七年级数学上册 2.2 有理数与无理数教案 新版苏科版
有理数与无理数苏教版数学初一上册教案
有理数与无理数苏教版数学初一上册教案
《数学初一上册》是苏教版的一本初中数学教材,以下是《数学初一上册》中有关有
理数与无理数的教案:
教案一:有理数的概念及表示
教学目标:
1. 理解有理数的概念和特点;
2. 掌握有理数的表示方法。
教学过程:
1. 复习:复习整数的概念和表示方法;
2. 引入:通过例题,让学生发现整数之间可以使用分数互相转换,引出有理数的概念;
3. 讲解:介绍有理数的定义,并讲解有理数的表示方法(分数、小数、整数);
4. 运用:设计一些练习题,让学生练习使用各种方法表示有理数。
教案二:无理数的定义和性质
教学目标:
1. 理解无理数的概念和特点;
2. 了解无理数的表示方法;
3. 掌握无理数的一些性质。
教学过程:
1. 复习:复习有理数的表示方法;
2. 引入:通过开平方的例子,让学生发现无理数的存在;
3. 讲解:介绍无理数的概念和定义,并讲解无理数的表示方法(根号、小数);
4. 拓展:讲解无理数的性质,如无理数与有理数的运算、无理数的比较等;
5. 运用:设计一些练习题,让学生练习使用无理数进行计算和比较。
以上是两个教案的简要介绍,具体的教学内容和教学方法可以根据《数学初一上册》教材的教学目标和教学内容进行拓展和调整。
七年级数学上册2.2有理数与无理数教案(新版)苏科版 (2)
有理数与无理数第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
2、了解我国书法发展的历史。
3、掌握基本笔画的书写特点。
重点:基本笔画的书写。
难点:运笔的技法。
教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。
2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。
二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。
换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。
三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。
2、教师边书写边讲解。
3、学生练习,教师指导。
(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。
在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。
5、学生练习,教师指导。
(发现问题及时指正)四、作业:完成一张基本笔画的练习。
板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。
这是书写的起步,让学生了解书写工具及保养的基本常识。
基本笔画书写是整个字书写的基础,必须认真书写。
课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。
总第(2)课时课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。
2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。
重点:正确书写6个字。
难点:注意字的结构和笔画的书写。
教学过程:一、小结课堂内容,评价上次作业。
二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。
2、书写方法是:写一个字看一眼黑板。
江苏省无锡市七年级数学《2.2 有理数与无理数》课件 苏科版
练习7.下列说法正确的是( B)
A.一个数不是正数就是负数 B.整数和分数统称有理数
C.有理数中没有最小的非负整数
D. π是有理数
…} …}
试一试
把下列各数填入相应的集合中:
4 ,2 0, 0 3 .1 5 ,0 4 ,2,2 5 .2, 31, 9% 5
7
8
正整数集合 负分数集合
练习2:把下列各数填入相应的集合中:
1 .2, 3 2 , 1,0 5 ,3 ,2,2.0 0, 2 10 , 2 0 2, 0 .51
7
3
正整数集合 负分数集合
π =3.1493238462643383279539 93751592328253421170679 ···
它是一个无限不循环小数
无限不循环小数叫做无 理数。
请同学们拿出准备好的一个边长为1 的小正方形和剪刀,将小正方形沿着图 中对角线剪开,同桌两位同学合作,将 你们的图形拼在一起,重新拼成一个大 正方形.
练习3:把下列各数填入相应的集合中
1.2, 32,1,0 5,3,2,2.0, 222
7
3
正数集合
整数集合
练习4.
下列说法中正确的有( A)个
①- 4 是负分数;
7
②1.5不是分数; ③非负有理数不包括0; ④0是最小的数
A.1 B.2 C.3 D.4
小结:
1.通常,有理数有哪两种分类原则? 它们是怎样分类的?
2.1 有理数与无理数
议一议
1.如果要将2,3,22 ,10,2 7 1,0,5
73
7
分成两类,你会怎样分?是这怎样的两类?
2.如果再增加 0.53,0.3 两数 ,你
七年级数学上册 2.2 有理数与无理数 什么是有理数?有理数分哪几类?素材 苏科版(2021年整理)
七年级数学上册2.2 有理数与无理数什么是有理数?有理数分哪几类?素材(新版)苏科版
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册2.2 有理数与无理数什么是有理数?有理数分哪几类?素材(新版)苏科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册2.2 有理数与无理数什么是有理数?有理数分哪几类?素材(新版)苏科版的全部内容。
什么是有理数?有理数分哪几类?
难易度:★★★★
关键词:有理数分类
答案:
正整数、0、负整数统称为整数;正分数和负分数统称为分数;整数和分数统称为有理数。
分类如下:
有理数或有理数
【举一反三】
典例:把下列各数分别填入相应的括号里:
5,,-0.3,28,,+8,—19,3。
7,,0,—102,
正整数集合;负分数集合;
正有理数集合;整数集合
思路导引:正整数和正分数都是正有理数,正分数的前面添上“-”号就是负分数,因小数和分数可以互化,因此小数也叫分数;正整数的前面添上“—”号就是负整数;0既不是正数也不是负数。
标准答案:
正整数集合5,28,+8 ;
负分数集合-0.3,;
正有理数集合5,28,+8,3。
7, ;
整数集合5, 28,,+8,-19, 0,-102,。
苏教版七上数学2.2 有理数与无理数
苏教版七上数学2.2 有理数与无理数沂北中学建构式生态课堂七年级数学教案设计课题4: 2.2有理数与无理数姓名:教学内容:2.2有理数与无理数授课班级:七(2)备课人:张东林备课时间:教学过程: 一、板书课题同学们,本节课我们一起学习2.2有理数与无理数二、复习巩固练习:1、统称为整数,统称为分数2、判断:一个数,不是正数,就是负数非负数就是负数 0是正数,也是整数 -3.2是分数3、把下列各数分别填在相应的的集合里:(13分) 12+,-,0.23,0,-8.71,18,-1,3.41412,+12 37正数集合{ ......} 负数集合{ ......} 正整数集合{ ......} 整数集合{ ......} 分数集合{ ......}4、向东4千米记为+4千米,那么-8千米表示如果高于海平面20千米记为+20千米,则低于海平面18千米记为二、自学指导请同学们认真看课本第15―16页内容,思考: 1、什么是有理数?什么是无理数?2、你学过哪些无理数? 举出例子3、有理数的分类5分钟后看谁掌握得最好。
三、学生自学、交流1、学生按自学指导看书,教师巡视。
2、小组交流学习心得3、你还有哪些问题呢?四、自学反馈(一)、有理数的概念例1 下列说法正确的是()A、整数集合中仅包括正整数和负整数B、零是正整数C、分数都是有理数D、正数都是有理数练习:下旬说法中,不正确的是() A、有最小的正整数,没有最小的负整数 B、若一个数是整数,则它一定是有理数 C、0是整数,也是有理数 D、非负数就是正数沂北中学建构式生态课堂七年级数学教案设计(二)无理数的概念例2:下列数中:(1)-3,(2)-0.3,(3)-π,(4)-0.6 ,(5)22,(6)4, 71(7)0,(8)-,(9)1.2022002.....(每两个2之间的0的个数依次多1)。
3其中无理数是,整数是,负分数是,(填序号)练习:1、请把下列各数填入相应的集合中: 223-,π/5,0,3.14,-5,-7,7.152551...... 75整数集合:{ ...} 分数集合{ ...} 无理数集合{ ...}222、下列各数:0.123 ,-1.5,3.1416,,-2π,0.1020020002......若其中无理数7的个数为x,整数个数为y,非负数的个数为z,则x+y+z的值是多少?3、课本第17页练一练1 (三)有理数的分类例1 把下列各数填在相应集合的大括号内:14+6,-8.25,-0.4,0,-,9.15,-1,π/435整数集合:{ ...} 分数集合{ ...}非负有理数集合:{ ...} 正有理数集合{ ...} 负有理数集合:{ ...} 练习:把下列各数填在相应的括号内:174-7,3.5,-3.14159,π,0,,0.03,-3,10513自然数集合:{ ...} 整数数集合{ ...} 负数集合:{ ...} 正分数集合{ ...} 正有理数集合:{ ...}五、本课小结六、布置作业:学习指导第7-8页教后反思:沂北中学建构式生态课堂七年级数学教案设计2.2有理数与无理数达标测试姓名:得分:一、选择题(每题5分,共40分)1、关于数0,下列说法正确的是()A、0是正数B、0是负数C、0是整数D、0是最小的数 2、下列说法正确的是()A、整数包括正整数和负整数B、0是整数但不是正数C、正数、负数、0统称为有理数D、非负有理数是指正有理数3、检查商店出售的袋装糖果,糖果加袋按规定标准重量为503克,一袋糖果重量为504无,记作+1克,如果一袋糖果的重量记为-2克,那么这袋糖果的重量为()A、500克B、501克C、502克D、503克124、下列一组数:-8,2.6,-3,3,-5.7,-π/10中负分数有()个33A、1 B、2 C、3 D、42225、下列各数中:、8、1.414、π、3、1.2021020002...,有理数的个数是()73A、2 B、3 C、4 D、以上都不对 6、下列说法正确的是() A、非负有理数就是正有理数 B、零表示没有,不是自然数 C、无限小数一定是无理数 D、整数和分数都是有理数17、给出下列说法:(1)0是整数(2)-2是负分数;(3)4.2不是正数;(4)3自然数一定是正数;(5)负分数一定是负有理数,其中正确的有()个 A、1 B、2 C、3 D、4 8、下列说法正确的有()(1)整数就是正整数和负整数(2)零是整数,但不是自然数(3)分数包括正分数、负分数;(4)正数和负数统称为有理数;(5)一个有理数,它不是整数谅是分数;A、1B、2C、3D、4 二、填空题(每空2分,共28分) 9、整数和统称为有理数;10、请写出二个无理数:;11、某洗衣粉袋子写着200g±3g,说明标准质量为,质量最多是,质量最少时,低于标准质量;112、在下列各数中:3,-4,π,2.45,0,-,整数有,分数有,3非负数有;13、有一组数列:2,-3,2,-3,2,-3,2,-3......根据这个规律,那么第2021个数是;14、仔细观察下列各数:1,-2,3,-4,5,-6,7,-8......其中第200个数应为,第2021个为;沂北中学建构式生态课堂七年级数学教案设计15、中午12时,水位低于标准水位0.5米记作-0.5米,下午1是水位上涨了1米,下午5时水位又上涨了0.5米,则下午1是的水位可记录为,下午5时的水位可记录为,下午5时的水位比中午12时的水位高米;三、把下列各数分别填在相应的集合里:(以下每题8分) 122-3,,0.3,0,-1.7,21,-2,1.01001,0.9191191119...+6,-4π 37负有理数集合:{ ...} 正整数集合{ ...} 整数集合:{ ...} 分数数集合{ ...} 非负有理数集合:{ ...} 无理数集合{ ...} 四、小明同学把2021年春节自己得到的压岁钱记了流水账:大伯给他500元;二伯给他200元,姑姑给他100元,妈妈给他200元,去年看电影花了30元,记作-30元,买文具花去80元,记作-80元,则他的账上余额还有多少元?五、有只小虫从点A出发在一条直线上来回爬行,下面是它爬行的情况:先向右爬行3cm,再向左爬行1cm,接着又向右爬行5cm,然后再向左爬行了3cm,再向左爬行7cm,又向右爬行3cm,最后又向左爬行了10cm (1)用正、负数表示小虫向右或向左爬行的路程(2)猜测一下,小虫最后的位置离出发点A有多远?方向在起点A的左方还是右方呢?六、观察下面依次排列的一列数,请接着写出后面的3个数,你能说出第10个数,第101个数,第2021个数是什么吗?(1)-1,-2,+3,-4,-5,+6,-7,-8,,,,...1111(2)-1,,-3,,-5,,-7,,,,,...2468感谢您的阅读,祝您生活愉快。
苏科版数学七年级上册第二章《有理数》教学设计
苏科版数学七年级上册第二章《有理数》教学设计一. 教材分析苏科版数学七年级上册第二章《有理数》是学生学习初中数学的重要内容,它为学生提供了一种处理数和形的有效工具。
本章主要介绍了有理数的概念、性质和运算,包括整数、分数、相反数、绝对值、有理数的加减乘除等。
这些内容不仅在数学领域有广泛的应用,也为学生后续学习函数、几何等知识打下了基础。
二. 学情分析七年级的学生已经掌握了小学数学的基本知识,对数的概念有一定的了解。
但是,他们对有理数的理解往往是表面的,缺乏深入的理解和灵活的应用。
此外,学生的学习习惯和方法有待提高,需要通过有效的教学设计引导学生主动探索、理解和运用知识。
三. 教学目标1.了解有理数的概念,掌握有理数的性质和运算方法。
2.培养学生的逻辑思维能力,提高学生解决实际问题的能力。
3.引导学生通过自主学习、合作学习,培养学生的学习兴趣和自信心。
四. 教学重难点1.有理数的定义和性质2.有理数的运算方法3.有理数在实际问题中的应用五. 教学方法1.情境教学法:通过生活实例和实际问题引入有理数的概念,使学生能够直观地理解有理数的意义。
2.引导发现法:引导学生通过自主探究、合作交流,发现有理数的性质和运算方法。
3.巩固练习法:通过大量的练习题,让学生在实践中掌握有理数的运算技巧。
六. 教学准备1.教学课件:制作精美的课件,辅助讲解和展示教学内容。
2.练习题:准备一系列有针对性的练习题,用于巩固所学知识。
3.教学工具:准备黑板、粉笔等教学工具,用于板书和演示。
七. 教学过程1.导入(5分钟)利用生活实例或实际问题,如计算购物时的找零,引入有理数的概念。
引导学生思考:为什么需要有理数来表示这样的问题?让学生体会有理数在实际生活中的重要性。
2.呈现(15分钟)讲解有理数的定义,介绍整数、分数的概念,解释相反数、绝对值等概念。
通过示例和讲解,让学生理解有理数的性质,如:相反数的性质、绝对值的性质等。
3.操练(20分钟)让学生进行有理数的加减乘除运算,引导学生发现运算规律。
七年级数学上册 2.2 有理数与无理数 有理数和无理数有什么区别素材 (新版)苏科版
有理数和无理数有什么区别?
负数的出现,导致了减法运算,无理数的出现,导致了开方运算.引入了无理数,数的范围就由有理数扩展到了实数.对于实数的研究,必须先搞清有理数和无理数有什么区别.
主要区别有两点:
第一,把有理数和无理数都写成小数形式时,有理数能写成有限小数或无限循环小数,
比如4=4.0;41
0.8;0.3
53
==……而无理数只能写成无限不循环小数,比如
1.4142, 3.1415926
=π=根据这一点,人们把无理数定义为无限不循环小数.
第二,所有的有理数都可以写成两个整数之比,而无理数却不能写成两个整数之比.根据这一点,有人建议给无理数摘掉“无理”的帽子,把有理数改叫“比数”,把无理数改叫“非比数”.本来嘛,无理数并不是不讲道理,只是人们最初对它太不理解罢了.
是无理数,使用的方法是反正法。
是无理数。
a
b
=(a,b为自然数且互质)于是有a2=2b2,故a2是偶数。
现在来看当a2是偶数时,a是偶数还是奇数.
假设a是奇数,即a=2m+1(m是自然数),则有
a2=(2m+1)2=4m2+4m+1
因为等式右边必为奇数,而a2是偶数,所以等式不可能成立.故a必为偶数.
设a=2m,代入a2=2b2时得到b2=2m2,故b2为偶数,因此b也是偶数。
既然a,b都是偶
数,
a
b
是无理数。
根据有理数与无理数的这些区别,也不用担心化分数
22
7
为小数时,它会不会是无限不循环小数。
因为一切可以写成
n
m
(n是整数,m是自然数)的数必是有理数。
苏科版初中数学七年级上册第二章教学案
苏科版初中数学七年级上册第二章教学案 苏科版初中数学七年级上册第二章第1节2.1《正数与负数》教学设计及课堂练习设计一、自主先学1. 指出下列各数中的正数、负数:+7,-9,31,-4.5,998,109-,0.正数:________________________;负数:________________________. 2. 如果-50元表示支出50元,那么+40元表示___________.3. _______________________统称为整数;_________________统称为分数.二、合作助学4. 把下列各数填入相应的集合内:99.9-,6,13-,0,101-,413+, 1.25-,0.01,+67,10%-,513,2009,18-. 整数集合{ …} ; 分数集合{ …}; 正数集合{ …} ; 负数集合{ …}. 5.“甲比乙大3-岁”表示的意义是 .6. 某地下午5点的气温为2℃,由于冷空气影响,第1小时后气温下降了3℃,第2小时又下降了4℃,你知道下午6点和7点的气温吗?7. 用正数或负数表示下列问题中的数:(1) 从同一港口出发,甲船向东航行142 km ,乙船向西航行142 km ;(2) 从同一车站出发,A 车向北行驶50 km ,B 车向南行驶40 km ;(3) 拖拉机加油50L ,用去油30L .8. 有位同学说“一个数如果不是正数,必定就是负数.”你认为这句话对吗?为什么?三、拓展导学9. 学校对七年级男生进行立定跳远测试, 跳1.7 m 及以上为达标,超过1.7 m 的厘米数用正数表示,不足1.7 m 的厘米数用负数表示. 问:该组有百分之几的男生达标?四、检测促学10. 如果上升10 m 记为+10 m ,那么—7 m 表示________________. 11. 把下列各数填入相应的集合内:.2132.051204325.75-+--+,,,,,, 正数集合{ …};负数集合{ …}. 12. 下列各数:—3.14, +0.5, +3,54-, 0, —6,其中非负整数....有________. 13. 将1,21-, 31,41-,51,61-,…按一定规律排列如下: 第1行: 1 第2行: 21- 31第3行: 41- 51 61-第4行: 71 81- 91 101-第5行:111 121- 131 141- 151按此规律排下去,第10行自左向右第7个数是________.五、反思悟学14. 一件保暖内衣的原价300元,根据销售的实际情况,商店一般可以将价格浮动±20%进行销售.(1) 请你说明±20%的含义;(2) 最低多少元出售.苏科版初中数学七年级上册第二章第2节2.2《有理数与无理数》教学设计及课堂练习设计一、自主先学1. 所有的整数都可以化成分母为1的分数,如5 =_____,—3 =______.一些小数也可以化成分数,如0.6 =_______,—1.5 =________,•3.0=________. 2. 能够写成分数形式_________ ( )的数叫做有理数. 3. _______________________无理数.请举一个无理数:__________.二、合作助学4. 有理数如何分类:,还有其它分法吗?5. 如图,将两个边长为1的小正方形,沿图中虚线剪开,重新拼成一个大正方形,它的面积为2. 如果设大正方形的边长为a ,那么a 2 = ______,a 是有理数吗?(第5题)三、拓展导学6. 有一个面积为5π的圆的半径为x ,x 是有理数吗?说说你的理由.(第6题)四、检测促学7. 下列各数π,51,0 ,—1中,无理数是 ( )A. πB.51C. 0D. —1 8. 下列说法错误的是 ( ) A. 负整数和负分数统称负有理数11111111a aaa ⎪⎪⎩⎪⎪⎨⎧分数 ⎩⎨⎧正分数 负分数______⎪⎩⎪⎨⎧正整数 负整数 ______ 有理数B. 正整数、0、负整数统称为整数C. 正有理数与负有理数组成全体有理数D. 3.14是小数,也是分数 9. 下列说法正确的个数 ( )① 无理数一定是无限小数;③无限小数一定是无理数;④722是无理数;② π是无理数;⑤ 0是无理数.A. 1个B. 2个C. 3个D. 4个 10. 写一个大于1小于2的无理数是________.11. 已知正数m 满足m 2 =15,则m 的整数部分是_________. 12. 把下列各数填入对应的括号中:4.2-,3,2.012,310-,411,••51.0,0,8π,)15.3(--, 5.313 3133 3133 33…. 正数集合:{} ; 整数集合:{} ; 无理数集合:{} ; 负分数集合:{} .五、反思悟学13. 写出5个数,同时满足以下三个条件:(1) 其中3个数属于非正数集合;(2) 其中3个数属于非负数集合;(3) 5个数属于整数集合.苏科版初中数学七年级上册第二章第3节2.3《数轴1》教学设计及课堂练习设计一、自主先学1. 规定了____________、_____________和_____________的直线叫做数轴.2. 把图中直线上的点所表示的数写在相应的方框里.3. 数轴上在原点左边,距离原点3个单位长度的点表示的数是_________.二、合作助学4. 分别写出数轴上A 、B 、C 表示的数:5. 在数轴上画出表示下列各数的点:2135.15335.1---,,,,.三、拓展导学6. 面积为2的正方形的边长a 是无理数,如何在数轴上画出表示a 的点?四、检测促学 (第6题)7. 如图,下面对于分别用数轴上的点A 、B 、C 、D 表示的数,说法正确的是 ( )A. 点D 表示—2.5B. 点C 表示—1.25C. 点B 表示1.5D. 点A 表示1.25 8. 下列说法正确的是 ( )A. 只有有理数可以用数轴上的点表示B. 数轴上的任意一点都可以表示一个有理数或无理数C. 在数轴上表示—1的点与表示2的点的距离为1D. π是无理数在数轴上无法表示A B C D a aaa9. 在数轴上,A 点和B 点所表示的数分别为2-和1,若要使A 点表示的数是B 点表示的数的3倍,则应将A 点 ( ) A. 向左移动5个单位 B. 向右移动5个单位 C. 向右移动4个单位D. 向左移动1个单位或向右移动5个单位10. 数轴是规定了原点、___________和___________的一条直线. 11. 已知到原点的距离是3个单位长度的点表示的数为____________. 12. 观察数轴,小于π的非负整数有____________________. 13. 画出数轴,并在数轴上表示下列各数: .5.204211215.35,,,,,,--+五、反思悟学14.如图所示,点A 表示的数是—1,以 A 点为圆心,21个单位长度为半径的圆交数轴于B 、C 两点,那么B 、C 两点表示的数分别是_________________.苏科版初中数学七年级上册第二章第3节2.3《数轴2》教学设计及课堂练习设计一、自主先学1. 把0℃、1℃、—3℃、—2℃按从低到高的顺序排列是_________________.2. 在数轴上画出表示0、1、—3、—2的点,并用“<”连这些数.( 第14题 )3. 数轴上的点的位置与它们所表示的数的大小有什么关系?(1)_____________________________________________________________. (2)_____________________________________________________________.二、合作助学4. 比较—3.5和—0.5的大小.5.在数轴上画出表示下列各数的点,并用“<”号将这些数按从小到大的顺序连接起来:三、拓展导学6. 如图所示,在数轴上有三个点A 、B 、C ,请回答下列问题.(1) 将B 点向左移动3个单位长度后,三个点中_______表示的数最小,是_________. (2) 将A 点向右移动4个单位长度后,三个点中_______表示的数最小,是_________. (3) 将C 点向左移动6个单位长度后,点B 与点C 中_______表示的数大,大_________.四、检测促学7. 下列各数中,最小的数是 ( ) A. 1 B.21C. 0D. —1 8. 下列说法错误的是 ( )A. 最小的正整数是1,最大的负整数是—1B. 在数轴上表示两个数,左边的数总比右边的数小C. 在数轴上表示211-的点在原点的左侧,距原点211个单位长度D. 在数轴上,原点两边的数都比0大 9. 比较大小(填写“>”或“<”).5.1532021---,,,,,A BC(1) —2.1_______1; (2) —3.2_______—4.3; (3) 21-_______ 31-; (4) 41- _______0. 10. 如图,数轴上的一部分被墨水污染,被污染的部分内含有的整数为________________.11. 某人从A 地向东走10 m ,然后折回向西走了3 m ,又折回向东走了6 m ,问此人最后在A 地哪个方向?距离A 地多少米?五、反思悟学12. 数轴上点A 、B 的位置如图所示,若点A 、B 关于点A 的对称点C ,则点C 表示的数为_____________. A B苏科版初中数学七年级上册第二章第4节2.4《绝对值与相反数1》教学设计及课堂练习设计一、自主先学1. 小明家在学校正西方3 km 处,小丽家在学校正东方2 km 处,他们上学所花的时间与各家到学校的距离有关.你会用数轴上的点表示学校、小明家、小丽家的位置吗?( 第12题 )2.3-1.2( 第10题 )2. 在数轴上,表示-3的点与原点的距离是______,表示2的点与原点的距离是______,表示0的点与原点的距离是______.3. 数轴上表示一个数的点与原点的_________叫做这个数的绝对值. 通常,我们将数a 的绝对值记为________.4. 你能说出数轴上的点A 、B 、C 、D 、E 所表示的数的绝对值吗?二、合作助学5. 求4、5.3-的绝对值.6. 已知一个数的绝对值是25,求这个数.三、拓展导学7. 已知| a | = 2,| b | = 2,| c | = 3,且有理数a ,b ,c 在数轴上的位置如图所示,求a ,b ,c 的值.四、检测促学8. 4-的绝对值是 ( ) A. 4 B.41 C. 4- D. 41- 9. 如果一个有理数的绝对值是8,那么这个数一定是 ( )A. 8-B. 8- 或8C. 8D. 以上都不对 10. 绝对值小于2的整数有 ( )( 第7题 )A. 1个B. 2个C. 3个D. 4个 11. 下列说法中错误的是 ( )A. 一个正数的绝对值一定是正数B. 任何数的绝对值都是正数C. 一个负数的绝对值一定是正数D. 任何数的绝对值都不是负数 12. 直接写出结果:(1) | 3 |= _______; (2) |7.2|-= _______; (3) |43+|= _______; (4) |831-|= _______;(5) |2014|-= _______;(6) | 0 |= _______.13. 计算:(1) |4|+-=________;(2) |2|--=________;(3) |5||6|-++=________;(4) |2.0||5.4|+⨯-=________;(5) |3||12|-÷+=________.14. 已知两个数x 、y ,同时满足:3-=x ,| x |= | y |,则y 的值为____________.五、反思悟学15. 若0|3||2|=-+-x x ,则x =_______,y =_______.苏科版初中数学七年级上册第二章第4节2.4《绝对值与相反数2》教学设计及课堂练习设计一、自主先学1. 如图,观察数轴上点A 、点B 的位置及它们到原点的距离,你有什么发现?(第1题)2. 观察下列各组数,你有什么发现? 5与—5,2.5与—2.5,3232-与,π与—π.3. 符号不同、绝对值相同的两个数互为相反数,其中一个数叫做另一个数的____________.AB4. —5的相反数________,2.5的相反数________,0的相反数________.二、合作助学5. 求3、5.4-、74的相反数.6. 化简:)2(+-,)7.2(+-,)3(--,)43(--.7. 数轴上表示互为相反数的两个数的点之间的距离是8,求这两个数.三、拓展导学8. 请在数轴上画出表示3,—2,—0.5及它们相反数的点,用分别用A ,B ,C ,D ,E ,F来表示.(1) 把6个数用“<”连接起来;(2) 点C 与原点的距离是多少?点A 与点C 之间的距离是多少?四、检测促学9. 21-的绝对值是 ( ) A. 2 B. 21 C. 2- D. 21-10. 下列说法正确的是 ( )A. 5-是相反数B. 4- 与41-互为相反数 C. 4-是4的相反数 D. 0没有相反数 11. 化简:(1) [])5(+--= ______;(2) [])2.3(--+= ______;(3) [])2(-+-= ______;(4) |7|--= _______; (5) |7|+-= _______; (6) |7|-+= _______. 12. 若4=-m ,则m = _______.13. 3-的相反数是________,2.5与________互为相反数. 14. 若0|2||3|=++-b a ,则a +b = _______.五、反思悟学15. 已知32-=a ,312-=b ,213=c .(1) 在数轴上标出a ,||b ,a -,c -的位置;(2) 用“<”把a ,||b ,a -,c -连接起来.苏科版初中数学七年级上册第二章第4节2.4《绝对值与相反数3》教学设计及课堂练习设计一、自主先学1. |2.3|=_________,|47|=_________,|6|=_________,|0|=_________.2. |5-|=_________,—5的相反数是_________, |5.3-|=_________,—3.5的相反数是_________, |47-|=_________,47-的相反数是_________. 3. 正数的绝对值是_______________;负数的绝对值是_______________; 0的绝对值是__________.二、合作助学4. 求下列各数的绝对值: +6,π,—3,—2.7,0.5. 求数a 的绝对值:6. 两个正数,绝对值大的那个数一定大吗?两个负数呢?三、拓展导学7. 写出绝对值大于2而小于6的整数,并用“<”连接各数.8. 如果| a |=1,| b |=5,且a > b ,求a ,b 的值.四、检测促学9. 下列各数中,最小的数是 ( )A. —2B. 0C. 31- D. 510. 比较—3.1,—2的大小,下列判断正确的是 ( ) A.121.3<-<- B.11.32<-<- C.1.321-<-< D.231-<-< 11. 比较大小(填写“>”或“<”).(1) 53-_______|21-|; (2) |51-| _______0; (3) |56-| _______ |34-|; (4) 79- _______56-.12. 倒数等于本身的数___________,相反数等于本身的数___________,绝对值等于本身的数___________.13. 绝对值小于3.14的整数有___________________.14. 实数a ,b 在数轴上的位置如图所示,以下说法正确的是 ( )A.a +b =0B. b < aC. ab > 0D. | b |<| a |五、反思悟学15. 如果| a |=4,| b |=3,则比较a 与b 的大小会有哪些结果,请你都写出来.苏科版初中数学七年级上册第二章第5节2.5《有理数的加法与减法1》 教学设计及课堂练习设计一、自主先学1.某校七年级举行了一次足球联赛,一班第一场赢了2个球,第二场输了3个球,该班两场比赛的净胜球为多少个?2.计算:()()(1)43-++ ()()(2)25-+- ()(3)22+- ()(4)04+- ()()(5)38-++二、合作助学3.在课本上填写表中的净胜球数和相应的算式.4.完成课本上的数学实验,再仿照书上的做法,请在数轴上呈现下面的算式所表示的笔尖运动的过程和结果.()()33+++= ()()35++-= ()()44++-= ()50-+=5.有理数加法法则:(1)同号两数相加,取 的符号,并把绝对值 .(2)异号两数相加,绝对值相等时,和为 ;绝对值不等时,取绝对值 的加数的符( 第14题 )号,并用较大的绝对值减去较小的绝对值.(3)一个数与相加,仍得这个数.6.填表:7.计算:(1)(-180)+(+20)(2)(-15)+(-3)(3)5+(-5)(4)0+(-2)三、拓展导学8. 一个水利勘察队,第一天沿江向上游走了20千米,第二天向下游走了45千米,问此时勘察队在出发点的上游还是下游,距出发点多远?(利用有理数的加法列式解答)9.如果a<0,b>0,且a+b<0,借助于数轴比较a、b、-a、-b的大小(用“<”连接).四、检测促学10.一个正数与一个负数的和是()A.正数B.负数C.零D.以上三种情况都有可能11.两个有理数的和()A.一定大于其中的一个加数B.一定小于其中的一个加数C.大小由两个加数符号决定D.大小由两个加数的符号及绝对值而决定12.判断(1)两个有理数相加,和一定比加数大.()(2)绝对值相等的两个数的和为0.()(3)若两个有理数的和为负数,则这两个数中至少有一个是负数.( )13.计算:(1)(+2)+(—3)(2)(—2)+(—3)(3)(—13)+25(4)(—23)+0 (5)4.5+(—4.5)(6)1132⎛⎫⎛⎫-++⎪ ⎪⎝⎭⎝⎭五、反思悟学14.有理数a、b之间的关系如图所示,借助于数轴和加法法则判断下列各式计算结果与0的大小:(1)a+b0,(2)a+(-b) 0,(3)(-a) +b0,(4)(-a) +(-b) 0.(第14题)苏科版初中数学七年级上册第二章第5节2.5《有理数的加法与减法2》教学设计及课堂练习设计一、自主先学1.某电梯原停在第10层,在某一时段中的运行情况如下(记上升为正,下降为负,单位:层):-8,+2,+5,-4,-2,+4.(1)问此时电梯停在第几层?(列出算式)(2)这个算式如何计算才能简便呢?小学学过的加法运算律在有理数范围内还成立吗?2.计算:(1)()()81021-+++-(2)()()()231324-+++-++-二、合作助学3.有理数加法运算律:(1)加法交换律:2个数相加,交换加数的位置,和.即a b+=.(2)加法结合律:3个数相加,先把前2个数相加,或者先把后2个数相加,和.即()a b c a++=+().4. 计算:(1)()()()235817-+++-(2)()()()2.83.6 1.5 3.6-+-+-+(3)1255 6767⎛⎫⎛⎫⎛⎫+-+-++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭三、拓展导学5.10名学生称体重,以50千克为基准,超过的千克数记作正数,不足的千克数记作负数,称重记录如下:2.5,-7.5,-3,5.5,-12,-6,4.5,8,2,-2,问这10人的总重量是多少?四、检测促学6.计算:(1)()()11814-++-(2)()()()82413+-+-++-(3)()()()4343-+-+-+(4)()()0.350.60.25 5.4+-++-(5)32124343⎛⎫⎛⎫⎛⎫-+-+-+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(6)()1112236⎛⎫⎛⎫-+-++-⎪ ⎪⎝⎭⎝⎭7.某种袋装奶粉标明净含量为400g,检查其中8袋,记录如下表:请问这8袋被检奶粉的总净含量是多少?8.小虫从某点O出发,在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬过的各段路程依次为(单位:厘米):+5,-3,+10,-8,-6,+12,-10. 试问:小虫最后能否回到出发点O?五、反思悟学9.计算:(1)()()()()()1234562001200220032004+-++-++-+++-++-()()()()()()123456782001200220032004+-+-+++-+-++++-+-+苏科版初中数学七年级上册第二章第5节2.5《有理数的加法与减法3》 教学设计及课堂练习设计一、自主先学1. 如果某天的最高气温是5℃,最低气温是-3℃,那么这天的日温差是多少?(列算式计算)2.计算:(1)69- (2)()()47+-- (3)()()58---(4)()49-- (5)()05-- (6)05-二、合作助学3.有理数减法法则:减去一个数,等于加上这个数的 .4.填空:(1)()()()454---=-+( ) (2)()()636--=-+( ) (3)()18--( )16=- (4)( )()1517--= 5.计算:(1)()022-- (2)()8.5 1.5-- (3)()416+- (4)1124⎛⎫-- ⎪⎝⎭6.阅读34页例4,了解日温差概念.三、拓展导学7.求出数轴上两点之间的距离:(1)表示数10的点与表示数4的点; (2)表示数2的点与表示数-4的点; (3)表示数-1的点与表示数-6的点. 8.已知|x |=3,|y |=4,求x -y 的值.四、检测促学9.填空:(1)()()75-+-= ; (2)208-+= ; (3)75-+= ; (4)()05+-= . 10.直接写出计算结果:(1)()66--= ; (2)66-= ; (3)()66--= ; (4)()()66---= . 11. 计算:(1)1521- (2)()1.90.6-- (3)3142⎛⎫-- ⎪⎝⎭ (4)1243⎛⎫-- ⎪⎝⎭(5)()()745--+- (6)()2112331267--++-12.已知| a |=3,| b |=4,且a <b ,求a -b 的值.五、反思悟学13.下列说法中正确的是( )A .两数之差一定小于被减数B .减去一个负数,差一定大于被减数C .减去一个正数,差不一定小于被减数D .零减去任何数,差都是负数14.若不为0的两个数的差是正数,则一定是( ) A .被减数与减数均为正数,且被减数大于减数 B .被减数与减数均为负数,且减数的绝对值大C .被减数为正数,减数为负数D .以上3种均可满足条件苏科版初中数学七年级上册第二章第5节2.5《有理数的加法与减法4》 教学设计及课堂练习设计一、自主先学1. 计算:(1)()()()()1234---++-- (2)()()()1234--+--+二、合作助学2.在把有理数加减混合运算统一为加法的算式中,负数前面的加号可以省略不写. 例如7+4+(-5)可以写成7+4-5,它表示7、4与(-5)的和. 计算:(-4)+9-(-7)-13解:原式=-4+9+(+7)+(-13) 减法转化为加法=-4+9+7-13 省略加号的和 =-4-13+9+7 加法交换律 = 同号两数相加 = 异号两数相加3.把下列各式写成省略括号的和的形式,并用两种读法读出该式. (1)()()()10465+++--- (2)()()()()8479--++--+4.计算:(1)258+- (2)354--+ (3)2643241346-+-+- (4)()()14122517--+--三、拓展导学5.巡道员沿东西方向的铁路进行巡视维护.他从住地出发,先向东行走了7km ,休息之后继续向东行走了3km ;然后折返向西行走了11.5km.此时他在住地的什么方向?与住地的距离是多少?四、检测促学6. 计算:(1)()()745--+- (2)2112331267--++- (3)5.4 2.3 1.5 4.2-+-(4)15312424--+- (5)123213355⎛⎫---+---- ⎪⎝⎭7.“国庆黄金周”的某天下午,出租车司机小张的客运路线是在南北走向的建军路大街上,如果规定向南为正、向北为负,他这天下午行车里程(单位:千米)如下: +3、+10、-5、+6、-4、-3、+12、-8、-6、+7、-21. (1) 求收工时小张距离下午出车时的出发点多远?(2)若汽车耗油量为0.2L/km ,这天下午小张共耗油多少升?五、反思悟学8.如果2a =,4b =,且a b a b +=+.求()a b -的值.9. -55起每次加1,得到一串数:-54,-53,-52,-51,…… (1)这串数的第100个数是多少? (2)求这100个数的和.苏科版初中数学七年级上册第二章第6节2.6《有理数的乘法与除法1》 教学设计及课堂练习设计一、自主先学1.将商店盈利记为“+”,亏损记为“-”,若一个商店平均每天亏损20元,则该商店一周的利润是 元.2.计算:(1)()()87-⨯- (2)()125⨯- (3)()()361-⨯- (4)()2516-⨯二、合作助学3.仿照课本水位上升与下降问题,完成填表:4.有理数的乘法:(1)两数相乘,同号 ,异号 ,并把绝对值 ;任何数与0相乘都得 . (2)有理数的乘法步骤是:先确定积的 ,再计算积的 . 5.填空:(1)96⨯= ;(2)()96-⨯= ;(3)()34⨯-= ; (4)()()34-⨯-= ;(5)()2.71 3.90-⨯⨯= ;(6)435523⎛⎫⎛⎫⎛⎫-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= .6.如果0=m n ,那么( ) A .m 、n 都为0 B .m 、n 不都为0C .m 、n 中至少有一个为0D .m 、n 中至多有一个为0三、拓展导学7.七年级共100名学生,在一次数学测试中以90分为标准,超过的记为正,不足的记为负,成绩如下:请你算出这次考试的平均成绩.四、检测促学8.计算:(1) 6×(-9); (2)(-6)×(-9); (3) (-6)×9; (4) (-6)×1;(5) (-6)×(-1); (6) 6×(-1); (7) (-6)×0; (8) 0×(-6);(9) (-6)×0.25; (10) (-0.5)×(-8); (11)2934⎛⎫⨯- ⎪⎝⎭; (12)1134⎛⎫-⨯ ⎪⎝⎭.9.一种金属棒,当温度是20℃时,长为5cm ,温度每升高或降低1℃,它的长度就要随之伸长或缩短0.0005cm ,求温度为10℃金属棒的长度.五、反思悟学10.若0ab >,0a b +>,则a 、b 两数( )A .同为正数B .同为负数C .异号D .异号且正数绝对值较大11.计算:111111112342014⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭苏科版初中数学七年级上册第二章第6节2.6《有理数的乘法与除法2》 教学设计及课堂练习设计一、自主先学1.填空:(1)23-⨯ 32⨯- (依据: )(2)()()725⨯-⨯-⎡⎤⎣⎦ ()()725⨯-⨯-⎡⎤⎣⎦ (依据: )(3)()12623⎛⎫+⨯- ⎪⎝⎭()()126623⨯-+⨯- (依据: )2.利用分配律计算981009999⎛⎫-⨯ ⎪⎝⎭时,下列表示正确的是( )A .981009999⎛⎫-+⨯ ⎪⎝⎭B .981009999⎛⎫--⨯ ⎪⎝⎭C .981009999⎛⎫-⨯ ⎪⎝⎭D .11019999⎛⎫--⨯ ⎪⎝⎭二、合作助学3.计算:(1)(-6)×(-7)= , (-7)×(-6)= .2×(-9)= , (-9)×2 = .(2)[2×(-3)]×(-4)= , 2×[(-3)×(-4)] = . (3)(-2)×[-3+5] = , (-2)×(-3)+(-2)×5 = . 4.计算:(1)188⨯; (2)()144⎛⎫-⨯- ⎪⎝⎭; (3)7887⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭.5.有理数乘法运算律(用字母表示)交换律: ;结合律: ; 分配律: ;如果两数的乘积为1,那么这两个数互为 .6.计算:()157362612⎛⎫+-⨯- ⎪⎝⎭三、拓展导学7.计算:(1)()2222227195777⎛⎫⎛⎫⎛⎫-⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)()()()()10.89.250.7510.8-⨯---⨯ (3)()1519816⨯-四、检测促学8.计算:(1)133⨯ (2)3773⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭ (3)()12020⎛⎫-⨯- ⎪⎝⎭ (4)11111⎛⎫⨯- ⎪⎝⎭9.计算:(1)()()825⨯-⨯- (2)()()5102-⨯⨯- (3)()11360234⎛⎫--+⨯- ⎪⎝⎭(4)()()355515⨯--⨯+-⨯ (5)()16991717⨯-五、反思悟学10.已知2x +与()23y -互为相反数,且a 、b 互为倒数,试求y x ab +的值.苏科版初中数学七年级上册第二单元第6节《2.6有理数的乘法与除法(3)》 教学设计及课堂练习设计一、自主先学1.计算:(1) (-2) ×(-4)= ; 8÷(-4)= ; 8×(-41)= . (2)(-2)×4= ; (-8)÷4= ; (-8)×41= . 2.某地某周每天上午8时的气温记录如下:这周每天上午8时的平均气温可表示为:()()()()()()[]71203233÷-+-++-+-+-+- 即(-14)7÷,它的值是多少?你会计算吗?二、合作助学3.有理数的除法法则:除以一个 的数,等于乘以这个数的 . 两数相除, , ,并把 相除. 0除以任何一个 的数,都得 .4.计算:(1)36÷(-9) (2)(-48)÷(-6)(3)(-32)÷4×(-8) (4)17×(-6)÷(-5)(5)1223⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭(6)()()94811649-÷⨯÷-三、拓展导学5.一天,小张和小李利用温度差测量山的高度,小张在山顶测得的温度是-1℃,小李在山脚下测得的温度是2℃,已知该地区高度每上升100m ,气温下降约0.6℃,请你帮他们算算,这座山的高度大约是多少?四、检测促学6.填空:(1)-3的倒数是 ;(2)12-的倒数是 ;(3)1325的倒数是 ;(4)1312-的倒数是 ; (5)0.1的倒数是 ;(6)-0.15的倒数是 . 7.计算:(1)()15÷- (2)102⎛⎫÷- ⎪⎝⎭ (3)()9113-÷(4)()()639-÷- (5)4334⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭ (6)30.258⎛⎫÷- ⎪⎝⎭8.计算:(1)()()1234⨯-÷- (2)()1622⎛⎫-÷⨯- ⎪⎝⎭(3)()1555⎛⎫-÷-⨯ ⎪⎝⎭ (4)()()121033⎛⎫-÷-⨯- ⎪⎝⎭五、反思悟学9.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯, 将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯ (1)猜想并写出:()11n n += .(2)计算:111112233420132014++++⨯⨯⨯⨯.苏科版初中数学七年级上册第二章第7节2.7《有理数的乘方1》 教学设计及课堂练习设计一、自主先学1. 22读作什么?它表示什么?32呢?如果2×2×2×2可以写成什么形式?个n 2222⨯⨯⨯⨯ 呢?2. 如果将上题中2换成任意数a ,则个n a a a a ⨯⨯⨯⨯可表示成什么形式?读作什么?3. 填一填:(1)()62-读作 ,表示 ,其中指数为 ,底数为 ;(2)62-读作 ,表示 ,其中指数为 ,底数为 ;(3)73= ; 37= ; 521⎪⎭⎫ ⎝⎛= ;353⎪⎭⎫ ⎝⎛= ;(4)()43-= ;()34-= ;432⎪⎭⎫ ⎝⎛-= ;532⎪⎭⎫⎝⎛-= ;二、合作助学4. 通过上面的数学活动,我们学习了一种新的运算----乘方。
2.2有理数与无理数 说课稿 2022-2023学年苏科版数学七年级上册
2.2 有理数与无理数说课稿一、教材分析《2022-2023学年苏科版数学七年级上册》是针对七年级学生编写的数学教材。
本说课稿针对教材中的2.2单元进行讲解,主要内容涉及有理数和无理数的概念、表示方法以及它们之间的关系。
本单元内容是七年级学生初次接触有理数和无理数的重要环节,对于学生的数学思维能力的培养具有重要意义。
二、教学目标1. 知识与能力目标•理解有理数和无理数的概念。
•掌握有理数的表示方法,包括整数、分数和小数。
•了解无理数的特点和表示方法。
•理解有理数和无理数之间的关系。
2. 过程与方法目标•引导学生通过观察、实践和讨论等方式,积极参与学习。
•培养学生的逻辑思维和问题解决能力,提高数学思维能力。
•通过合作学习和探究学习,培养学生的团队合作和交流能力。
3. 情感态度与价值观目标•培养学生对数学的兴趣和好奇心,激发他们学习数学的主动性。
•培养学生认真思考、勇于探究的学习态度。
•培养学生对有理数和无理数用处的认识,增强他们对数学知识的实际应用意识。
三、教学重点和难点1. 教学重点•学习有理数的概念和表示方法。
•学习无理数的特点和表示方法。
•理解有理数和无理数之间的关系。
2. 教学难点•学生对无理数的概念和表示方法的理解。
•学生对有理数和无理数之间的关系的掌握。
四、教学内容与教学步骤1. 教学内容1.有理数的概念2.有理数的表示方法3.无理数的概念4.无理数的表示方法5.有理数和无理数的关系2. 教学步骤Step 1: 导入引入教学内容,通过简单的问题让学生思考数的分类问题,引发学生对有理数和无理数的兴趣,为下面的学习做好铺垫。
Step 2: 有理数的概念通过实际例子和图示,引导学生理解有理数的概念,包括整数、分数和小数等。
通过举例让学生体会有理数与实际生活及数学实践的联系。
Step 3: 有理数的表示方法介绍有理数的表示方法,包括整数、分数和小数的表示方法,以及它们之间的相互转化关系。
通过具体的计算实例,帮助学生掌握有理数的表示方法。
苏科初中数学七年级上册《2.2 有理数与无理数》教案 (4)【精品】
负数集合:{…};
正有理数集合:{…};
负有理数 集合:{ …}.
3、以下各正方形的边长是无理 数的是()
(A)面积为25的正方形;(B)面积为16的正方形;
(C)面积为3的正方形;(D)面积为1.44的正方形.
五、课堂感悟:
批注/记录
此外,像0.101 001 000 1…、-0.101 001 000 1…这样的无限不循环小数也是无理数.
四、数学方法应用
1、判断题. (1)无理数都是无限小数.
(2)无限小数都是无理数.
(3)有理数与无理数的差都是有理数.
(4)两个无理数的和是无理数.
2、将下列各数填入相应括号内: , , , ,-2π, , .
如果大正方形的边长为a,那么a2= 2.a是有理数吗?
推导过程见书P15,(学生感受“无限夹逼法”)
2、事实上,a不能写成分数形式 (m、n是整数,n≠0),a是无限不循环小数,它的值是1.414 213 562 373….
三、数学知识建模
1、无限不循环小数叫做无理数.
小学学过的圆周率π是无限不循环小数,它的值是3.141 592 653 589…,π是无理 数.
我们把能写成分数形式 (m、n是整数,n≠0)的数叫做有理数.
想一想:
小学里学过的有限小数和无限循环小数是有理数吗?
, , , .
有限小数和无限循环小数都可以化为分数,它们都是有理数.
根据有理数的定义,有理数可以进行如议一议:是不是所有的数都是有理数呢?
将两个边长为1的小正方形,沿图中红线剪开,重新拼成一个大正方形,它的面积为 2 .
2.2有理数与无理数
教学目标
1.理解有理数的意义和 会对有理数进行分类;
2022秋七年级数学上册 第2章 有理数2.2 有理数与无理数 2无理数(实数及其性质)说课稿苏科版
实数及其性质一、教材分析1、教学内容这节课的教学内容主要介绍无理数、实数的概念以及实数的性质。
2、教材的地位和作用本节课是人教版《数学》七年级(下)第六章最后一个小节的内容,是在学生学习了平方根、立方根以后,接触过“2”、“π”等具体的无理数的基础上,引入了无理数的概念,从而将数从有理数扩展到实数。
在中学阶段,大多数问题都是在实数的范围内研究的,因此,它对今后的数学学习有着非常重要的意义。
无理数的引入,数系的扩展充满着对立和统一的辩证关系及分类思想,实数和数轴上的点一一对应蕴含着数形结合的思想。
所以这节课不仅仅是完善学生的知识结构,而且还是培养学生想象能力,渗透数学思想,感受数学美的有效载体,也是发展学生逻辑思维能力的重要内容。
二、目标分析1、教学目标依据《课程标准》,并结合教材内容及学生的认知水平和思维特点,确定本节课的教学目标:知识目标:了解无理数、实数的概念和实数的分类;知道实数与数轴上的点一一对应。
能力目标:让学生感知无理数的存在,经历数系从有理数扩展到实数的过程。
通过无理数的引入,培养从特殊到一般、具体到抽象的逻辑思维能力。
情感目标:渗透数形结合及分类的思想,体验数系的扩展源于实际,又服务于实际的辩证关系;通过学生之间的相互交流,增强学生的合作意识。
2、重点、难点和关键本节课的重点是了解无理数、实数概念和实数的分类。
由于学生有了一次从整数扩展到有理数的体验,二次根式的学习又为有理数扩展到实数作了一定的准备,学生学习实数的困难在于无理数的引入,因此难点是正确理解无理数的意义;关键是把数化为小数形式以后区分有理数与无理数的特征。
三、教法、学法本节课通过创设问题情境,引导学生回顾认识数的过程,通过合作探索,经历无理数的产生过程,精心设问,适时、适度采用激励性语言,提高学生积极性,从而较好地完成实数概念的建构,达到教学目标。
并结合计算器、多媒体、实物投投仪等现代教投手段实施教学,体现直观性。
学生通过动手、动口、动脑等活动,主动探索、发现问题;互动合作,解决问题;归纳概括,形成能力。
苏科版七年级上册数学2.2有理数与无理数
2.2有理数与无理数1. 0是 ( )A .最小的正数B .最大的负数C .最小的有理数D .整数 2.下列说法正确的是( )A. 0.555…是分数B. -5是负分数C.3.8不是分数D.自然数一定是正数 3.下列说法:①有限小数是有理数;②无限小数都是无理数;③无理数都是无限小数;④有理数是有限小数中错误的个数是 ( ) A.1 B.2 C.3 D.4 4.下列说法正确的是( )A.整数包括正整数和负整数B.零是整数,但不是正数,也不是负数C.分数包括正分数、负分数和零D.有理数不是正数就是负数 5.以下各正方形的边长是无理数的是( )A.面积为25的正方形B.面积为16的正方形C.面积为3的正方形D.面积为1.44的正方形 6.在下列各数中:0,-3.14,722,0.101 001 0001…,3π,有理数有( ) A.1个 B.2个 C.3个 D.4个7.整数和分数统称为__________数,无限不循环小数是___________数.8.在-2,+3.5,0,-32,-0.7,11,-5π,-0.23 223 2223…,-••31.0中,负分数是__________.9.写出一个比-3大的无理数是___________.10.如图,两个圈分别表示负数集合、整数集合,请从-1,5,-80%,-7,0,-0.2,72,-10这些数中,选择适当的数填在这两个圈的重叠部分为__________.11.有6个数:0.123,-1.5,3.1416,722,π-,0.102 002 0002,若其中无理数的个数是x ,整数的个数是y ,非负数的个数是z ,则x+y+z=_________. 12.我们知道,无限循环小数都可以转化成分数.如:0.333…转化为分数时,可设0.333…=x , 则x x 1013.0+=,解得31=x ,即0.333…=31.仿此方法,将0.454545…化为分数得_____.13.将下列各数分类:5.1,-3.14, ,0,0.222…,1.696696669,1.696696669…,0.5, -0.210有理数有________________________________; 无理数有________________________________.14.将下列各数填入相应的括号内:11.将下列各数填入相应的括号内:-6,9.3, 17 ,42,0,-0.33,0.333…,1.41421356,-2 ,3.3030030003…,-3.1415926,2π,0.58588588858888….正数集合{ …} 负数集合{ …} 有理数数集合{ …} 无理数数集合{ …} 15.把下列各数填在相应的大括号中-311,-10%,722,0.3,π,0,-1.7,21,-2,1.01001,1.2020020002…,+6 有理数集合{ …} 无理数集合{ …} 正数集合{ …} 负数集合{ …} 整数集合{ …} 分数集合{ …} 非负有理数集合{ …} 16.漠漠做数学:假设抽到牌的点数为x ,漠漠猜中的结果为y ,则y 等于 ( ) A.2 B.3 C.6 D.x+2参考答案 1.D 2.A 3.B 4.B 5.C 6.C7.有理数,无理数 8.-2,-32,-0.7,-9.-0.23 2232223… 10.-7,-10 11.6 12.45/9913.有理数有5.1,-3.14,0,0.222…,1.696696669,0.5, -0.210无理数有 ,1.696696669…14.正数集合{ 9.3, 17,42 ,0.333…,1.41421356, 3.3030030003…,2π ,0.58588588858888…. …}负数集合{ -6,-0.33,-2 , -3.1415926 …}有理数数集合{ -6,9.3, 17,42,0,-0.33,0.333…,1.41421356,-2 ,-3.1415926, …}无理数数集合{ 3.3030030003…,2π,0.58588588858888…. …} 15.-311,-10%,722,0.3,π,0,-1.7,21,-2,1.01001,1.2020020002…,+6有理数集合{15.-311,-10%,722,0.3,0,-1.7,21,-2,1.01001,+6 …}••31.0无理数集合{ π, 1.2020020002… …} 正数集合{722,0.3,π, 21,1.01001,1.2020020002…,+6 …} 负数集合{-311,-10%, -1.7 , -2 …}整数集合{0, 21, -2, +6 …}分数集合{ -311,-10%,722,0.3,-1.7, -2,1.01001 …}非负有理数集合{ 15. 722,0.3,0,21,1.01001,+6 …} 16.2初中数学试卷灿若寒星 制作。
七年级数学上册《2.2 有理数与无理数》教案 (新版)苏科版
《2.2 有理数与无理数》教案教学目标1.理解有理数的意义和会对有理数进行分类;2.了解无理数的意义.教学重点1.有理数的意义和分类;2.无理数的意义.教学难点有理数的分类,区分有理数和无理数.教学过程有理数我们学过整数(正整数、负整数、零)和分数(正分数、负分数).实际上,所有整数都可以写成分母为1的分数的形式.如我们把能写成分数形式(m 、n 是整数,n ≠0)的数叫做有理数.想一想:小学里学过的有限小数和无限循环小数是有理数吗?根据有理数的定义,有理数可以进行如下的分类:,或结合体会整数可化成分母为1的分数形式.,,,.有限小数和无限循环小数都可以化为分数,它们都是有理数.无理数议一议:是不是所有的数都是有理数呢?将两个边长为1的小正方形,沿图中红线剪开,重新拼成一个大正方形,它的面积为2. 如果大正方形的边长为a ,那么a 2=2.a 是有理数吗?事实上,a 不能写成分数形式m n(m 、n 是整数,n ≠0),a 是无限不循环小数,它的值是1.414 213 562 373….无限不循环小数叫做无理数.小学学过的圆周率π是无限不循环小数,它的值是3.141 592 653 589…,π是无理数.此外,像0.101 001 000 1…、-0.101 001 000 1…这样的无限不循环小数也是无理数.有理数的分类根据有理数的定义,有理数包括整数和分数,即,或课堂练习:将下列各数填入相应括号内:,,,,-2π,,.正数集合:{ …};负数集合:{ …};正有理数集合:{ …};负有理数集合:{ …}.正数集合:{…};负数集合:{ …};正有理数集合:{ …};负有理数集合:{ …}.课堂小结:谈谈你这一节课有哪些收获.回顾本节的教学内容,从知识和方法两个层面进行总结.归纳知识体系,提炼思想和方法.中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
七年级数学上册《2.2有理数与无理数》教案 人教新课标版
此外,像0.101 001 000 1…、-0.101 001 000 1…这样的无限不循环小数也是无理数.
通过拼图,探索,让学生感受a不能化为分数的形式,引出a这个无限不循环小数,从而得到无理数的定义.通过π进一步说明无理数的确存在.根据无理数的定义,我们还可以构造像0.101 001 000 1…、-0.101 001 000 1…这样的无理数.
无理数
议一议:是不是所有的数都是有理数呢?
将两个边长为1的小正方形,沿图中红线剪开,重新拼成一个大正方形,它的面积为2.
如果大正方形的边长为a,那么a2=2.a是有理数吗?
事实上,a不能写成分数形式 (m、n是整数,n≠0),a是无限不循环小数,它的值是1.414 213 562 373… .
无限不式 (m、n是整数,n≠0)的数叫做有 理数.
想一想:
小学里学过的有限小数和无限循环小数是有理数吗 ?
根据有理数的定义,有理数可以进行如下的分类:
,或
结合 体会整数可化成分母为1的分数形式.
, , , .
有限小数和无限循 环小数都可以化为分数,它们都是有理数.
引入有理数的定义,并按照定义说明整数、分数是有理 数.通过将有限小数和无限循环小数转化为分数,说明有限小数和无限循环小数也是有理数,为有理数的分类做好铺垫.
独立完成,课堂交流.
正数集合:{
…};
负数集合:{ …};
正有理数集合:{ …};
负有理数集合:{ …}.
当堂巩固所学知 识.
课堂小结:
谈谈你这一节课有哪些收获.
回顾本节的教学内容,从知识和方法两个层面进行总结.
江苏省宿迁市泗洪县育才实验学校七年级数学上册 2.2
2.2 有理数与无理数课 题学习内容学习目标:加深对正负数的理解,了解整数、分数、有理数的概念和分类. 感受生活与数学的关系. 渗透分类思想.订正栏一、课前预习 1.理解概念:(1)整数、分数、有理数。
、 和 统称整数 和 统称分数 和 统称有理数 (2)按分类:有理数想一想:有理数还有其它的分类方法吗?2.下列说法:① 2.5-既是负数、分数,也是有理数;②25-既是负数,也是整数,但不是自然数;③0既不是正数,也不是负数;④0是非负数.其中正确的个数是 ( ) A.1 B.2 C.3 D.4 3.大于-2.5而不大于4的整数有 . 4.在有理数中举出三个负分数________,________,________. 二、合作探究 例1某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A 处,规定向北方向为正,当天行驶记录如下(单位:千米) +10,-9,+7,-15,+6,-14,+4,-2 (1)A 在岗亭何方?距岗亭多远? (2)若摩托车行驶1千米耗油0.05升,这一天共耗油多少升? 例2将下列各数分别填入相应的集合中: -5, ,7.3, -32 ,22, 0, 0.323, + 254,-3.14,722,π 整数集合:{ … }; 分数集合:{ …};正数集合:{ … };负分数集合:{ … }.非负整数集合:{ … }.有理数:{ … }.三、达标检测 【基础演练】 1.写出一个比2-大的负分数:_______________. 2.下列判断正确的为( )(A)0,23,4,1是正数 (B)0,-2,-3,-12是负数 (C)-1,0,1,2,3是自然数 (D)-2,-1,0,1,2是整数3.正整数集合和负整数集合合在一起,构成数的集合是 ( )A.整数集合B.有理数集合C.自然数集合D.非零整数集合 4.下列说法正确的是 ( )A.在有理数中,零的意义仅表示没有;B.正有理数和负有理数组成全体有理数;C.0.9既不是整数,也不是分数,因此它不是有理数;D.零既不是正数,也不是分数 5.下列语句中,正确的是A.1是最小的正有理数B.0是最大的非正整数C.-1是最大的负有理数D.有最小的正整数和最小的正有理数 6.把下列各数填在相应的括号内‐7,3.5, ‐3.14, π,0,1713 ,0.03%,‐314,10①自然数集合{ …} ②整数集合 { …} ③负数集合 { … }④正分数集合 { … }⑤正有理数集合{ … } 7.在下表适当的空格里打上“∨”号.整数 分数 正数 负数 自然数 有理数 157-3.14 -122。
有理数与无理数(解析版)七年级数学上册同步教与学全指导(学习导航+教学过程+课时训练)(苏科版)
一、有理数1、我们把能够写成分数形式mn(m,n是整数,n≠0)的数叫做有理数.(1)有限小数和循环小数都可以化为分数,他们都是有理数.(2)所有整数都可以写成分母是1的分数,因此可以理解为整数和分数统称为有理数.(3)整数和分数统称有理数.(有理数也叫可比数)(4)整数:正整数、零和负整数统称为整数。
(5)自然数:正整数和零。
(6)分数:正分数和负分数统称为分数。
注意:有限小数和无限循环小数都可以化为分数,它们都是有理数。
例:0.333 ……可以化为3例题11.下列各数中是有理数的是()A.2B.32C.13D.π【答案】C 【分析】根据无理数的定义2与32开方开不尽,是无理数,π是无限不循环小数,是无理数,得到答案.【详解】解:A、2开方开不尽,是无理数,不符合题意;B、32开方开不尽,是无理数,不符合题意;C、13-是负分数,是有理数,符合题意;D、π是无限不循环小数,是无理数,不符合题意;故选:C.二、有理数分类1、有理数:整数与分数统称为有理数。
整数包括三类:正整数、零、负整数。
分数包括两类:正分数和负分数。
2、注意:小学学过的零表示没有,而引入负数后,就不能把“零”完全当作没有了,如0℃就是一个特定的温度;现在我们学过的数,除和与有关的数外,其他的数都是有理数;引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大到整数。
3、按整数、分数的关系分类:4、按正数、负数、零的关系分类:5、有理数都可以写成分数的形式,整数也可以看作是分母为1的数.6、分数与有限小数、无限循环小数可以互化,所以有限小数和无限循环小数可看作分数,但无限不循环小数不是分数,例如.7、正数和零统称为非负数;负数和零统称为非正数;正整数、0、负整数统称整数.例题22.下列说法错误的是()A.最小自然数是0B.最大的负整数是1-C.没有最小的负数D.最小的整数是0【答案】Dπ310.393==,1890.189999==.混循环小数)如果小数点后面的开头几位不循环,到后面的某一位才开始循环,这样的小数叫做混循环小数.例如:0.12、0.3456456…)混循环小数化为分数的方法是:分子是不循环部分和一个循环节的数字组成的数减去不循环部分的数字组成的数所得的差,分母就是按一个循环节的位数写几个面按不循环部分的位数添写几个0组成的数.9181010.918990110-=,239230.239900-=351350.3513599900-=11000|,,1.2312--,3216,0.303003000…(两个3.14,2+3根据无限不循环小数是无理数即可解答.3.14,2+3)表示的数一定是负数。
苏科版七年级第一学期数学 有理数 有理数与无理数 教学课件
(整数可以表示成分母为1的分数).当把无理数与有理数都写成小数形式时,
无理数是无限不循环小数,如π=3.14159265…,不能写成分数.(笔记)
示例3
下列说法∶①有理数就是有限小数;②无限小数是无理数;③无限不循
环小数是无理数;④ 是分数. 其中正确的有( A
22 , 0.030030003 …(相邻两个3之间依次多一个0)。
非负整数集合:{
0 ,1
分数集合:{-, - 1.ሶ ሶ ,-3.2
无理数集合:{
…};
பைடு நூலகம்…};
1-π , 0.030030003 …
… }.
随堂巩固
3、把下列各数分别填入相应的集合中:-(-230), ,0,-0.99,1.31, ,
如面积为3的正方形的边长表
示的数、体积为5的正方体的
棱长表示的数等
拓展
⑴无理数与有理数的和、差 一定是 无理数。
⑵无理数与非0的有理数的积、商一定是无理数.
三、无理数的概念(难点)
示例2
在下列各数中,无理数的个数是( C )
0.51515354…、0、. ሶ 、3π、 、6.1010010001…、
句除外)
①零既不是正数也不是负数;
②零小于正数,大于负数;
③零不能做分母;
④零是最小的非负数;
⑤零的相反数是零;
⑥任何不为零的数的零次幂为1;
⑦零乘以任何数都是零等.
一、课堂作业:
1、课本第14页,2.2习题第1题;第60页,复习题第1题。(预计用时10分钟)
【配套K12]七年级数学上册 2.2 有理数与无理数 什么是有理数?有理数分哪几类?素材 (新版)苏科版
K12教育资源学习用资料
K12教育资源学习用资料 什么是有理数?有理数分哪几类?
难易度:★★★★
关键词:有理数 分类
答案:
正整数、0、负整数统称为整数;正分数和负分数统称为分数;整数和分数统称为有理数。
分类如下: 有理数 或 有理数
【举一反三】
典例:把下列各数分别填入相应的括号里:
5,,-0.3,28,,+8,-19,3.7,
,0,-102, 正整数集合
;负分数集合
; 正有理数集合
;整数集合
思路导引:正整数和正分数都是正有理数,正分数的前面添上“-”号就是负分数,因小数和分数可以互化,因此小数也叫分数;正整数的前面添上“-”号就是负整数;0既不是正数也不是负数。
标准答案: 正整数集合5,28,+8
; 负分数集合-0.3,
; 正有理数集合
5,28,+8,3.7,
; 整数集合5, 28,,+8,-19, 0,-102,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学目标
1.理解有理数的意义和 会对有理数进行分类;
2.了解无理数的意义.
教学重点
1.有理数 的意义和分类;
2.无理数的意义.
教学难点
有理数的分类,区分有理数和无理 数.
一、生活情境创设
我们学过整数(正整 数、负整数、零)和分数(正分数、负分数).实际上,所有整数都可以写成分母为1的分数的形式.如
如果大正方形的边长为a,那么a2= 2.a是有理数吗?
推导过程见书P15,(学生感受“无限夹逼法”)
2、事实上,a不能写成分数形式(m、n是整数,n≠0),a是无限不循环小数,它的值是1.414 213 562 373….
三、数学知识建模
1、无限不循环小数叫做无理数.
小学学过的圆周率π是无限不循环小数,它的值是3.141 592 653 589…,π是无理 数.
正数集合:{…};
负数集合:{…};
正有理数集合:{…};
负有理数 集合:{ …}.
3、以下各正方形的边长是无理 数的是()
(A)面积为25的正方形;(B)面积为16的正方形;
(C)面积为3的正方形;(D)面积为1.44的正方形.
五、课堂感悟:
批注/记录
此外,像0.101 001 000 1…、-0.101 001 000 1…这样的无限不循环小数也是无理数.
四、数学方法应用
1、判断题. (1)无理数都是无限小数.
(2)无限小数都是无理数.
(3)有理数与无理数的差都是有理数.
(4)两个无理数的和是,-2π, , .
我们把能写成分数形式 (m、n是整数,n≠0)的数叫做有理数.
想一想:
小学里学过的有限小数和无限循环小数是有理数吗?
, , , .
有限小数和无限循环小数都可以化为分数,它们都是有理数.
根据有理数的定义,有理数可以进行如下的分类:
,或
二、小组合作探究
1、议一议:是不是所有的数都是有理数呢?
将两个边长为1的小正方形,沿图中红线剪开,重新拼成一个大正方形,它的面积为 2 .