上取点P,使得CP=DB,连接AP.只要证明△ACP≌△CDB(SAS),△ABP是等腰直角三角形即可解决问题;②根据SAS即可判断满足△ACP与△BDC全等的点是P1、P2,P3;【详解】解:(1)∵点A在射线y=x(x≥0)上,故可以假设A(a,a)(a>0),∵AB⊥x轴,∴AB=OB=a,即△ABO是等腰直角三角形,∴AB2+OB2=OA2,∴a2+a2=(52)2,解得a=5,∴点B坐标为(5,0).(2)如图2中,作CF⊥x轴于F.∵OC平分∠AOB,CH⊥OE,∴CH=CF,∵△AOB是等腰直角三角形,∴∠AOB=45°,∵BC∥OE,∴∠CBG=∠AOB=45°,得到BC平分∠ABF,∵CG⊥BA,CF⊥BF,∴CG=CF,∴CG=CH.(3)①如图3中,在BC的延长线上取点P,使得CP=DB,连接AP.由(2)可知AC平分∠DAE,∴∠DAC=12∠DAE=12(180°﹣45°)=67.5°,由OC平分∠AOB得到∠DOB=12∠AOB=22.5°,∴∠ADC=∠ODB=90°﹣22.5°=67.5°,∴∠ADC=∠DAC=67.5°,∴AC=DC,∠BDC=∠OBD+∠DOB=90°+22.5°=112.5°,∠ACD=180°﹣∠CAD﹣∠ADC=180°﹣67.5°﹣67.5°=45°,∠OCB=45°﹣22.5°=22.5°,∠ACP=180°﹣∠ACD﹣∠OCB=180°﹣45°﹣22.5°=112.5°,在△ACP和△CDB中,AC ADACP DB CP DB=⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△CDB(SAS),∴∠CAP=∠DCB=22.5°,∴∠BAP=∠CAP+∠DAC=22.5°+67.5°=90°,∴△ABP是等腰直角三角形,∴AP=AB=OB=2,∴P(4,2).②满足△ACP与△BDC全等的点是P1、P2,P3.理由:如图4中,由题意:AP1=BD,AC=CD,∠CAP1=∠CDB,根据SAS可得△CAP1≌△CDB;AP2=BD,AC=CD,∠CAP2=∠CDB,根据SAS可得△CAP2≌△CDB;AC=CD,∠ACP3=∠BDC,BD=CP3根据SAS可得△CAP3≌△DCB;故答案为P1、P2,P3.【点睛】本题考查全等三角形的判定和性质、等腰直角三角形的判定和性质、勾股定理、角平分线的性质定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.26.(1)y=-2x+12,点C坐标(4,4);(2)画图形见解析,点D坐标(-4,0);(3)点P的坐标(143-,643)【分析】(1)由已知的等式可求得m、n的值,于是可得直线AB的函数解析式,把点C的坐标代入可求得a的值,由此即得答案;(2)画出图象,由CD⊥AB知1AB CDk k=-可设出直线CD的解析式,再把点C代入可得CD的解析式,进一步可求D点坐标;(3)如图2,取点F(-2,8),易证明CE⊥CF且CE=CF,于是得∠PEC=45°,进一步求出直线EF的解析式,再与直线AB联立求两直线的交点坐标,即为点P.【详解】解:(16m-n﹣12)2=0,∴m=6,n=12,∴A(6,0),B(0,12),设直线AB解析式为y=kx+b,则有1260bk b=⎧⎨+=⎩,解得212kb=-⎧⎨=⎩,∴直线AB解析式为y=-2x+12,∵直线AB过点C(a,a),∴a=-2a+12,∴a=4,∴点C坐标(4,4).(2)过点C作CD⊥AB交x轴于点D,如图1所示,设直线CD解析式为y=12x+b′,把点C(4,4)代入得到b′=2,∴直线CD解析式为y=12x+2,∴点D坐标(-4,0).(3)如图2中,取点F(-2,8),作直线EF交直线AB于P,图2∵直线EC解析式为y=32x-2,直线CF解析式为y=-23x+203,∵32×(-23)=-1,∴直线CE⊥CF,∵EC=13CF=13∴EC=CF,∴△FCE是等腰直角三角形,∴∠FEC=45°,∵直线FE解析式为y=-5x-2,由21252y x y x =-+⎧⎨=--⎩解得143643x y ⎧=-⎪⎪⎨⎪=⎪⎩, ∴点P 的坐标为(1464,33-). 【点睛】本题是一次函数的综合题,综合考查了坐标系中两直线的垂直问题、两条直线的交点问题和求特殊角度下的直线解析式,并综合了勾股定理和等腰直角三角形的判定和性质,解题的关键是熟知坐标系中两直线垂直满足121k k =-,一次函数的交点与对应方程组的解的关系.其中,第(3)小题是本题的难点,寻找到点F (-2,8)是解题的突破口.27.(1)13,5;(2)等腰直角三角形,理由见解析;(3)当P 的坐标为(1304,)时,PD+PF【解析】【分析】(1)根据阅读材料中A 和B 的坐标,利用两点间的距离公式即可得出答案;由于M 、N 在平行于y 轴的直线上,根据M 和N 的纵坐标利用公式1|y -2|y 即可求出MN 的距离; (2)由三个顶点的坐标分别求出DE ,DF ,EF 的长,即可判定此三角形的形状;(3)作F 关于x 轴的对称点F',连接DF',与x 轴交于点P ,此时PD PF +最短,最短距离为DF',P 的坐标即为直线DF'与x 轴的交点.【详解】解:(1)∵()2, 4A 、()3, 8B --∴AB 13==故A 、B 两点间的距离为:13.∵M 、N 在平行于y 轴的直线上,点M 的纵坐标为4,点N 的纵坐标为-1∴()MN 415=--=故M 、N 两点的距离为5.(2)∵()1, 6D 、()3, 3E -、()4, 2F∴DE 5==DF 5==EF ==∴DE=DF ,222DE DF EF +=∴△DEF 为等腰直角三角形(3)作F 关于x 轴的对称点F',连接DF',与x 轴交于点P ,此时DP+PF 最短设直线DF'的解析式为y=kx+b将D (1,6),F'(4,-2)代入得:642k b k b +=⎧⎨+=-⎩解得83263k b ⎧=-⎪⎪⎨⎪=⎪⎩∴直线DF'的解析式为:826y 33x =-+ 令y=0,解得13x 4=,即P 的坐标为(1304,) ∵PF=PF'∴PD+PF=PD+ PF'= DF'()()22146273-++=故当P 的坐标为(1304,)时,PD+PF 73 【点睛】本题属于一次函数综合题,待定系数法求一次函数解析式以及一次函数与x 轴的交点,弄清楚材料中的距离公式是解决本题的关键.28.(1)1(491)2-;1(491)2+;(2)21(1)2n -;21(1)2n +;(3)21m -;21m +;(4)10;26; 12;35;【解析】【分析】(1)依据规律可得,如果勾为7,则股24=1(491)2-, 弦25=1(491)2+;(2)如果勾用n (n≥3,且n 为奇数)表示时,则股=21(1)2n -, 弦=21(1)2n +; (3)根据规律可得,如果a ,b ,c 是符合同样规律的一组勾股数,a=2m (m 表示大于1的整数),则b=m 2-1,c=m 2+1;(4)依据柏拉图公式,若m 2-1=24,则m=5,2m=10,m 2+1=26;若m 2+1=37,则m=6,2m=12,m 2-1=35.【详解】解:(1)依据规律可得,如果勾为7,则股24=1(491)2-, 弦25=1(491)2+; 故答案为:1(491)2-;1(491)2+; (2)如果勾用n (n≥3,且n 为奇数)表示时,则股=21(1)2n -, 弦=21(1)2n +; 故答案为:21(1)2n -;21(1)2n +; (3)根据规律可得,如果a ,b ,c 是符合同样规律的一组勾股数,a=2m (m 表示大于1的整数),则b=m 2-1,c=m 2+1;故答案为:m 2-1,m 2+1;(4)依据柏拉图公式,若m 2-1=24,则m=5,2m=10,m 2+1=26;若m 2+1=37,则m=6,2m=12,m 2-1=35;故答案为:10、26;12、35.【点睛】此题主要考查了勾股数的定义,及勾股定理的逆定理:已知△ABC 的三边满足a 2+b 2=c 2,则△ABC 是直角三角形.29.(1)∠BGD =120°;(2)见解析;(3)S 四边形ABCD =【解析】【分析】(1)只要证明△DAE ≌△BDF ,推出∠ADE=∠DBF ,由∠EGB=∠GDB+∠GBD=∠GDB+∠ADE=60°,推出∠BGD=180°-∠BGE=120°;(2)如图3中,延长GE 到M ,使得GM=GB ,连接BD 、CG .由△MBD ≌△GBC ,推出DM=GC ,∠M=∠CGB=60°,由CH ⊥BG ,推出∠GCH=30°,推出CG=2GH ,由CG=DM=DG+GM=DG+GB ,即可证明2GH=DG+GB ;。
人教版数学八年级下册 第十七章勾股定理 易错题练习(word版含答案)
第十七章勾股定理易错题练习17.1 勾股定理第1课时勾股定理易错点1 对勾股定理的理解不透彻1.如图,在正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC,边长为无理数的边数有()A.0条B.1条C.2条D.3条2.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48B.60C.76D.803.如图是一棵美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的面积分别为2,5,1,2.则最大的正方形E的面积是 .易错点2 没有分清直角三角形的直角边和斜边4.在Rt△ABC中,∠B=90°,∠A,∠B,∠C所对的边分别为a,b,c,其中a=3,b=4,则以c为边的正方形的面积为 .5.已知以直角三角形的两边分别为边长的正方形的面积为7和16,则以第三边为边长的正方形的面积为 .易错点3 忽略三角形的高在三角形外部的情况6.在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC的周长.第2课时勾股定理的应用易错点1 忽略勾股定理的使用前提而出错1.已知△ABC的三边长均为整数,且较小两边的长分别为3和4.则最大边的长为()A.5B.6C.5或6D.无法确定2.如图,学校有一块长方形草地,有极少数人为了避开拐角走“捷径”,在草地内走出了一条“路”,他们仅仅少走了()米路,却踩伤了花草.A.1B.2C.5D.123.如图,某自动感应门的正上方A处装着一个感应器,离地AB=2.5米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生CD正对门,缓慢走到离门1.2米的地方(BC=1.2米)时,感应门自动打开,则AD= 米.4.如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2.求四边形ABCD的面积.5.一架方梯AB长25米,如图所示,斜靠在一面墙上.(1)若梯子底端离墙7米,这个梯子的顶端距地面有多高?(2)在(1)的条件下,如果梯子的顶端下滑了9米,那么梯子的底端在水平方向滑动了几米?易错点2 认不清立体图形展开后点或线的具体位置6.如图是一个底面为等边三角形的三棱镜,在三棱镜的侧面上,从顶点A到顶点A′镶有一圈金属丝,已知此三棱镜的高为5 cm,底面边长为4 cm,则这圈金属丝的长度至少为()A.8 cmB.13 cmC.12 cmD.15 cm7.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()17.2 勾股定理的逆定理易错点1 运用勾股定理的逆定理时,因找错最大边而出错1.已知a,b,c是△ABC的三边长,+(c-5)2+12b-=0,则△ABC是()A.以a为斜边的直角三角形 B.以b为斜边的直角三角形C.以c为斜边的直角三角形D.不是直角三角形2.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且(a+b)(a-b)=c2,则()A.∠A为直角B.∠B为直角C.∠C为直角D.△ABC不是直角三角形3.有五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,其中正确的是()易错点2 忽略勾股数是正整数的条件4.下列各组数,是勾股数的一组是()A.3,-4,5B.5,12,13C.3,4,7D.53,54,15.阅读理解:如果一个正整数m能表示为两个正整数a,b的平方和,即m=a2+b2,那么称m为广义勾股数,则下面的四个结论:①7不是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数.依次正确的是()A.②④ B.①②④ C.①② D.①④易错点3 勾股定理的逆定理在实际运用中易出错6.如图,某港口位于东西方向的海岸线上,A,B两军舰同时离开港口,各自沿一固定方向航行,A舰每小时航行16海里,B舰每小时航行12海里,它们离开港口一个半小时后,相距30海里,已知A舰沿东北方向航行,问B舰沿哪个方向航行?7.景区内有一块四边形空地,如图所示,景区管理人员想在这块空地上铺满观赏草坪,需要测量其面积,经技术人员测得∠ABC=90°,AB=20米,BC=15米,CD=7米,AD=24米.(1)请你帮助管理人员计算出这个四边形的对角线AC的长度;(2)请用你学过的知识帮助管理员计算出这块空地的面积.参考答案第十七章勾股定理易错点题型17.1 勾股定理第1课时勾股定理易错点1 对勾股定理的理解不透彻1.如图,在正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC,边长为无理数的边数有(D)A.0条B.1条C.2条D.3条2.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是(C)A.48B.60C.76D.803.如图是一棵美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的面积分别为2,5,1,2.则最大的正方形E的面积是10 .易错点2 没有分清直角三角形的直角边和斜边4.在Rt△ABC中,∠B=90°,∠A,∠B,∠C所对的边分别为a,b,c,其中a=3,b=4,则以c为边的正方形的面积为 7 .5.已知以直角三角形的两边分别为边长的正方形的面积为7和16,则以第三边为边长的正方形的面积为 9或23 .易错点3 忽略三角形的高在三角形外部的情况6.在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC的周长.解:①当△ABC为锐角三角形时,如图1.在Rt△ABD中在Rt△ACD中∴BC=CD+BD=5+9=14.∴△ABC的周长为15+13+14=42.②当△ABC为钝角三角形时,如图2.同理,BD=9,CD=5.∴BC=BD-CD=9-5=4.∴△ABC的周长为15+13+4=32.综上所述,△ABC的周长为42或32.第2课时勾股定理的应用易错点1 忽略勾股定理的使用前提而出错1.已知△ABC的三边长均为整数,且较小两边的长分别为3和4.则最大边的长为(C)A.5B.6C.5或6D.无法确定2.如图,学校有一块长方形草地,有极少数人为了避开拐角走“捷径”,在草地内走出了一条“路”,他们仅仅少走了( B)米路,却踩伤了花草.A.1B.2C.5D.123.如图,某自动感应门的正上方A 处装着一个感应器,离地AB=2.5米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生CD 正对门,缓慢走到离门1.2米的地方(BC=1.2米)时,感应门自动打开,则AD= 1.5 米.4.如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2.求四边形ABCD 的面积. 解:如图,延长BC,AD 交于点E.∵∠A=60°,∠B=90°, ∴∠E=90°-∠A=30°.∴AE=2AB=8.根据勾股定理,得BE=43. ∵∠CDE=90°,∠E=30°.∴CE=2CD=4.根据勾股定理,得DE=23. ∴S 四边形ABCD =S △ABE -S △DCE =12AB ·BE-12CD ·DE=12×4×43-12×2×23=63.5.一架方梯AB 长25米,如图所示,斜靠在一面墙上.(1)若梯子底端离墙7米,这个梯子的顶端距地面有多高?(2)在(1)的条件下,如果梯子的顶端下滑了9米,那么梯子的底端在水平方向滑动了几 米? 解:(1)在Rt △AOB 中,AB=25米,OB=7米,∴OA=22AB OB -=22257-=24(米).答:梯子的顶端距地面24米;(2)在Rt △A ′OB ′中,A ′O=24-9=15(米), ∴OB ′=22A B OA '''-=222515-=20(米). ∴BB ′=OB ′-OB=20-7=13(米).答:梯子的底端在水平方向滑动了13米.易错点2 认不清立体图形展开后点或线的具体位置6.如图是一个底面为等边三角形的三棱镜,在三棱镜的侧面上,从顶点A 到顶点A ′镶有一圈金属丝,已知此三棱镜的高为5 cm,底面边长为4 cm,则这圈金属丝的长度至少为( B )A.8 cmB.13 cmC.12 cmD.15 cm7.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是(B)17.2 勾股定理的逆定理易错点1 运用勾股定理的逆定理时,因找错最大边而出错1.已知a,b,c是△ABC的三边长,+(c-5)2+12b-=0,则△ABC是( A)A.以a为斜边的直角三角形 B.以b为斜边的直角三角形C.以c为斜边的直角三角形D.不是直角三角形2.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且(a+b)(a-b)=c2,则(A)A.∠A为直角B.∠B为直角C.∠C为直角D.△ABC不是直角三角形3.有五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,其中正确的是( C)易错点2 忽略勾股数是正整数的条件4.下列各组数,是勾股数的一组是( B )A.3,-4,5B.5,12,13C.3,4,7D.53,54,15.阅读理解:如果一个正整数m能表示为两个正整数a,b的平方和,即m=a2+b2,那么称m为广义勾股数,则下面的四个结论:①7不是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数.依次正确的是( C)A.②④ B.①②④ C.①② D.①④易错点3 勾股定理的逆定理在实际运用中易出错6.如图,某港口位于东西方向的海岸线上,A,B两军舰同时离开港口,各自沿一固定方向航行,A舰每小时航行16海里,B舰每小时航行12海里,它们离开港口一个半小时后,相距30海里,已知A舰沿东北方向航行,问B舰沿哪个方向航行?解:根据题意,得OA=1.5×16=24,OB=1.5×12=18.∵242+182=302,∴OA2+OB2=AB2,即△AOB为直角三角形.又∵A舰沿东北方向航行,∠AOB=90°,∴B舰沿西北方向航行.7.景区内有一块四边形空地,如图所示,景区管理人员想在这块空地上铺满观赏草坪,需要测量其面积,经技术人员测得∠ABC=90°,AB=20米,BC=15米,CD=7米,AD=24米.(1)请你帮助管理人员计算出这个四边形的对角线AC的长度;(2)请用你学过的知识帮助管理员计算出这块空地的面积.解:(1)如图,连接AC.在Rt△ABC中,∠ABC=90°,AB=20米,BC=15米,∴==25(米).答:这个四边形对角线AC的长度为25米;(2)在△ADC中,CD=7米,AD=24米,AC=25米,∵AD2+CD2=242+72=252=AC2.∴△ADC为直角三角形,且∠ADC=90°.∴S四边形ABCD=S△ABC+S△ADC=12×15×20+12×7×24=234(平方米).答:这块空地的面积为234平方米.。
期末复习 《勾股定理》常考题与易错题精选(35题)(解析版)
期末复习- 《勾股定理》常考题与易错题精选(35题)一.勾股定理(共11小题)1.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别是3、5、2、3,则最大正方形E的面积是( )A.10B.13C.15D.26【分析】分别设中间两个正方形和最大正方形的边长为x,y,z,由勾股定理得出x2=8,y2=5,z2=x2+y2,即最大正方形的面积为z2.【解答】解:设中间两个正方形的边长分别为x、y,最大正方形E的边长为z,则由勾股定理得:x2=3+5=8,y2=2+3=5,z2=x2+y2=13,即最大正方形E的面积为:z2=13.故选:B.【点评】本题考查了勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.2.如图,长方形ABCD的顶点A,B在数轴上,点A表示﹣1,AB=3,AD=1.若以点A为圆心,对角线AC长为半径作弧,交数轴正半轴于点M,则点M所表示的数为( )A.B.C.D.【分析】先利用勾股定理求出AC,根据AC=AM,求出OM,由此即可解决问题.【解答】解:∵四边形ABCD是矩形,∴∠ABC=90°,∵AB=3,AD=BC=1,∴,∴AN=AC=,∵点A表示﹣1,∴OA=1,∴OM=AM﹣OA=﹣1,∴点M表示点数为﹣1.故选:A.【点评】本题考查实数与数轴、勾股定理等知识,解题的关键是灵活应用勾股定理求出AC,AM的长.3.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,若AC=5,BC=12,则S△ACD :S△ABD为( )A.12:5B.12:13C.5:1 3D.13:5【分析】过D作DF⊥AB于F,根据角平分线的性质得出DF=DC,再根据三角形的面积公式求出△ABD 和△ACD的面积,最后求出答案即可.【解答】解:过D作DF⊥AB于F,∵AD平分∠CAB,∠C=90°(即AC⊥BC),∴DF=CD,设DF=CD=R,在Rt△ABC中,∠C=90°,AC=5,BC=12,由勾股定理得:AB==13,∴S△ABD ===R,S△ACD===R,∴S△ACD :S△ABD=(R):(R)=5:13,故选:C.【点评】本题考查了角平分线的性质和三角形的面积,能根据角平分线的性质求出DF=CD是解此题的关键.4.图1是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC.若AB=BC=2,且∠AOB=30°,则OC的长度为( )A.B.C.4D.【分析】先根据含30°角的直角三角形的性质得出OB的长,再根据勾股定理求出OC的长即可.【解答】解:在Rt△ABO中,∠AOB=30°,∴OB=2AB=4,在Rt△BOC中,由勾股定理得,OC===2,故选:D.【点评】本题考查了勾股定理,含30°角的直角三角形的性质,熟练掌握勾股定理,含30°角的直角三角形的性质是解题的关键.5.在△ABC中,∠ABC=60°,AD为BC边上的高,AD=6,CD=1,则BC的长为( )A.5B.7C.5或7D.【分析】在Rt△ADB中,根据∠ABC=60°,,求得BD=6,然后分情况讨论即可求得BC的长.【解答】解:在Rt△ADB中,∠ABC=60°,,∴,如图,当点C在点D右边时,BC=BD+DC=6+1=7;如图,当点C在点D左边时,BC=BD﹣CD=6﹣1=5,故BC的长为:5或7.故选:C.【点评】本题考查解直角三角形以及分类讨论,解题关键是正确画出分类讨论的三角形图形求解.6.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,则点C到直线AB的距离是( )A.B.3C.D.2【分析】作CD⊥AB于点D,根据勾股定理可以求得AB的长,然后根据面积法,可以求得CD的长.【解答】解:作CD⊥AB于点D,如右图所示,∵∠C=90°,AC=3,BC=4,∴AB===5,∵,∴,解得CD=2.4,故选:C.【点评】本题考查勾股定理、三角形的面积,解答本题的关键是明确题意,画出相应的图形,利用勾股定理和面积法解答.7.已知△ABC中,∠C=90°,AB=c,BC=a,AC=b.(1)如果a=7,b=24,求c;(2)如果a=12,c=13,求b.【分析】(1)利用勾股定理计算c=;(2)利用勾股定理计算b=.【解答】解:(1)在Rt△ABC中,∠C=90°,由勾股定理得:c===25;(2)在Rt△ABC中,由勾股定理得:b===5.【点评】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.即:如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.注意勾股定理应用的前提条件是在直角三角形中.8.如图,Rt△ABC中,∠C=90°(1)若AB=,AC=,求BC2(2)若AB=4,AC=1,求AB边上高.【分析】(1)根据勾股定理可求BC 2;(2)由勾股定理求出BC ,根据三角形面积公式即可得出结果.【解答】解:(1)Rt △ABC 中,∠C =90°,AB =,AC =,则BC 2=AB 2﹣AC 2=(+1)2﹣(﹣1)2=4;(2)BC ==,AB 边上高=×1÷2×2÷4=.【点评】本题考查了勾股定理、三角形面积的计算;熟练掌握勾股定理是解决问题的关键.9.如图,在四边形ABCD 中,∠B =90°,∠BCA =60°,AC =2,DA =1,CD =3.求四边形ABCD的面积.【分析】先根据勾股定理求出AB 的长,再根据勾股定理逆定理判断△ACD 是直角三角形,然后把四边形ABCD 的面积分割成两个直角三角形的面积和即可求解.【解答】解:∵∠B =90°,∠BCA =60°,AC =2,∴BC =,∴AB ===,又∵DA =1,CD =3,AC =2,∴DA 2+AC 2=12+(2)2=1+8=9=CD 2,∴△ACD 是直角三角形,∴四边形ABCD 的面积=S △ACD +S △ABC =AD •AC +AB •BC =×1×2+××=+.【点评】本题考查勾股定理,关键是对勾股定里的掌握和运用.10.如图,每个小正方形的边长都为1.求出四边形ABCD 的周长和面积.【分析】利用勾股定理求出AB、BC、CD和DA的长,即可求出四边形ABCD的周长;利用割补法即可求出四边形的面积.【解答】解:根据勾股定理得AB==2,BC==3,CD==,AD==2,故四边形ABCD的周长为;2+3++2=5++2;四边形ABCD的面积为6×8﹣×2×4﹣×6×3﹣1﹣×3×2﹣×2×6=26.【点评】本题主要考查了勾股定理以及三角形的面积公式,掌握勾股定理是解决问题的关键.11.如图,在△ABC中,BC=6,AC=8,DE⊥AB,DE=7,△ABE的面积为35.(1)求AB的长;(2)求△ACB的面积.【分析】(1)根据三角形的面积公式计算,求出AB;(2)根据勾股定理的逆定理求出∠C=90°,根据三角形的面积公式计算即可.【解答】解:(1)∵△ABE的面积为35,DE=7,∴AB×7=35,解得:AB=10;(2)在△ABC中,AB2=102=100,AC2+BC2=62+82=100,则AB2=AC2+BC2,∴∠C=90°,=AC•BC=×6×8=24,∴S△ABC答:△ACB的面积24.【点评】本题考查的是勾股定理、三角形的面积计算,根据勾股定理的逆定理求出∠C=90°是解题的关键.二.勾股定理的证明(共3小题)12.如图,直角三角形ACB,直角顶点C在直线l上,分别过点A、B作直线l的垂线,垂足分别为点D和点E.(1)求证:∠DAC=∠BCE;(2)如果AC=BC.①求证:CD=BE;②若设△ADC的三边分别为a、b、c,试用此图证明勾股定理.【分析】(1)根据直角三角形的定义和垂直的定义,可以证明结论成立;(2)①根据AAS可以证明结论成立;②根据S梯形ADEB=S△ADC+S△ACB+S△CEB,代入字母计算即可证明结论成立.【解答】证明:(1)∵∠ACB=90°,AD⊥DE于点D,∴∠DAC+∠ACD=90°,∠ADC+∠BCE=90°,∴∠DAC=∠BCE;(2)①∵AD⊥DE于点D,BE⊥DE于点E,∴∠ADC=∠CEB=90°,由(1)知:∠DAC=∠BCE,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴CD=BE;②由图可知:S梯形ADEB =S△ADC+S△ACB+S△CEB,∴=,化简,得:a2+b2=c2.【点评】本题考查勾股定理的证明,解答本题的关键是明确题意,利用数形结合的思想解答.13.【阅读理解】我国古人运用各种方法证明勾股定理,如图①,用四个直角三角形拼成正方形,通过证明可得中间也是一个正方形.其中四个直角三角形直角边长分别为a、b,斜边长为c.图中大正方形的面积可表示为(a+b)2,也可表示为c2+4×ab,即(a+b)2=c2+4×ab,所以a2+b2=c2.【尝试探究】美国第二十任总统伽菲尔德的“总统证法”如图②所示,用两个全等的直角三角形拼成一个直角梯形BCDE,其中△BCA≌△ADE,∠C=∠D=90°,根据拼图证明勾股定理.【定理应用】在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边长分别为a、b、c.求证:a2c2+a2b2=c4﹣b4.【分析】【尝试探究】根据阅读内容,图中梯形的面积分别可以表示为ab+(a2+b2)=ab+c2,即可证得a2+b2=c2;【定理应用】分解因式,根据勾股定理即可得到结论.【解答】证明:【尝试探究】梯形的面积为S =(a +b )(b +a )=ab +(a 2+b 2),利用分割法,梯形的面积为S =S △ABC +S △ABE +S ADE =ab +c 2+ab =ab +c 2,∴ab +(a 2+b 2)=ab +c 2,∴a 2+b 2=c 2;【定理应用】∵a 2c 2+a 2b 2=a 2(c 2+b 2),c 4﹣b 4=(c 2+b 2)(c 2﹣b 2)=(c 2+b 2)a 2,∴a 2c 2+a 2b 2=c 4﹣b 4.【点评】本题主要考查勾股定理的验证,解题关键是利用面积相等建立等量关系,判定勾股定理成立.14.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,当两个全等的直角三角形如图摆放时,也可以用面积法来证明勾股定理,请完成证明过程.(提示:BD 和AC 都可以分割四边形ABCD )【分析】连接DB ,过点D 作BC 边上的高DF ,根据S 四边形ADCB =S △ACD +S △ABC =S △ADB +S △DCB 即可求解.【解答】证明:连接DB ,过点D 作BC 边上的高DF ,则DF =EC =b ﹣a .∵S 四边形ADCB =S △ACD +S △ABC =b 2+ab .又∵S 四边形ADCB =S △ADB +S △DCB =c 2+a (b ﹣a )∴b 2+ab =c 2+a (b ﹣a )∴a 2+b 2=c 2.【点评】本题考查了用数形结合来证明勾股定理,证明勾股定理常用的方法是利用面积证明,本题锻炼了同学们数形结合的思想方法.三.勾股定理的逆定理(共8小题)15.下列各组中的三条线段,能构成直角三角形的是( )A.7,20,24B.,,C.3,4,5D.4,5,6【分析】先求出两小边的平方和,再求出最长边的平方,最后看看是否相等即可.【解答】解:A、72+202≠242,故不是直角三角形,不符合题意;B、()2+()2≠()2,故不是直角三角形,不符合题意;C、32+42=52,故是直角三角形,符合题意;D、42+52≠62,故不是直角三角形,不符合题意;故选:C.【点评】此题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.16.三角形的三边长分别为a、b、c,则下面四种情况中,不能判断此三角形为直角三角形的是( )A.a=3,b=4,c=5B.a=8,b=15,c=17C.a=5,b=12,c=13D.a=12,b=15,c=18【分析】根据勾股定理的逆定理解决此题.【解答】解:A.根据勾股定理的逆定理,由32+42=52,即a2+b2=c2,那么这个三角形是直角三角形,故A不符合题意.B.根据勾股定理的逆定理,由82+152=172,即a2+b2=c2,那么这个三角形是直角三角形,故B不符合题意.C.根据勾股定理的逆定理,由52+122=132,即a2+b2=c2,那么这个三角形是直角三角形,故C不符合题意.D.根据勾股定理的逆定理,由122+152≠182,即a2+b2≠c2,那么这个三角形不是直角三角形,故D符合题意.故选:D.【点评】本题主要考查勾股定理,熟练掌握勾股定理的逆定理是解决本题的关键.17.如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.(1)判断∠D是否是直角,并说明理由.(2)求四边形ABCD的面积.【分析】(1)连接AC ,根据勾股定理可知AC 2=BA 2+BC 2,再根据AC 2=DA 2+DC 2即可得出结论;(2)根据S 四边形ABCD =S △ABC +S △ADC 即可得出结论.【解答】(1)解:∠D 是直角.理由:连接AC ,∵∠B =90°,∴AC 2=BA 2+BC 2=400+225=625,∵DA 2+CD 2=242+72=625,∴AC 2=DA 2+DC 2,∴△ADC 是直角三角形,即∠D 是直角;(2)解:∵S 四边形ABCD =S △ABC +S △ADC ,∴S 四边形ABCD =AB •BC +AD •CD ,=,=234.【点评】本题考查的是勾股定理的逆定理,解题的关键是掌握熟知如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.18.如图,小明爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算这块土地的面积,以便估算产量.小明测得AB =3m ,AD =4m ,CD =12m ,BC =13m ,又已知∠A =90°.求这块土地的面积.【分析】先把解四边形的问题转化成解三角形的问题,再用勾股定理解答.【解答】解:连接BD,∵∠A=90°,∴BD2=AD2+AB2=25,则BD2+CD2=132=BC2,因此∠CDB=90°,S四边形ABCD =S△ADB+S△CBD=36(平方米),答:这块土地的面积为36平方米.【点评】本题考查勾股定理,掌握勾股定理是解答此题的关键.19.如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,DA=1.(1)求∠DAB的度数;(2)求四边形ABCD的面积.【分析】(1)连接AC,在Rt△ABC中,利用勾股定理求出AC的长,∠BAC=∠ACB=45°,然后利用勾股定理的逆定理证明△ADC是直角三角形,从而可得∠DAC=90°,最后进行计算即可解答;(2)根据四边形ABCD的面积=△ABC的面积+△ADC的面积,进行计算即可解答.【解答】解:(1)连接AC,∵∠B=90°,AB=BC=2,∴AC===2,∠BAC=∠ACB=45°,∵CD=3,DA=1,∴AD2+AC2=12+(2)2=9,CD2=32=9,∴AD2+AC2=CD2,∴△ADC是直角三角形,∴∠DAC=90°,∴∠DAB=∠BAC+∠DAC=135°,∴∠DAB的度数为135°;(2)由题意得:四边形ABCD的面积=△ABC的面积+△ADC的面积=AB•BC+AD•AC=×2×2+×1×2=2+,∴四边形ABCD的面积为2+.【点评】本题考查了勾股定理,勾股定理的逆定理,熟练掌握勾股定理,以及勾股定理的逆定理是解题的关键.20.如图,在△ABC中,AD、BE分别为边BC、AC的中线,分别交BC、AC于点D、E.(1)若CD=4,CE=3,AB=10,求证:∠C=90°;(2)若∠C=90°,AD=6,BE=8,求AB的长.【分析】(1)根据中点的定义和勾股定理的逆定理即可求解;(2)根据中点的定义和勾股定理即可求解.【解答】(1)证明:∵AD、BE分别为边BC、AC的中线,CD=4,CE=3,∴AC=6,BC=8,∵AB=10,∴AB2=AC2+BC2,∴△ABC是直角三角形,∴∠C=90°;(2)解:∵∠C=90°,AD=6,BE=8,∴AC2+CD2=AD2,BC2+CE2=BE2,∵AD、BE分别为边BC、AC的中线,∴CD=BC,CE=AC,∴AC2+(BC)2=36,BC2+(AC)2=64,∴AC2+BC2=100,∴AC2+BC2=80,∴AB==4.【点评】此题考查了勾股定理,熟练掌握勾股定理和勾股定理的逆定理是解本题的关键.21.如图,在△ABC中,AD为BC边上的高,若BD=4,DC=5,AD=2,判断△ABC的形状,并说明理由.【分析】依据AD为BC边上的高,依据勾股定理即可得到Rt△ABD中,AB2=AD2+BD2=36,Rt△ACD 中,AC2=AD2+CD2=45,再根据AB2+AC2=BC2,即可得到△ABC是直角三角形.【解答】解:△ABC是直角三角形.理由:∵AD为BC边上的高,∴∠ADB=∠ADC=90°,Rt△ABD中,AB2=AD2+BD2=20+16=36,Rt△ACD中,AC2=AD2+CD2=20+25=45,又∵BC2=81,∴AB2+AC2=BC2,∴△ABC是直角三角形.【点评】本题主要考查了勾股定理以及勾股定理的逆定理的运用,要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.22.如图,每个小正方形的边长都为1.(1)求△ABC的周长;(2)求∠ACB的度数.【分析】(1)运用勾股定理求得AB,BC及AC的长,即可求出△ABC的周长.(2)运用勾股定理的逆定理求得AC2=AB2+BC2,得出∠ABC=90°.【解答】解:(1)AB==5,BC==2,AC==,∴△ABC的周长=2++5=3+5;(2)∵AC2=()2=5,AB2=52=25,BC2=(2)2=20,∴AC2+BC2=AB2,∴△ABC是直角三角形,AB是斜边,∴∠ACB=90°.【点评】本题主要考查了勾股定理及勾股定理的逆定理,熟记勾股定理是解题的关键.四.勾股数(共3小题)23.下列四组数中不是勾股数的是( )A.3,4,5B.2,3,4C.5,12,13D.8,15,17【分析】求是否为勾股数,这里给出三个数,利用勾股定理,只要验证两小数的平方和等于最大数的平方即可.【解答】解:A、32+42=52,是勾股数的一组;B、22+32≠42,不是勾股数的一组;C、52+122=132,是勾股数的一组;D、82+152=172,是勾股数的一组.故选:B.【点评】考查了勾股数,理解勾股数的定义,并能够熟练运用.24.下列各组数中,是勾股数的为( )A.,2,B.8,15,17C.,D.32,42,52【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:A、不满足三个数都是正整数,故A选项不符合题意;B、三个数都是正整数且82+152=172,故B选项符合题意;C、不满足三个数都是正整数,故C选项不符合题意;D、三个数都是正整数但(32)2+(42)2≠(52)2,故D选项不符合题意.故选:B.【点评】本题考查了勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数.一组勾股数必须同时满足两个条件:①三个数都是正整数,②两个较小正整数的平方和等于最大的正整数的平方,这两个条件同时成立,缺一不可.25.观察下列各组勾股数有哪些规律:3,4,5;9,40,41;5,12,13;……;7,24,25;a,b,c.请解答:(1)当a=11时,求b,c的值;(2)判断21,220,221是否为一组勾股数?若是,请说明理由.【分析】(1)由a=11,b+1=c,c2﹣b2=a2,得(b+1)2﹣b2=(b+1+b)(b+1﹣b)=121,然后求得b和c的值即可;(2)利用勾股数的定义进行判定即可.【解答】解:(1)由a=11,b+1=c,c2﹣b2=a2,得(b+1)2﹣b2=(b+1+b)(b+1﹣b)=121.解得b=60,c=b+1=6;(2)是勾股数,理由如下:2212﹣2202=(221+220)(221﹣220)=441,212=441,∴2212﹣2202=212,∴21,220,221是勾股数.【点评】此题主要考查了勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.五.勾股定理的应用(共10小题)26.我市某中学有一块四边形的空地ABCD,如图所示,为了绿化环境,学校计划在空地上种植草皮,经测量∠B=90°,AB=6m,BC=8m,CD=24m,AD=26m.(1)求出空地ABCD的面积;(2)若每种植1平方米草皮需要350元,问总共需投入多少元?【分析】(1)直接利用勾股定理AC,再用勾股定理的逆定理得出∠ACD=90°,进而得出答案;(2)利用(1)中所求得出所需费用.【解答】解:(1)连接AC∵∠B=90°,AB=6m,BC=8m,∴,∵CD=24m,AD=26m,∴AC2+CD2=AD2,∴∠ACD=90°,∴S 四边形ABCD =S △ABC +S △ACD ===144(m 2);即空地ABCD 的面积为144m 2.(2)144×350=50400元,即总共需投入50400元.【点评】此题主要考查了勾股定理及其逆定理的应用,将四边形化为三角形后,正确用勾股定理及其逆定理是解题关键.27.由四条线段AB 、BC 、CD 、DA 所构成的图形,是某公园的一块空地,经测量∠ADC =90°,CD =3m 、AD =4m 、BC =12m 、AB =13m .现计划在该空地上种植草皮,若每平方米草皮需200元,则在该空地上种植草皮共需多少元?【分析】如图,连接AC ,运用勾股定理求出AC ,在△ABC 中利用勾股定理逆定理证明得∠ACB =90°,最后根据S ABCD =S △ABC ﹣S △ACD 求出草坪面积从而求出费用.【解答】解:如图,连接AC ,∵∠ADC =90°,∴,在△ABC 中,∵AC 2+BC 2=52+122=169,AB 2=132=169,∴AC 2+BC 2=AB 2,∴∠ACB =90°,∴,200×24=4800(元).答:若每平方米草皮需200元,则在该空地上种植草皮共需4800元.【点评】本题考查了勾股定理及勾股定理逆定理的实际应用;掌握勾股定理求边长和逆定理证垂直是解题的关键.28.如图,某校攀岩墙AB的顶部A处安装了一根安全绳AC,让它垂到地面时比墙高多出了2米,教练把绳子的下端C拉开8米后,发现其下端刚好接触地面(即BC=8米),AB⊥BC,求攀岩墙AB的高度.【分析】根据题意设攀岩墙的高AB为x米,则绳子AC的长为(x+2)米,再利用勾股定理即可求得AB 的长即可.【解答】解:设攀岩墙的高AB为x米,则绳子AC的长为(x+2)米,在Rt△ABC中,BC=8米,AB2+BC2=AC2,∴x2+82=(x+2)2,解得x=15,∴攀岩墙AB的高为15米.【点评】此题考查了勾股定理的应用,解题的关键是从实际问题中整理出直角三角形.29.如图,甲、乙两船从港口A同时出发,甲船以16海里/时的速度向北偏东42°方向航行,乙船向南偏东48°方向航行,0.5小时后,甲船到达C岛,乙船到达B岛,若C,B两岛相距17海里,问乙船的航速是多少?【分析】先根据方位角求出∠BAC=180°﹣42°﹣48°=90°,然后根据勾股定理求出,最后根据速度公式算出速度即可.【解答】解:根据题意可知:∠BAC=180°﹣42°﹣48°=90°,AC=16×0.5=8(海里),在Rt△ABC中(海里),乙船的航速是:(海里/时),答:乙船的航速是30海里/时.【点评】本题主要考查了方位角,勾股定理,解题的关键是根据勾股定理求出AB的长度.30.“儿童散学归来早,忙趁东风放纸鸢”.又到了放风筝的最佳时节.某校八年级(1)班的小明和小亮学习了“勾股定理”之后,为了测得风筝的垂直高度CE(如图),他们进行了如下操作:①测得水平距离BD的长为8米;②根据手中剩余线的长度计算出风筝线BC的长为17米;③牵线放风筝的小明的身高为1.5米.(1)求风筝的垂直高度CE;(2)如果小明想风筝沿CD方向下降9米,则他应该往回收线多少米?【分析】(1)利用勾股定理求出CD的长,再加上DE的长度,即可求出CE的高度;(2)根据勾股定理即可得到结论.【解答】解:(1)在Rt△CDB中,由勾股定理得,CD2=BC2﹣BD2=172﹣82=225,所以,CD=15(负值舍去),所以,CE=CD+DE=15+1.5=16.5(米),答:风筝的高度CE为16.5米;(2)由题意得,CM=9,∴DM=6,∴BM===10(米),∴BC﹣BM=17﹣10=7(米),∴他应该往回收线7米.【点评】本题考查了勾股定理的应用,熟悉勾股定理,能从实际问题中抽象出勾股定理是解题的关键.31.森林火灾是一种常见的自然灾害,危害很大,随着中国科技、经济的不断发展,开始应用飞机洒水的方式扑灭火源.如图,有一台救火飞机沿东西方向AB,由点A飞向点B,已知点C为其中一个着火点,且点C与直线AB上两点A,B的距离分别为600m和800m,又AB=1000m,飞机中心周围500m以内可以受到洒水影响.(1)着火点C受洒水影响吗?为什么?(2)若飞机的速度为10m/s,要想扑灭着火点C估计需要13秒,请你通过计算判断着火点C能否被扑灭?【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,进而利用三角形面积得出CD的长,进而得出海港C是否受台风影响;(2)利用勾股定理得出ED以及EF的长,进而得出飞机影响C持续的时间,即可做出判断.【解答】解:(1)着火点C受洒水影响.理由:如图,过点C作CD⊥AB于D,由题意知AC=600m,BC=800m,AB=1000m,∵AC2+BC2=6002+8002=10002,AB2=10002,∴AC2+BC2=AB2,∴△ABC是直角三角形,=AC•BC=CD•AB,∴S△ABC∴600×800=1000CD,∴CD=480,∵飞机中心周围500m以内可以受到洒水影响,∴着火点C受洒水影响;(2)当EC=FC=500m时,飞机正好喷到着火点C,在Rt△CDE中,ED===140(m),∴EF=280m,∵飞机的速度为10m/s,∴280÷10=28(秒),∵28秒>13秒,∴着火点C能被扑灭,答:着火点C能被扑灭.【点评】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.32.一架云梯长25m,如图所示斜靠在一面墙上,梯子底端C离墙7m.(1)这个梯子的顶端A距地面有多高?(2)如果梯子的顶端下滑了4m,那么梯子的底部在水平方向滑动了多少米?【分析】(1)在Rt△ABC中,利用勾股定理可求出AB的长度,此题得解;(2)在Rt△DBE中,利用勾股定理可求出BE的长度,用其减去BC的长度即可得出结论.【解答】解:(1)在Rt△ABC中,∠ABC=90°,AC=25m,BC=7m,∴AB==24(m).答:这个梯子的顶端A距地面24m.(2)在Rt△DBE中,BD=24﹣4=20m,DE=25m,∴BE==15(m),∴CE=BE﹣BC=15﹣7=8(m).答:如果梯子的顶端下滑了4m,那么梯子的底部在水平方向滑动了8m.【点评】本题考查了勾股定理的应用,解题的关键是:(1)利用勾股定理求出AB;(2)利用勾股定理求出BE.33.在一条东西走向的河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原由C 到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=1.5千米,CH=1.2千米,HB=0.9千米.(1)问CH是否为从村庄C到河边的最近路?请通过计算加以说明;(2)求原来的路线AC的长.【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可.【解答】解:(1)是,理由是:在△CHB中,∵CH2+BH2=(1.2)2+(0.9)2=2.25,BC2=2.25,∴CH2+BH2=BC2,∴△CHB是直角三角形,∴CH是从村庄C到河边的最近路;(2)设AC=x千米,在Rt△ACH中,由已知得AC=x,AH=x﹣0.9,CH=1.2,由勾股定理得:AC2=AH2+CH2∴x2=(x﹣0.9)2+(1.2)2,解这个方程,得x=1.25,答:原来的路线AC的长为1.25千米.【点评】此题考查勾股定理的应用,关键是根据勾股定理的逆定理和定理解答.34.如图,一高层住宅发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面3米,问:发生火灾的住户窗口距离地面BD有多高?【分析】根据AB和AC的长度,构造直角三角形,根据勾股定理就可求出直角边BC的长.【解答】解:过点A作AC⊥BD,垂足为C,由题意可知:AE=CD=3米,AC=9米,AB=15米;在Rt△ABC中,根据勾股定理,得AC2+BC2=AB2,即,BC2+92=152,BC2=152﹣92=144,∴BC=12(米),∴BD=BC+CD=12+3=15(米);答:发生火灾的住户窗口距离地面15米.【点评】此题主要考查了勾股定理的应用,熟练记忆勾股定理公式是解题关键.35.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了多少米?(假设绳子是直的)【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB﹣AD可得BD长.【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB==15(米),∵此人以1米每秒的速度收绳,7秒后船移动到点D的位置,∴CD=17﹣1×7=10(米),∴AD===6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸边移动了9米.【点评】此题主要考查了勾股定理的应用,关键是掌握从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.。
勾股定理单元 易错题难题同步练习试题
勾股定理单元 易错题难题同步练习试题一、选择题1.已知:△ABC 中,BD 、CE 分别是AC 、AB 边上的高,BQ =AC ,点F 在CE 的延长线上,CF =AB ,下列结论错误的是( ).A .AF ⊥AQB .AF=AQC .AF=ADD .F BAQ ∠=∠2.△ABC 的三边的长a 、b 、c 满足:2(1)250a b c -+-+-=,则△ABC 的形状为( ). A .等腰三角形 B .等边三角形 C .钝角三角形 D .直角三角形 3.如图所示,在中,,,.分别以,,为直径作半圆(以为直径的半圆恰好经过点,则图中阴影部分的面积是( )A .4B .5C .7D .64.如图,在△ABC 中,∠A =90°,P 是BC 上一点,且DB =DC ,过BC 上一点P ,作PE ⊥AB 于E ,PF ⊥DC 于F ,已知:AD :DB =1:3,BC =46,则PE+PF 的长是( )A .46B .6C .42D .265.如图,△ABC 中,AB=10,BC=12,AC=213,则△ABC 的面积是( ).A .36B .1013C .60D .12136.已知x ,y 为正数,且224(3)0x y -+-=,如果以x ,y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( ) A .5B .25C .7D .157.如图,已知数轴上点P 表示的数为1-,点A 表示的数为1,过点A 作直线l 垂直于PA ,在l 上取点B ,使1AB =,以点P 为圆心,以PB 为半径作弧,弧与数轴的交点C 所表示的数为( )A .5B .51-C .51+D .51-+8.将一根 24cm 的筷子,置于底面直径为 15cm ,高 8cm 的装满水的无盖圆柱形水杯中,设筷子浸没在杯子里面的长度为 hcm ,则 h 的取值范围是( ) A .h≤15cmB .h≥8cmC .8cm≤h≤17cmD .7cm≤h≤16cm9.如图,∠ACB =90°,AC =BC ,AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD =3,BE =1,则BC 的长是( )A .32B .2C .22D .1010.已知三角形的两边分别为3、4,要使该三角形为直角三角形,则第三边的长为( ) A .5B .7C .5或7D .3或4二、填空题11.如图,在四边形ABCD 中,22AD =,3CD =,45ABC ACB ADC ∠=∠=∠=︒,则BD 的长为__________.12.如图,在ABC 中,D 是BC 边中点,106AB AC ==,,4=AD ,则BC 的长是_____________.13.在△ABC 中,AB=15,AC=13,高AD=12,则ABC ∆的周长为_______________. 14.如图,在Rt △ABC 中,∠B=90°,以AC 为斜边向外作等腰直角三角形COA ,已知BC=8,OB=102,则另一直角边AB 的长为__________.15.如图,已知△DBC 是等腰直角三角形,BE 与CD 交于点O ,∠BDC=∠BEC=90°,BF=CF ,若BC=8,OD=2,则OF=______.16.在Rt △ABC 中,直角边的长分别为a ,b ,斜边长c ,且a +b =35,c =5,则ab 的值为______.17.如图,在等边△ABC 中,AB =6,AN =2,∠BAC 的平分线交BC 于点D ,M 是AD 上的动点,则BM +MN 的最小值是_____.18.如图,在ABC 中,AB AC =,点D 在ABC 内,AD 平分BAC ∠,连结CD ,把ADC 沿CD 折叠,AC 落在CE 处,交AB 于F ,恰有CE AB ⊥.若10BC =,7AD =,则EF =__________.19.在Rt ABC 中,90A ∠=︒,其中一个锐角为60︒,23BC =,点P 在直线AC 上(不与A ,C 两点重合),当30ABP ∠=︒时,CP 的长为__________.20.四个全等的直角三角形按图示方式围成正方行ABCD ,过各较长直角边的中点作垂线,围成面积为4的小正方形EFGH,已知AM 为Rt △ABM 的较长直角边,AM =7EF ,则正方形ABCD 的面积为_______.三、解答题21.如图,,90,8,6,,ABC B AB cm BC cm P Q ︒∆∠===是边上的两点,点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 沿B C A →→运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒. (1)出发2秒后,求线段PQ 的长;(2)求点Q 在BC 上运动时,出发几秒后,PQB 是等腰三角形; (3)点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.22.(1)计算:1312248233⎛⎫-+÷ ⎪ ⎪⎝; (2)已知a 、b 、c 满足2|23|32(30)0a b c +-+--=.判断以a 、b 、c 为边能否构成三角形?若能构成三角形,说明此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.23.如图,△ABC 和△ADE 都是等腰三角形,其中AB =AC ,AD =AE ,且∠BAC =∠DAE . (1)如图①,连接BE 、CD ,求证:BE =CD ;(2)如图②,连接BE 、CD ,若∠BAC =∠DAE =60°,CD ⊥AE ,AD =3,CD =4,求BD 的长;(3)如图③,若∠BAC =∠DAE =90°,且C 点恰好落在DE 上,试探究CD 2、CE 2和BC 2之间的数量关系,并加以说明.24.在等腰△ABC 与等腰△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE ,且点D 、E 、C 三点在同一条直线上,连接BD .(1)如图1,求证:△ADB ≌△AEC(2)如图2,当∠BAC =∠DAE =90°时,试猜想线段AD ,BD ,CD 之间的数量关系,并写出证明过程;(3)如图3,当∠BAC =∠DAE =120°时,请直接写出线段AD ,BD ,CD 之间的数量关系式为: (不写证明过程)25.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 是BC 上一动点、连接AD ,过点A 作AE AD ⊥,并且始终保持AE AD =,连接CE , (1)求证:ABD ACE ≅; (2)若AF 平分DAE ∠交BC 于F ,①探究线段BD ,DF ,FC 之间的数量关系,并证明; ②若3BD =,4CF =,求AD 的长,26.我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在ABC ∆中,AO 是BC 边上的中线,AB 与AC 的“广益值”就等于22AO BO -的值,可记为22AB AC OA BO ∇=-(1)在ABC ∆中,若90ACB ∠=︒,81AB AC ∇=,求AC 的值.(2)如图2,在ABC ∆中,12AB AC ==,120BAC ∠=︒,求AB AC ∇,BA BC ∇的值.(3)如图3,在ABC ∆中,AO 是BC 边上的中线,24ABC S ∆=,8AC =,64AB AC ∇=-,求BC 和AB 的长.27.已知n 组正整数:第一组:3,4,5;第二组:8,6,10;第三组:15,8,17;第四组:24,10,26;第五组:35,12,37;第六组:48,14,50;…(1)是否存在一组数,既符合上述规律,且其中一个数为71?若存在,请写出这组数;若不存在,请说明理由;(2)以任意一个大于2的偶数为一条直角边的长,是否一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数?若可以,请说明理由;若不可以,请举出反例.28.阅读下列材料,并解答其后的问题:我国古代南宋数学家秦九韶在其所著书《数学九章》中,利用“三斜求积术”十分巧妙的解决了已知三角形三边求其面积的问题,这与西方著名的“海伦公式”是完全等价的.我们也称这个公式为“海伦•秦九韶公式”,该公式是:设△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,△ABC 的面积为S ()()()()a b c a b c a c b b c a +++-+-+-.(1)(举例应用)已知△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且a =4,b =5,c =7,则△ABC 的面积为 ;(2)(实际应用)有一块四边形的草地如图所示,现测得AB =(62)m ,BC =5m ,CD =7m ,AD =6m ,∠A =60°,求该块草地的面积.29.在平面直角坐标系中,点A(0,4),B(m,0)在坐标轴上,点C,O关于直线AB 对称,点D在线段AB上.(1)如图1,若m=8,求AB的长;(2)如图2,若m=4,连接OD,在y轴上取一点E,使OD=DE,求证:CE=2DE;(3)如图3,若m=43,在射线AO上裁取AF,使AF=BD,当CD+CF的值最小时,请在图中画出点D的位置,并直接写出这个最小值.30.如图,在△ABC中,D是边AB的中点,E是边AC上一动点,连结DE,过点D作DF⊥DE交边BC于点F(点F与点B、C不重合),延长FD到点G,使DG=DF,连结EF、AG.已知AB=10,BC=6,AC=8.(1)求证:△ADG≌△BDF;(2)请你连结EG,并求证:EF=EG;(3)设AE=x,CF=y,求y关于x的函数关系式,并写出自变量x的取值范围;(4)求线段EF长度的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C根据BD 、CE 分别是AC 、AB 边上的高,推导出EBH DCH ∠=∠;再结合题意,可证明FAC AQB △≌△,由此可得F BAQ ∠=∠,AF AQ =;再经90AEF ∠=得90F FAE ∠+∠=,从而证明AF ⊥AQ ;最后由勾股定理得222AQ AD QD =+,从而得到AF AD ≠,即可得到答案. 【详解】如图,CE 和BD 相较于H∵BD 、CE 分别是AC 、AB 边上的高 ∴CE AB ⊥,BD AC ⊥∴90BEC BDC AEF ADQ ∠=∠=∠=∠= ∴90EBH EHB DHC DCH ∠+∠=∠+∠=∵EHB DHC ∠=∠ ∴EBH DCH ∠=∠ 又∵BQ =AC 且CF =AB ∴FAC AQB △≌△∴F BAQ ∠=∠,AF AQ =,故B 、D 结论正确; ∵90AEF ∠= ∴90F FAE ∠+∠=∴90BAQ FAE F FAE ∠+∠=∠+∠= ∴AF ⊥AQ 故A 结论正确;∵90ADQ ∠= ∴222AQ AD QD =+ ∵0QD ≠ ∴AQ AD ≠ ∴AF AD ≠ 故选:C . 【点睛】本题考查了全等三角形、直角三角形、勾股定理、三角形的高等知识;解题的关键是熟练掌握全等三角形、直角三角形、勾股定理、三角形的高的性质,从而完成求解.2.D解析:D由等式可分别得到关于a 、b 、c 的等式,从而分别计算得到a 、b 、c 的值,再由222+=a b c 的关系,可推导得到△ABC 为直角三角形.【详解】∵2(1)250a b c -+-+-=又∵()2102050a b c ⎧-≥⎪⎪-≥⎨⎪-≥⎪⎩∴()21=02=05=0a b c ⎧-⎪⎪-⎨⎪-⎪⎩∴125a b c ⎧=⎪=⎨⎪=⎩ ∴222+=a b c ∴△ABC 为直角三角形 故选:D . 【点睛】本题考察了平方、二次根式、绝对值和勾股定理逆定理的知识;求解的关键是熟练掌握二次根式、绝对值和勾股定理逆定理,从而完成求解.3.D解析:D 【解析】 【分析】先利用勾股定理计算BC 的长度,然后阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积.【详解】 解:在中 ∵,,∴,∴BC=3,∴阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积=6.故选D.【点睛】本题考查扇形面积的计算和勾股定理.在本题中解题关键是用重叠法去表示阴影部分的面积.4.C解析:C 【解析】 【分析】根据三角形的面积判断出PE+PF 的长等于AC 的长,这样就变成了求AC 的长;在Rt △ACD 和Rt △ABC 中,利用勾股定理表示出AC ,解方程就可以得到AD 的长,再利用勾股定理就可以求出AC 的长,也就是PE+PF 的长. 【详解】∵△DCB 为等腰三角形,PE ⊥AB ,PF ⊥CD ,AC ⊥BD , ∴S △BCD =12BD•PE+12CD•PF=12BD•AC , ∴PE+PF=AC ,设AD=x ,BD=CD=3x ,AB=4x , ∵AC 2=CD 2-AD 2=(3x )2-x 2=8x 2, ∵AC 2=BC 2-AB 2=(46)2-(4x )2, ∴x=2, ∴AC=42, ∴PE+PF=42. 故选C 【点睛】本题考查勾股定理、等腰三角形的性质等知识,解题的关键是学会利用面积法证明线段之间的关系,灵活运用勾股定理解决问题,属于中考常考题型.5.A解析:A 【分析】作AD BC ⊥于点D ,设BD x =,得222AB BD AD -=,222AC CD AD -=,结合题意,经解方程计算得BD ,再通过勾股定理计算得AD ,即可完成求解. 【详解】如图,作AD BC ⊥于点D设BD x =,则12CD BC x x =-=-∴222AB BD AD -=,222AC CD AD -=∴2222AB BD AC CD -=-∵AB=10,AC=∴(()22221012x x -=-- ∴8x =∴6AD ===∴△ABC 的面积111263622BC AD =⨯=⨯⨯= 故选:A .【点睛】本题考察了直角三角形、勾股定理、一元一次方程的知识,解题的关键是熟练掌握勾股定理的性质,从而完成求解.6.C解析:C【分析】本题可根据两个非负数相加和为0,则这两个非负数的值均为0解出x 、y 的值,然后运用勾股定理求出斜边的长.斜边长的平方即为正方形的面积.【详解】依题意得:2240,30x y -=-=,∴2,x y ==,斜边长==所以正方形的面积27==.故选C .考点:本题综合考查了勾股定理与非负数的性质点评:解这类题的关键是利用直角三角形,用勾股定理来寻求未知系数的等量关系.7.B解析:B【分析】由数轴上点P 表示的数为1-,点A 表示的数为1,得PA=2,根据勾股定理得PB 而即可得到答案.【详解】∵数轴上点P 表示的数为1-,点A 表示的数为1,∴PA=2,又∵l ⊥PA ,1AB =,∴PB =∵PB=PC=5,.∴数轴上点C所表示的数为:51故选B.【点睛】本题主要考查数轴上点表示的数与勾股定理,掌握数轴上两点之间的距离求法,是解题的关键.8.C解析:C【分析】筷子浸没在水中的最短距离为水杯高度,最长距离如下图,是筷子斜卧于杯中时,利用勾股定理可求得.【详解】当筷子笔直竖立在杯中时,筷子浸没水中距离最短,为杯高=8cmAD是筷子,AB长是杯子直径,BC是杯子高,当筷子如下图斜卧于杯中时,浸没在水中的距离最长由题意得:AB=15cm,BC=8cm,△ABC是直角三角形∴在Rt△ABC中,根据勾股定理,AC=17cm∴8cm≤h≤17cm故选:C【点睛】本题考查勾股定理在实际生活中的应用,解题关键是将题干中生活实例抽象成数学模型,然后再利用相关知识求解.9.D解析:D【分析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出AD=CE,再利用勾股定理就可以求出BC的值.【详解】解:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE +∠ACD =90°,∴∠EBC =∠DCA .在△CEB 和△ADC 中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CEB ≌△ADC (AAS ),∴CE =AD =3,在Rt △BEC中,,故选D .【点睛】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解题的关键.10.C解析:C【分析】根据勾股定理和分类讨论的方法可以求得第三边的长,从而可以解答本题.【详解】由题意可得,当3和45,当斜边为4,故选:C【点睛】本题考查勾股定理,解答本题的关键是明确题意,利用勾股定理和分类讨论的数学思想解答.二、填空题11.5【分析】作AD′⊥AD ,AD′=AD 构建等腰直角三角形,根据SAS 求证△BAD ≌△CAD′,证得BD=CD′,∠DAD′=90°,然后在Rt △AD′D 和Rt △CD′D 应用勾股定理即可求解.【详解】作AD′⊥AD ,AD′=AD ,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD ,∴∠BAD=∠CAD′,在△BAD 与△CAD′中,{BA CABAD CAD AD AD =∠=∠='',∴△BAD ≌△CAD′(SAS ),∴BD=CD′,∠DAD′=90°,由勾股定理得DD′=22()4AD AD +=',∵∠D′DA+∠ADC=90°,∴由勾股定理得CD′=22(')5DC DD +=,∴BD=CD′=5故答案为5.【点睛】本题考查了全等三角形的判定与性质,勾股定理,等腰直角三角形,正确引出辅助线构造等腰直角三角形是本题的关键.12.413【分析】延长AD 至点E ,使得DE =AD =4,结合D 是中点证得△ADC ≌△EDB ,进而利用勾股定理逆定理可证得∠E =90°,再利用勾股定理求得BD 长进而转化为BC 长即可.【详解】解:如图,延长AD 至点E ,使得DE =AD =4,连接BE ,∵D 是BC 边中点,∴BD=CD,又∵DE=AD,∠ADC=∠EDB,∴△ADC≌△EDB(SAS),∴BE=AC=6,又∵AB=10,∴AE2+BE2=AB2,∴∠E=90°,∴在Rt△BED中,2222=+=+=,64213BD BE DE∴BC=2BD=413,故答案为:413.【点睛】本题考查了全等三角形的判定及性质、勾股定理及其逆定理,正确作出辅助线是解决本题的关键.13.32或42【分析】根据题意画出图形,分两种情况:△ABC是钝角三角形或锐角三角形,分别求出边BC,即可得到答案【详解】当△ABC是钝角三角形时,∵∠D=90°,AC=13,AD=12,∴222213125=-=-=,CD AC AD∵∠D=90°,AB=15,AD=12,∴2222=-=-=,15129BD AB AD∴BC=BD-CD=9-5=4,∴△ABC的周长=4+15+13=32;当△ABC是锐角三角形时,∵∠ADC=90°,AC=13,AD=12,∴2222-=-=,13125CD AC AD∵∠ADB=90°,AB=15,AD=12,∴2222=-=-,BD AB AD15129∴BC=BD-CD=9+5=14,∴△ABC 的周长=14+15+13=42;综上,△ABC 的周长是32或42,故答案为:32或42.【点睛】此题考查勾股定理的实际应用,能依据题意正确画出图形分类讨论是解题的关键. 14.12【分析】延长BA 至E ,使AE=BC ,并连接OE.证∆BCO ≅∠EAO ,再证三角形BOE 是等腰直角三角形,利用勾股定理可得BE=()()222210210220BO EO +=+=,可得AB=BE-AE.【详解】如图,延长BA 至E ,使AE=BC ,并连接OE.因为三角形COA 是等腰直角三角形所以CO=AO,∠AOC=∠BOC+∠AOB=90°因为∠ABC=90°,∠AOC=90°,所以∠BAO+∠BCO=180°,又∠BAO+∠OAE=180° 所以∠BCO=∠OAE所以∆BCO ≅∠EAO所以BO=EO, ∠BOC=∠EOA所以,∠BOE=∠EOA+∠AOB=90°所以三角形BOE 是等腰直角三角形所以()()222210210220BO EO +=+=所以AB=BE-AE=20-8=12故答案为:12【点睛】考核知识点:全等三角形,勾股定理.构造全等三角形是关键.15.10【分析】过点F 作FG ⊥BE ,连接OF 、EF ,先根据等腰直角三角形的性质得出DC 的值,再用勾股定理求出OE 的值,然后根据中位线定理得出FG 的的值,最后再根据勾股定理得出OF 的值即可.【详解】过点F 作FG ⊥BE ,连接OF 、EF ,如下图所示:∵DBC ∆是等腰直角三角形,且BF CF =,8BC = ∴422DC DB ===∵2OD =∴32OC DC OD =-=∴2234OB BD DO +=设OE x =,∵∠BEC=90°则()2222OC OE BC OB OE -=-+∴334OE =∴22123417EC OC EO =-=∵BF CF =,FG ⊥BE ,∠BEC=90°∴16342FG EC ==∴2034BE BO OE =+=∴1734217 GO GE OE BE OE=-=-=∴22=10OF GO GF-=【点睛】本题主要考查了等腰直角三角形的性质、相似三角形、中位线定理、勾股定理等,综合度比较高,准确作出辅助线是关键.16.10【分析】先根据勾股定理得出a2+b2=c2,利用完全平方公式得到(a+b)2﹣2ab=c2,再将a+b=35,c=5代入即可求出ab的值.【详解】解:∵在Rt△ABC中,直角边的长分别为a,b,斜边长c,∴a2+b2=c2,∴(a+b)2﹣2ab=c2,∵a+b=35,c=5,∴(35)2﹣2ab=52,∴ab=10.故答案为10.【点睛】本题考查勾股定理以及完全平方公式,灵活运用完全平方公式是解题关键.17.7【解析】【分析】通过作辅助线转化BM,MN的值,从而找出其最小值求解.【详解】解:连接CN,与AD交于点M.则CN就是BM+MN的最小值.取BN中点E,连接DE,如图所示:∵等边△ABC的边长为6,AN=2,∴BN=AC﹣AN=6﹣2=4,∴BE=EN=AN=2,又∵AD是BC边上的中线,∴DE是△BCN的中位线,∴CN=2DE,CN∥DE,又∵N 为AE 的中点,∴M 为AD 的中点,∴MN 是△ADE 的中位线,∴DE =2MN ,∴CN =2DE =4MN ,∴CM =34CN .在直角△CDM 中,CD =12BC =3,DM =12AD =2,∴CM =∴CN =43=. ∵BM +MN =CN ,∴BM +MN 的最小值为.故答案是:【点睛】考查等边三角形的性质和轴对称及勾股定理等知识的综合应用.18.4913【解析】【分析】如图(见解析),延长AD ,交BC 于点G ,先根据等腰三角形的三线合一性得出AG BC ⊥,再根据折叠的性质、等腰三角形的性质(等边对等角)得出2345∠+∠=︒,从而得出CDG ∆是等腰直角三角形,然后根据勾股定理、面积公式可求出AC 、CE 、CF 的长,最后根据线段的和差即可得.【详解】如图,延长AD ,交BC 于点G AD 平分BAC ∠,,10AB AC BC ==,B ACB AG BC ∴∠=∠⊥,且AG 是BC 边上的中线1123,52B CG BC ∴∠=∠+∠+∠== 由折叠的性质得12,CE AC ∠=∠=123223B ∠=∠+∠+∠=∠+∠∴CE AB ⊥,即90BFC ∠=︒390B ∴∠+∠=︒230239+∴∠∠=∠+︒,即2345∠+∠=︒CDG ∴∆是等腰直角三角形,且5DG CG ==7512AG AD DG ∴=+=+=在Rt ACG ∆中,222251213AC CG AG =+=+=13CE AB AC ==∴=由三角形的面积公式得1122ABC S BC AG AB CF ∆=⋅=⋅ 即1110121322CF ⨯⨯=⨯⋅,解得12013CF = 12049131313EF CE CF ∴=-=-= 故答案为:4913.【点睛】本题是一道较难的综合题,考查了等腰三角形的判定与性质、勾股定理等知识点,通过作辅助线,构造一个等腰直角三角形是解题关键.19.23或2或4【分析】根据题意画出图形,分4种情况进行讨论,利用含30°角直角三角形与勾股定理解答.【详解】解:如图1:当∠C=60°时,∠ABC=30°,与∠ABP=30°矛盾;如图2:当∠C=60°时,∠ABC=30°,∵∠ABP=30°,∴∠CBP=60°,∴△PBC 是等边三角形, ∴23CP BC ==;如图3:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°-30°=30°,∴PC=PB , ∵23BC = ∴222213,(23)(3)32AB BC AC BC AB ===-=-=, 在Rt △APB 中,根据勾股定理222AP AB BP +=,即222()AC PC AB PC -+=,即222(3)3)PC PC -+=,解得2PC =,如图4:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°+30°=90°, ∴12BP PC = 在Rt △BCP 中,根据勾股定理222BP BC PC +=, 即2221()(23)2PC PC +=,解得PC=4(已舍去负值).综上所述,CP 的长为232或4. 故答案为:32或4.【点睛】本题考查含30°角直角三角形,等边三角形的性质和判定,勾股定理.理解直角三角形30°角所对边是斜边的一半,并能通过勾股定理去求另外一个直角边是解决此题的关键. 20.32【分析】由题意设AM=2a ,BM=b ,则正方形ABCD 的面积=224a b +,由题意可知EF=(2a-b)-2(a-b)=2a-b-2a +2b=b ,由此分析即可.【详解】解:设AM=2a .BM=b .则正方形ABCD 的面积=224a b +由题意可知EF=(2a-b)-2(a-b)=2a-b-2a +2b=b ,∵AM 7EF , 727,,2a b a ∴== ∵正方形EFGH 的面积为4,∴24b =,∴正方形ABCD 的面积=2224+832.a b b ==故答案为32.【点睛】本题考查正方形的性质、勾股定理以及线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题.三、解答题21.(1)出发2秒后,线段PQ 的长为213;(2)当点Q 在边BC 上运动时,出发83秒后,△PQB 是等腰三角形;(3)当t 为5.5秒或6秒或6.6秒时,△BCQ 为等腰三角形.【分析】(1)由题意可以求出出发2秒后,BQ 和PB 的长度,再由勾股定理可以求得PQ 的长度; (2)设所求时间为t ,则可由题意得到关于t 的方程,解方程可以得到解答; (3)点Q 在边CA 上运动时,ΔBCQ 为等腰三角形有三种情况存在,对每种情况进行讨论可以得到解答.【详解】(1)BQ=2×2=4cm ,BP=AB−AP=8−2×1=6cm ,∵∠B=90°,由勾股定理得:PQ=22224652213BQ BP +=+==∴出发2秒后,线段PQ 的长为213;(2)BQ=2t ,BP=8−t由题意得:2t=8−t解得:t=83∴当点Q 在边BC 上运动时,出发83秒后,△PQB 是等腰三角形; (3) ∵∠ABC=90°,BC=6,AB=8,∴AC=2268+=10.①当CQ=BQ 时(图1),则∠C=∠CBQ ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ ,∴BQ=AQ ,∴CQ=AQ=5,∴BC+CQ=11,∴t=11÷2=5.5秒;②当CQ=BC 时(如图2),则BC+CQ=12∴t=12÷2=6秒③当BC=BQ时(如图3),过B点作BE⊥AC于点E,∴BE=6824105 AB BCAC⋅⨯==,所以CE=22BC BE-=185=3.6,故CQ=2CE=7.2,所以BC+CQ=13.2,∴t=13.2÷2=6.6秒.由上可知,当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.【点睛】本题考查三角形的动点问题,利用分类讨论思想和方程方法、综合力学的运动知识和三角形边角的有关知识求解是解题关键.22.(1)423;(2)以a、b、c为边能构成三角形,此三角形的形状是直角三角形,6【分析】(1)根据二次根式的加减法法则、除法法则和二次根式的性质求出即可;(2)先根据绝对值,偶次方、算术平方根的非负性求出a、b、c的值,再根据勾股定理的逆定理得出三角形是直角三角形,再求出面积即可.【详解】解:(1)1312248233⎛÷⎝=÷=÷ =423; (2)以a 、b 、c 为边能构成三角形,此三角形的形状是直角三角形,理由是:∵a 、b 、c 满足2|a (c 0-=,∴a ﹣=0,﹣b =0,c 0,∴a =,b =,c∵,,∴以a 、b 、c 为边能组成三角形,∵a =,b =,c∴a 2+b 2=c 2,∴以a 、b 、c 为边能构成直角三角形,直角边是a 和b ,则此三角形的面积是12⨯. 【点睛】此题考查了计算能力,掌握二次根式的加减法法则、除法法则和二次根式的性质,绝对值,偶次方、算术平方根的非负性,勾股定理的逆定理是解题的关键.23.(1)证明见解析;(2)5;(3)CD 2+CE 2=BC 2,证明见解析.【分析】(1)先判断出∠BAE=∠CAD ,进而得出△ACD ≌△ABE ,即可得出结论.(2)先求出∠CDA=12∠ADE=30°,进而求出∠BED=90°,最后用勾股定理即可得出结论. (3)方法1、同(2)的方法即可得出结论;方法2、先判断出CD 2+CE 2=2(AP 2+CP 2),再判断出CD 2+CE 2=2AC 2.即可得出结论.【详解】解:∵∠BAC =∠DAE ,∴∠BAC +∠CAE =∠DAE +∠CAE ,即∠BAE =∠CAD .又∵AB =AC ,AD =AE ,∴△ACD ≌△ABE (SAS ),∴CD =BE .(2)如图2,连结BE ,∵AD =AE ,∠DAE =60°,∴△ADE 是等边三角形,∴DE =AD =3,∠ADE =∠AED =60°,∵CD ⊥AE ,∴∠CDA =12∠ADE =12×60°=30°, ∵由(1)得△ACD ≌△ABE ,∴BE =CD =4,∠BEA =∠CDA =30°,∴∠BED =∠BEA +∠AED =30°+60°=90°,即BE ⊥DE ,∴BD =22BE DE +=2234+=5.(3)CD 2、CE 2、BC 2之间的数量关系为:CD 2+CE 2=BC 2,理由如下:解法一:如图3,连结BE .∵AD =AE ,∠DAE =90°,∴∠D =∠AED =45°,∵由(1)得△ACD ≌△ABE ,∴BE =CD ,∠BEA =∠CDA =45°,∴∠BEC =∠BEA +∠AED =45°+45°=90°,即BE ⊥DE ,在Rt △BEC 中,由勾股定理可知:BC 2=BE 2+CE 2.∴BC 2=CD 2+CE 2.解法二:如图4,过点A 作AP ⊥DE 于点P .∵△ADE 为等腰直角三角形,AP ⊥DE ,∴AP =EP =DP .∵CD 2=(CP +PD )2=(CP +AP )2=CP 2+2CP •AP +AP 2,CE 2=(EP ﹣CP )2=(AP ﹣CP )2=AP 2﹣2AP •CP +CP 2,∴CD 2+CE 2=2AP 2+2CP 2=2(AP 2+CP 2),∵在Rt △APC 中,由勾股定理可知:AC 2=AP 2+CP 2,∴CD 2+CE 2=2AC 2.∵△ABC 为等腰直角三角形,由勾股定理可知:∴AB 2+AC 2=BC 2,即2AC 2=BC 2,∴CD 2+CE 2=BC 2.【点睛】本题是几何变换综合题,主要考查了全等三角形的判定和性质,勾股定理,等边三角形的判定和性质,等腰直角三角形的判定和性质,解(1)的关键是判断出∠BAE=∠CAD,解(2)(3)的关键是判断出BE⊥DE,是一道中等难度的中考常考题.24.(1)见解析;(2)CD2AD+BD,理由见解析;(3)CD3+BD【分析】(1)由“SAS”可证△ADB≌△AEC;(2)由“SAS”可证△ADB≌△AEC,可得BD=CE,由直角三角形的性质可得DE2AD,可得结论;(3)由△DAB≌△EAC,可知BD=CE,由勾股定理可求DH 3,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD3AD+BD,即可解决问题;【详解】证明:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);(2)CD2AD+BD,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠BAC=90°,AD=AE,∴DE2AD,∵CD=DE+CE,∴CD =2AD +BD ;(3)作AH ⊥CD 于H .∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,又∵AB =AC ,AD =AE ,∴△ADB ≌△AEC (SAS );∴BD =CE ,∵∠DAE =120°,AD =AE ,∴∠ADH =30°,∴AH =12AD , ∴DH 22AD AH -3, ∵AD =AE ,AH ⊥DE ,∴DH =HE ,∴CD =DE +EC =2DH +BD 3+BD ,故答案为:CD 3+BD .【点睛】本题是结合了全等三角形的性质与判定,勾股定理等知识的综合问题,熟练掌握知识点,有简入难,层层推进是解答关键.25.(1)见详解(2)①结论:222BD FC DF +=,证明见详解②35【分析】(1)根据SAS ,只要证明BAD CAE ∠=∠即可解决问题;(2)①结论:222BD FC DF +=.连接EF ,进一步证明90ECF ∠=︒,DF EF =,再利用勾股定理即可得证;②过点A 作AG BC ⊥于点G ,在Rt ADG 中求出AG 、DG 即可求解.【详解】解:(1)∵AE AD ⊥∴90DAC CAE ∠+∠=︒∵90BAC ∠=︒∴90DAC BAD ∠+∠=︒∴BAD CAE ∠=∠∴在ABD △和ACE △中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴ABD △≌ACE △()SAS(2)①结论:222BD FC DF +=证明:连接EF ,如图:∵ABD △≌ACE △∴B ACE ∠=∠,BD CE =∴90ECF BCA ACE BCA B ∠=∠+∠=∠+∠=︒∴222FC CE EF +=∴222FC BD EF +=∵AF 平分DAE ∠∴DAF EAF ∠=∠∴在DAF △和EAF △中AD AE DAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴DAF △≌EAF △()SAS∴DF EF =∴222FC BD DF +=即222BD FC DF +=②过点A 作AG BC ⊥于点G ,如图:∵由①可知222223425DF BD FC =+=+=∴5DF =∴35412BC BD DF FC =++=++=∵AB AC =,AG BC ⊥ ∴1112622BG AG BC ===⨯= ∴633DG BG BD =-=-=∴在Rt ADG 中,22223635AD DG AG =+=+=故答案是:(1)见详解(2)①结论:222BD FC DF +=,证明见详解②35【点睛】本题考查了全等三角形的判定和性质、直角三角形的判定和性质以及角平分线的性质.综合性较强,属中档题,学会灵活应用相关知识点进行推理证明.26.(1)AC=9;(2)AB ∇AC =-72,BA ∇BC =216;(3)BC=2OC=273,AB=10.【分析】(1)在Rt AOC ∆中,根据勾股定理和新定义可得AO 2-OC 2=81=AC 2;(2)①先利用含30°的直角三角形的性质求出AO =2,OB =23,再用新定义即可得出结论; ②先构造直角三角形求出BE ,AE ,再用勾股定理求出BD ,最后用新定义即可得出结论;(3)作BD ⊥CD,构造直角三角形BCD,根据三角形面积关系求出BD,根据新定义和勾股定理逆定理得出三角形AOD 是直角三角形,根据中线性质得出OA 的长度,根据勾股定理求出OC,从而得出BC,再根据勾股定理求出CD,再求出AD,再运用勾股定理求出AB.【详解】(1)已知如图:AO 为BC 上的中线,在Rt AOC ∆中,AO 2-OC 2=AC 2因为81AB AC ∇=所以AO 2-OC 2=81所以AC 2=81所以AC=9.(2)①如图2,取BC 的中点D ,连接AO ,∵AB =AC ,∴AO ⊥BC ,在△ABC 中,AB =AC ,∠BAC =120°,∴∠ABC =30°,在Rt △AOB 中,AB =12,∠ABC =30°,∴AO =6,OB =2222126AB AO -=-=63,∴AB ∇AC =AO 2﹣BO 2=36﹣108=﹣72, ②取AC 的中点D ,连接BD ,∴AD =CD =12AC =6,过点B 作BE ⊥AC 交CA 的延长线于E ,在Rt △ABE 中,∠BAE =180°﹣∠BAC =60°,∴∠ABE =30°, ∵AB =12,∴AE =6,BE =222212663AB AE -=-=, ∴DE =AD +AE =12,在Rt △BED 中,根据勾股定理得,BD =()2222631267BE DE +=+=∴BA ∇BC =BD 2﹣CD 2=216;(3)作BD ⊥CD,因为24ABC S ∆=,8AC =,所以BD=26ABC S AC ∆÷=,因为64AB AC ∇=-,AO 是BC 边上的中线,所以AO 2-OC 2=-64,所以OC 2-AO 2=64,由因为AC 2=82=64,所以OC 2-AO 2= AC 2所以∠OAC=90°所以OA=24228322ABC S AC ∆⨯÷=⨯÷= 所以22228373AC OA +=+所以73在Rt △BCD 中,()2222276163BC BD -=-=所以AD=CD-AC=16-8=8所以22228610AD BD +=+=【点睛】考核知识点:勾股定理逆定理,含30°直角三角形性质.借助辅助线构造直角三角形,运用勾股定理等直角三角形性质解决问题是关键.27.(1)不存在,见解析;(2)以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数,见解析.【分析】(1)根据题意可知,这n 组正整数符合规律m 2-1,2m ,m 2+1(m≥2,且m 为整数).分三种情况:m 2-1=71;2m=71;m 2+1=71;进行讨论即可求解;(2)由于(m 2-1) 2+(2m ) 2=m 4+2m 2+1=(m 2+1) 2,根据勾股定理的逆定理即可求解.【详解】(1)不存在一组数,既符合上述规律,且其中一个数为71.理由如下:根据题意可知,这n 组正整数符合规律21m -,2m ,21m +(2m ≥,且m 为整数). 若2171m -=,则272m =,此时m 不符合题意;若271m =,则35.5,m =,此时m 不符合题意;若2171m +=,则270m =,此时m 不符合题意,所以不存在一组数,既符合上述规律,且其中一个数为71.(2)以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数.理由如下:对于一组数:21m -,2m ,21m +(2m ≥,且m 为整数).因为2224222(1)(2)21(1)m m m m m -+=++=+所以若一个三角形三边长分别为21m -,2m ,21m +(2m ≥,且m 为整数),则该三角形为直角三角形.因为当2m ≥,且m 为整数时,2m 表示任意一个大于2的偶数,21m -,21m +均为正整数,所以以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数.【点睛】考查了勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.注意分类思想的应用28.(1)46(2)(123+24+510)m2【分析】(1)由已知△ABC的三边a=4,b=5,c=7,可知这是一个一般的三角形,故选用海伦-奏九韶公式求解即可;(2)过点D作DE⊥AB,垂足为E,连接BD.将所求四边形的面积转化为三个三角形的面积的和进行计算.【详解】(1)解:△ABC的面积为S=()()()()a b c a b c a c b b c a+++-+-+-=(457)(457)(475)(574)+++-+-+-=46故答案是:46;(2)解:如图:过点D作DE⊥AB,垂足为E,连接BD(如图所示)在Rt△ADE中,∵∠A=60°,∴∠ADE=30°,∴AE=12AD=6∴BE=AB﹣AE=62﹣6=2DE2222(46)(26)62AD AE-=-=∴BD2222BE DE(42)(62)226+=+=∴S△BCD 1(57226)(57226)(22675)(22657)510 4+++-+-+-=∵S△ABD=11642)6212324 22AB DE⋅=⨯⨯=∴S四边形ABCD=S△BCD+S△ABD=12324510+答:该块草地的面积为(12324510+m2.【点睛】本题考查了勾股定理的应用和三角形面积的求解方法.此题难度不大,注意选择适当的求解方法是关键.29.(1)AB=52)见解析;(3)CD+CF的最小值为7.【分析】(1)根据勾股定理可求AB的长;(2)过点D 作DF ⊥AO ,根据等腰三角形的性质可得OF =EF ,根据轴对称的性质等腰直角三角形的性质可得AF =DF ,设OF =EF =x ,AE =4﹣2x ,根据勾股定理用参数x 表示 DE ,CE 的长,即可证CE =2DE ;(3)过点B 作BM ⊥OB ,在BM 上截取BM =AO ,过点C 作CN ⊥BM ,交MB 的延长线于点N ,根据锐角三角函数可得∠ABO =30°,根据轴对称的性质可得AC =AO =4,BO =BC =43,∠ABO =∠ABC =30°,∠OAB =∠CAB =60°,根据“SAS ”可证△ACF ≌△BMD ,可得CF =DM ,则当点D 在CM 上时,CF +CD 的值最小,根据直角三角形的性质可求CN ,BN 的长,根据勾股定理可求CM 的长,即可得CF +CD 的最小值.【详解】(1)∵点A (0,4),B (m ,0),且m =8,∴AO =4,BO =8,在Rt △ABO 中,AB =2245AO BO +=(2)如图,过点D 作DF ⊥AO ,∵DE =DO ,DF ⊥AO ,∴EF =FO , ∵m =4,∴AO =BO =4, ∴∠ABO =∠OAB =45°,∵点C ,O 关于直线AB 对称,∴∠CAB =∠CBA =45°,AO =AC =OB =BC =4,∴∠CAO =∠CBO =90°,∵DF ⊥AO ,∠BAO =45°,∴∠DAF =∠ADF =45°,∴AF =DF ,设OF =EF =x ,AE =4﹣2x ,∴AF =DF =4﹣x ,在Rt △DEF 中,DE ()2222242816EF DF x x x x +=+-=-+ 在Rt △ACE 中,CE ()()2222164222816AC AE x x x +=+-=-+ ∴CE 2DE ,(3)如图,过点B 作BM ⊥OB ,在BM 上截取BM =AO ,过点C 作CN ⊥BM ,交MB 的延长线于点N ,。
勾股定理易错题训练
一、审题不仔细,受定势思维影响1.【例1】在Rt △ABC 中,a=3,b=4,求c .2.【例2】已知RT △ABC 中,∠B=RT ∠, ,c=求b.3.【例3】若直角三角形的两条边长为6cm 、8cm ,则第三边长为________.4.【例4】在△ABC 中,a ∶b ∶c=9∶15∶12, 试判定△ABC 是不是直角三角形.5.在△ABC 中,,,A B C ∠∠∠的对边分别为,,a b c ,且2()()a b a b c +-=,则( )(A )A ∠为直角 (B )C ∠为直角 (C )B ∠为直角 (D )不是直角三角形二、概念不明确,混淆勾股定理及其逆定理1.下列各组数据中的三个数,可作为三边长构成直角三角形的是( )(A )1、2、3 (B )2223,4,5 (C (D 2.在B 港有甲、乙两艘渔船,若甲船沿北偏东60︒方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M 岛,乙船到P 岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?三、勾股定理的应用易错点1.工人师傅从一根长90cm 的钢条上截取一段后恰好与两根长分别为60cm 、100cm 的钢条一起焊接成一个直角三角形钢架,则截取下来的钢条长应为( )A 、80cmB 、错误!未找到引用源。
C 、80cm 或错误!未找到引用源。
D 、60cm2.现有两根木棒的长度分别为40厘米和50厘米,若要钉成一个直角三角形框架,那么所需木棒的长一定为( )A 、30厘米B 、40厘米C 、50厘米D 、以上都不对3.(2005•贵阳)如图A ,一圆柱体的底面周长为24cm ,高BD 为4cm ,BC 是直径,一只蚂蚁从点D 出发沿着圆柱的表面爬行到点C 的最短路程大约是( )A 、6cmB 、12cmC 、13cmD 、16cm4.有一长、宽、高分别是5cm ,4cm ,3cm 的长方体木块,一只蚂蚁要从长方体的一个顶点A 处沿长方体的表面爬到长方体上和A 相对的顶点B 处,则需要爬行的最短路径长为( )A 、5错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理易错题训练
一、审题不仔细,受定势思维影响
1.【例1】在Rt △ABC 中,a=3,b=4,求c .
2.【例2】已知RT △ABC 中,∠B=90°,,c=求b.
3.【例3】若直角三角形的两条边长为6cm 、8cm ,则第三边长为________.
4.【例4】在△ABC 中,a ∶b ∶c=9∶15∶12, 试判定△ABC 是不是直角三角形.
5.在△ABC
中,,,A B C ∠∠∠的对边分别为,,a b c ,且2
()()a b a b c +-=,则(
)
(A )A ∠为直角(B )C ∠为直角(C )B ∠为直角 (D )不是直角三角形
二、概念不明确,混淆勾股定理及其逆定理
1.下列各组数据中的三个数,可作为三边长构成直角三角形的是()
3,4,5(C)1,2,3(D)3,4,5(A)1、2、3 (B)222
2.在B港有甲、乙两艘渔船,若甲船沿北偏东60 方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?
三、勾股定理的应用易错点
1.工人师傅从一根长90cm的钢条上截取一段后恰好与两根长分别为60cm、100cm的钢条一起焊接成一个直角三角形钢架,则截取下来的钢条长应为()
2.现有两根木棒的长度分别为40厘米和50厘米,若要钉成一个直角三角形框架,那么所需木棒的长一定为()
A、30厘米
B、40厘米
C、50厘米
D、以上都不对3.如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的表面爬行到点C的最短路程大约是()A、6cm B、12cm C、13cm D、16cm
4.有一长、宽、高分别是5cm,4cm,3cm的长方体木块,一只蚂蚁要从长方体的一个顶点A处沿长方体的表面爬到长方体上和A相对的顶点B处,则需要爬行的最短路径长为()
勾股定理重要考点训练
1.在Rt △ABC 中,∠C=90°,若a+b=5,c=4,则ABC △S = _______________
2.已知△ABC 是边长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE,……,依此类推,第n 个等腰直角三角形的斜边长是____________________-
3.若一个三角形的三边长分别为1、a 、8(其中a 为正整数),则以a -2、a 、a +2为边的三角形的面积为________.
4. 观察下列各式:32
+42
=52
;82
+62
=102
;152
+82
=172
;242
+102
=262
…,你有没有发现其中的规律?请用含n 的代数式表示此规律并证明,再根据规律写出接下来的式子.
C
5. 如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长
6. 满足下列条件的三角形中,不是直角三角形的是( )
A.三内角之比为1∶2∶3
B.三边长的平方之比为1∶2∶3
C.三边长之比为3∶4∶5
D.三内角之比为3∶4∶5 7.如图,把矩形纸片ABCD 沿EF 折叠,使点B 落在边AD 上的点B′处,点A 落在点A′处; (1)求证:B′E=BF ;
(2)设AE=a ,AB=b ,BF=c ,试猜想a ,b ,c 之间的一种关系,并给予证明.
8.如图,小明在A 时测得某树的影长为2m ,B 时又测得该树的影长为
8m ,若两次日照的光线互相垂直,则树的高度为_____m. 9.直角三角形有一个直角边为11,另外两边也是自然数, 那么它的周长为( )
2
1E
D
C B
A
第8题图
A 时
B 时
A.132
B.121
C.120
D.110
10.如图1,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD 等于() A.2cm B.3 cm C.4 cm D.5 cm
勾股定理中数学思想的运用
一.勾股定理中方程思想的运用
1.如左图所示,有一张直角三角形纸片,两直角边AC=5cm,BC=10cm,将△ABC折叠,使点B与点A重合,折痕为DE,则CD的长为()
2.如图,中,,求BC边上的高AD.
二.勾股定理中分类讨论思想的运用
3.已知△ABC中,AB=20,AC=15,BC边上的高为12,求△ABC的面积。
三.勾股定理中类比思想的运用
4.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1、S2、S3表示,则不难证明S1=S2+S3
(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,那么S1、S2、S3之间有什么关系?(不必证明)
(2)如图③,分别以直角三角形ABC三边为边向外作三个等边三角形,其面积分别用S1、S2、S3表示,请你确定S1、S2、S3之间的关系并加以证明
四.勾股定理中整体思想的运用
5.在直线l上依次摆放着七个正方形(如图).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4=_____.。