动量定理练习题含答案及解析

合集下载

高中物理动量定理题20套(带答案)含解析

高中物理动量定理题20套(带答案)含解析

【答案】(1)
(2)
(3)增大 S 可以通过减小 q、
U 或增大 m 的方法. 提高该比值意味着推进器消耗相同的功率可以获得更大的推力. 【解析】
试题分析:(1)根据动能定理有
解得:
(2)在与飞船运动方向垂直方向上,根据动量守恒有:MΔv=Nmv
解得:
(3)设单位时间内通过栅电极 A 的氙离子数为 n,在时间 t 内,离子推进器发射出的氙离 子个数为 N nt ,设氙离子受到的平均力为 F ,对时间 t 内的射出的氙离子运用动量定 理, Ft Nmv ntmv , F = nmv 根据牛顿第三定律可知,离子推进器工作过程中对飞船的推力大小 F= F = nmv 电场对氙离子做功的功率 P= nqU
﹣μ(m0+m)gt=(m0+m)(v2﹣v1) 解得:物块相对于木板滑行的时间
t v2 v1 1s g
3.甲图是我国自主研制的 200mm 离子电推进系统, 已经通过我国“实践九号”卫星空间飞 行试验验证,有望在 2015 年全面应用于我国航天器.离子电推进系统的核心部件为离子推 进器,它采用喷出带电离子的方式实现飞船的姿态和轨道的调整,具有大幅减少推进剂燃 料消耗、操控更灵活、定位更精准等优势.离子推进器的工作原理如图乙所示,推进剂氙 原子 P 喷注入腔室 C 后,被电子枪 G 射出的电子碰撞而电离,成为带正电的氙离子.氙离 子从腔室 C 中飘移过栅电极 A 的速度大小可忽略不计,在栅电极 A、B 之间的电场中加 速,并从栅电极 B 喷出.在加速氙离子的过程中飞船获得推力. 已知栅电极 A、B 之间的电压为 U,氙离子的质量为 m、电荷量为 q.
由动量定理 F Gt p
得小球受到地面的平均作用力是 F=12N
5.如图甲所示,足够长光滑金属导轨 MN、PQ 处在同一斜面内,斜面与水平面间的夹角 θ=30°,两导轨间距 d=0.2 m,导轨的 N、Q 之间连接一阻值 R=0.9 Ω 的定值电阻。金属杆 ab 的电阻 r=0.1 Ω,质量 m=20 g,垂直导轨放置在导轨上。整个装置处在垂直于斜面向上 的匀强磁场中,匀强磁场的磁感应强度 B=0.5 T。现用沿斜面平行于金属导轨的力 F 拉着金 属杆 ab 向上运动过程中,通过 R 的电流 i 随时间 t 变化的关系图像如图乙所示。不计其它 电阻,重力加速度 g 取 10 m/s2。

高中物理动量定理及其解题技巧及练习题(含答案)含解析

高中物理动量定理及其解题技巧及练习题(含答案)含解析

高中物理动量定理及其解题技巧及练习题(含答案)含解析一、高考物理精讲专题动量定理1.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。

某型“礼花”底座仅0.2s 的发射时间,就能将质量为m =5kg 的礼花弹竖直抛上180m 的高空。

(忽略发射底座高度,不计空气阻力,g 取10m/s 2)(1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力)(2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略不计),测得前后两块质量之比为1:4,且炸裂时有大小为E =9000J 的化学能全部转化为了动能,则两块落地点间的距离是多少? 【答案】(1)1550N ;(2)900m 【解析】 【分析】 【详解】(1)设发射时燃烧的火药对礼花弹的平均作用力为F ,设礼花弹上升时间为t ,则:212h gt =解得6s t =对礼花弹从发射到抛到最高点,由动量定理00()0Ft mg t t -+=其中00.2s t =解得1550N F =(2)设在最高点爆炸后两块质量分别为m 1、m 2,对应的水平速度大小分别为v 1、v 2,则: 在最高点爆炸,由动量守恒定律得1122m v m v =由能量守恒定律得2211221122E m v m v =+ 其中1214m m = 12m m m =+联立解得1120m/s v =230m/s v =之后两物块做平抛运动,则 竖直方向有212h gt =水平方向有12s v t v t =+由以上各式联立解得s=900m2.如图所示,在倾角θ=37°的足够长的固定光滑斜面的底端,有一质量m =1.0kg 、可视为质点的物体,以v 0=6.0m/s 的初速度沿斜面上滑。

已知sin37º=0.60,cos37º=0.80,重力加速度g 取10m/s 2,不计空气阻力。

求: (1)物体沿斜面向上运动的加速度大小;(2)物体在沿斜面运动的过程中,物体克服重力所做功的最大值; (3)物体在沿斜面向上运动至返回到斜面底端的过程中,重力的冲量。

高考物理动量定理的技巧及练习题及练习题(含答案)及解析

高考物理动量定理的技巧及练习题及练习题(含答案)及解析

高考物理动量定理的技巧及练习题及练习题(含答案)及解析一、高考物理精讲专题动量定理1.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg。

用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙壁相接触。

另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,C的v-t图象如图乙所示。

求:(1)C的质量m C;(2)t=8s时弹簧具有的弹性势能E p1,4~12s内墙壁对物块B的冲量大小I;(3)B离开墙后的运动过程中弹簧具有的最大弹性势能E p2。

【答案】(1)2kg ;(2)27J,36N·S;(3)9J【解析】【详解】(1)由题图乙知,C与A碰前速度为v1=9m/s,碰后速度大小为v2=3m/s,C与A碰撞过程动量守恒m C v1=(m A+m C)v2解得C的质量m C=2kg。

(2)t=8s时弹簧具有的弹性势能E p1=12(m A+m C)v22=27J取水平向左为正方向,根据动量定理,4~12s内墙壁对物块B的冲量大小I=(m A+m C)v3-(m A+m C)(-v2)=36N·S(3)由题图可知,12s时B离开墙壁,此时A、C的速度大小v3=3m/s,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大(m A+m C)v3=(m A+m B+m C)v41 2(m A+m C)23v=12(m A+m B+m C)24v+E p2解得B离开墙后的运动过程中弹簧具有的最大弹性势能E p2=9J。

2.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R=0.1 m,半圆形轨道的底端放置一个质量为m=0.1 kg的小球B,水平面上有一个质量为M=0.3 kg的小球A以初速度v0=4.0 m/ s开始向着木块B滑动,经过时间t=0.80 s与B发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A与桌面间的动摩擦因数μ=0.25,求:(1)两小球碰前A 的速度; (2)球碰撞后B ,C 的速度大小;(3)小球B 运动到最高点C 时对轨道的压力;【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上 【解析】 【分析】 【详解】(1)选向右为正,碰前对小球A 的运动由动量定理可得: –μ Mg t =M v – M v 0 解得:v =2m /s(2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒:A B Mv Mv mv =+222111222A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s(3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒:2211222B Cmv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2CN v mg F m R'+= 解得:F N =4N由牛顿第三定律知,F N '=F N =4N小球对轨道的压力的大小为3N ,方向竖直向上.3.图甲为光滑金属导轨制成的斜面,导轨的间距为1m l =,左侧斜面的倾角37θ=︒,右侧斜面的中间用阻值为2R =Ω的电阻连接。

物理动量定理题20套(带答案)含解析

物理动量定理题20套(带答案)含解析

【物理】物理动量定理题20套(带答案)含解析一、高考物理精讲专题动量定理1.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停在沙坑里.求:⑴沙对小球的平均阻力F ;⑵小球在沙坑里下落过程所受的总冲量I .【答案】(1)122()mg t t t (2)1mgt 【解析】试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有:mg(t 1+t 2)-Ft 2=0, 解得:方向竖直向上⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有:mgt 1-I=0,∴I=mgt 1方向竖直向上考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.2.如图所示,固定在竖直平面内的4光滑圆弧轨道AB 与粗糙水平地面BC 相切于B 点。

质量m =0.1kg 的滑块甲从最高点A 由静止释放后沿轨道AB 运动,最终停在水平地面上的C 点。

现将质量m =0.3kg 的滑块乙静置于B 点,仍将滑块甲从A 点由静止释放结果甲在B 点与乙碰撞后粘合在一起,最终停在D 点。

已知B 、C 两点间的距离x =2m,甲、乙与地面间的动摩擦因数分别为=0.4、=0.2,取g=10m/s ,两滑块均视为质点。

求:(1)圆弧轨道AB 的半径R;(2)甲与乙碰撞后运动到D 点的时间t【答案】(1) (2)【解析】【详解】(1)甲从B 点运动到C 点的过程中做匀速直线运动,有:v B 2=2a 1x 1;根据牛顿第二定律可得:对甲从A 点运动到B 点的过程,根据机械能守恒:解得v B =4m/s ;R=0.8m ;(2)对甲乙碰撞过程,由动量守恒定律:;若甲与乙碰撞后运动到D 点,由动量定理:解得t=0.4s3.2019年 1月 3日,嫦娥四号探测器成功着陆在月球背面,并通过“鹊桥”中继卫星传回了世界上第一张近距离拍摄月球背面的图片。

高考物理动量定理及其解题技巧及练习题(含答案)含解析

高考物理动量定理及其解题技巧及练习题(含答案)含解析

高考物理动量定理及其解题技巧及练习题(含答案)含解析一、高考物理精讲专题动量定理1.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停在沙坑里.求:⑴沙对小球的平均阻力F ;⑵小球在沙坑里下落过程所受的总冲量I . 【答案】(1)122()mg t t t (2)1mgt 【解析】试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有: mg(t 1+t 2)-Ft 2=0, 解得:方向竖直向上⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有: mgt 1-I=0,∴I=mgt 1方向竖直向上 考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.2.如图所示,在倾角θ=37°的足够长的固定光滑斜面的底端,有一质量m =1.0kg 、可视为质点的物体,以v 0=6.0m/s 的初速度沿斜面上滑。

已知sin37º=0.60,cos37º=0.80,重力加速度g 取10m/s 2,不计空气阻力。

求: (1)物体沿斜面向上运动的加速度大小;(2)物体在沿斜面运动的过程中,物体克服重力所做功的最大值; (3)物体在沿斜面向上运动至返回到斜面底端的过程中,重力的冲量。

【答案】(1)6.0m/s 2(2)18J (3)20N·s ,方向竖直向下。

【解析】 【详解】(1)设物体运动的加速度为a ,物体所受合力等于重力沿斜面向下的分力为:F=mg sin θ根据牛顿第二定律有:F=ma ;解得:a =6.0m/s 2(2)物体沿斜面上滑到最高点时,克服重力做功达到最大值,设最大值为v m ;对于物体沿斜面上滑过程,根据动能定理有:2120m W mv -=-解得W =18J ;(3)物体沿斜面上滑和下滑的总时间为:02262s 6v t a ⨯=== 重力的冲量:20N s G I mgt ==⋅方向竖直向下。

动量定理习题参考答案及解答

动量定理习题参考答案及解答

动量定理习题参考答案及解答1.题图1所示系统中各杆都为均质杆。

已知:杆OA 、CD 的质量各为m ,杆AB 质量为2m ,且OA =AC =CB =CD =l ,杆OA 以角速度ω 转动,求图示瞬时各杆动量的大小并在图中标明其动量的方向。

答案:ωωωml p ml p ml p CD AB OA 22 ,22 ,2===,方向如图。

注意:图中所示仅是动量的方向,并不表示合动量的作用线。

2.一颗质量为m =30g 的子弹,以v 0=500m/s 的速度射入质量m A =4.5kg 的物块A 中。

物块A 与小车BC 之间的动摩擦系数f D =0.5。

已知小车的质量m BC =3.5kg ,可以在光滑的水平地面上自由运动。

试求:(1)车与物块的末速度v ;(2)物块A 在车上距离B 端的最终位置。

提示:整体而言,根据水平方向动量守恒可先求得车与物块的末速度v ;子弹射入物块瞬时物块与子弹的速度v 1;然后计算物块与小车之间的动滑动摩擦力F D ;进而求得小车和物块的加速度,再分别求得小车和物块的位移;最后求得相对位移和物块A 在车上距离B 端的最终位置。

答案:)(113)2(),/(868.1)1(mm s m v =3.如题图3所示,均质杆AB ,长l ,直立在光滑水平面上。

求它从铅直位置无初速地倒下时,端点A 相对图示坐标系的轨迹。

提示:水平方向质心守恒。

答案: 2224l y x =+4.质量为m 1的棱柱体A ,其顶部铰接一质量为m 2、边长为a 和b 的棱柱体B ,初始静止,如图所示。

忽略棱柱A 与水平面的摩擦,若作用在B 上的力偶使其绕O 轴转动90o (由图示的实线位置转至虚线位置),试求棱柱体A 移动的距离。

设A 与B 的各边平行。

提示:水平方向质心守恒。

答案:棱柱体A 移动的距离 )(2)(212m m b a m x ++= (向左) 5.如图所示水平面上放一均质三棱柱A ,在其斜面上又放一均质三棱柱B 。

最新物理动量定理题20套(带答案)

最新物理动量定理题20套(带答案)
历的时间为 t,发生的位移为 x.分析说明物体的平均速度 v 与 v0、v 满足什么条件时,F1
和 F2 是相等的. (3)质量为 m 的物块,在如图 2 所示的合力作用下,以某一初速度沿 x 轴运动,当由位置
x=0 运动至 x=A 处时,速度恰好为 0,此过程中经历的时间为 t 2
所受合力对时间 t 的平均值.
5.动能定理和动量定理不仅适用于质点在恒力作用下的运动,也适用于质点在变力作用下 的运动,这时两个定理表达式中的力均指平均力,但两个定理中的平均力的含义不同,在 动量定理中的平均力 F1 是指合力对时间的平均值,动能定理中的平均力 F2 是合力指对位移
的平均值. (1)质量为 1.0kg 的物块,受变力作用下由静止开始沿直线运动,在 2.0s 的时间内运动了 2.5m 的位移,速度达到了 2.0m/s.分别应用动量定理和动能定理求出平均力 F1 和 F2 的 值. (2)如图 1 所示,质量为 m 的物块,在外力作用下沿直线运动,速度由 v0 变化到 v 时,经
m/s2
5.0 1014 m/s2
(2)电子以速度 v0 进入金属板 A、B 间,在垂直于电场方向做匀速直线运动,沿电场方向
做初速度为零的匀加速直线运动,电子在电场中运动的时间为
t
L v0
0.1 2.0 107
s 5.0109 s
电子射出电场时在沿电场线方向的侧移量
代入数据
y 1 at2 2
y 1 5.01014 (5.0109)2 cm 0.63cm 2
IG=mgt 动量变化量
p mv0
由三角形定则得,绳对小球的冲量
IF mgt 2 m2 gL
(3)平抛的水平位移 x v0t ,竖直位移
H L 1 gt2 2

高考物理动量定理及其解题技巧及练习题(含答案)含解析

高考物理动量定理及其解题技巧及练习题(含答案)含解析

高考物理动量定理及其解题技巧及练习题(含答案)含解析一、高考物理精讲专题动量定理1.如图1所示,水平面内的直角坐标系的第一象限有磁场分布,方向垂直于水平面向下,磁感应强度沿y 轴方向没有变化,与横坐标x 的关系如图2所示,图线是双曲线(坐标是渐近线);顶角θ=53°的光滑金属长导轨MON 固定在水平面内,ON 与x 轴重合,一根与ON 垂直的长导体棒在水平向右的外力作用下沿导轨MON 向右滑动,导体棒在滑动过程中始终保持与导轨良好接触,已知t =0时,导体棒位于顶角O 处;导体棒的质量为m =4kg ;OM 、ON 接触处O 点的接触电阻为R =0.5Ω,其余电阻不计,回路电动势E 与时间t 的关系如图3所示,图线是过原点的直线,求:(1)t =2s 时流过导体棒的电流强度的大小; (2)在1~2s 时间内导体棒所受安培力的冲量大小;(3)导体棒滑动过程中水平外力F (单位:N )与横坐标x (单位:m )的关系式. 【答案】(1)8A (2)8N s ⋅(3)32639F x =+【解析】 【分析】 【详解】(1)根据E-t 图象中的图线是过原点的直线特点,可得到t =2s 时金属棒产生的感应电动势为4V E =由欧姆定律得24A 8A 0.5E I R === (2)由图2可知,1(T m)x B =⋅ 由图3可知,E 与时间成正比,有E =2t (V )4EI t R== 因θ=53°,可知任意t 时刻回路中导体棒有效切割长度43x L = 又由F BIL =安所以163F t 安=即安培力跟时间成正比所以在1~2s 时间内导体棒所受安培力的平均值163233N 8N 2F +== 故8N s I F t =∆=⋅安(3)因为43vE BLv Bx ==⋅所以1.5(m/s)v t =可知导体棒的运动时匀加速直线运动,加速度21.5m/s a =又212x at =,联立解得6F =+【名师点睛】本题的关键首先要正确理解两个图象的数学意义,运用数学知识写出电流与时间的关系,要掌握牛顿运动定律、闭合电路殴姆定律,安培力公式、感应电动势公式.2.如图甲所示,平面直角坐标系中,0≤x ≤l 、0≤y ≤2l 的矩形区域中存在交变匀强磁场,规定磁场垂直于纸面向里的方向为正方向,其变化规律如图乙所示,其中B 0和T 0均未知。

物理动量定理题20套(带答案)及解析

物理动量定理题20套(带答案)及解析

物理动量定理题20套(带答案)及解析一、高考物理精讲专题动量定理1. 2022年将在我国举办第二十四届冬奥会, 跳台滑雪是其中最具观赏性的项目之一. 某滑道示意图如下, 长直助滑道AB 与弯曲滑道BC 平滑衔接, 滑道BC 高h=10 m, C 是半径R=20 m 圆弧的最低点, 质量m=60 kg 的运动员从A 处由静止开始匀加速下滑, 加速度a=4.5 m/s2, 到达B 点时速度vB=30 m/s. 取重力加速度g=10 m/s2.(1)求长直助滑道AB 的长度L ;(2)求运动员在AB 段所受合外力的冲量的I 大小;(3)若不计BC 段的阻力, 画出运动员经过C 点时的受力图, 并求其所受支持力FN 的大小.【答案】(1)100m (2)1800N s ⋅(3)3 900 N【解析】(1)已知AB 段的初末速度, 则利用运动学公式可以求解斜面的长度, 即2202v v aL -=可解得:2201002v v L m a-== (2)根据动量定理可知合外力的冲量等于动量的该变量所以01800B I mv N s =-=⋅(3)小球在最低点的受力如图所示由牛顿第二定律可得:从B 运动到C 由动能定理可知:221122C B mgh mv mv =- 解得;3900N N =故本题答案是: (1) (2) (3)点睛:本题考查了动能定理和圆周运动, 会利用动能定理求解最低点的速度, 并利用牛顿第二定律求解最低点受到的支持力大小.2. 图甲为光滑金属导轨制成的斜面, 导轨的间距为 , 左侧斜面的倾角 , 右侧斜面的中间用阻值为 的电阻连接。

在左侧斜面区域存在垂直斜面向下的匀强磁场, 磁感应强度大小为 , 右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场, 磁感应强度为 。

在斜面的顶端e 、f 两点分别用等长的轻质柔软细导线连接导体棒ab, 另一导体棒cd 置于左侧斜面轨道上, 与导轨垂直且接触良好, ab 棒和cd 棒的质量均为 , ab 棒的电阻为 , cd 棒的电阻为 。

高考物理《动量守恒定律》真题练习含答案

高考物理《动量守恒定律》真题练习含答案

高考物理《动量守恒定律》真题练习含答案1.[2024·全国甲卷](多选)蹦床运动中,体重为60 kg的运动员在t=0时刚好落到蹦床上,对蹦床作用力大小F与时间t的关系如图所示.假设运动过程中运动员身体始终保持竖直,在其不与蹦床接触时蹦床水平.忽略空气阻力,重力加速度大小取10 m/s2.下列说法正确的是()A.t=0.15 s时,运动员的重力势能最大B.t=0.30 s时,运动员的速度大小为10 m/sC.t=1.00 s时,运动员恰好运动到最大高度处D.运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N答案:BD解析:根据牛顿第三定律结合题图可知,t=0.15 s时,蹦床对运动员的弹力最大,蹦床的形变量最大,此时运动员处于最低点,运动员的重力势能最小,故A错误;根据题图可知运动员从t=0.30 s离开蹦床到t=2.3 s再次落到蹦床上经历的时间为2 s,根据竖直上抛运动的对称性可知,运动员上升时间为1 s,则在t=1.3 s时,运动员恰好运动到最大高度处,t=0.30 s时运动员的速度大小v=10×1 m/s=10 m/s,故B正确,C错误;同理可知运动员落到蹦床时的速度大小为10 m/s,以竖直向上为正方向,根据动量定理F·Δt-mg·Δt=mv-(-mv),其中Δt=0.3 s,代入数据可得F=4 600 N,根据牛顿第三定律可知运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N,故D正确.故选BD.2.[2022·山东卷]我国多次成功使用“冷发射”技术发射长征十一号系列运载火箭.如图所示,发射仓内的高压气体先将火箭竖直向上推出,火箭速度接近零时再点火飞向太空.从火箭开始运动到点火的过程中()A.火箭的加速度为零时,动能最大B.高压气体释放的能量全部转化为火箭的动能C.高压气体对火箭推力的冲量等于火箭动量的增加量D.高压气体的推力和空气阻力对火箭做功之和等于火箭动能的增加量答案:A解析:从火箭开始运动到点火的过程中,火箭先加速运动后减速运动,当加速度为零时,动能最大,A项正确;高压气体释放的能量转化为火箭的动能和重力势能及火箭与空气间因摩擦产生的热量,B项错误;根据动量定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f的冲量矢量和等于火箭动量的变化量,C项错误;根据动能定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f对火箭做的功之和等于火箭动能的变化量,D项错误.3.[2022·湖南卷]1932年,查德威克用未知射线轰击氢核,发现这种射线是由质量与质子大致相等的中性粒子(即中子)组成.如图,中子以速度v0分别碰撞静止的氢核和氮核,碰撞后氢核和氮核的速度分别为v1和v2.设碰撞为弹性正碰,不考虑相对论效应,下列说法正确的是()A.碰撞后氮核的动量比氢核的小B.碰撞后氮核的动能比氢核的小C.v2大于v1D.v2大于v0答案:B解析:设中子质量为m0,被碰粒子质量为m,碰后中子速度为v′0,被碰粒子速度为v,二者发生弹性正碰,由动量守恒定律和能量守恒定律有m 0v 0=m 0v ′0+m v ,12 m 0v 20 =12m 0v ′20 +12 m v 2,解得v ′0=m 0-m m 0+m v 0,v =2m 0m 0+mv 0,因为当被碰粒子分别为氢核(m 0)和氮核(14m 0)时,有v 1=v 0,v 2=215 v 0,故C 、D 项错误;碰撞后氮核的动量为p 氮=14m 0·v 2=2815m 0v 0,氢核的动量为p 氢=m 0·v 1=m 0v 0,p 氮>p 氢,故A 错误;碰撞后氮核的动能为E k 氮=12·14m 0v 22 =28225 m 0v 20 ,氢核的动能为E k 氢=12 ·m 0·v 21 =12m 0v 20 ,E k 氮<E k 氢,故B 正确. 4.[2021·全国乙卷]如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦.用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动.在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统( )A .动量守恒,机械能守恒B .动量守恒,机械能不守恒C .动量不守恒,机械能守恒D .动量不守恒,机械能不守恒答案:B解析:撤去推力后,小车、弹簧和滑块组成的系统所受合外力为零,满足系统动量守恒的条件,故系统动量守恒;由于撤去推力时滑块在车厢底板上有相对滑动,存在摩擦力做功的情况,故系统机械能不守恒,所以选项B 正确.5.[2023·新课标卷](多选)使甲、乙两条形磁铁隔开一段距离,静止于水平桌面上,甲的N 极正对着乙的S 极,甲的质量大于乙的质量,两者与桌面之间的动摩擦因数相等.现同时释放甲和乙,在它们相互接近过程中的任一时刻( )A .甲的速度大小比乙的大B .甲的动量大小比乙的小C .甲的动量大小与乙的相等D .甲和乙的动量之和不为零答案:BD解析:对甲、乙两条形磁铁分别做受力分析,如图所示对于整个系统,由于μm 甲g >μm 乙g ,合力方向向左,合冲量方向向左,所以合动量方向向左,甲的动量大小比乙的小,m 甲v 甲<m 乙v 乙,又m 甲>m 乙,故v 甲<v 乙,B 、D 正确,A 、C 错误.故选BD.6.[2021·全国乙卷](多选)水平桌面上,一质量为m 的物体在水平恒力F 拉动下从静止开始运动.物体通过的路程等于s 0时,速度的大小为v 0,此时撤去F ,物体继续滑行2s 0的路程后停止运动.重力加速度大小为g .则( )A .在此过程中F 所做的功为12m v 20 B .在此过程中F 的冲量大小等于32m v 0 C .物体与桌面间的动摩擦因数等于v 20 4s 0gD .F 的大小等于物体所受滑动摩擦力大小的2倍答案:BC解析:设物体与桌面间的动摩擦因数为μ,根据功的定义,可知在此过程中,F 做的功为W F =Fs 0=12m v 20 +μmgs 0,选项A 错误;物体通过路程s 0时,速度大小为v 0,撤去F 后,由牛顿第二定律有μmg =ma 2,根据匀变速直线运动规律有v 20 =2a 2·2s 0,联立解得μ=v 20 4s 0g ,选项C 正确;水平桌面上质量为m 的物体在恒力F 作用下从静止开始做匀加速直线运动,有F -μmg =ma 1,又v 20 =2a 1s 0,可得a 1=2a 2,可得F =3μmg ,即F 的大小等于物体所受滑动摩擦力大小的3倍,选项D 错误;对F 作用下物体运动的过程,由动量定理有Ft -μmgt=m v 0,联立解得F 的冲量大小为I F =Ft =32m v 0,选项B 正确.。

动量定理练习题含答案及解析

动量定理练习题含答案及解析

动量定理练习题含答案及解析一、高考物理精讲专题动量定理1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求:(1)两小球碰前A 的速度;(2)球碰撞后B ,C 的速度大小;(3)小球B 运动到最高点C 时对轨道的压力;【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上【解析】【分析】【详解】(1)选向右为正,碰前对小球A 的运动由动量定理可得:–μ Mg t =M v – M v 0解得:v =2m /s(2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒:A B Mv Mv mv =+222111222A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s(3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒:2211222B C mv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2C N v mg F m R'+= 解得:F N =4N由牛顿第三定律知,F N '=F N =4N小球对轨道的压力的大小为3N ,方向竖直向上.2.半径均为52m R =的四分之一圆弧轨道1和2如图所示固定,两圆弧轨道的最低端切线水平,两圆心在同一竖直线上且相距R ,让质量为1kg 的小球从圆弧轨道1的圆弧面上某处由静止释放,小球在圆弧轨道1上滚动过程中,合力对小球的冲量大小为5N s ⋅,重力加速度g 取210m /s ,求:(1)小球运动到圆弧轨道1最低端时,对轨道的压力大小;(2)小球落到圆弧轨道2上时的动能大小。

物理动量定理题20套(带答案)及解析

物理动量定理题20套(带答案)及解析

物理动量定理题20套(带答案)及解析一、高考物理精讲专题动量定理1.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg。

用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙壁相接触。

另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,C的v-t图象如图乙所示。

求:(1)C的质量m C;(2)t=8s时弹簧具有的弹性势能E p1,4~12s内墙壁对物块B的冲量大小I;(3)B离开墙后的运动过程中弹簧具有的最大弹性势能E p2。

【答案】(1)2kg ;(2)27J,36N·S;(3)9J【解析】【详解】(1)由题图乙知,C与A碰前速度为v1=9m/s,碰后速度大小为v2=3m/s,C与A碰撞过程动量守恒m C v1=(m A+m C)v2解得C的质量m C=2kg。

(2)t=8s时弹簧具有的弹性势能E p1=12(m A+m C)v22=27J取水平向左为正方向,根据动量定理,4~12s内墙壁对物块B的冲量大小I=(m A+m C)v3-(m A+m C)(-v2)=36N·S(3)由题图可知,12s时B离开墙壁,此时A、C的速度大小v3=3m/s,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大(m A+m C)v3=(m A+m B+m C)v41 2(m A+m C)23v=12(m A+m B+m C)24v+E p2解得B离开墙后的运动过程中弹簧具有的最大弹性势能E p2=9J。

2.质量0.2kg的球,从5.0m高处自由下落到水平钢板上又被竖直弹起,弹起后能达的最大高度为4.05m.如果球从开始下落到弹起达最大高度所用时间为1.95s,不考虑空气阻力,g取10m/s2.求小球对钢板的作用力.【答案】78N【解析】【详解】自由落体过程v12=2gh1,得v1=10m/s;v1=gt1得t1=1s小球弹起后达到最大高度过程0− v22=−2gh2,得v2=9m/s0-v2=-gt2得t2=0.9s小球与钢板作用过程设向上为正方向,由动量定理:Ft′-mg t′=mv2-(-mv1)其中t′=t-t1-t2=0.05s得F=78N由牛顿第三定律得F′=-F,所以小球对钢板的作用力大小为78N,方向竖直向下;3.如图所示,质量的小车A静止在光滑水平地面上,其上表面光滑,左端有一固定挡板。

高考物理动量定理专题练习题

高考物理动量定理专题练习题

高考物理动量定理专题练习题高考物理动量定理专题练习题(附解析)一、选择题1、下列说法中正确的是( )A.物体的动量改变,一定是速度大小改变B.物体的动量改变,一定是速度方向改变C.物体的运动状态改变,其动量一定改变D.物体的速度方向改变,其动量一定改变2、在下列各种运动中,任何相等的时间内物体动量的增量总是相同的有( )A.匀加速直线运动B.平抛运动C.匀减速直线运动D.匀速圆周运动3、在物体运动过程中,下列说法不正确的有( )A.动量不变的运动,一定是匀速运动B.动量大小不变的运动,可能是变速运动C.如果在任何相等时间内物体所受的冲量相等(不为零),那么该物体一定做匀变速运动D.若某一个力对物体做功为零,则这个力对该物体的冲量也一定为零?4、在距地面高为h,同时以相等初速V0分别平抛,竖直上抛,竖直下抛一质量相等的物体m,当它们从抛出到落地时,比较它们的动量的增量△ P,有 ( )A.平抛过程较大B.竖直上抛过程较大C.竖直下抛过程较大D.三者一样大5、对物体所受的合外力与其动量之间的关系,叙述正确的是( )A.物体所受的合外力与物体的初动量成正比;B.物体所受的合外力与物体的末动量成正比;C.物体所受的合外力与物体动量变化量成正比;D.物体所受的合外力与物体动量对时间的变化率成正比6、质量为m的物体以v的初速度竖直向上抛出,经时间t,达到最高点,速度变为0,以竖直向上为正方向,在这个过程中,物体的动量变化量和重力的冲量分别是( )A. -mv和-mgtB. mv和mgtC. mv和-mgtD.-mv和mgt7、质量为1kg的小球从高20m处自由下落到软垫上,反弹后上升的最大高度为5m,小球接触软垫的时间为1s,在接触时间内,小球受到的合力大小(空气阻力不计 )为( )A.10NB.20NC.30ND.40N二、填空题8、用8N的力推动一个物体,力的作用时间是5s,则力的冲量为______。

若物体仍处于静止状态,此力在这段时间内冲量为________,合力的冲量为_______。

高三物理动量定理试题答案及解析

高三物理动量定理试题答案及解析

高三物理动量定理试题答案及解析1.如图所示,甲、乙两名宇航员正在离空间站一定距离的地方执行太空维修任务。

某时刻乙以大小为v0=2m/s的速度远离空间站向乙“飘”去,甲、乙和空间站在同一直线上且可当成质点。

甲和他的装备总质量共为M1=90kg,乙和他的装备总质量共为M2=135kg,为了避免直接相撞,乙从自己的装备中取出一质量为m=45kg的物体A推向甲,甲迅速接住后即不再松开,此后甲乙两宇航员在空间站外做相对距离不变通向运动,一线以后安全“飘”入太空舱。

(设甲乙距离太空站足够远,本题中的速度均指相对空间站的速度)①求乙要以多大的速度(相对空间站)将物体A推出②设甲与物体A作用时间为,求甲与A的相互作用力F的大小【答案】①②【解析】①甲、乙两宇航员在空间站外做相对距离不变的同向运动,说明甲乙的速度相等,以甲、乙、A三者组成的系统为研究对象,系统动量守恒,以乙的速度方向为正方向,由动量守恒定律得:,以乙和A组成的系统为研究对象,以乙的速度方向为正方向,由动量守恒定律得:,解得:;②以甲为研究对象,以乙的初速度方向为正方向,由动量定理得:,解得:;【考点】考查了动量守恒定律,动量定理2.如图所示,在光滑的水平面上宽度为L的区域内,有一竖直向下的匀强磁场.现有一个边长为向右滑动,穿过磁场后速度减为v,a (a<L)的正方形闭合线圈以垂直于磁场边界的初速度v那么当线圈完全处于磁场中时,其速度大小()A.大于B.等于C.小于D.以上均有可能【答案】B【解析】对线框进入或穿出磁场的过程,由动量定理可知,即,解得线框的速度变化量为;同时由可知,进入和穿出磁场过程中,因磁通量的变化量相等,故电荷量相等,由上可以看出,进入和穿出磁场过程中的速度变化量是相等的,即,解得,所以只有选项B正确;【考点】法拉第电磁感应定律3.如图所示,小球A系在细线的一端,线的另一端固定在O点,O点到水平面的距离为h.物块B 质量是小球的5倍,置于粗糙的水平面上且位于O点正下方,物块与水平面间的动摩擦因数为μ.现拉动小球使线水平伸直,小球由静止开始释放,运动到最低点时与物块发生正碰(碰撞时间极短),反弹后上升至最高点时到水平面的距离为小球与物块均视为质点,不计空气阻力,重力加速度为g,求物块在水平面上滑行的时间t.【答案】【解析】设小球的质量为m,运动到最低点与物块碰撞前的速度大小为v1,取小球运动到最低点重力势能为零,根据机械能守恒定律,有得v设碰撞后小球反弹的速度大小为v1′,同理有②得设碰后物块的速度大小为v2,取水平向右为正方向,根据动量守恒定律,有mv1=-mv1′+5mv2③得④物块在水平面上滑行所受摩擦力的大小F=5μmg⑤设物块在水平面上滑行的时间为t,根据动量定理,有-Ft=0-5mv2⑥得【考点】动量定理、动量守恒定律及其应用4.(20分)下图是放置在竖直平面内游戏滑轨的模拟装置的示意图。

高中物理动量定理基础题(含答案)

高中物理动量定理基础题(含答案)

高中物理动量定理基础题(含答案)一、单选题1.如图所示,质量为m 的小滑块沿倾角为θ的粗糙斜面向上滑动,经过时间1t 速度为零然后下滑,经过时间2t 回到斜面底端,滑块在运动过程中受到的摩擦力大小始终恒定。

在整个过程中,重力对滑块的总冲量为( )A .()12sin mg t t θ+B .()12sin mg t t θ-C .()12mg t t +D .()12cos mg t t θ+2.人从高处跳到地面,为了安全,一般都是让脚尖先着地,接着让整个脚底着地,并让人下蹲,这样做是为了( )A .减小人受到的冲量B .增大人受到的冲量C .延长与地面的作用时间,从而减小人受到的作用力D .延长与地面的作用时间,从而减小人动量的变化3.“守株持兔"是众所周知的寓言故事.假设兔子质量为3kg ,以10m /s 的速度奔跑,撞树后几乎不反弹、作用时间约为0.02s ,则兔子受到的平均撞击力大小为( ) A .1.5N B .15N C .150N D .1500N 4.如图,质量2kg m =的木块放在水平地面上,与地面间的动摩擦因数0.2μ=,木块在5N F =的水平恒力作用下由静止开始向右运动了10s ,210m/s =g ,在这10s 内,下列说法正确的是( )A .重力的冲量为0B .摩擦力的冲量为40N s -⋅C .物体动量的变化为20kg m/s ⋅D .合外力的冲量为50N·s5.如图,一物体静止在水平地面上,受到与水平方向成θ角的恒定拉力F 作用时间t 后,物体仍保持静止。

以下说法中正确的是( )A .物体的动量变化量为FtB .物体所受重力的冲量大小为0C .物体所受摩擦力的冲量大小为cos Ft θD .物体所受拉力F 的冲量大小是cos Ft θ二、多选题6.质量为1kg 的物块在水平力F 的作用下由静止开始在水平地面上做直线运动,F 与时间t 的关系如图所示。

高考物理动量定理的技巧及练习题及练习题(含答案)及解析

高考物理动量定理的技巧及练习题及练习题(含答案)及解析

高考物理动量定理的技巧及练习题及练习题(含答案)及解析一、高考物理精讲专题动量定理1.图甲为光滑金属导轨制成的斜面,导轨的间距为1m l =,左侧斜面的倾角37θ=︒,右侧斜面的中间用阻值为2R =Ω的电阻连接。

在左侧斜面区域存在垂直斜面向下的匀强磁场,磁感应强度大小为10.5T B =,右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场,磁感应强度为20.5T B =。

在斜面的顶端e 、f 两点分别用等长的轻质柔软细导线连接导体棒ab ,另一导体棒cd 置于左侧斜面轨道上,与导轨垂直且接触良好,ab 棒和cd 棒的质量均为0.2kg m =,ab 棒的电阻为12r =Ω,cd 棒的电阻为24r =Ω。

已知t =0时刻起,cd 棒在沿斜面向下的拉力作用下开始向下运动(cd 棒始终在左侧斜面上运动),而ab 棒在水平拉力F 作用下始终处于静止状态,F 随时间变化的关系如图乙所示,ab 棒静止时细导线与竖直方向的夹角37θ=︒。

其中导轨的电阻不计,图中的虚线为绝缘材料制成的固定支架。

(1)请通过计算分析cd 棒的运动情况; (2)若t =0时刻起,求2s 内cd 受到拉力的冲量;(3)3 s 内电阻R 上产生的焦耳热为2. 88 J ,则此过程中拉力对cd 棒做的功为多少? 【答案】(1)cd 棒在导轨上做匀加速度直线运动;(2)1.6N s g ;(3)43.2J 【解析】 【详解】(1)设绳中总拉力为T ,对导体棒ab 分析,由平衡方程得:sin θF T BIl =+cos θT mg =解得:tan θ 1.50.5F mg BIl I =+=+由图乙可知:1.50.2F t =+则有:0.4I t =cd 棒上的电流为:0.8cd I t =则cd 棒运动的速度随时间变化的关系:8v t =即cd 棒在导轨上做匀加速度直线运动。

(2)ab 棒上的电流为:0.4I t =则在2 s 内,平均电流为0.4 A ,通过的电荷量为0.8 C ,通过cd 棒的电荷量为1.6C 由动量定理得:sin θ0F t I mg t BlI mv +-=-解得: 1.6N s F I =g(3)3 s 内电阻R 上产生的的热量为 2.88J Q =,则ab 棒产生的热量也为Q ,cd 棒上产生的热量为8Q ,则整个回路中产生的总热量为28. 8 J ,即3 s 内克服安培力做功为28. 8J 而重力做功为:G sin 43.2J W mg θ==对导体棒cd ,由动能定理得:F W W'-克安2G 102W mv +=- 由运动学公式可知导体棒的速度为24 m/s 解得:43.2J F W '=2.如图所示,质量M =1.0kg 的木板静止在光滑水平面上,质量m =0.495kg 的物块(可视为质点)放在的木板左端,物块与木板间的动摩擦因数μ=0.4。

物理动量守恒定律练习题20篇及解析

物理动量守恒定律练习题20篇及解析

物理动量守恒定律练习题20篇及解析一、高考物理精讲专题动量守恒定律1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。

已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。

求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。

动量定理精选习题+答案

动量定理精选习题+答案

动量定理精选习题+答案动量定理精选习题⼀、单选题(本⼤题共7⼩题,共28.0分)1.如图所⽰,质量相等的五个物块在光滑⽔平⾯上,间隔⼀定距离排成⼀条直线.具有初动能E0的物块1向其它4个静⽌的物块运动,依次发⽣碰撞,每次碰撞后不再分开.最后5个物块粘成⼀个整体.这个整体的动能等于()A. E0B. 45E0 C. 15E0 D. 125E02.如图所⽰,⼩车静⽌在光滑⽔平⾯上,AB是⼩车内半圆弧轨道的⽔平直径,现将⼀⼩球从距A点正上⽅h⾼处由静⽌释放,⼩球由A点沿切线⽅向经半圆轨道后从B点冲出,在空中能上升的最⼤⾼度为0.8?,不计空⽓阻⼒.下列说法正确的是()A. 在相互作⽤过程中,⼩球和⼩车组成的系统动量守恒B. ⼩球离开⼩车后做竖直上抛运动C. ⼩球离开⼩车后做斜上抛运动D. ⼩球第⼆次冲出轨道后在空中能上升的最⼤⾼度为0.6?3.如图所⽰,半径为R、质量为M的14光滑圆槽置于光滑的⽔平地⾯上,⼀个质量为m的⼩⽊块从槽的顶端由静⽌滑下.则⽊块从槽⼝滑出时的速度⼤⼩为()A. 2gRB. 2gRMM+mM+mD. 2gR(M?m)M4.如图所⽰,甲、⼄两⼈各站在静⽌⼩车的左右两端,当他俩同时相向⾏⾛时,发现⼩车向右运动.下列说法不正确的是(车与地⾯之间⽆摩擦)()A. ⼄的速度必定⼤于甲的速度B. ⼄对⼩车的冲量必定⼤于甲对⼩车的冲量C. ⼄的动量必定⼤于甲的动量D. 甲、⼄动量总和必定不为零5.质量为m的物体,沿半径为R的轨道以速率v做匀速圆周运动,如图所⽰,取v B⽅向为正⽅向,求物体由A⾄B过程所受的合外⼒在半周期内的冲量()A. 2mvB. ?2mvC. mvD. ?mv6.两球A、B在光滑⽔平⾯上沿同⼀直线,同⼀⽅向运动,m A=1kg,m B=2kg,v A=6m/s,v B=2m/s.当A追上B并发⽣碰撞后,两球A、B速度的可能值是()A. v A′=5m/s,v B′=2m/sB. v A′=2m/s,v B′=4m/sC. v A′=?4m/s,v B′=7m/sD. v A′=7m/s,v B′=1.5m/s7.有⼀条捕鱼⼩船停靠在湖边码头,⼩船⼜窄⼜长,甲同学想⽤⼀个卷尺粗略测定它的质量,他进⾏了如下操作:⾸先将船平⾏码头⾃由停泊,然后他轻轻从船尾上船,⾛到船头后停下,另外⼀位同学⽤卷尺测出船后退的距离d,然后⽤卷尺测出船长L.已知甲同学的质量为m,则渔船的质量为( )d B. m(L?d)dC. mLdD. m(L+d)L⼆、多选题(本⼤题共3⼩题,共12.0分)8.如图所⽰,在质量为M(含⽀架)的⼩车中⽤轻绳悬挂⼀⼩球,⼩球的质量为m0,⼩车和⼩球以恒定速度v沿光滑⽔平地⾯运动,与位于正对⾯的质量为m的静⽌⽊块发⽣碰撞,碰撞的时间极短.在此碰撞过程中,下列哪个或哪些说法是可能发⽣的?()A. 在此过程中⼩车、⽊块、摆球的速度都发⽣变化,分别变为v1、v2、v3,满⾜(M+m0)v=Mv1+mv2+m0v3B. 在此碰撞过程中,⼩球的速度不变,⼩车和⽊块的速度分别为v1和v2,满⾜(M+m0)v=Mv1+mv2C. 在此碰撞过程中,⼩球的速度不变,⼩车和⽊块的速度都变成u,满⾜Mv=(M+m)uD. 碰撞后⼩球摆到最⾼点时速度变为为v1,⽊块的速度变为v2,满⾜(M+m0)v=(M+m0)v1+mv29.⼀静⽌的铝原⼦原⼦核?1327Al俘获⼀速度为1.0×107m/s的质⼦p后,变为处于激发状态的硅原⼦核?1428Si,下列说法正确的是()A. 核反应⽅程为p+?1327Al→?1428SiB. 核反应⽅程过程中系统动量守恒C. 核反应过程中系统能量不守恒D. 核反应前后核⼦数相等,所以⽣成物的质量等于反应物的质量之和E. 硅原⼦核速度的数量级105m/s,⽅向与质⼦初速度⽅向⼀致10.如图所⽰,质量M=3kg的滑块套在⽔平固定着的轨道上并可在轨道上⽆摩擦滑动.质量m=2kg的⼩球(视为质点)通过长L=0.75m的轻杆与滑块上的光特轴O连接,开始时滑块静⽌、轻杆处于⽔平状态.现给⼩球⼀个v0=3m/s的竖直向下的初速度,取g=10m/s2则()A. ⼩球m从初始位置到第⼀次到达最低点的过程中,滑块M在⽔平轨道上向右移动了0.3mB. ⼩球m从初始位置到第⼀次到达最低点的过程中,滑块对在⽔平轨道上向右移动了0.5mC. ⼩球m相对于初始位置可以上升的最⼤⾼度为0.27mD. ⼩球m从初始位置到第⼀次到达最⼤⾼度的过程中,滑块M在⽔平轨道上向右移动了0.54m三、计算题(本⼤题共10⼩题,共100.0分)11.如图所⽰,质量为5kg的⽊板B静⽌于光滑⽔平⾯上,物块A质量为5kg,停在B的左端.质量为1kg的⼩球⽤长为0.45m的轻绳悬挂在固定点O上,将轻绳拉直⾄⽔平位置后,由静⽌释放⼩球,⼩球在最低点与A发⽣碰撞后反弹,反弹所能达到的最⼤⾼度为0.2m,物块与⼩球可视为质点,不计空⽓阻⼒.已知A、B间的动摩擦因数为0.1,为使A、B达到共同速度前A不滑离⽊板,重⼒加速度g=10m/s2,求:(1)碰撞后瞬间物块A的速度⼤⼩为多少;(2)⽊板B⾄少多长;(3)从⼩球释放到A、B达到共同速度的过程中,⼩球及A、B组成的系统损失的机械能.12.如图所⽰,宽为L=0.1m的MN、PQ两平⾏光滑⽔平导轨分别与半径r=0.5m的相同竖直半圆导轨在N、Q端平滑连接,M、P端连接定值电阻R,质量M=2kg的cd绝缘杆垂直静⽌在⽔平导轨上,在其右侧⾄N、Q端的区域内充满竖直向上的匀强磁场,B=1T.现有质量m=1kg的ab⾦属杆,电阻为R o,R o=R=1Ω,它以初速度v0=12m/s⽔平向右与cd绝缘杆发⽣正碰后,进⼊磁场并最终未滑出,cd 绝缘杆则恰好能通过半圆导轨最⾼点,不计其它电阻和摩擦,ab⾦属杆始终与导轨垂直且接触良好,取g=10m/s2,求:(1)碰后瞬间cd绝缘杆的速度⼤⼩v2与ab⾦属杆速度⼤⼩v1;(2)碰后ab⾦属杆进⼊磁场瞬间受到的安培⼒⼤⼩F ab;(3)ab⾦属杆进⼊磁场运动全过程中,电路产⽣的焦⽿热Q.13.如图所⽰,在光滑的⽔平⾯上有⼀带半圆形光滑弧⾯的⼩车,质量为M,圆弧半径为R,从距车上表⾯⾼为H处静⽌释放⼀质量为m的⼩球,它刚好沿圆弧切线从A点落⼊⼩车,求(1)⼩球到达车底B点时⼩车的速度和此过程中⼩车的位移;(2)⼩球到达⼩车右边缘C点处,⼩球的速度.14.如图所⽰,质量为3m的⽊块静⽌放置在光滑⽔平⾯上,质量为m的⼦弹(可视为质点)以初速度v0⽔平v0,试求:向右射⼊⽊块,穿出⽊块时速度变为25①⼦弹穿出⽊块后,⽊块的速度⼤⼩;②⼦弹穿透⽊块的过程中产⽣的热量.15.在光滑⽔平⾯上静⽌有质量均为m的⽊板AB和滑块CD,⽊板AB上表⾯粗糙,滑块CD上表⾯是光圆弧,他们紧靠在⼀起,如图所⽰.⼀个可视为质点的物块P,质量也为m,它从⽊板AB的右端滑的14,然后⼜滑上滑块CD,最终恰好能滑到滑块CD圆弧的最⾼以初速度v0滑上⽊板,过B点时速度为v02点C处.若物体P与⽊板AB间的动摩擦因数为µ,求:(1)物块滑到B处时⽊板AB的速度v1的⼤⼩;(2)⽊板AB的长度L;(3)滑块CD最终速度v2的⼤⼩.16.质量为M的平板车P⾼h,质量为m的⼩物块Q的⼤⼩不计,位于平板车的左端,系统原来静⽌在光滑⽔平⾯地⾯上.⼀不可伸长的轻质细绳长为R,⼀端悬于Q正上⽅⾼为R处,另⼀端系⼀质量也为m 的⼩球(⼤⼩不计).今将⼩球拉⾄悬线与竖直位置成60°⾓,由静⽌释放,⼩球到达最低点时与Q的碰撞时间极短,且⽆能量损失,已知Q离开平板车时速度⼤⼩是平板车速度的两倍,Q与P之间的动摩擦因数为µ,M:m=4:1,重⼒加速度为g.求:(1)⼩物块到达最低点与Q碰撞之前瞬间的速度是多⼤?(2)⼩物块Q离开平板车时平板车的速度为多⼤?(3)平板车P的长度为多少?(4)⼩物块Q落地时距⼩球的⽔平距离为多少?17.如图所⽰,⽔平地⾯上竖直固定⼀个光滑的、半径R=0.45m的1圆弧轨道,A、B分别是圆弧的端点,4圆弧B点右侧是光滑的⽔平地⾯,地⾯上放着⼀块⾜够长的⽊板,⽊板的上表⾯与圆弧轨道的最低点B 等⾼,可视为质点的⼩滑块P1和P2的质量均为m=0.20kg,⽊板的质量M=4m,P1和P2与⽊板上表⾯的动摩擦因数分别为µ1=0.20和µ2=0.50,最⼤静摩擦⼒近似等于滑动摩擦⼒;开始时⽊板的左端紧靠着B,P2静⽌在⽊板的左端,P1以v0=4.0m/s的初速度从A点沿圆弧轨道⾃由滑下,与P2发⽣弹性碰撞后,P1处在⽊板的左端,取g=10m/s2.求:(1)P1通过圆弧轨道的最低点B时对轨道的压⼒;(2)P2在⽊板上滑动时,⽊板的加速度为多⼤?(3)已知⽊板长L=2m,请通过计算说明P2会从⽊板上掉下吗?如能掉下,求时间?如不能,求共速?18.如图所⽰,质量为M的平板车P⾼h,质量为m的⼩物块Q的⼤⼩不计,位于平板车的左端,系统原来静⽌在光滑⽔平⾯地⾯上.⼀不可伸长的轻质细绳长为R,⼀端悬于Q正上⽅⾼为R处,另⼀端系⼀质量也为m的⼩球(⼤⼩不计).今将⼩球拉⾄悬线与竖直位置成60°⾓,由静⽌释放,⼩球到达最低点时与Q的碰撞时间极短,且⽆能量损失,已知Q离开平板车时速度⼤⼩是平板车速度的两倍,Q与P之间的动摩擦因数为µ,M:m=4:1,重⼒加速度为g.求:(1)⼩物块Q离开平板车时速度为多⼤?(2)平板车P的长度为多少?(3)⼩物块Q落地时距⼩球的⽔平距离为多少?19.如甲图所⽰,光滑导体轨道PMN和是两个完全⼀样轨道,是由半径为r的四分之⼀圆弧轨道和⽔平轨道组成,圆弧轨道与⽔平轨道在M和点相切,两轨道并列平⾏放置,MN和位于同⼀⽔平⾯上,两轨道之间的距离为L,之间有⼀个阻值为R的电阻,开关K是⼀个感应开关(开始时开关是断开的),是⼀个矩形区域内有竖直向上的磁感应强度为B的匀强磁场,⽔平轨道MN离⽔平地⾯的⾼度为h,其截⾯图如⼄所⽰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动量定理练习题含答案及解析一、高考物理精讲专题动量定理1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R=0.1 m ,半圆形轨道的底端放置一个质量为 m=0.1 kg 的小球 B ,水平面上有一个质量为 M=0.3 kg 的 小球 A 以初速度 v 0=4.0 m/ s 开始向着木块 B 滑动,经过时间 t=0.80 s 与 B 发生弹性碰 撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块 A 与桌面间的动摩擦因 数 μ =0.25,求:(1)两小球碰前 A 的速度; (2)球碰撞后 B,C 的速度大小;(3)小球 B 运动到最高点 C 时对轨道的压力;【答案】( 1) 2m/s (2)v A =1m/s ,v B =3m/s ( 3) 4N ,方向竖直向上 【解析】 【分析】 【详解】(1)选向右为正,碰前对小球 A 的运动由动量定理可得:–μMg t = M v –M v 0解得: v = 2m/s(2)对 A 、B 两球组成系统碰撞前后动量守恒,动能守恒:Mv Mv A mv B1 2 1 2 1 2 Mv Mv A mv B2 2A 2 B解得: v A =1m/s v B =3m/s(3)由于轨道光滑, B 球在轨道由最低点运动到 C 点过程中机械能守恒:1 2 1 2 mv B mv C mg2R 222 在最高点 C 对小球 B 受力分析,由牛顿第二定律有: mg F N m vC解得: F N = 4N 由牛顿第三定律知, F N '=F N =4N 小球对轨道的压力的大小为 3N ,方向竖直向上.2.半径均为 R 5 2m 的四分之一圆弧轨道 1和 2如图所示固定,两圆弧轨道的最低端切线水平,两圆心在同一竖直线上且相距R ,让质量为 1kg 的小球从圆弧轨道 1 的圆弧面上某处由静止释放,小球在圆弧轨道1 上滚动过程中,合力对小球的冲量大小为5N s ,重力加速度g取10m / s2,求:(1)小球运动到圆弧轨道1 最低端时,对轨道的压力大小;(2)小球落到圆弧轨道2 上时的动能大小。

答案】( 1)5(2 )N (2)62.5J2解析】详解】1)设小球在圆弧轨道1 最低点时速度大小为v0 ,根据动量定理有I mv0解得v0 5m / s 在轨道最低端,根据牛顿第二定律,2F mg m v R0解得F根据牛顿第三定律知,小球对轨道的压力大小为F 5 2 22N(2)设小球从轨道水平位移:1 抛出到达轨道2 曲面经历的时间为t ,x v0t竖直位移:12 y gt 22由勾股定理:x 2y2R2解得t 1s 竖直速度:v y gt 10m / s可得小球的动能1 2 1 2 2E k mv m v0 v y 62.5Jk2 20 y3.一质量为0.5kg的小物块放在水平地面上的A点,距离A点5m 的位置B处是一面墙,如图所示,物块以v0=9m/s 的初速度从A 点沿AB方向运动,在与墙壁碰撞前瞬间的速度为7m/s ,碰后以6m/s 的速度反向运动直至静止.g 取10m/s 2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s,求碰撞过程中墙面对物块平均作用力的大小F.【答案】(1)0.32 (2)F=130N【解析】试题分析:(1)对A 到墙壁过程,运用动能定理得:,代入数据解得:μ=0.32.(2)规定向左为正方向,对碰墙的过程运用动量定理得:F△ t=mv′﹣mv,代入数据解得:F=130N.4.汽车碰撞试验是综合评价汽车安全性能的有效方法之一.设汽车在碰撞过程中受到的平均撞击力达到某个临界值F0时,安全气囊爆开.某次试验中,质量m1=1 600 kg 的试验车以速度v1 = 36 km/h 正面撞击固定试验台,经时间t 1 = 0.10 s 碰撞结束,车速减为零,此次碰撞安全气囊恰好爆开.忽略撞击过程中地面阻力的影响.(1)求此过程中试验车受到试验台的冲量I 0的大小及F0的大小;(2)若试验车以速度v1撞击正前方另一质量m2 =1 600 kg 、速度v2 =18 km/h 同向行驶的汽车,经时间t2 =0.16 s 两车以相同的速度一起滑行.试通过计算分析这种情况下试验车的安全气囊是否会爆开.【答案】(1)I0 = 1.6 ×10 4 N·s ,1.6 ×10 5 N;(2)见解析【解析】【详解】(1)v1 = 36 km/h = 10 m/s ,取速度v1 的方向为正方向,由动量定理有-I0 =0-m1v1 ①将已知数据代入①式得I0 = 1.6 ×41 N0·s ②由冲量定义有I0 = F0t1 ③ 将已知数据代入③式得F0 = 1.6 ×51 N0 (2)设试验车和汽车碰撞④ v,由动量守恒定律有后获得共同速度m1v1+ m2v2 = (m1+ m2)v⑤ 对试验车,由动量定理有-Ft2 = m1v-m1v1 ⑥ 将已知数据代入⑤⑥式得F= 2.5 ×341 N0 ⑦可见F< F0,故试验车的安全气囊不会爆开⑧5.一个质量为60 千克的蹦床运动员从距离水平蹦床网面上 3.2 米的高处自由下落,触网后沿竖直方向蹦回到离水平网面 5 米高处.已知运动员与网接触的时候为1.2 秒。

求运动员和网接触的这段时间内,网对运动员的平均作用力F(g取10 m/ s2)。

6.一质量为m的小球,以初速度v0 沿水平方向射出,恰好垂直地射到一倾角为30°的固3定斜面上,并立即沿反方向弹回.已知反弹速度的大小是入射速度大小的.求在碰撞过程4中斜面对小球的冲量的大小.【解析】【详解】小球在碰撞斜面前做平抛运动,设刚要碰撞斜面时小球速度为v,由题意知v 的方向与竖直线的夹角为30°,且水平分量仍为v0,由此得v=2v0.碰撞过程中,小球速度由v 变为反3向的v,碰撞时间极短,可不计重力的冲量,由动量定理,设反弹速度的方向为正方43向,则斜面对小球的冲量为I=m( v)-m·(-v)【答案】1500N,方向竖直向上【解析】【详解】设运动员从h1 处下落,刚触网的速度为v1 2gh1运动员反弹到达高度h2 ,离网时速度为v2 2gh2在接触网的过程中,运动员受到向上的弹力定理有F mg t解得F =1500N ,方向竖直向上。

8m s (方向向下)10m s (方向向上)F 和向下的重力mg ,设向上方向为正,由动量mv2 mv12解得I=7mv0.27.如图所示,质量为m=245g 的木块(可视为质点)放在质量为够长的木板静止在光滑水平面上,木块与木板间的动摩擦因数为μ= 0.4,质量为m0 = 5g的子弹以速度v0=300m/s 沿水平方向射入木块并留在其中(时间极短),子弹射入后,g 取10m/s 345,求:(1)子弹进入木块后子弹和木块一起向右滑行的最大速度(2)木板向右滑行的最大速度v2(3) 木块在木板滑行的时间t答案】(1) v1= 6m/s (2) v2=2m/s (3) t=1s解析】详解】(1)子弹打入木块过程,由动量守恒定律可得:m0v0=(m0+m)v1 解得:v1= 6m/s(2)木块在木板上滑动过程,由动量守恒定律可得:(m0+m)v1=(m0+m+M)v2 解得:v2=2m/s(3) 对子弹木块整体,由动量定理得:﹣μ(m0+m)gt=(m0+m)(v2﹣v1)解得:物块相对于木板滑行的时间8.如图所示,两个小球A和B质量分别是m A=2.0kg, m B=1.6kg, 球A静止在光滑水平面上的M点,球B在水平面上从远处沿两球的中心连线向着球A运动,假设两球相距L≤18m时存在着恒定的斥力F,L>18m时无相互作用力.当两球相距最近时, 它们间的距离为d=2m,此时球B的速度是4m/s. 求:【答案】(1) v B0 9m s;(2) F 2.25N ;(3) t 3.56s【解析】试题分析:( 1)当两球速度相等时,两球相距最近,根据动量守恒定律求出的初速度;( 2)在两球相距L> 18m时无相互作用力,B球做匀速直线运动,两球相距L≤18m时存在着恒定斥力F,B球做匀减速运动,由动能定理可得相互作用力(3)根据动量定理得到两球从开始相互作用到相距最近时所经历的时间.(1)设两球之间的斥力大小是F,两球从开始相互作用到两球相距最近时所经历的时间是t 。

当两球相距最近时球B 的速度v B 4 m s,此时球A 的速度v A 与球B 的速度大小相等,v A v B 4 m s,由动量守恒定3 球B 的初速度大小;4 两球之间的斥力大小;5 两球从开始相互作用到相距最近时所经历的时间M =0.5kg 的木板左端,足v1B球t1s律可m B v B0 m A m B v得:v B0 9m s;(2) 两球从开始相互作用到它们之间距离最近时,它们之间的相对位移Δx=L-d ,由功能关1 '2 1 2 2系可得:F X m B v B'2m A v2A m B v2B得:F=2.25N22(3) 根据动量定理,对A球有Ft mv A 0, 得t 3.56s 点晴:本题综合考查了动量定理、动量守恒定律和能量守恒定律,综合性较强.知道速度相等时,两球相距最近,以及知道恒力与与相对位移的乘积等于系统动能的损失是解决本题的关键.9.质量为70kg 的人不慎从高空支架上跌落,由于弹性安全带的保护,使他悬挂在空中.已知人先自由下落3.2m ,安全带伸直到原长,接着拉伸安全带缓冲到最低点,缓冲时间为1s,取g=10m/s 2.求缓冲过程人受到安全带的平均拉力的大小.【答案】1260N【解析】【详解】人下落3.2m 时的速度大小为v 2gh 8.0m / s在缓冲过程中,取向上为正方向,由动量定理可得( F mg )t 0 ( mv) 则缓冲过程人受到安全带的平均拉力的大小mvF mg 1260N10.如图所示,水平地面上静止放置一辆小车A,质量m A=4kg,上表面光滑,小车与地面间的摩擦力极小,可以忽略不计,可视为质点的物块B 置于A的上表面,B 的质量m B=2kg,现对A 施加一个水平向右的恒力F=10N,A 运动一段时间后,小车左端固定的挡板B 发生碰撞,碰撞时间极短,碰后A、B 粘合在一起,共同在F的作用下继续运动,碰撞后经时间t=0.6s,二者的速度达到v=2m/s ,求:B 碰撞后瞬间的共同速度 v 的大小; B 碰撞前瞬间, A 的速度 v A 的大小。

(1) 1m/s ;( 2) 1.5m/s 。

1)A 、B 碰撞后共同运动过程中,选向右的方向为正,由动量定理得: Ft =( m A +m B )v t ﹣( m A +m B )v , 代入数据解得: v = 1m/s ;2)碰撞过程系统内力远大于外力,系统动量守恒, 以向右为正方向,由动量守恒定律得: m A v A =( m A +m B ) v ,代入数据解得: vA = 1.5m/s ;11.质量 m=6Kg 的物体静止在水平面上,在水平力 F=40N 的作用下,沿直线运动,已经物体与水平面间的动摩擦因数 μ=0.3,若 F 作用 8S 后撤去 F 后物体还能向前运动多长时间才 能停止?( g=10m/s 2)【答案】 9.78s 【解析】 【分析】【详解】 全过程应用动量定理有:F mg t 1mg t 2 0解得:2F mgt 140 0.3 6 108s 9.78s . mg 0.3 6 1012.质量为 0.5 kg 的小球从 h =2.45 m 的高空自由下落至水平地面,与地面作用0.2s 后,再以 5m / s 的速度反向弹回,求小球与地面的碰撞过程中对地面的平均作用力.(不计空气阻 力, g =10m / s 2)【答案】 35N【解析】 小球自由下落过程中,由机械能守恒定律可知:12mgh= mv 1 ;解得: v1= 2gh2 10 2.45 7 m/s ,同理,回弹过程的速度为 5m/ s ,方向竖直向上, 设向下为正,则对碰撞过程由动量定理可知:mgt -Ft=-mv ′-mv代入数据解得: F=35N由牛顿第三定律小球对地面的平均作用力大小为1)A 、 2)A 、 答案】 解析】详解】 35N ,方向竖直向下。

相关文档
最新文档