初一实数所有知识点总结和常考题提高难题压轴题练习(含答案解析)精编版

合集下载

七下实数提高题与常考题型压轴题含解析

七下实数提高题与常考题型压轴题含解析

实数提高题与常考题型压轴题(含解析)一.选择题(共15小题)1.的平方根是()A.4 B.±4 C.2 D.±22.已知a=,b=,则=()A.2a B.ab C.a2b D.ab23.实数的相反数是()A.﹣B.C.﹣D.4.实数﹣π,﹣3.14,0,四个数中,最小的是()A.﹣πB.﹣3.14 C.D.05.下列语句中,正确的是()A.正整数、负整数统称整数B.正数、0、负数统称有理数C.开方开不尽的数和π统称无理数D.有理数、无理数统称实数6.下列说法中:(1)是实数;(2)是无限不循环小数;(3)是无理数;(4)的值等于2.236,正确的说法有()A.4个 B.3个 C.2个 D.1个7.实数a、b满足+4a2+4ab+b2=0,则b a的值为()A.2 B.C.﹣2 D.﹣8.的算术平方根是()A.2 B.±2 C.D.9.下列实数中的无理数是()A.0.7 B.C.πD.﹣810.关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C .=2D .在数轴上可以找到表示的点11.已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.a•b>0 B.a+b<0 C.|a|<|b|D.a﹣b>012.如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是()A.p B.q C.m D.n13.估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间14.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间15.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log2=﹣1.其中正确的是()A.①②B.①③C.②③D.①②③二.填空题(共10小题)16.﹣2的绝对值是.17.在﹣4,,0,π,1,﹣,1.这些数中,是无理数的是.18.能够说明“=x不成立”的x的值是(写出一个即可).19.若实数x,y满足(2x+3)2+|9﹣4y|=0,则xy的立方根为.20.实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B(如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n为a,b的“小黄金数”,当b﹣a=2时,a,b的大黄金数与小黄金数之差m﹣n=.21.规定:log a b(a>0,a≠1,b>0)表示a,b之间的一种运算.现有如下的运算法则:log a a n=n.log N M=(a>0,a≠1,N>0,N≠1,M >0).例如:log223=3,log25=,则log1001000=.22.对于实数a,b,定义运算“*”:a*b=,例如:因为4>2,所以4*2=42﹣4×2=8,则(﹣3)*(﹣2)=.23.观察分析下列数据,并寻找规律:,,2,,,,…根据规律可知第n个数据应是.24.下面是一个某种规律排列的数阵:根据数阵的规律,第n行倒数第二个数是.(用含n的代数式表示)25.阅读下列材料:设=0.333…①,则10x=3.333…②,则由②﹣①得:9x=3,即.所以=0.333…=.根据上述提供的方法把下列两个数化成分数.=,=.三.解答题(共15小题)26.计算下列各式:(1)(﹣+﹣)x(﹣18)(2)﹣12+﹣(﹣2)×.27.化简求值:(),其中a=2+.28.计算:|﹣3|﹣×+(﹣2)2.29.如图,在一张长方形纸条上画一条数轴.(1)若折叠纸条,数轴上表示﹣3的点与表示1的点重合,则折痕与数轴的交点表示的数为;(2)若经过某次折叠后,该数轴上的两个数a和b表示的点恰好重合,则折痕与数轴的交点表示的数为(用含a,b的代数式表示);(3)若将此纸条沿虚线处剪开,将中间的一段纸条对折,使其左右两端重合,这样连续对折n次后,再将其展开,请分别求出最左端的折痕和最右端的折痕与数轴的交点表示的数.(用含n的代数式表示)30.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.31.(1)定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如,数字2和5在该新运算下结果为﹣5.计算如下:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣求(﹣2)⊕3的值;(2)请你定义一种新运算,使得数字﹣4和6在你定义的新运算下结果为20.写出你定义的新运算.32.已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+3n的平方根.33.已知一个正数x的两个平方根分别是2a﹣3和5﹣a,求a和x的值.34.已知m+n与m﹣n分别是9的两个平方根,m+n﹣p的立方根是1,求n+p 的值.35.先填写下表,观察后回答下列问题:(1)被开方数a的小数点位置移动和它的立方方根的小数点位置移动有无规律?若有规律,请写出它的移动规律.(2)已知:=﹣50,=0.5,你能求出a的值吗?36.阅读理解下面内容,并解决问题:据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个数是59319,希望求出它的立方根,华罗庚脱口而出地报出答案,邻座的乘客十分惊奇,忙问计算的奥秘.(1)由103=1000,1003=1000000,你能确定是几位数吗?∵1000<59319<1000000,∴10<<100.∴是两位数;(2)由59319的个位上的数是9,你能确定的个位上的数是几吗?∵只有个位数是9的立方数是个位数依然是9,∴的个位数是9;(3)如果划去59319后面的三位319得到59,而33=27,43=64,由此你能确定的十位上的数是几吗?∵27<59<64,∴30<<40.∴的十位数是3.所以,的立方根是39.已知整数50653是整数的立方,求的值.37.按要求填空:(1)填表:(2)根据你发现规律填空:已知:=2.638,则=,=;已知:=0.06164,=61.64,则x=.38.下面是往来是在数学课堂上给同学们出的一道数学题,要求对以下实数进行分类填空:﹣,0,0.3(3无限循环),,18,,,1.21(21无限循环),3.14159,1.21,,,0.8080080008…,﹣(1)有理数集合:;(2)无理数集合:;(3)非负整数集合:;王老师评讲的时候说,每一个无限循环的小数都属于有理数,而且都可以化为分数.比如:0.3(3无限循环)=,那么将1.21(21无限循环)化为分数,则1.21(21无限循环)=(填分数)39.将下列各数的序号填在相应的集合里:①﹣,②2π,③3.1415926,④﹣0.86,⑤3.030030003…相邻两个3之间0的个数逐渐多1),⑥2,⑦,⑧﹣.有理数集合:{ }.无理数集合:{ }.负实数集合:{ }.40.观察下列各式,发现规律:=2;=3;=4;…(1)填空:=,=;(2)计算(写出计算过程):;(3)请用含自然数n(n≥1)的代数式把你所发现的规律表示出来.实数提高题与常考题型压轴题(含解析)参考答案与试题解析一.选择题(共15小题)1.(2017•微山县模拟)的平方根是()A.4 B.±4 C.2 D.±2【分析】先化简=4,然后求4的平方根.【解答】解:=4,4的平方根是±2.故选:D.【点评】本题考查平方根的求法,关键是知道先化简.2.(2017•河北一模)已知a=,b=,则=()A.2a B.ab C.a2b D.ab2【分析】将18写成2×3×3,然后根据算术平方根的定义解答即可.【解答】解:==××=a•b•b=ab2.故选D.【点评】本题考查了算术平方根的定义,是基础题,难点在于对18的分解因数.3.(2017•南岗区一模)实数的相反数是()A.﹣B.C.﹣D.【分析】根据相反数的定义,可得答案.【解答】解:的相反数是﹣,故选:C.【点评】本题考查了实数的性质,在一个数的前面加上符号就是这个数的相反数.4.(2017•禹州市一模)实数﹣π,﹣3.14,0,四个数中,最小的是()A.﹣πB.﹣3.14 C.D.0【分析】先计算|﹣π|=π,|﹣3.14|=3.14,根据两个负实数绝对值大的反而小得﹣π<﹣3.14,再根据正数大于0,负数小于0得到﹣π<﹣3.14<0<.【解答】解:∵|﹣π|=π,|﹣3.14|=3.14,∴﹣π<﹣3.14,∴﹣π,﹣3.14,0,这四个数的大小关系为﹣π<﹣3.14<0<.故选A.【点评】本题考查了有理数大小比较:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.5.(2017春•滨海县月考)下列语句中,正确的是()A.正整数、负整数统称整数B.正数、0、负数统称有理数C.开方开不尽的数和π统称无理数D.有理数、无理数统称实数【分析】根据整数的分类,可的判断A;根据有理数的分类,可判断B;根据无理数的定义,可判断C;根据实数的分类,可判断D.【解答】解:A、正整数、零和负整数统称整数,故A错误;B、正有理数、零、负有理数统称有理数,故B错误;C、无限不循环小数是无理数,故C错误;D、有理数和无理数统称实数,故D正确;故选:D.【点评】此题主要考查了实数,实数包括有理数和无理数;实数可分为正数、负数和0.6.(2017春•海宁市校级月考)下列说法中:(1)是实数;(2)是无限不循环小数;(3)是无理数;(4)的值等于2.236,正确的说法有()A.4个 B.3个 C.2个 D.1个【分析】根据实数的分类进行判断即可.【解答】解:(1)是实数,故正确;(2)是无限不循环小数,故正确;(3)是无理数,故正确;(4)的值等于2.236,故错误;故选B.【点评】本题考查了实数的分类,掌握实数包括有理数和无理数,有理数是有限小数和无限循环小数,而无理数是无限不循环小数.7.(2016•泰州)实数a、b满足+4a2+4ab+b2=0,则b a的值为()A.2 B.C.﹣2 D.﹣【分析】先根据完全平方公式整理,再根据非负数的性质列方程求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:整理得,+(2a+b)2=0,所以,a+1=0,2a+b=0,解得a=﹣1,b=2,所以,b a=2﹣1=.故选B.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.8.(2016•毕节市)的算术平方根是()A.2 B.±2 C.D.【分析】首先根据立方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.【解答】解:=2,2的算术平方根是.故选:C.【点评】此题主要考查了算术平方根的定义,注意关键是要首先计算=2.9.(2016•福州)下列实数中的无理数是()A.0.7 B.C.πD.﹣8【分析】无理数就是无限不循环小数,最典型就是π,选出答案即可.【解答】解:∵无理数就是无限不循环小数,且0.7为有限小数,为有限小数,﹣8为正数,都属于有理数,π为无限不循环小数,∴π为无理数.故选:C.【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题.10.(2016•河北)关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点【分析】根据无理数的定义:无理数是开方开不尽的实数或者无限不循环小数或π;由此即可判定选择项.【解答】解:A、是无理数,原来的说法错误,符合题意;B、面积为12的正方形边长是,原来的说法正确,不符合题意;C、=2,原来的说法正确,不符合题意;D、在数轴上可以找到表示的点,原来的说法正确,不符合题意.故选:A.【点评】本题主要考查了实数,有理数,无理数的定义,要求掌握实数,有理数,无理数的范围以及分类方法.11.(2016•大庆)已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.a•b>0 B.a+b<0 C.|a|<|b|D.a﹣b>0【分析】根据点a、b在数轴上的位置可判断出a、b的取值范围,然后即可作出判断.【解答】解:根据点a、b在数轴上的位置可知1<a<2,﹣1<b<0,∴ab<0,a+b>0,|a|>|b|,a﹣b>0,.故选:D.【点评】本题主要考查的是数轴的认识、有理数的加法、减法、乘法法则的应用,掌握法则是解题的关键.12.(2016•泰安)如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是()A.p B.q C.m D.n【分析】根据n+q=0可以得到n、q的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【解答】解:∵n+q=0,∴n和q互为相反数,0在线段NQ的中点处,∴绝对值最大的点P表示的数p,故选A.【点评】本题考查实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.13.(2016•淮安)估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【分析】直接利用已知无理数得出的取值范围,进而得出答案.【解答】解:∵2<<3,∴3<+1<4,∴+1在在3和4之间.故选:C.【点评】此题主要考查了估算无理数大小,正确得出的取值范围是解题关键.14.(2016•天津)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】直接利用二次根式的性质得出的取值范围.【解答】解:∵<<,∴的值在4和5之间.故选:C.【点评】此题主要考查了估算无理数大小,正确把握最接近的有理数是解题关键.15.(2016•永州)我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log2=﹣1.其中正确的是()A.①②B.①③C.②③D.①②③【分析】根据指数运算和新的运算法则得出规律,根据规律运算可得结论.【解答】解:①因为24=16,所以此选项正确;②因为55=3125≠25,所以此选项错误;③因为2﹣1=,所以此选项正确;故选B.【点评】此题考查了指数运算和新定义运算,发现运算规律是解答此题的关键.二.填空题(共10小题)16.(2017•涿州市一模)﹣2的绝对值是2﹣.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2﹣.即|﹣2|=2﹣.故答案为:2﹣.【点评】本题考查了实数的性质,主要利用了绝对值的性质.17.(2016秋•南京期中)在﹣4,,0,π,1,﹣,1.这些数中,是无理数的是π.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数只有:π.故答案是:π.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.18.(2016•金华)能够说明“=x不成立”的x的值是﹣1(写出一个即可).【分析】举一个反例,例如x=﹣1,说明原式不成立即可.【解答】解:能够说明“=x不成立”的x的值是﹣1,故答案为:﹣1【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.19.(2016•德阳)若实数x,y满足(2x+3)2+|9﹣4y|=0,则xy的立方根为﹣.【分析】根据偶次方和绝对值的非负性得出方程,求出方程的解,再代入求出立方根即可.【解答】解:∵(2x+3)2+|9﹣4y|=0,∴2x+3=0,解得x=﹣,9﹣4y=0,解得y=,xy=﹣×=﹣,∴xy的立方根为﹣.故答案为:﹣.【点评】本题考查了偶次方和绝对值,方程的思想,立方根的应用,关键是求出x、y的值.20.(2016•成都)实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B(如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n为a,b的“小黄金数”,当b﹣a=2时,a,b的大黄金数与小黄金数之差m﹣n=2﹣4.【分析】设AM=x,根据AM2=BM•AB列一元二次方程,求出x,得出AM=BN=﹣1,从而求出MN的长,即m﹣n的长.【解答】解:由题意得:AB=b﹣a=2设AM=x,则BM=2﹣xx2=2(2﹣x)x=﹣1±x1=﹣1+,x2=﹣1﹣(舍)则AM=BN=﹣1∴MN=m﹣n=AM+BN﹣2=2(﹣1)﹣2=2﹣4故答案为:2﹣4.【点评】本题考查了数轴上两点的距离和黄金分割的定义及一元二次方程,做好此题的关键是能正确表示数轴上两点的距离:若A表示x A、B表示x B,则AB=|x B ﹣x A|;同时会用配方法解一元二次方程,理解线段的和、差关系.21.(2016•宜宾)规定:log a b(a>0,a≠1,b>0)表示a,b之间的一种运算.现有如下的运算法则:log a a n=n.log N M=(a>0,a≠1,N>0,N≠1,M >0).例如:log223=3,log25=,则log1001000=.【分析】先根据log N M=(a>0,a≠1,N>0,N≠1,M>0)将所求式子化成以10为底的对数形式,再利用公式进行计算.【解答】解:log1001000===.故答案为:.【点评】本题考查了实数的运算,这是一个新的定义,利用已知所给的新的公式进行计算.认真阅读,理解公式的真正意义;解决此类题的思路为:观察所求式子与公式的联系,发现1000与100都与10有关,且都能写成10的次方的形式,从而使问题得以解决.22.(2016•河池)对于实数a,b,定义运算“*”:a*b=,例如:因为4>2,所以4*2=42﹣4×2=8,则(﹣3)*(﹣2)=﹣1.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(﹣3)*(﹣2)=﹣3﹣(﹣2)=﹣3+2=﹣1,故答案为:﹣1【点评】此题考查了实数的运算,弄清题中的新定义是解本题的关键.23.(2016•瑞昌市一模)观察分析下列数据,并寻找规律:,,2,,,,…根据规律可知第n个数据应是.【分析】根据2=,结合给定数中被开方数的变化找出变化规律“第n个数据中被开方数为:3n﹣1”,依此即可得出结论.【解答】解:∵2=,∴被开方数为:2=3×1﹣1,5=3×2﹣1,8=3×3﹣1,11=3×4﹣1,14=3×5﹣1,17=3×6﹣1,…,∴第n个数据中被开方数为:3n﹣1,故答案为:.【点评】本题考查了算术平方根以及规律型中数的变化类,根据被开方数的变化找出变化规律是解题的关键.24.(2016•天桥区模拟)下面是一个某种规律排列的数阵:根据数阵的规律,第n行倒数第二个数是.(用含n的代数式表示)【分析】探究每行最后一个数的被开方数,不难发现规律,由此即可解决问题.【解答】解:第1行的最后一个被开方数2=1×2第2行的最后一个被开方数6=2×3第3行的最后一个被开方数12=3×4第4行的最后一个被开方数20=4×5,…第n行的最后一个被开方数n(n+1),∴第n行的最后一数为,∴第n行倒数第二个数为.故答案为.【点评】本题考查算术平方根,解题的关键是从特殊到一般,归纳规律然后解决问题,需要耐心认真审题,属于中考常考题型.25.(2016•乐陵市一模)阅读下列材料:设=0.333…①,则10x=3.333…②,则由②﹣①得:9x=3,即.所以=0.333…=.根据上述提供的方法把下列两个数化成分数.=,=.【分析】根据阅读材料,可以知道,可以设=x,根据10x=7.777…,即可得到关于x的方程,求出x即可;根据=1+即可求解.【解答】解:设=x=0.777…①,则10x=7.777…②则由②﹣①得:9x=7,即x=;根据已知条件=0.333…=.可以得到=1+=1+=.故答案为:;.【点评】此题主要考查了无限循环小数和分数的转换,正确题意,读懂阅读材料是解决本题的关键,这类题目可以训练学生的自学能力,是近几年出现的一类新型的中考题.此题比较难,要多次慢慢读懂题目.三.解答题(共15小题)26.(2017春•萧山区月考)计算下列各式:(1)(﹣+﹣)x(﹣18)(2)﹣12+﹣(﹣2)×.【分析】(1)运用乘法对加法的分配律,比较简便;(2)先计算、,再进行加减乘运算.【解答】(1)原式=(﹣)×(﹣18)+×(﹣18)﹣×(﹣18)=14﹣15+1=0;(2)原式=﹣1+4﹣(﹣2)×3=﹣1+4+6=9.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.题目(1)即可通分先算括号里面的,再进行乘法运算,也可直接运用乘法对加法的分配律;掌握立方根、平方根的求法及有理数混合运算的顺序是解决题目(2)的关键.27.(2016•宁夏)化简求值:(),其中a=2+.【分析】原式第一项括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分后两项化简得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=[+]•+=•+==,当a=2+时,原式=+1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.28.(2016•合肥校级一模)计算:|﹣3|﹣×+(﹣2)2.【分析】原式第一项利用绝对值的代数意义化简,第二项利用算术平方根定义计算,第三项利用立方根定义计算,第四项利用乘方的意义化简,计算即可得到结果.【解答】解:原式=3﹣4+×(﹣2)+4=3﹣4﹣1+4=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.29.(2016秋•南京期中)如图,在一张长方形纸条上画一条数轴.(1)若折叠纸条,数轴上表示﹣3的点与表示1的点重合,则折痕与数轴的交点表示的数为﹣1;(2)若经过某次折叠后,该数轴上的两个数a和b表示的点恰好重合,则折痕与数轴的交点表示的数为(用含a,b的代数式表示);(3)若将此纸条沿虚线处剪开,将中间的一段纸条对折,使其左右两端重合,这样连续对折n次后,再将其展开,请分别求出最左端的折痕和最右端的折痕与数轴的交点表示的数.(用含n的代数式表示)【分析】(1)找出5表示的点与﹣3表示的点组成线段的中点表示数,然后结合数轴即可求得答案;(2)先找出a表示的点与b表示的点所组成线段的中点,从而可求得答案;(3)先求出每两条相邻折痕的距离,进一步得到最左端的折痕和最右端的折痕与数轴的交点表示的数,即可求得答案.【解答】解:(1)(﹣3+1)÷2=﹣2÷2=﹣1.故折痕与数轴的交点表示的数为﹣1;(2)折痕与数轴的交点表示的数为(用含a,b的代数式表示);(3)∵对折n次后,每两条相邻折痕的距离为=,∴最左端的折痕与数轴的交点表示的数是﹣3+,最右端的折痕与数轴的交点表示的数是5﹣.故答案为:﹣1;.【点评】本题主要考查的是数轴的认识,找出对称中心是解题的关键.30.(2016•重庆)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.【分析】(1)根据题意可设m=n2,由最佳分解定义可得F(m)==1;(2)根据“吉祥数”定义知(10y+x)﹣(10x+y)=18,即y=x+2,结合x的范围可得2位数的“吉祥数”,求出每个“吉祥数”的F(t),比较后可得最大值.【解答】解:(1)对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上的数与十位上的数得到的新数为t′,则t′=10y+x,∵t为“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=18,∴y=x+2,∵1≤x≤y≤9,x,y为自然数,∴“吉祥数”有:13,24,35,46,57,68,79,∴F(13)=,F(24)==,F(35)=,F(46)=,F(57)=,F(68)=,F(79)=,∵>>>>>,∴所有“吉祥数”中,F(t)的最大值是.【点评】本题主要考查实数的运算,理解最佳分解、“吉祥数”的定义,并将其转化为实数的运算是解题的关键.31.(2016•龙岩模拟)(1)定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如,数字2和5在该新运算下结果为﹣5.计算如下:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣求(﹣2)⊕3的值;(2)请你定义一种新运算,使得数字﹣4和6在你定义的新运算下结果为20.写出你定义的新运算.【分析】(1)利用题中的新定义计算即可得到结果;(2)规定一种运算,计算结果为20即可.【解答】解:(1)(﹣2)⊕3=﹣2×(﹣5)+1=10+1=11;(2)规定:a@b=2(b﹣a),例如(﹣4)@6=2×[6﹣(﹣4)]=20.(开放题,答案不唯一)【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.32.(2016秋•上蔡县校级期末)已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+3n的平方根.【分析】先根据2m+2的平方根是±4,3m+n+1的平方根是±5求出m和n的值,再求出m+3n的值,由平方根的定义进行解答即可.【解答】解:∵2m+2的平方根是±4,∴2m+2=16,解得:m=7;∵3m+n+1的平方根是±5,∴3m+n+1=25,即21+n+1=25,解得:n=3,∴m+3n=7+3×3=16,∴m+3n的平方根为:±4.【点评】本题考查的是平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.注意:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.33.(2016春•宜春期末)已知一个正数x的两个平方根分别是2a﹣3和5﹣a,求a和x的值.【分析】正数x有两个平方根,分别是2a﹣3与5﹣a,所以2a+2与5﹣a互为相反数,可求出a;根据x=(2a﹣3)2,代入可求出x的值.【解答】解:依题意可得2a﹣3+5﹣a=0解得:a=﹣2,∴x=(2a﹣3)2=49,∴a=﹣2,x=49.【点评】本题主要考查了平方根的定义和性质,以及根据平方根求被开方数,一个正数有两个平方根,它们互为相反数是解答此题的关键.34.(2016秋•龙海市期末)已知m+n与m﹣n分别是9的两个平方根,m+n﹣p 的立方根是1,求n+p的值.【分析】根据平方根与立方根的性质即可求出m、n、p的值【解答】解:由题意可知:m+n+m﹣n=0,(m+n)2=9,m+n﹣p=1,∴m=0,∴n2=9,∴n=±3,∴0+3﹣p=1或0﹣3﹣p=1,∴p=2或p=﹣4,当n=3,p=2时,n+p=3+2=5当n=﹣3,p=﹣4时,n+p=﹣3﹣4=﹣7,【点评】本题考查平方根与立方根的性质,解题的关键是根据平方根与立方根的性质列出方程,然后求出m、n、p的值即可.35.(2016秋•无棣县期末)先填写下表,观察后回答下列问题:(1)被开方数a的小数点位置移动和它的立方方根的小数点位置移动有无规律?若有规律,请写出它的移动规律.(2)已知:=﹣50,=0.5,你能求出a的值吗?【分析】(1)首先依据立方根的定义进行计算,然后依据计算结果找出其中的规律即可;(2)依据规律进行计算即可.【解答】解:填表结果为0.1,10;(1)有规律,当被开方数的小数点每向左(或向右)移动3位,立方根的小数点向左(或向右)移动1位;(2)能求出a的值;∵=0.5,∴=﹣0.5,由﹣0.5和﹣50,小数点向右移动了2位,则a的值的小数点向右移动6为,∴a=125 000【点评】此题考查了立方根,弄清题中的规律是解本题的关键.36.(2016春•平定县期末)阅读理解下面内容,并解决问题:据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个数是59319,希望求出它的立方根,华罗庚脱口而出地报出答案,邻座的乘客十分惊奇,忙问计算的奥秘.(1)由103=1000,1003=1000000,你能确定是几位数吗?∵1000<59319<1000000,∴10<<100.∴是两位数;(2)由59319的个位上的数是9,你能确定的个位上的数是几吗?∵只有个位数是9的立方数是个位数依然是9,∴的个位数是9;(3)如果划去59319后面的三位319得到59,而33=27,43=64,由此你能确定的十位上的数是几吗?∵27<59<64,∴30<<40.∴的十位数是3.所以,的立方根是39.已知整数50653是整数的立方,求的值.【分析】分别根据题中所给的分析方法先求出这50653的立方根都是两位数,然后根据第(2)和第(3)步求出个位数和十位数即可.【解答】解:∵1000<50653<1000000,∴10<<100,∴是两位数,∵只有个数是7的立方数的个位数是3,∴的个位是7.∵27<50<64,∴30<<40,∴的十位数是3.∴的立方根是37.【点评】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键,有一定难度.37.(2016春•固始县期末)按要求填空:(1)填表:(2)根据你发现规律填空:已知:=2.638,则=26.38,=0.02638;已知:=0.06164,=61.64,则x=3800.【分析】(1)分别用计算器将0.0004、0.04、4、400开方即可得出答案.(2)将720化为7.2×100,将0.00072化为7.2×10﹣4,继而可得出答案;再根据61.64化为0.06164×10﹣3可得出第二空的答案.【解答】解:(1)=0.02,=0.2,=2,=20;(2)==2.638×10=26.38,==2.638×10﹣2=0.02638;∵=0.06164,=61.64,61.64=0.06164×10﹣3∴x=3800.故答案为:0.02、0.2、2、20;26.38、0.2638;3800.【点评】此题考查了计算器数的开放,属于基础题,解答本题的关键是熟练计算机的运用,难度一般.38.(2016春•黔东南州期末)下面是往来是在数学课堂上给同学们出的一道数学题,要求对以下实数进行分类填空:﹣,0,0.3(3无限循环),,18,,,1.21(21无限循环),3.14159,1.21,,,0.8080080008…,﹣(1)有理数集合:0,0.3(3无限循环),,18,,1.21(21无限循环),3.14159,1.21,,0.8;。

七年级数学下册第六章实数知识集锦(带答案)

七年级数学下册第六章实数知识集锦(带答案)

七年级数学下册第六章实数知识集锦单选题1、如图,若数轴上的点A,B,C,D表示数−1,1,2,3,则表示数4−√11的点应在()A.A,O之间B.B,C之间C.C,D之间D.O,B之间答案:D分析:先估算出4−√11的值,再确定出其位置即可.解:∵9<11<16,∴3<√11<4,∴−4<−√11<−3,∴4−4<4−√11<4−3,即0<4−√11<1∴表示数4−√11的点应在O,B之间.故选:D.小提示:本题考查的是实数与数轴.熟知实数与数轴上各点是一一对应关系,能够正确估算出√11的值是解答此题的关键.2、若一个正方形的面积是12,则它的边长是()A.2√3B.3C.3√2D.4答案:A分析:根据正方形的面积公式即可求解.解:由题意知:正方形的面积等于边长×边长,设边长为a,故a²=12,∴a=±2√3,又边长大于0∴边长a=2√3.故选:A.小提示:本题考查了正方形的面积公式,开平方运算等,属于基础题.3、对多项式x−y−z−m−n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x−y)−(z−m−n)=x−y−z+m+n,x−y−(z−m)−n=x−y−z+m−n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3答案:D分析:给x−y添加括号,即可判断①说法是否正确;根据无论如何添加括号,无法使得x的符号为负号,即可判断②说法是否正确;列举出所有情况即可判断③说法是否正确.解:∵(x−y)−z−m−n=x−y−z−m−n∴①说法正确∵x−y−z−m−n−x+y+z+m+n=0又∵无论如何添加括号,无法使得x的符号为负号∴②说法正确③第1种:结果与原多项式相等;第2种:x-(y-z)-m-n=x-y+z-m-n;第3种:x-(y-z)-(m-n)=x-y+z-m+n;第4种:x-(y-z-m)-n=x-y+z+m-n;第5种:x-(y-z-m-n)=x-y+z+m+n;第6种:x-y-(z-m)-n=x-y-z+m-n;第7种:x-y-(z-m-n)=x-y-z+m+n;第8种:x-y-z-(m-n)=x-y-z-m+n;故③符合题意;∴共有8种情况∴③说法正确∴正确的个数为3故选D .小提示:本题考查了新定义运算,认真阅读,理解题意是解答此题的关键.4、已知min {a,b,c }表示取三个数中最小的那个数,例加:min{−1,−2,−3}=−3,当min{√x,x 2,x}=181时,则x 的值为( )A .181B .127C .13D .19 答案:D分析:根据题意可知√x,x 2,x 都小于1且大于0,根据平方根求得x 的值即可求解.解:∵min{√x,x 2,x}=181∴√x,x 2,x 都小于1且大于0∴x 2<x <√x∴x 2=181∴x =19(负值舍去)故选D小提示:本题考查了求一个数的平方根,判断√x,x 2,x 的范围是解题的关键.5、定义:若10x =N ,则x =log 10N ,x 称为以10为底的N 的对数,简记为lgN ,其满足运算法则:lgM +lgN =lg(M ⋅N)(M >0,N >0).例如:因为102=100,所以2=lg100,亦即lg100=2;lg4+lg3=lg12.根据上述定义和运算法则,计算(lg2)2+lg2⋅lg5+lg5的结果为( )A .5B .2C .1D .0答案:C分析:根据新运算的定义和法则进行计算即可得.解:原式=lg2⋅(lg2+lg5)+lg5,=lg2⋅lg10+lg5,=lg2+lg5,=1,故选:C.小提示:本题考查了新定义下的实数运算,掌握理解新运算的定义和法则是解题关键.6、在四个实数−2,0,−√3,−1中,最小的实数是()A.−2B.0C.−√3D.−1答案:A分析:根据实数比较大小的方法直接求解即可.解:∵−2<−√3<−1<0,∴四个实数−2,0,−√3,−1中,最小的实数是−2,故选:A.小提示:本题考查了有理数大小比较:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.7、下列说法正确的是()A.−81平方根是−9B.√81的平方根是±9C.平方根等于它本身的数是1和0D.√a2+1一定是正数答案:D分析:A、根据平方根的概念即可得到答案;B、√81的平方根其实是9的平方根;C、平方根等于它本身的数与算术平方根是它本身的数要分清楚;D、先判断出a2+1>0,再利用算术平方根的性质直接得到答案.A、−81是负数,负数没有平方根,不符合题意;B、√81=9,9的平方根是±3,不符合题意;C、平方根等于它本身的数是0,1的平方根是±1,不符合题意;D、a2+1>0,正数的算术平方根大于0,符合题意.小提示:此题考查了平方根及算术平方根的定义及性质,熟练掌握相关知识是解题关键.8、按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1答案:D分析:逐项代入,寻找正确答案即可.解:A选项满足m≤n,则y=2m+1=3;B选项不满足m≤n,则y=2n-1=-1;C选项满足m≤n,则y=2m+1=3;D选项不满足m≤n,则y=2n-1=1;故答案为D;小提示:本题考查了根据条件代数式求值问题,解答的关键在于根据条件正确地代入代数式及代入的值.9、−√64的立方根等于()A.−8B.−4C.−2D.±2答案:C分析:先求出−√64=−8,再求出-8的立方根即可得.3=−2,解:∵−√64=−8,√−8∴−√64的立方根等于-2,故选:C.小提示:本题考查了立方根的意义,解题的关键是掌握立方根.10、下列说法正确的是()A.-4是(-4)2的算术平方根B.±4是(-4)2的算术平方根C.√16的平方根是-2D.-2是√16的一个平方根答案:D分析:根据算术平方根、平方根的定义逐项判断即可得.A、(−4)2=16,16的算术平方根是4,则此项错误,不符题意;B、(−4)2=16,16的算术平方根是4,则此项错误,不符题意;C、√16=4,4的平方根是±2,则此项错误,不符题意;D、√16=4,4的平方根是±2,则−2是√16的一个平方根,此项正确,符合题意;故选:D.小提示:本题考查了算术平方根、平方根,掌握理解定义是解题关键.填空题11、根据图中呈现的运算关系,可知a=______,b=______.答案:-2020 -2020分析:根据立方根和平方根的定义进行求解即可.解:∵2020的立方根是m,a的立方根是-m,∴m3=2020,∴(−m)3=−m3=−2020,∴a=−2020;∵n的两个平方根分别为2020、b,∴b =−2020,所以答案是:-2020,-2020.小提示:本题主要考查了平方根和立方根,熟知二者的定义是解题的关键.12、比较大小:√22______√33(填写“>”或“<”或“=”).答案:>分析:比较两者平方后的值即可.解:∵(√22)2=12,(√33)2=13,∵12>13, ∴ √22>√33. 所以答案是:>.小提示:本题考查了实数的大小比较,解题的关键是灵活变通,比较两者平方后的结果.13、写出一个比√2大且比√15小的整数______.答案:2(或3)分析:先分别求出√2与√15在哪两个相邻的整数之间,依此即可得到答案.∵1<√2<2,3<√15<4,∴比√2大且比√15小的整数是2或3.所以答案是:2(或3)小提示:本题主要考查了实数的大小比较,也考查了无理数的估算的知识,分别求出√2与√15在哪两个相邻的整数之间是解答此题的关键.14、若√a +13与√a 2−53互为相反数,则a 3+5a 2﹣4的值为 _____.答案:12分析:先根据相反数的定义得√a +13+√a 2−53=0,再利用立方根的意义进行整理,最后利用整体代入的方法即可求得答案 .解:由题意得:√a +13+√a 2−53=03∴√a+13=−√a2−5∴a+1=﹣(a2﹣5).∴a2+a=4.∴a3+a2=4a.∴a3=﹣a2+4a.∴a3+5a2﹣4=﹣a2+4a+5a2﹣4=4a2+4a﹣4=4(a2+a)﹣4=4×4﹣4=12.所以答案是:12.小提示:本题考查的相反数的应用,立方根的应用,解题的关键是在于整理出所需形式,利用整体代入求解.15、若实数a的立方等于27,则a=________.答案:3分析:根据立方根的定义即可得.3=3,解:由题意得:a=√27所以答案是:3.小提示:本题考查了立方根,熟练掌握立方根的运算是解题关键.解答题16、据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根,华罗庚脱口而出:39.你知道他是怎么快速准确地计算出来的吗?请研究解决下列问题:(1)已知x3=10648,且x为整数.∵1000=103<10648<1003=1000000,∴x一定是一个两位数;∵10648的个位数字是8,∴x的个位数字一定是______;划去10648后面的三位648得10,∵8=23<10<33=27,∴x的十位数字一定是______;∴x=______.(2)y3=614125,且y为整数,按照以上思考方法,请你求出y的值.答案:(1)2#,2#,22#(2)y=85分析:(1)根据立方根的定义和题意即可得出答案;(2)根据(1)中的方法计算书写即可得出结果.(1)解:∵x3=10648,且x为整数.∵1000=103<10648<1003=1000000,∴x一定是一个两位数;∵10648的个位数字是8,∴x的个位数字一定是2;划去10648后面的三位648得10,∵8=23<10<33=27,∴x的十位数字一定是2;∴x=22.所以答案是:2,2,22.(2)∵1000=103<614125<1003=100000,∴y一定是两位数;∵614125的个位数字是5,∴y的个位数字一定是5;划去614125后面的三位125得614,∵512=83<614<93=729,∴y的十位数字一定是8;∴y=85.小提示:本题考查立方根,灵活运用立方根的计算是解题的关键.17、如图,把图(1)中两个小正方形纸片分别沿对角线剪开,将所得的4个直角三角形拼在一起,就得到如图(2)的大正方形.问题发现若大正方形的面积为32cm2,则小正方形的面积是__________cm2,边长为___________cm;知识迁移某兴趣小组想将图(1)中的一个小正方形纸片,沿与边平行的方向剪裁出面积为12cm2,且长宽之比为3∶2的长方形纸片.兴趣小组能否剪裁出符合要求的长方形纸片?请说明理由.拓展延伸如图(3)是由5个边长为1的小正方形组成的纸片,能否把它剪开并拼成一个大正方形?若能,请画出示意图,并写出边的长度,若不能,请说明理由.答案:问题发现:小正方形的面积为16cm2,边长为4cm知识迁移:不能裁出符合要求的长方形纸片拓展延伸:能把它剪开并拼成一个大正方形,示意图见解析,大正方形边长为√5分析:问题发现:先求出小正方形的面积,再根据正方形的面积等于边长的平方求边长;知识迁移:设长和宽分别为3x、2x,利用面积列方程,最后检验即可;拓展延伸:新的大正方形面积为5,则边长为√5,可以把它剪开并拼成一个大正方形.问题发现:小正方形的面积为32÷2=16cm2,∴小正方形的边长为4cm.所以答案是:16;4.知识迁移:设长和宽分别为3x、2x,由题意得:3x⋅2x=12,整理得:x2=2,∵实际问题x为正数,∴x=√2,∴长方形的长为3x=3√2≈5.19>4,即裁剪后的长方形的长大于小正方形的边长,∴不能裁出符合要求的长方形纸片.拓展延伸:能把它剪开并拼成一个大正方形,裁剪示意图如图所示:∵原图形的面积是5,∴裁剪后的正方形面积也是5,∴大正方形边长为√5.小提示:本题考查了算术平方根的实际应用、正方形的面积和正方形的有关画图,巧妙地根据网格的特点画出正方形是解此题的关键.18、求下列式子中的x :(1)25(x ﹣35)2=49;(2)12(x +1)2=32. 答案:(1)x 1=2,x 2=−45(2)x 1=7,x 2=﹣9分析:(1)两边同时除以25,再开平方解一元一次方程即可;(2)方程两边同时乘以2,再开平方解一元一次方程即可.(1)解: 25(x ﹣35)2=49,(x ﹣35)2=4925, x ﹣35=±75,x ﹣35=75或x ﹣35=﹣75,解得:x 1=2,x 2=−45;(2)12(x +1)2=32, (x +1)2=32×2,(x +1)2=64, x +1=±8,x +1=8或x +1=﹣8,解得:x 1=7,x 2=﹣9.小提示:此题考查了利用平方根定义解方程,正确理解并掌握平方根的定义是解题的关键.。

人教版数学七年级下册第六章实数所有知识点总结和常考题提高难题压轴题练习(含答案解析)

人教版数学七年级下册第六章实数所有知识点总结和常考题提高难题压轴题练习(含答案解析)

人教版数学七年级下册第六章实数常考题提高难题压轴题练习(含答案解析).doc:一.选择题(共13小题)1.9的平方根为()A.3 B.﹣3 C.±3 D.2.的算术平方根是()A.2 B.±2 C.D.±3.下列各组数中,互为相反数的一组是()A.﹣2与B.﹣2与C.﹣2与﹣D.|﹣2|与24.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.a+b>0 B.ab>0 C.a﹣b>0 D.|a|﹣|b|>05.估算﹣2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间6.估计的值()A.在3到4之间B.在4到5之间C.在5到6之间D.在6到7之间7.估计+3的值()A.在5和6之间B.在6和7之间C.在7和8之间D.在8和9之间8.一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间9.如图,在数轴上表示实数的点可能是()A.点P B.点Q C.点M D.点N10.数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C所表示的数是()A.﹣1 B.1﹣C.2﹣D.﹣211.下列说法不正确的是()A.1的平方根是±1 B.﹣1的立方根是﹣1C.是2的平方根D.﹣3是的平方根12.下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,,,无理数的个数有()A.1个 B.2个 C.3个 D.4个13.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c二.填空题(共13小题)14.的平方根是.15.﹣8的立方根是.16.的算术平方根是.17.﹣()2=.18.已知a、b为两个连续的整数,且,则a+b=.19.已知一个正数的平方根是3x﹣2和5x+6,则这个数是.20.若实数a、b满足|a+2|,则=.21.比较大小:﹣3﹣2.22.=.23.5﹣的小数部分是.24.比较大小:(填“>”“<”“=”).25.若x,y为实数,且,则(x+y)2010的值为.26.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.三.解答题(共14小题)27.计算:(﹣2)2+(﹣3)×2﹣.28.计算:(﹣2)2+|﹣1|﹣.29.求值:+()2+(﹣1)2015.30.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵,即,∴的整数部分为2,小数部分为.请解答:(1)如果的小数部分为a,的整数部分为b,求的值;(2)已知:,其中x是整数,且0<y<1,求x﹣y的相反数.31.已知:x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.32.已知,a、b互为倒数,c、d互为相反数,求的值.33.设2+的整数部分和小数部分分别是x、y,试求x、y的值与x﹣1的算术平方根.34.计算:(﹣2)2﹣(3﹣5)﹣+2×(﹣3)35.(1)有这样一个问题:与下列哪些数相乘,结果是有理数?A、;B、;C、;D、;E、0,问题的答案是(只需填字母):;(2)如果一个数与相乘的结果是有理数,则这个数的一般形式是什么(用代数式表示).36.求值:已知y=x2﹣5,且y的算术平方根是2,求x的值.37.画一条数轴,把﹣1,,2各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接.38.求x的值:(1)4x2=25;(2)(x﹣0.7)3=0.027.39.已知2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求12a+2b的立方根.40.已知M=是m+3的算术平方根,N=是n﹣2的立方根,试求M﹣N的值.(含答案解析)参考答案与试题解析一.选择题(共13小题)1.9的平方根为()A.3 B.﹣3 C.±3 D.【分析】根据平方根的定义求解即可,注意一个正数的平方根有两个.【解答】解:9的平方根有:=±3.故选C.【点评】此题考查了平方根的知识,属于基础题,解答本题关键是掌握一个正数的平方根有两个,且互为相反数.2.的算术平方根是()A.2 B.±2 C.D.±【分析】先求得的值,再继续求所求数的算术平方根即可.【解答】解:∵=2,而2的算术平方根是,∴的算术平方根是,故选:C.【点评】此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.3.下列各组数中,互为相反数的一组是()A.﹣2与B.﹣2与C.﹣2与﹣D.|﹣2|与2【分析】根据相反数的概念、性质及根式的性质化简即可判定选择项.【解答】解:A、=2,﹣2与2互为相反数,故选项正确;B、=﹣2,﹣2与﹣2不互为相反数,故选项错误;C、﹣2与不互为相反数,故选项错误;D、|﹣2|=2,2与2不互为相反数,故选项错误.故选A.【点评】本题考查的是相反数的概念,只有符号不同的两个数叫互为相反数.如果两数互为相反数,它们的和为0.4.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.a+b>0 B.ab>0 C.a﹣b>0 D.|a|﹣|b|>0【分析】本题要先观察a,b在数轴上的位置,得b<﹣1<0<a<1,然后对四个选项逐一分析.【解答】解:A、∵b<﹣1<0<a<1,∴|b|>|a|,∴a+b<0,故选项A错误;B、∵b<﹣1<0<a<1,∴ab<0,故选项B错误;C、∵b<﹣1<0<a<1,∴a﹣b>0,故选项C正确;D、∵b<﹣1<0<a<1,∴|a|﹣|b|<0,故选项D错误.故选:C.【点评】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.5估算﹣2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间【分析】先估计的整数部分,然后即可判断﹣2的近似值.【解答】解:∵5<<6,∴3<﹣2<4.故选C.【点评】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.6.估计的值()A.在3到4之间B.在4到5之间C.在5到6之间D.在6到7之间【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围.【解答】解:∵5<<6,∴在5到6之间.故选:C.【点评】此题主要考查了估算无理数的那就,“夹逼法”是估算的一般方法,也是常用方法.7.估计+3的值()A.在5和6之间B.在6和7之间C.在7和8之间D.在8和9之间【分析】先估计的整数部分,然后即可判断+3的近似值.【解答】解:∵42=16,52=25,所以,所以+3在7到8之间.故选:C.【点评】此题主要考查了估算无理数的大小的能力,理解无理数性质,估算其数值.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.8.一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间【分析】先根据正方形的面积是15计算出其边长,在估算出该数的大小即可.【解答】解:∵一个正方形的面积是15,∴该正方形的边长为,∵9<15<16,∴3<<4.故选B.【点评】本题考查的是估算无理数的大小及正方形的性质,根据题意估算出的取值范围是解答此题的关键.9.如图,在数轴上表示实数的点可能是()A.点P B.点Q C.点M D.点N【分析】先对进行估算,再确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【解答】解:∵≈3.87,∴3<<4,∴对应的点是M.故选C【点评】本题考查实数与数轴上的点的对应关系,应先看这个无理数在哪两个有理数之间,进而求解.10数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C所表示的数是()A.﹣1 B.1﹣C.2﹣D.﹣2【分析】首先根据数轴上表示1,的对应点分别为A,B可以求出线段AB的长度,然后由AB=AC利用两点间的距离公式便可解答.【解答】解:∵数轴上表示1,的对应点分别为A,B,∴AB=﹣1,∵点B关于点A的对称点为C,∴AC=AB.∴点C的坐标为:1﹣(﹣1)=2﹣.故选:C.【点评】本题考查的知识点为:求数轴上两点间的距离就让右边的数减去左边的数.知道两点间的距离,求较小的数,就用较大的数减去两点间的距离.11.下列说法不正确的是()A.1的平方根是±1 B.﹣1的立方根是﹣1C.是2的平方根D.﹣3是的平方根【分析】A、根据平方根的定义即可判定;B、根据立方根的定义即可判定;C、根据平方根的定义即可判定;D、根据平方根的定义即可判定.【解答】解:A、1的平方根是±1,故A选项正确;B、﹣1的立方根是﹣1,故B选项正确;C、是2的平方根,故C选项正确;D、=3,3的平方根是±,故D选项错误.故选:D.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,,,无理数的个数有()A.1个 B.2个 C.3个 D.4个【分析】无限不循环小数为无理数,由此可得出无理数的个数.【解答】解:由定义可知无理数有:0.131131113…,﹣π,共两个.故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.13.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c【分析】先根据各点在数轴上的位置比较出其大小,再对各选项进行分析即可.【解答】解:∵由图可知,a<b<0<c,∴A、ac<bc,故A选项错误;B、∵a<b,∴a﹣b<0,∴|a﹣b|=b﹣a,故B选项错误;C、∵a<b<0,∴﹣a>﹣b,故C选项错误;D、∵﹣a>﹣b,c>0,∴﹣a﹣c>﹣b﹣c,故D选项正确.故选:D.【点评】本题考查的是实数与数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.二.填空题(共13小题)14.的平方根是±2.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±2【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.15.﹣8的立方根是﹣2.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.【点评】本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.16.的算术平方根是3.【分析】首先根据算术平方根的定义求出的值,然后即可求出其算术平方根.【解答】解:∵=9,又∵(±3)2=9,∴9的平方根是±3,∴9的算术平方根是3.即的算术平方根是3.故答案为:3.【点评】此题主要考查了算术平方根的定义,解题的关键是知道,实际上这个题是求9的算术平方根是3.注意这里的双重概念.17.﹣()2=﹣3.【分析】直接根据平方的定义求解即可.【解答】解:∵()2=3,∴﹣()2=﹣3.【点评】本题考查了数的平方运算,是基本的计算能力.18已知a、b为两个连续的整数,且,则a+b=11.【分析】根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.【解答】解:∵,a、b为两个连续的整数,∴<<,∴a=5,b=6,∴a+b=11.故答案为:11.【点评】此题主要考查了无理数的大小,得出比较无理数的方法是解决问题的关键.19.已知一个正数的平方根是3x﹣2和5x+6,则这个数是.【分析】由于一个非负数的平方根有2个,它们互为相反数.依此列出方程求解即可.【解答】解:根据题意可知:3x﹣2+5x+6=0,解得x=﹣,所以3x﹣2=﹣,5x+6=,∴()2=故答案为:.【点评】本题主要考查了平方根的逆运算,平时注意训练逆向思维.20.若实数a、b满足|a+2|,则=1.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则原式==1.故答案是:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.21.比较大小:﹣3<﹣2.【分析】先把两数平方,再根据实数比较大小的方法即可比较大小.【解答】解:∵(3)2=18,(2)2=12,∴﹣3<﹣2.故答案为:<.【点评】此题主要考查了实数的大小的比较,实数大小比较法则:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.22.=3.【分析】33=27,根据立方根的定义即可求出结果.【解答】解:∵33=27,∴;故答案为:3.【点评】本题考查了立方根的定义;掌握开立方和立方互为逆运算是解题的关键.23.5﹣的小数部分是2﹣.【分析】根据1<<2,不等式的性质3,可得﹣的取值范围,再根据不等式的性质1,可得答案.【解答】解:由1<<2,得﹣2<﹣<﹣1.不等式的两边都加5,得5﹣2<5﹣<5﹣1,即3<5﹣<4,5﹣的小数部分是(5﹣)﹣3=2﹣,故答案为:2﹣.【点评】本题考查了估算无理数的大小,利用了不等式的性质:不等式的两边都乘以或除以同一个负数,不等号的方向改变,不等式的两边都加同一个数,不等号的方向不变.24.比较大小:>(填“>”“<”“=”).【分析】因为分母相同所以比较分子的大小即可,可以估算的整数部分,然后根据整数部分即可解决问题.【解答】解:∵﹣1>1,∴>.故填空结果为:>.【点评】此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法、比较n次方的方法等.当分母相同时比较分子的大小即可.25.若x,y为实数,且,则(x+y)2010的值为1.【分析】先根据非负数的性质列出方程组,求出x、y的值,然后代入(x+y)2010中求解即可.【解答】解:由题意,得:x+2=0,y﹣3=0,解得x=﹣2,y=3;因此(x+y)2010=1.故答案为:1.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.26.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.【分析】首先利用估算的方法分别得到﹣,,前后的整数(即它们分别在那两个整数之间),从而可判断出被覆盖的数.【解答】解:∵﹣2<﹣<﹣1,2<<3,3<<4,且墨迹覆盖的范围是1﹣3,∴能被墨迹覆盖的数是.【点评】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.三.解答题(共14小题)27.计算:(﹣2)2+(﹣3)×2﹣.【分析】原式第一项利用乘方的意义化简,第二项利用异号两数相乘的法则计算,最后一项利用平方根定义化简,计算即可得到结果.【解答】解:原式=4﹣6﹣3=﹣5.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.28.计算:(﹣2)2+|﹣1|﹣.【分析】原式第一项利用乘方的意义化简,第二项利用绝对值的代数意义化简,最后一项利用立方根定义计算即可得到结果.【解答】解:原式=4+﹣1﹣3=.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.29.求值:+()2+(﹣1)2015.【分析】原式第一项利用算术平方根定义计算,第二项利用乘方的意义化简,第三项利用乘方的意义化简,计算即可得到结果.【解答】解:原式=+﹣1=﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.30.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵,即,∴的整数部分为2,小数部分为.请解答:(1)如果的小数部分为a,的整数部分为b,求的值;(2)已知:,其中x是整数,且0<y<1,求x﹣y的相反数.【分析】(1)先估计、的近似值,然后判断的小数部分a,的整数部分b,最后将a、b的值代入并求值;(2)先估计的近似值,然后判断的整数部分并求得x、y的值,最后求x ﹣y的相反数.【解答】解:∵4<5<9,∴2<<3,∴的小数部分a=﹣2 ①∵9<13<16,∴3<<4,∴的整数部分为b=3 ②把①②代入,得﹣2+3=1,即.(2)∵1<3<9,∴1<<3,∴的整数部分是1、小数部分是,∴10+=10+1+(=11+(),又∵,∴11+()=x+y,又∵x是整数,且0<y<1,∴x=11,y=;∴x﹣y=11﹣()=12﹣,∴x﹣y的相反数y﹣x=﹣(x﹣y)=.【点评】此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.31.已知:x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.【分析】根据平方根、立方根的定义和已知条件可知x﹣2=4,2x+y+7=27,列方程解出x、y,最后代入代数式求解即可.【解答】解:∵x﹣2的平方根是±2,∴x﹣2=4,∴x=6,∵2x+y+7的立方根是3∴2x+y+7=27把x的值代入解得:y=8,∴x2+y2的算术平方根为10.【点评】本题主要考查了平方根、立方根的概念,难易程度适中.32.已知,a、b互为倒数,c、d互为相反数,求的值.【分析】由a、b互为倒数可得ab=1,由c、d互为相反数可得c+d=0,然后将以上两个代数式整体代入所求代数式求值即可.【解答】解:依题意得,ab=1,c+d=0;∴==﹣1+0+1=0.【点评】本题主要考查实数的运算,解题关键是运用整体代入法求代数式的值,涉及到倒数、相反数的定义,要求学生灵活掌握各知识点.33.设2+的整数部分和小数部分分别是x、y,试求x、y的值与x﹣1的算术平方根.【分析】先找到介于哪两个整数之间,从而找到整数部分,小数部分让原数减去整数部分,然后代入求值即可.【解答】解:因为4<6<9,所以2<<3,即的整数部分是2,所以2+的整数部分是4,小数部分是2+﹣4=﹣2,即x=4,y=﹣2,所以==.【点评】此题主要考查了无理数的估算能力,解题关键是估算出整数部分后,然后即可得到小数部分.34.计算:(﹣2)2﹣(3﹣5)﹣+2×(﹣3)【分析】根据实数的运算顺序计算即可求解.注意实数混合运算的顺序:先算乘方、开方,再算乘除,最后算加减,遇有括号,先算括号内的.【解答】解:原式=4﹣(﹣2)﹣2﹣6=﹣2.【点评】此题主要考查了实数的运算,解题要注意实数的混合运算顺序.35.(1)有这样一个问题:与下列哪些数相乘,结果是有理数?A、;B、;C、;D、;E、0,问题的答案是(只需填字母):A、D、E;(2)如果一个数与相乘的结果是有理数,则这个数的一般形式是什么(用代数式表示).【分析】(1)根据实数的乘法法则和有理数、无理数的定义即可求解;(2)根据(1)的结果可以得到规律.【解答】解:(1)A、D、E;(2)设这个数为x,则x•=a(a为有理数),所以x=(a为有理数).【点评】此题主要考查了实数的运算,也考查了有理数、无理数的定义,文字阅读比较多,解题时要注意审题,正确理解题意.36.求值:已知y=x2﹣5,且y的算术平方根是2,求x的值.【分析】由于被开方数应等于它算术平方根的平方.那么由此可求得y,然后即可求出x.【解答】解:∵y的算术平方根是2,∴∴y=4;又∵y=x2﹣5∴4=x2﹣5∴x2=9∴x=±3.【点评】此题主要考查了平方根的性质:被开方数应等于它算术平方根的平方.正数的平方根有2个.37.画一条数轴,把﹣1,,2各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接.【分析】根据相反数的定义写出各数的相反数,再画出数轴即可解决问题.【解答】解:﹣1的相反数是1;的相反数是﹣;2的相反数是﹣2;∴﹣2<﹣<﹣<<<2.【点评】此题主要考查了实数的大小的比较,比较简单,解答此题的关键是熟知相反数的概念,只有符号不同的两个数叫互为相反数.38.求x的值:(1)4x2=25;(2)(x﹣0.7)3=0.027.【分析】(1)可用直接开平方法进行解答;(2)可用直接开立方法进行解答.【解答】解:(1)x2==,∴x=±.(2)(x﹣0.7)3=0.027=(0.3)3,∴x﹣0.7=0.3,故x=1.【点评】本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0.39.已知2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求12a+2b的立方根.【分析】分别根据2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求出a、b的值,再求出12a+2b的值,求出其立方根即可.【解答】解:∵2a﹣1的平方根是±3,∴2a﹣1=(±3)2,解得a=5;∵3a+b﹣1的算术平方根是4,∴3a+b﹣1=16,把a=5代入得,3×5+b﹣1=16,解得b=2,∴12a+2b=12×5+4=64,∴=4,即12a+2b的立方根是4.【点评】本题考查的是立方根、平方根及算术平方根的定义,根据题意列出关于a、b的方程,求出a、b的值是解答此题的关键.40.已知M=是m+3的算术平方根,N=是n﹣2的立方根,试求M﹣N的值.【分析】根据算术平方根及立方根的定义,求出M、N的值,代入可得出M﹣N 的平方根.【解答】解:因为M=是m+3的算术平方根,N=是n﹣2的立方根,所以可得:m﹣4=2,2m﹣4n+3=3,解得:m=6,n=3,把m=6,n=3代入m+3=9,n﹣2=1,所以可得M=3,N=1,把M=3,N=1代入M﹣N=3﹣1=2.【点评】本题考查了立方根、平方根及算术平方根的定义,属于基础题,求出M、N的值是解答本题的关键.。

部编数学七年级下册专题04《实数》解答题重点题型分类(解析版)含答案

部编数学七年级下册专题04《实数》解答题重点题型分类(解析版)含答案

专题04《实数》解答题重点题型分类专题简介:本份资料专攻《实数》中“化简求值题型”、“利用平方根与立方根的性质解方程题型”、“计算解答题型”、“数轴比较大小题型”、“整数部分与小数部分题型”、“创新题型”重点题型;适用于老师给学生作复习培训时使用或者考前刷题时使用。

考点1:化简求值题型方法点拨:1.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应(数形结合)。

2.数的相反数是-;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.3.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里.4.绝对值、平方、算术平方根的双重非负性的应用。

1.若0,0a ab <<,化简a b a --【答案】【分析】由0,0a ab <<判断b >0,再判断绝对值里的数的正负,由绝对值的定义去掉绝对值,再计算即可.【详解】解:∵0,0a ab <<,∴b >0,∴0,0a b b a --<->∴a b a --((a b b a =-----a b b a =-+++=【点睛】本题考查二次根式的化简,正确的对含绝对值号的代数式的化简是解题的关键.分类的标准应按正实数,负实数,零分类考虑.掌握好分类标准,不断加强分类讨论的意识.2.先化简后求值:()()()()222232x y y x y x y x y -----+-,其中x ,y满足30x y +=.【答案】xy -,1-【分析】直接利用整式的混合运算法则以及绝对值、算术平方根的性质得出x ,y 的值,进a a而计算得出答案.【详解】解:原式2222244432x xy y x y xy y =-+-++-xy =-,30x y +=Q ,\3402350x y x y +-=ìí--=î,解得:313x y =ìïí=ïî,\原式1313=-´=-.【点睛】本题主要考查了整式的混合运算,绝对值的非负性,算术平方根,解题的关键是正确掌握相关运算法则.3.先化简,再求值:[(3x +y )(3x ﹣y )﹣2x (y +2x )+(y ﹣2x )2]÷(﹣3x ),其中x 、y满足1y =.【答案】﹣3x +2y ,﹣26【分析】原式中括号利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并后利用多项式除以单项式法则计算得到最简结果,利用非负数的性质求出x 与y 的值,代入计算即可求出值.【详解】解:原式=(9x 2﹣y 2﹣2xy ﹣4x 2+y 2﹣4xy +4x 2)÷(﹣3x )=(9x 2﹣6xy )÷(﹣3x )=﹣3x +2y ,∵1y =,∴x ﹣8≥0且8﹣x ≥0,解得:x =8,∴11y ==-,∴原式=﹣3×8+2×(﹣1)=﹣24﹣2=﹣26.【点睛】此题考查了整式的混合运算﹣化简求值,以及非负数的性质,熟练掌握相关运算法则是解本题的关键.4.已知多项式A =x 2+2xy ﹣3y 2,B =2x 2﹣3xy +y 2,先化简3A +2B ;再求当x ,y 为有理数且满足x 2y +2y =﹣+17时,3A +2B 的值.【答案】2277,63x y -【分析】根据多项式的加减运算进行化简,进而根据x ,y 为有理数求得,x y 的值,代入求解即可.【详解】Q A =x 2+2xy ﹣3y 2,B =2x 2﹣3xy +y 2,\()()222232323223A B x xy y x xy y +=+-++-2222369462x xy y x xy y =+-+-+2277x y =-()227x y =-Q x 2+2y =﹣,x ,y 为有理数,22x y \+==-,4,5y x \=-=±2225169x y \-=-=\原式7963=´=【点睛】本题考查了整式的加减化简求值,实数的性质,求得,x y 的值是解题的关键.5.(1)化简:a 2+(5a 2﹣2a )﹣2(a 2﹣3a );(2)先化简,再求值:14(﹣4x 2+2x ﹣8y )﹣(﹣x ﹣2y ),其中x =23,y =2018.【答案】(1)244a a +;(2)232x x -+,59【分析】(1)去括号后合并同类项即可;(2)利用乘法分配律化简,进而合并同类项,再把已知数据代入得出答案.【详解】解:(1)a 2+(5a 2﹣2a )﹣2(a 2﹣3a ),2225226a a a a a =+--+ ,244a a =+ ;(2)14(﹣4x 2+2x ﹣8y )﹣(﹣x ﹣2y ),()()21114282444x x y x y =´-+´+´-++ ,21222x x y x y =-+-++ ,232x x =-+ ,当x =23,y =2018时,原式2232323æö=-+´ç÷èø ,419=-+ ,59= .【点睛】此题主要考查了整式的化简求值和实数运算,正确掌握整式的混合运算法则是解题关键.6.已知数a a【答案】2【分析】直接利用数轴得出a 的取值范围,进而化简得出答案.【详解】解:由数轴得:0.50a -<<,a =121a a a-+++=2.【点睛】本题主要考查了实数的运算与数轴,算术平方根的非负性,化简绝对值等知识点,正确化简各式是解本题的关键.7.实数a 、b 、c 在数轴上的对应点位置如图所示,化简:【答案】3b【详解】解:原式=|-c |+|a -b |+a +b -|b -c |,=c +(-a +b )+a +b -(-b +c ),=c -a +b +a +b +b -c ,=3b .【点睛】此题主要考查了实数的运算,关键是掌握绝对值的性质和二次根式的性质.8.若一个正数的两个平方根分别为1a -,27a +,请先化简再求值:()()222123a a a a -+--+.【答案】25a +,9【分析】根据正数的两个平方根互为相反数可求得a 的值,再对原式去括号合并同类项化简后,代入a 的值求解即可.【详解】解:∵一个正数的两个平方根分别为1a -,27a +,∴(a -1)+(2a +7)=0,解得a =-2.()()222123a a a a -+--+2222223a a a a =-+-++25a =+,当a =-2时,原式()2259=-+=.【点睛】本题主要考查了平方根的性质,整式的加减求值.利用正数的两个平方根互为相反数列等式求值是解题的关键.9.我们可以把根号外的数移到根号内,从而达到化简的目的.例如:(1)请仿照上例化简.①②;(2)请化简【答案】(1);②2)【分析】(1)①根据题意仿照求解即可;②根据题意仿照求解即可;(2)先根据被开方数的非负性判断a 的正负,然后根据题意求解即可.【详解】解:(1)①;②===(2)∵∴10a -³,∴0a <∴==【点睛】本题主要考查了实数的运算,解题的关键在于能够熟练掌握相关知识进行求解.10.数形结合是一种重要的数学方法,如在化简a 时,当a 在数轴上位于原点的右侧时,a a =;当a 在数轴上位于原点时,0a =;当a 在数轴上位于原点的左侧时,a a =-.当a ,b ,c 三个数在数轴上的位置如图所示,试用这种方法解决下列问题,(1)当1a =时,求aa =______,当2b =-时,求bb =______.(2)请根据a ,b ,c 三个数在数轴上的位置,求abca b c ++的值.(3)请根据a ,b ,c 三个数在数轴上的位置,化简:a c c a b b c ++++--.【答案】(1)1;1- ;(2)1-;(3)c -.【分析】(1)当1a =时,点a 在原点右边,由题意可知,此时a a =,代入a a 即可求值;当2b =- 时,点b 在原点左边,由题意可知,此时b b =-,代入bb 即可求值;(2)由图中获取a b c 、、三点的位置信息后,结合题意即可求原式的值;(3)由图获取a b c 、、的正、负信息和三个数绝对值的大小后,就可确定原式中绝对值符号里面式子的值的符号,就可化简原式.【详解】解:(1)当1a =时,111a a ==;当2b =-时,212b b ==--,故答案是:1,-1;(2)由数轴可得:0b < ,0c < ,0a > ,∴abca b c ++=1111a b c a b c--++=--=-;(3)由数轴可知:0b c a <<<且c a b <<,∴000a c a b b c +>+<-<,,,∴a c c a b b c++++--()[()][()]a c c a b b c =++-+-+---a c c ab b c=+---+-c =-.【点睛】本题考查了数轴,解决本题的关键是熟记正数的绝对值是它本身,负数的绝对值是它的相反数.在解第3小问这类题时,需注意以下两点:(1)根据在数轴上表示的数中,左边的总小于右边的,确定好所涉及数的大小关系及每个数的正、负信息(涉及异号两数相加的还要获取它们绝对值的大小关系);(2)根据有理数加、减法法则确定好需化简式子中绝对值符号里的式子的正、负,然后再根据绝对值的代数意义将绝对值符号去掉.考点2:利用平方根与立方根的性质解方程题型方法点拨:解方程时应把平方部分看成一个整体,先根据等式基本性质把方程化为平方部分等什么。

(完整版)七年级实数知识点、典型例题及练习题单元复习

(完整版)七年级实数知识点、典型例题及练习题单元复习

和 1 的大小
2
t a 2 的画法:画边长为 1 的正方形的对角线 ing a 3
ethin 练习:
om 一、比较下列各组数的大小:
for s ① 2 和 3

4 15 和 3
5
re good ④ 7 和-2.45
⑤ 72与1 33
1.当 x= _________时, 3 5x 2 有意义; 2.若 x 4 16 ,则 x=_________;若 3n 81,则 n= ________。 3.若 3 x 2 ,则 x= __________; 若 3 64 x ,则 x =__________;
(1)-a2 一定是负数吗?-a 一定是正数吗?
(2)大家都知道 是一个无理数,那么 -1 在哪两个整数之间?
(3) 15 的整数部分为 a,小数部分为 b,则 a=
, b=
(4)判断下面的语句对不对?并说明判断的理由。 ① 无限小数都是无理数; ② 无理数都是无限小数; ③ 带根号的数都是无理数; ④ 有理数都是实数,实数不都是有理数; ⑤ 实数都是无理数,无理数都是实数; ⑥ 实数的绝对值都是非负实数; ⑦ 有理数都可以表示成分数的形式。
for so 例 2.若 y x 1 1 x 1,求 x,y 的值。
re good 例 3.若 3 2a 1 和 3 1 3b 互为相反数,求 a 的值。 b
ing a 跟踪练习: be 1. y 2 x x 2 x2 5 ,求 y x 的平方根和算术平方根。
their 3.若 x 1 | y 2 | 0 ,求 x+y 的值。
g a 根, a 叫做 a 的负平方根。
ein ⑵一个正数有两个平方根: a (根指数2省略)

(完整word版)七年级下册数学实数知识点归纳与考题

(完整word版)七年级下册数学实数知识点归纳与考题

七年级数学(下)辅导资料【知识要点】1.算术平方根:正数a的正的平方根叫做a的算术平方根,记作“a”。

2. 如果x2=a,则x叫做a的平方根,记作“±a”(a称为被开方数)。

3. 正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

4. 平方根和算术平方根的区别与联系:区别:正数的平方根有两个,而它的算术平方根只有一个。

联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。

(3)0的算术平方根与平方根同为0。

5. 如果x3=a,则x叫做a的立方根,记作“3a”(a称为被开方数)。

6. 正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。

7. 求一个数的平方根(立方根)的运算叫开平方(开立方)。

8. 立方根与平方根的区别:一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0.9. 一般来说,被开放数扩大(或缩小)n倍,算术平方根扩大(或缩小)n倍,例如502500,525==.10.相反数:互为相反数的两个数之和等于0.a、b互为相反数 a+b=0.倒数:(1)0没有倒数 (2)乘积是1的两个数互为倒数.a、b互为倒数绝对值|a|≥0.11.有效数字和科学记数法(1)有效数字:一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.(2)科学记数法:把一个数用(1≤a <10,n为整数)的形式记数的方法叫科学记数法.题型规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。

2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。

3意义的条件是a≥0。

七年级初一数学第六章 实数知识归纳总结附解析

七年级初一数学第六章 实数知识归纳总结附解析

七年级初一数学第六章 实数知识归纳总结附解析一、选择题1.已知1x ,2x ,…,2019x 均为正数,且满足()()122018232019M x x x x x x =++++++,()()122019232018N x x x x x x =++++++,则M ,N 的大小关系是( )A .M N <B .M N >C .MND .M N ≥2.设记号*表示求,a b 算术平均数的运算,即*2a ba b +=,那么下列等式中对于任意实数,,a b c 都成立的是( )①()()()**a b c a b a c +=++;②()()**a b c a b c +=+;③()()()**a b c a b a c +=++;④()()**22aa b c b c +=+ A .①②③ B .①②④C .①③④D .②④3.2-是( ) A .负有理数B .正有理数C .自然数D .无理数 4.已知无理数7-2,估计它的值( ) A .小于1B .大于1C .等于1D .小于05.有理数a ,b 在数轴上对应的位置如图所示,则下列结论成立的是( )A .a+b> 0B .a -b> 0C .ab>0D .0ab> 6.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1; ③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直 A .0个B .1个C .2个D .3个7.如图.已知//AB CD .直线EF 分别交,AB CD 于点,,E F EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( )A .50︒B .65︒C .60︒D .70︒8.在实数227,042中,是无理数的是( )A .227B .0C .﹣4D .29.下列说法:①有理数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③某数的绝对值是它本身,则这个数是非负数;④16的平方根是±4,用式子表示是164=±.⑤若a ≥0,则2()a a =,其中错误的有( )A .1个B .2个C .3个D .4个 10.已知(﹣25)2的平方根是a ,﹣125的立方根是b ,则a ﹣b 的值是( ) A .0或10B .0或﹣10C .±10D .0二、填空题11.[x )表示小于x 的最大整数,如[2.3)=2,[-4)=-5,则下列判断:①[385-)= 8-;②[x )–x 有最大值是0;③[x ) –x 有最小值是-1;④x 1-≤[x )<x ,其中正确的是__________ (填编号). 12.估计51-与0.5的大小关系是:51-_____0.5.(填“>”、“=”、“<”) 13.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n 值为正整数,最后输出的结果为656,则开始输入的n 值可以是________. 142(2)-的平方根是 _______ ;38a 的立方根是 __________. 15.已知72m =,则m 的相反数是________.16.49的平方根是________,算术平方根是______,-8的立方根是_____.17.规定用符号[]x 表示一个实数的整数部分,如[3.65]3,31⎡==⎣,按此规定113⎡=⎣_____.18.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d -+=_____. 19.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.20.已知a 、b 为两个连续的整数,且a 19b ,则a +b =_____.三、解答题21.观察下列各式: (x -1)(x+1)=x 2-1 (x -1)(x 2+x+1)=x 3-1(x -1)(x 3+x 2+x+1)=x 4-1 ……(1)根据以上规律,则(x -1)(x 6+x 5+x 4+x 3+x 2+x+1)=__________________. (2)你能否由此归纳出一般性规律(x -1)(x n +x n -1+x n -2+…+x+1)=____________. (3)根据以上规律求1+3+32+…+349+350的结果. 22.先阅读然后解答提出的问题:设a 、b 是有理数,且满足3+=-a b a 的值.解:由题意得(3)(0-++=a b ,因为a 、b 都是有理数,所以a ﹣3,b+2也是有理数,是无理数,所以a-3=0,b+2=0, 所以a=3,b=﹣2, 所以3(2)8=-=-ab .问题:设x 、y 都是有理数,且满足2210x y -+=+x+y 的值. 23.观察下列计算过程,猜想立方根.13=1 23=8 33=27 43=64 53=125 63=216 73=343 83=512 93=729(1)小明是这样试求出19683的立方根的.先估计19683的立方根的个位数,猜想它的个位数为 ,又由203<19000<303,猜想19683的立方根十位数为 ,验证得19683的立方根是(2)请你根据(1)中小明的方法,猜想 ; . 请选择其中一个立方根写出猜想、验证过程。

专题01 实数(重点+难点)(解析版)

专题01 实数(重点+难点)(解析版)

专题01实数(重点+难点)一、单选题1.下列各数中:﹣227,﹣39,0,0.15,3π,﹣49,1.010010001……(0的个数依次加一个),23.1313313332中,无理数有()个A .1B .2C .3D .4【答案】C【分析】无限不循环小数称为无理数,根据此概念判断即可.【解析】根据无理数的概念知:无理数有﹣39,3π, 1.010010001……(0的个数依次加一个)三个;故选:C .【点睛】本题考查了无理数的含义,常见三类无理数:不能开尽方的平方根或立方根;π与有理数的和差积商;形如1.010010001……(0的个数依次加一个)的数.2.下列说法中,不.正确的是()A .4的平方根是2±B .8的立方根是2C .64的立方根是4±D .9的算术平方根是3【答案】C【分析】根据平方根和立方根的定义进行计算,一个正数的平方根有正负两个,正的平方根是该数的算术平方根,所有实数的立方根只有一个,然后进行逐一判断即可.【解析】A.4的平方根是2±,原选项不合题意;B.8的立方根是2,原选项不合题意;C.64的立方根是4,原选项符合题意;D.9的算术平方根是3,原选项不合题意.故选:C【点睛】本题考查了平方根和立方根的概念,熟练掌握相关知识是解题的关键.3.如图,数轴上点P 表示的数可能是()A.①②【答案】D【分析】根据运算规则即可求解.【解析】解:①x的值不唯一.②输入值x为16时,③对于任意的正无理数④当x=1时,始终输不出其中错误的是①③.故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:及像0.1010010001…,等有这样规律的数.二、填空题11.比较大小:6【答案】<【分析】根据实数的大小比较方法求解即可.<,【解析】解:∵67∴67<,1615>故答案为:<,>.【点睛】本题考查实数的大小比较,三、解答题(1)已知点A、B表示两个实数﹣3、2,请在数轴上描出它们大致的位置,用字母标示出来;(2)O为原点,求出O、A两点间的距离.(3)求出A、B两点间的距离.【答案】(1)见解析;(2)解:∵表示点A的数为﹣3,表示点O的数为0,∴OA=0﹣(﹣3)=3;(3)解:∵表示点A的数为﹣3,表示点B的数为2,∴AB=2﹣(﹣3)=2+3.【点睛】本题考查了实数与数轴以及两点间的距离,在数轴上准确表示出点∴103823的立方根的十位数字是4,又∵103823的立方根的个位数字是7,∴103823的立方根是47.【点睛】考查了立方根的概念和求法,解题关键是理解一个数的立方的个位数就是这个数的个位数的立方的个位数.一、单选题A.216【答案】D【分析】由4A纸张的宽为【解析】解:由图得,当∵纸张长与宽的比为∴0A纸的长为42x米,∵0A纸面积为1平方米,∴421x x⋅=,∴2²32x=,∴x的值为232的算术平方根.故选:D.【点睛】本题考查了平方根的计算,根据图形表示出二、填空题三、解答题。

初一实数所有知识点总结和常考题提高难题压轴题练习(含答案解析)精编版

初一实数所有知识点总结和常考题提高难题压轴题练习(含答案解析)精编版

最新资料推荐初一实数所有知识点总结和常考题知识点:、实数的概念及分类1、实数的分类| 整数包括正整数、零、负整数。

| 正整数又叫自然数。

正整数、零、负整数、正分数、负分数统称为有理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,女口 ,7,3 2等;(2) 有特定意义的数,如圆周率 n,或化简后含有n 的数,如n +8等;3(3) 有特定结构的数,如 0.1010010001…等; 二、 实数的倒数、相反数和绝对值1、 相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的 相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如 果a 与b 互为相反数,则有a+b=0,a=— b ,反之亦成立。

2、 绝对值一个数的绝对值就是表示这个数的点与原点的距离, |a|为。

零的绝对值时 它本身,也可看成它的相反数,若|a|=a ,则a^0;若|a|=-a ,贝U a ^)。

正数大于 零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、 倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

4、 实数与数轴上点的关系:每一个无理数都可以用数轴上的一个点表示出来, 数轴上的点有些表示有理数,有些表示无理数,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点 来表示;反过来,数轴上的每一个点都是表示一个实数。

三、 平方根、算数平方根和立方根1、平方根(1) 平方根的定义:如果一个数x 的平方等于a ,那么这个数x 就叫做a 的平方根.即:厂正有理数有理数-零L 负有理数 无理数.正无理数-负无理数-有限小数和无限循环小数-无限不循环小数如果x2二a,那么x叫做a的平方根.(2) 开平方的定义:求一个数的 平方根的运算,叫做开平方•开平方 运算的被开方数必须是非负数才有意义。

(word完整版)七年级下册实数知识点总结及常见题,推荐文档

(word完整版)七年级下册实数知识点总结及常见题,推荐文档

实数1•算术平方根:正数a的正的平方根叫做a的算术平方根,记作“ .a”。

2. 如果x2a,则x叫做a的平方根,记作“ 土,a”(a称为被开方数)。

3. 正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

4. 平方根和算术平方根的区别与联系:区别:正数的平方根有两个,而它的算术平方根只有一个且为正。

联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。

(3)0的算术平方根与平方根同为0。

5. 如果x3=a,则x叫做a的立方根,记作“储”(a称为被开方数)。

6. 正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。

7. 求一个数的平方根(立方根)的运算叫开平方(开立方)。

8. 立方根与平方根的区别:一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0.9. 实数:有理数和无理数统称为实数有理数:有限小数或无限循环小数(分数又可以转化成无限循环小数)无理数:无限不循环小数(常见无理数有-2,,等)10. 数轴上的点和实数—对应。

题型规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和土1。

2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。

3- a 本身为非负数,有非负性,即卩Va >0;有意义的条件是a> 0。

4、公式:⑴(j a)2=a (a>0);⑵(a 取任何数)。

5、区分a )2=a (a > 0),与a2=a6、非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0 (此性质应用很广,务必掌握)。

【典型例题】1. 下列语句中,正确的是()A •一个实数的平方根有两个,它们互为相反数B. 负数没有立方根C. 一个实数的立方根不是正数就是负数D. 立方根是这个数本身的数共有三个2. 下列说法正确的是()2A. -2是(2)的算术平方根B. 3是-9的算术平方根C. 16的平方根是土4D. 27的立方根是土33. 已知实数x , y 满足 X 2+(y+1) 2=0,则x-y 等于 _________________4. 求下列各式的值(1) 、81 ;( 2) 16 ;( 3)、9 ;( 4) ... ( 4)2\25 '4、 3 4= ____________5、 若m 、n 互为相反数,则 m J5 n = ________________26、 若a a ,贝 V a ___ 03、已知一个正数的两个平方根分别是2a - 2和a - 4,贝U a 的值是 _______5. 已知实数x , y 满足x 2+(y+1) 2=0,则 x-y 等于6. (1) 64的立方根是 4(2) 下列说法中:① 3都是27的立方根,②3 y 3 y ,③.64的立方根是2, ④ -8 2 4。

初一数学七下实数所有知识点总结和常考题型练习题

初一数学七下实数所有知识点总结和常考题型练习题

实数知识点一、实数的倒数、相反数和绝对值1、相反数只有符号不同的两个数叫做互为相反数(零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

二、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±”。

2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0) 0≥a ==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。

三、科学记数法和近似数1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

2、科学记数法把一个数写做na 10⨯±的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法。

四、实数大小的比较1、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

实数(5种题型)-2023年新七年级数学核心知识点与常见题型通关讲解练(浙教版)(解析版)

实数(5种题型)-2023年新七年级数学核心知识点与常见题型通关讲解练(浙教版)(解析版)

实数(5种题型)【知识梳理】一、有理数与无理数有限小数和无限循环小数都称为有理数.无限不循环小数又叫无理数. 要点:(1)无理数的特征:无理数的小数部分位数无限.无理数的小数部分不循环,不能表示成分数的形式. (2)常见的无理数有三种形式:①含π类.②看似循环而实质不循环的数,如:1.313113111…….③带有根二、实数有理数和无理数统称为实数. 1.实数的分类按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数2.实数与数轴上的点的关系我们尝试用数轴上的一个点来表示2.由前面的学习,我们知道两个边长为1的小正方形可以拼成一个面积为2的正方形ABCD ,它的边长为2.观察正方形ABCD ,可知它的一边是一个直角三角形的斜边,这个直角三角形的两条直角边长都是1.这样,就在数轴上确定一个点来表示2.要点:每一个实数都可以用数轴上的点表示,而且这些点是唯一的;反过来,数轴上的每一个点都表示一个实数.数轴上的点与实数一一对应。

3.两个实数比较大小①负数小于0,0小于正数;两个正数绝对值大的数较大,两个负数绝对值大的数较小;从数轴上看,右边的点表示的数比左边的大。

②数轴上,如果点A,点B 所对应的数分别为a ,b ,那么A,B 两点的距离4.估算:怎样估算无理数20 (①误差小于1)?(②误差小于0.1)? 误差小于0.1就是指估算出来的值与准确值之间的差的绝对值小于0.1. 估算无理数的方法是:(1)通过平方运算,采用“夹逼法”,确定真正值所在范围; (2)根据问题中误差允许的范围内取出近似值。

(3)“精确到”与“误差小于”意义不同。

如精确到1m 是四舍五入到个位,答案惟一;误差小于1m ,答案在真正值左右1m 都符合题意,答案不惟一。

在本章中误差小于1m 就是估算到个位,误差小于10m 就是估算到十位。

(完整版)初一实数所有知识点总结和常考题提高难题压轴题练习(含答案解析)-推荐文档

(完整版)初一实数所有知识点总结和常考题提高难题压轴题练习(含答案解析)-推荐文档

安全预控措施第一章概述为了有效地掌握事故的发生,确保长安馨苑项目部平安生产指标的实现,依据我国及我项目部“平安第一,预防为主”的方针和当今建筑施工中的多发事故种类,结合本工地的平安状况,特制订以下平安事故预控措施。

目的是保证西安曲江泛渼国际大厦工程项目在整个工程施工期间的平安、文明、卫生和本着为每一位现场施工人员的人身平安着想。

为社会和家庭负责,以便能更好的为工程的平安起到更加完善的保证措施。

依据工程需要西安曲江泛渼国际大厦项目部成立事故应急救援“指挥领导小组”,由项目经理及生产、技术、平安、保卫、卫生等管理人员组成,下设应急救援队,日常工作由平安员兼管。

发生重大事故时,以领导小组为基础,即事故应急救援指挥部,项目经理任总指挥,副经理任副指挥,负责项目部应急救援工作的组织和指挥,指挥部设在项目部会议。

注:假如项目经理和副经理不在时,有技术负责人和平安员为临时总指挥和副指挥,全权负责应急救援工作。

1、职责指挥领导小组:(1)负责本项目工程“预案”的制定、修订。

(2)组建应急救援专业队伍,并组织实施和演练。

(3)检查督促做好事故的预控措施和应急救援的各项预备工作。

指挥部:(1)发生事故时,有指挥部发布和解除应急救援命令、信号。

(2)组织指挥救援队伍实施救援行动(3)向上级汇报事故状况,必要时联系有关单位进行救援(4)组织事故调查,总结应急救援工作阅历教训。

指挥部人员分工:总指挥:组织项目部的应急救援工作。

副总指挥:帮助总指挥负责应急救援的详细指挥工作。

指挥部成员:平安员:帮助总指挥做好事故报警、状况通报及事故处置工作。

保卫科科长:负责灭火、警戒、治安保卫、疏散、道路管治工作。

生产负责人:(1)负责事故处置时施工开、停工作(2)事故现场通讯联络和对外联系(3)负责事故现场及有害物质集中区域内的洗消、监测工作(4)必要时代表指挥部对外发布有关信息。

机管员、临时电工:帮助总指挥负责抢险、抢修的现场指挥。

医务室医疗员:负责现场医疗抢救、指挥及中毒、受伤人员分类抢救和护送医院工作。

《常考题》初中七年级数学下册第六单元《实数》知识点总结(含答案解析)

《常考题》初中七年级数学下册第六单元《实数》知识点总结(含答案解析)

一、选择题1.实数a ,b 在数轴上的位置如图所示,那么化简33a b a b ++-+的结果为( )A .2a -B .22b a -C .0D .2b A解析:A【分析】 先根据数轴上点的坐标特点确定a ,b 的符号,再去绝对值符号和开立方根,化简即可.【详解】由图可知:0a b <<,且a b >,∴0a b +<,0a ->,原式()()a b a b =-++-+ a b a b =---+2a =-.故选:A .【点睛】 考查了数轴,解答此题时可以发现借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小有直观、简捷,举重若轻的优势.2.下列说法正确的是( )A .22B .(﹣4)2的算术平方根是4C .近似数35万精确到个位D 215B 解析:B【分析】根据平方根的定义,算术平方根的定义,近似数的定义及无理数的估算方法分别计算可判定求解.【详解】解:A.2的平方根是2,故错误;B .(﹣4)2的算术平方根是4,故正确;C .近似数35万精确到万位,故错误;D .∵421<5,∴214,故错误.故选:B .【点睛】本题考查了平方根,算术平方根,近似数,无理数,掌握相关概念及性质是解题的关键.3.数轴上表示下列各数的点,能落在A,B两个点之间的是()A.3B7C11D13解析:B【分析】首先确定A,B对应的数,再分别估算四个选项的数值进行判断即可.【详解】解:由数轴得,A点对应的数是1,B点对应的数是3,A.-2<3<-1,不符合题意;B.27<3,符合题意;C、3114,不符合题意;D. 3134,不符合题意;故选:B【点睛】本题主要考查了对无理数的估算.4. 5.713457.134,则571.34的平方根约为()A.239.03 B.±75.587 C.23.903 D.±23.903D解析:D【分析】根据被开方数小数点向右移动两位,其算术平方根向右移动一位及平方根的定义求解即可.【详解】解:∵ 5.7134,∴571.34,故选:D.【点睛】本题主要考查算术平方根与平方根,解题的关键是掌握被开方数小数点向右移动两位,其算术平方根向右移动一位和平方根的定义.-的整数部分相5.已知无理数m55π同,则m为()π-A5B10C51D.5解析:C【分析】m 的整数部分与小数部分,进而可得答案.【详解】解:因为23, 3.14π≈,2,5π-的整数部分为1,所以无理数m 的整数部分是12,所以121m =+=.故选:C .【点睛】m 的整数部分与小数部分是解题的关键.6.设,A B 均为实数,且A B ==,A B 的大小关系是( ) A .A B >B .A B =C .A B <D .A B ≥ D 解析:D【分析】根据算术平方根的定义得出A 是一个非负数,且m-3≥0,推出3-m≤0,得出B≤0,即可得出答案,【详解】解:∵A =∴A 是一个非负数,且m-3≥0, ∴m≥3, ∵B =∵3-m≤0,即B≤0,∴A≥B ,故选:D .【点睛】本题考查了算术平方根的定义,平方根和立方根,实数的大小比较等知识点,题目比较好,但有一定的难度.7.下列有关叙述错误的是( )AB 是2的平方根C .12<<D 是分数D 解析:D【分析】根据正数、平方根、无理数的估算与定义逐项判断即可得.【详解】AB 是2的平方根,此项叙述正确;C 、12<<,此项叙述正确;D 、2是无理数,不是分数,此项叙述错误; 故选:D .【点睛】本题考查了正数、平方根、无理数的估算与定义,熟练掌握各定义是解题关键.8. )A .5和6B .6和7C .7和8D .8和9A 解析:A【分析】【详解】解:∵∴56,∴在两个相邻整数5和6之间.故选:A .【点睛】此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.9.下列等式成立的是( )A .±1B =±2C 6D 3A 解析:A【分析】分别根据算术平方根、立方根的定义逐一判断即可.【详解】A .书写规范,故本选项符合题意;B.算术平方根只能是正数不能是负数,故本选项不合题意;C.立方根与被开方数符号一致,故本选项符合题意;D.33=27,27的立方根才等于3,故本选项不合题意.故选:A .【点睛】本题主要考查了算术平方根与立方根的定义,熟练掌握算术平方根的性质是解答本题的关键.10.下列各组数中都是无理数的为( )A .0.07,23,π;B .0.7•,π;C ,π;D .0.1010101……101,π解析:C【分析】根据无理数的定义,依次判断即可.【详解】解:A. 0.07,23是有理数,故该选项错误; B .0.7 是有理数,故该选项错误;C ,π都是无理数,故该选项正确;D .0.1010101……101是有理数,故该选项错误.故选:C .【点睛】本题主要考查了无理数的定义.其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.二、填空题11.计算:(1321(2)(10)4---⨯-(2)225(24)-⨯--÷1)-12(2)-12【分析】(1)(2)两小题都属于实数的混合运算先计算乘方和开方再计算乘除最后再算加减即可得出结果【详解】解:(1)(2)【点睛】本题考查了实数的混合运算根据算式确定运算顺序并解析:(1)-12,(2)-12.【分析】(1)、(2)两小题都属于实数的混合运算,先计算乘方和开方,再计算乘除,最后再算加减即可得出结果.【详解】解:(1321(2)(10)4---⨯- 1100458=⨯+- 1325=-12=-,(2)225(24)-⨯--÷45(24)3=-⨯--÷208=-+12=-.【点睛】本题考查了实数的混合运算,根据算式确定运算顺序并运用相应的运算法则正确计算是解题的关键.12.计算下列各题(1)﹣2;(2)﹣(结果保留2位有效数字).(1);(2)26【分析】(1)计算立方根平方根再合并即可;(2)根据实数的运算法则和顺序计算即可【详解】(1)+--2=-2+4-2-=-;(2)2+-10【点睛】本题考查了平方根和立方根熟练掌握解析:(1);(2)2.6【分析】(1)计算立方根、平方根,再合并即可;(2)根据实数的运算法则和顺序计算即可.【详解】(1)(2)100.22=-⨯ 2 1.732 2.23622≈⨯+÷-2.6≈.【点睛】本题考查了平方根和立方根,熟练掌握相关的运算法则是解题的关键.13.计算:(1(2)0(0)|2|π--(3)解方程:4x 2﹣9=0.(1)-8;(2)1﹣;(3)x =±【分析】(1)利用算数平方根立方根及二次根式性质计算即可;(2)利用零指数幂立方根及绝对值的代数意义进行化简即可;(3)方程变形后利用开方运算即可求解【详解】解:解析:(1)-8;(2)13)x =±32. 【分析】(1)利用算数平方根、立方根及二次根式性质计算即可;(2)利用零指数幂、立方根及绝对值的代数意义进行化简即可;(3)方程变形后,利用开方运算即可求解.【详解】解:(1)原式=()935358÷--=--=-;(2)原式=1221-+-=(3)方程变形得:294x =,开方得:32x =±. 【点睛】本题考察实数的运算,熟练掌握运算法则是解题的关键.14.把下列各数的序号填入相应的括号内①-3,②π,,④-3.14,,⑥0,⑦227,⑧-1,⑨1.3,⑩1.8080080008…(两个“8”之间依次多一个“0”). 整数集合{ …},负分数集合{ …},正有理数集合{ …}, 无理数集合{ …}.见解析【分析】先求出立方根再根据整数负分数正有理数无理数的定义即可得【详解】解析:见解析.【分析】先求出立方根,再根据整数、负分数、正有理数、无理数的定义即可得.【详解】3=-,15.计算:(1)2019(1)|2|-(2)[(x ﹣2y )2+(x ﹣2y )(x +2y )﹣2x (2x ﹣y )]÷2x (1)(2)【分析】(1)先根据正整数指数幂立方根平方根去绝对值化简各项再进行加减运算即可;(2)先去括号根据完全平方公式和平方差公式计算后合并同类项再计算除法即可求解【详解】(1)原式=(2)原式解析:(1)1--2)y x --【分析】(1)先根据正整数指数幂、立方根、平方根、去绝对值化简各项,再进行加减运算即可; (2)先去括号,根据完全平方公式和平方差公式计算后合并同类项,再计算除法即可求解.【详解】(1)原式= 1242-+-+1=-(2)原式=22222444422x xy y x y x xy x ⎡⎤-++-⎣⎦÷-+ ()2222xy x x =-÷-y x =--.【点睛】本题主要考查整式的混合运算,解题的关键是掌握立方根、平方根、绝对值及多项式与单项式的除法法则.16.若一个正数的平方根是3m +和215m -,n 的立方根是2-,则2n m -+的算术平方根是______.4【分析】首先根据平方根的定义求出m 值再根据立方根的定义求出n 代入-n+2m 求出这个值的算术平方根即可【详解】解:∵一个正数的两个平方根分别是m+3和2m-15∴m+3+2m-15=0解得:m=4∵解析:4【分析】首先根据平方根的定义,求出m 值,再根据立方根的定义求出n ,代入-n+2m ,求出这个值的算术平方根即可.【详解】解:∵一个正数的两个平方根分别是m+3和2m-15,∴m+3+2m-15=0,解得:m=4,∵n 的立方根是-2,∴n=-8,把m=4,n=-8代入-n+2m=8+8=16,所以-n+2m 的算术平方根是4.故答案为:4.【点睛】本题考查了平方根、算术平方根、立方根.解题的关键是掌握平方根、算术平方根、立方根的定义,能够利用定义求出m 、n 值,然后再求-n+2m 的算术平方根.17.实数2-,227,π-中属于无理数的是________.【分析】根据无理数的三种形式:①开方开不尽的数②无限不循环小数③含有π的数找出无理数的个数【详解】解:在这5个数中属于无理数的有这2个数故答案是:【点睛】本题考查了无理数的知识解答本题的关键是掌握无,π- 【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【详解】3=-,在2-,227,π-5, π-,这2个数,π-. 【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.18.0.5325===的值是______________________.【分析】根据立方根的性质即可求解【详解】已知故答案为:【点睛】此题主要考查立方根的求解解题的关键是熟知实数的性质变形求解解析:11.47【分析】根据立方根的性质即可求解.【详解】1.147=,1.1471011.47===⨯=故答案为: 11.47.【点睛】此题主要考查立方根的求解,解题的关键是熟知实数的性质变形求解.19.2-.4【分析】原式利用平方根立方根定义及绝对值化简计算即可得到结果【详解】解:原式【点睛】本题考查了实数的运算熟练掌握平方根立方根定义是解本题的关键解析:4【分析】原式利用平方根、立方根定义及绝对值化简计算即可得到结果.【详解】解:原式282=-+-4=【点睛】本题考查了实数的运算,熟练掌握平方根、立方根定义是解本题的关键.20.计算:(1)7|2|--(2)23115422⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭(1)2;(2)5【分析】(1)先计算绝对值及开立方再计算加减法;(2)先计算括号中的减法及乘方再按顺序计算乘除法【详解】解:(1)=7-2-3=2;(2)==5【点睛】此题考查实数的混合运算掌握运 解析:(1)2;(2)5【分析】(1)先计算绝对值及开立方,再计算加减法;(2)先计算括号中的减法及乘方,再按顺序计算乘除法.【详解】解:(1)7|2|--=7-2-3=2;(2)23115422⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭=15144⨯÷ =5.【点睛】 此题考查实数的混合运算,掌握运算法则及运算顺序是解题的关键. 三、解答题21.求下列各式中的x :(1)2940x -=;(2)3(1)8x -=解析:1)23x =±;(2)3 【分析】 (1)先将原方程移项、系数化为1后,再利用平方根的定义求解即可; (2)先利用立方根的定义求得12x -=,解此方程即可.【详解】解:(1)2940x -=294x =249x = 23x =±; (2)3(1)8x -=12x -=3x =.【点睛】此题考查了利用平方根、立方根解方程,解答此题的关键是掌握平方根与立方根的定义并能准确理解题意.22.已知31a +的算数平方根是4,421c b +-的立方根是3,c 22a b c +-的平方根.解析:3±.【分析】根据算术平方根的定义得到3a+1=16,可解得a 值,根据34,可得c=3,再根据立方根的定义可得34213c b +-=,可解得b ,然后将a 、b 、c 的值代入计算即可.【详解】解:根据题意可得:2314a +=,∴5a =,3134<<,3c ∴=,∵34213c b +-=,∴8b =,3==±,即22a b c +-的平方根为3±.【点睛】本题考查了代数式的求值、算术平方根、立方根、无理数的估算,理解(算术)平方根的定义,立方根的定义,会利用完全平方数和算术平方根估算无理数的大小是解答的关键.23.计算:3011(2)(200422-+--- 解析:8-【分析】根据运算法则和运算顺序准确计算即可.【详解】解:3011(2)(200422-+-- 11822=-+- 8=-【点睛】本题考查了实数得混合运算,掌握运算法则和顺序是解题的关键.24.解方程:(1)24(1)90--=x(2)31(1)7x +-=- 解析:(1)152x =,212x =-;(2)x =﹣1.【分析】(1)方程整理后,利用平方根性质计算即可求出解;(2)方程整理后,利用立方根性质计算即可求出解.【详解】解:(1)24(1)90--=x 方程整理得:2(1)9=4x -, 开方得:321=x -±解得,152x =,212x =-; (2)31(1)7x +-=-方程整理得:(x ﹣1)3=﹣8,开立方得:x ﹣1=﹣2,解得:x =﹣1.【点睛】此题考查了立方根,以及平方根,熟练掌握各自的性质是解本题的关键.25.求下列各式中的x 的值.(1)4x 2=9;(2)(2x ﹣1)3=﹣27.解析:(1)x =32±;(2)x =﹣1. 【分析】(1)先变形为x 2=94,然后利用平方根的定义得到x 的值; (2)先利用立方根的定义得到2x ﹣1=﹣3,然后解一次方程即可.【详解】解:(1)4x 2=9∴x 2=94, ∴x =±32; (2)(2x ﹣1)3=﹣27,∴2x ﹣1=﹣3,∴x =﹣1.【点睛】本题考查了立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根.这就是说,如果x 3=a ,那么x 叫做a26.求x 的值:(1)2(3)40x +-=(2)33(21)240x ++=解析:(1)1x =-或5x =-;(2)32x =-. 【分析】 (1)整理后,利用平方根的定义得到32x +=±,然后解两个一元一次方程即可; (2)整理后,利用立方根的定义得到212x +=-,然后解一元一次方程即可.【详解】(1)2(3)40x +-=,移项得:2(3)4x +=,∴32x +=±,∴1x =-或5x =-;(2)33(21)240x ++=, 整理得:3(21)8x +=-,∴212x +=-, ∴32x =-. 【点睛】 本题考查了立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根.这就是说,如果x 3=a ,那么x 叫做a 的立方根.也考查了平方根.27.设2+的整数部分和小数部分分别是x 、y ,试求x 、y 的值与1x -的立方根.解析:4x =,2y =,1x - 【分析】根据无理数的估算、立方根的定义即可得.【详解】因为469<<,所以23<<,所以22223+<++,即425<+,所以24,小数部分是242+=,即4x =,2y =,==【点睛】本题考查了无理数的估算、立方根,熟练掌握无理数的估算方法是解题关键.28.已知52a +的立方根是3,31a b +-的算术平方根是4,c 的整数部分. (1)求a ,b ,c 的值;(2)求3a b c -+的平方根.解析:(1)5a =,2b =,3c =;(3)4±【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a 、b 、c 的值.(2)将a 、b 、c 的值代数式求出值后,进一步求得平方根即可.【详解】解:(1)∵52a +的立方根是3,31a b +-的算术平方根是4,∴5227a +=,3116a b +-=,∴5a =,2b =; ∵34<<,c 的整数部分,∴3c =;(2)当5a =,2b =,3c =时,3152316a b c -+=-+=,16的平方根是4±∴3a b c -+的平方根是4±.【点睛】本题考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.。

七年级数学下册第六章实数知识点归纳总结(精华版)(带答案)

七年级数学下册第六章实数知识点归纳总结(精华版)(带答案)

七年级数学下册第六章实数知识点归纳总结(精华版)单选题1、下列等式:①√116=18,②√(−2)33=−2,③√(−2)2=2,④√−83=−√83,⑤√16=±4,⑥−√4=−2;正确的有( )A .4个B .3个C .2个D .1个答案:A分析:根据算术平方根定义及立方根定义解答.解:√116=14,故①错误; √(−2)33=−2,故②正确;√(−2)2=2,故③正确;√−83=−√83,故④正确; √16=4,故⑤错误;−√4=−2,故⑥正确;故选:A .小提示:此题考查求一个数的算术平方根及立方根,正确掌握算术平方根定义及立方根定义是解题的关键.2、-2019的相反数是( )A .2019B .-2019C .12019 D .−12019答案:A分析:根据只有符号不同的两个数互为相反数解答即可.解:-2019的相反数是2019.故选:A .小提示:本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义.3、如图是一个无理数生成器的工作流程图,根据该流程图,下面说法:①当输出值y 为√3时,输入值x 为3或9;②当输入值x为16时,输出值y为√2;③对于任意的正无理数y,都存在正整数x,使得输入x后能够输出y;④存在这样的正整数x,输入x之后,该生成器能够一直运行,但始终不能输出y值.其中错误的是()A.①②B.②④C.①④D.①③答案:D分析:根据运算规则即可求解.解:①x的值不唯一.x=3或x=9或81等,故①说法错误;②输入值x为16时,√16=4,,√4=2,y=√2,故②说法正确;③对于任意的正无理数y,都存在正整数x,使得输入x后能够输出y,如输入π2,故③说法错误;④当x=1时,始终输不出y值.因为1的算术平方根是1,一定是有理数,故④原说法正确.其中错误的是①③.故选:D.小提示:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4、估计√6的值在()A.4和5之间B.3和4之间C.2和3之间D.1和2之间答案:C分析:根据无理数的估算方法估算即可.∵√4<√6<√9∴2<√6<3故选:C .小提示:本题主要考查了无理数的估算能力,要求掌握无理数的基本估算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.5、实数−23的倒数是( )A .23B .−23C .123D .−123答案:D分析:根据倒数的意义可直接进行求解.解:实数−23的倒数是−123; 故选D .小提示:本题主要考查实数与倒数的意义,熟练掌握倒数的意义是解题的关键.6、对于数字-2+√5,下列说法中正确的是( )A .它不能用数轴上的点表示出来B .它比0小C .它是一个无理数D .它的相反数为2+√5答案:C分析:根据数轴的意义,实数的计算,无理数的定义,相反数的定义判断即可.A .数轴上的点和实数是一一对应的,故该说法错误,不符合题意;B .−2+√5>0,故该说法错误,不符合题意;C .−2+√5是一个无理数,故该说法正确,符合题意;D .−2+√5的相反数为2−√5,故该说法错误,不符合题意;故选:C .小提示:本题考查数轴的意义,实数的计算,无理数的定义,相反数的定义,熟练掌握相关计算法则是解答本题的关键.7、定义a *b =3a ﹣b ,a ⊕b =b ﹣a 2,则下列结论正确的有( )个.①3*2=7.②2⊕(﹣1)=﹣5.③(13*25)⊕(72⊕14)=﹣29125.④若a *b =b *a ,则a =b .A .1个B .2个C .3个D .4个答案:C分析:先按照定义书写出正确的式子再进行计算就可解决本题.①、3∗2=3×3-2=7,故计算正确,符合题意;②、2⊕(−1)=(﹣1)-22=−5,故计算正确,符合题意;③、(13∗25)⊕(72⊕14)=(3×13−25)⊕[14−(72)2]=35⊕(−12)=(−12)−(35)2=−30925,故计算错误,不符合题意;④、a ∗b =3a −b ,b ∗a =3b −a ,∵a *b =b *a ,3a −b =3b −a ,解得:a =b ,故计算正确,符合题意.综上所述,正确的有:①②④,共3个.故选:C .小提示:本题考查了按照定义运算的知识,严格按照定义书写出正确的式子,准确的计算是解决本题的关键.8、一般地,如果x n =a (n 为正整数,且n >1),那么x 叫做a 的n 次方根,下列结论中正确的是( )A .16的4次方根是2B .32的5次方根是±2C .当n 为奇数时,2的n 次方根随n 的增大而减小D .当n 为偶数时,2的n 次方根有n 个答案:C分析:根据新定义的意义计算判断即可.解:∵16的4次方根是±2,∴A选项的结论不正确;∵32的5次方根是2,∴B选项的结论不正确;∵当n为奇数时,2的n次方根随n的增大而减小,∴C选项的结论正确;∵当n为偶数时,2的n次方根有2个,∴D选项的结论不正确.故选:C.小提示:本题考查了实数的新定义问题,正确理解新定义的意义是解题的关键.9、运算后结果正确的是()A.2√3÷12=√3B.√43=2C.√8−2√2=0D.√2×√6=3√2答案:C分析:根据实数的运算法则即可求解;解:A.2√3÷12=4√3≠√3,故错误;B.√43≠2,故错误;C.√8−2√2=0,故正确;D.√2×√6=2√3≠3√2,故错误;故选:C.小提示:本题主要考查实数的计算,掌握实数计算的相关法则是解题的关键.10、已知|a−5|+√b−3=0,那么a−b=()A.2B.3C.-2D.8答案:A分析:直接利用绝对值的性质以及算术平方根的性质得出a ,b 的值,进而求解即可.解:∵|a -5|+√b −3=0,∴a -5=0,b -3=0,解得:a =5,b =3,∴a -b =5-3=2,故选:A .小提示:本题主要考查了非负数的性质,代数式求值,正确得出a ,b 的值是解题关键.填空题11、7是__________的算术平方根.答案:49分析:根据算术平方根的定义即可解答.解:因为√49=7,所以7是49的算术平方根.所以答案是:49小提示:本题主要考查的是算术平方根,属于基础题,要求学生认真读题,熟记概念.12、√−643的倒数是 ____,3﹣√10的绝对值是 ______.答案: ﹣14√10﹣3 分析:(1)先化简√−643再根据互为倒数的两个数积为1的概念进行求值即可.(2)根据若一个数小于0,那么它的绝对值为它的相反数,求出√3- 2的相反数即可.解:(1)化简√−643=√(−4)33=−4,又(−4)×(−14)=1, 所以答案是:−14.(2)√3- 2<0,则它的绝对值即为它的的相反数−(√3−2) =2−√3 ,所以答案是:2−√3故答案为−14,2−√3小提示:本题考查立方根,互为倒数和绝对值的概念,务必清楚的是互为倒数的的两个数积1,负数的绝对值等于它的相反数,掌握倒数和求绝对值的相关概念是解题的关键.13、如果√15=3.873,√1.5=1.225,那么√15000=___________.答案:122.5分析:根据算术平方根与被开方数的关系:“被开方数每向左或向右移动4个位数,则它的算术平方根就向左向右移动2个位数”可知答案.解:∵1.5×10000=15000,∴√15000=100√1.5=122.5,所以答案是:122.5.小提示:本题考查了算术平方根与被开方数的关系,关键在于知道它们之间有何关系.14、如图,A,B,C在数轴上对应的点分别为a,﹣1,√2,其中a<﹣1,且AB=BC,则|a|=_____.答案:2+√2分析:先根据数轴上点的位置求出AB=BC=√2−(−1)=√2+1,即可得到−1−a=√2+1,由此求解即可.解:∵A,B,C在数轴上对应的点分别为a,﹣1,√2,∴BC=√2−(−1)=√2+1,∴AB=BC=√2−(−1)=√2+1,∴−1−a=√2+1,∴a=−2−√2,∴|a|=2+√2,所以答案是:2+√2.小提示:本题主要考查了实数与数轴,解题的关键在于能够根据题意求出AB=BC=√2−(−1)=√2+1.15、观察下面的变化规律:2 1×3=1−13,23×5=13−15,25×7=15−17,27×9=17−19,……根据上面的规律计算:2 1×3+23×5+25×7+⋯+22019×2021=__________.答案:20202021分析:本题可通过题干信息总结分式规律,按照该规律展开原式,根据邻项相消求解本题.由题干信息可抽象出一般规律:2a•b =1a−1b(a,b均为奇数,且b=a+2).故21×3+23×5+25×7+⋯+22019×2021=1−13+13−15+15−17+⋯+12019−12021=1+(13−13)+(15−15)+⋯+(1 2019−12019)−12021=1−12021=20202021.故答案:20202021.小提示:本题考查规律的抽象总结,解答该类型题目需要准确识别题干所给的例子包含何种规律,严格按照该规律求解.解答题16、一个正数x的两个不同的平方根分别是4a﹣1和4﹣a,求a和x的值.答案:a和x的值分别为﹣1,25分析:根据一个正数的两个平方根互为相反数,得到4a﹣1+(4﹣a)=0,求出a=﹣1,再根据x=(4a﹣1)2求出x即可.解:∵一个正数的两个平方根互为相反数,∴4a﹣1+(4﹣a)=0,解得a=﹣1,∴x=(4a﹣1)2=(﹣5)2=25.答:a和x的值分别为﹣1,25.小提示:此题考查了已知一个数的平方根求参数,正确掌握一个正数的两个平方根是一对相反数的性质是解题的关键.17、已知长方形的长为72cm,宽为18cm,求与这个长方形面积相等的正方形的边长.答案:36cm分析:首先求出长方形面积,进而得出正方形的边长.因为长方形的长为72 cm,宽为18 cm,所以这个长方形面积为:72×18=1296(cm2),所以与这个长方形面积相等的正方形的边长为:√1296=36(cm),答:正方形的边长为36 cm.小提示:此题主要考查了算术平方根的定义以及矩形、正方形面积求法,正确开平方是解题关键.18、现有一块长为7.5dm、宽为5dm的木板,能否在这块木板上截出两个面积是8dm2和18dm2的正方形木板?答案:能截出两个面积是8dm2和18dm2的正方形木板.分析:根据正方形的面积可以分别求得两个正方形的边长是2√2和3√2,显然只需比较两个正方形的边长的和与7.5的大小即可.∵两个面积是8dm2和18dm2的正方形木板的边长是2√2和3√2,√8+√18=2√2+3√2=5√2;∵√2<1.5,∴5√2<1.5×5=7.5;答:能够在这块木板上截出两个分别是8dm2和18dm2的正方形木板.小提示:此题考查了算术平方根和估算无理数的大小,能够正确求得每个正方形的边长,然后再进行比较是本题的关键。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一实数所有知识点总结和常考题知识点:一、实数的概念及分类1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数整数包括正整数、零、负整数。

正整数又叫自然数。

正整数、零、负整数、正分数、负分数统称为有理数。

2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

4. 实数与数轴上点的关系:每一个无理数都可以用数轴上的一个点表示出来,数轴上的点有些表示有理数,有些表示无理数,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。

三、平方根、算数平方根和立方根1、平方根(1)平方根的定义:如果一个数x 的平方等于a ,那么这个数x 就叫做a 的平方根.即:如果a x 2,那么x 叫做a 的平方根.(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。

(3)平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算(5)符号:正数a 的正的平方根可用a 表示,a 也是a 的算术平方根;正数a 的负的平方根可用-a 表示.(6)a x =2 <—> a x ±=a 是x 的平方 x 的平方是ax 是a 的平方根 a 的平方根是x2、算术平方根(1)算术平方根的定义: 一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为a ,读作“根号a”,a 叫做被开方数.规定:0的算术平方根是0.也就是,在等式a x =2 (x≥0)中,规定a x =。

(2)a 的结果有两种情况:当a 是完全平方数时,a 是一个有限数;当a 不是一个完全平方数时,a 是一个无限不循环小数。

(3)当被开方数扩大时,它的算术平方根也扩大;当被开方数缩小时与它的算术平方根也缩小。

(4)夹值法及估计一个(无理)数的大小(5)a x =2 (x≥0) <—> a x =a 是x 的平方 x 的平方是ax 是a 的算术平方根 a 的算术平方根是x(6)正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥0(7)平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。

3、立方根(1)立方根的定义:如果一个数x 的立方等于a ,这个数叫做a 的立方根(也叫做三次方根),即如果3x a =,那么x 叫做a 的立方根(2)一个数a的立方根,读作:“三次根号a”,其中a叫被开方数,3叫根指数,不能省略,若省略表示平方。

(3)一个正数有一个正的立方根;0有一个立方根,是它本身;一个负数有一个负的立方根;任何数都有唯一的立方根。

(4)利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反)0a=>。

(5)ax=3<—> 3ax=a是x的立方x的立方是ax是a的立方根a的立方根是x(6)33aa-=-,这说明三次根号内的负号可以移到根号外面。

四、科学记数法和近似数1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

2、科学记数法把一个数写做na10⨯±的形式,其中101<≤a,n是整数,这种记数法叫做科学记数法。

五、实数大小的比较1、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

(2)求差比较:设a、b是实数,,0baba>⇔>-,0baba=⇔=-baba<⇔<-0(3)求商比较法:设a、b是两正实数,;1;1;1babababababa<⇔<=⇔=>⇔>(4)绝对值比较法:设a、b是两负实数,则baba<⇔>。

(5)平方法:设a、b是两负实数,则baba<⇔>22。

六、实数的运算1、加法交换律 a b b a +=+2、加法结合律 )()(c b a c b a ++=++3、乘法交换律 ba ab =4、乘法结合律 )()(bc a c ab =5、乘法对加法的分配律 ac ab c b a +=+)(6、实数混合运算时,对于运算顺序有什么规定?实数混合运算时,将运算分为三级,加减为一级运算,乘除为二能为运算,乘方为三级运算。

同级运算时,从左到右依次进行;不是同级的混合运算,先算乘方,再算乘除,而后才算加减;运算中如有括号时,先做括号内的运算,按小括号、中括号、大括号的顺序进行。

7、有理数除法运算法则就什么?两有理数除法运算法则可用两种方式来表述:第一,除以一个不等于零的数,等于乘以这个数的倒数;第二,两数相除,同号得正,异号得负,并把绝对值相除。

零除以任何一个不为零的数,商都是零。

8、什么叫有理数的乘方?幂?底数?指数?相同因数相乘积的运算叫乘方,乘方的结果叫幂,相同因数的个数叫指数,这个因数叫底数。

记作: a n9、有理数乘方运算的法则是什么?负数的奇次幂是负数,负数的偶次幂是正数。

正数的任何次幂都是正数。

零的任何正整数幂都是零。

10、加括号和去括号时各项的符号的变化规律是什么?去(加)括号时如果括号外的因数是正数,去(加)括号后式子各项的符号与原括号内的式子相应各项的符号相同;括号外的因数是负数去(加)括号后式子各项的符号与原括号内式子相应各项的符号相反。

常考题:一.选择题(共13小题)1.9的平方根为( )A .3B .﹣3C .±3D .2.的算术平方根是( )A .2B .±2C .D .±3.下列各组数中,互为相反数的一组是( )A .﹣2与B .﹣2与C .﹣2与﹣D .|﹣2|与24.如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是( )A .a +b >0B .ab >0C .a ﹣b >0D .|a |﹣|b |>05.估算﹣2的值( )A .在1到2之间B .在2到3之间C .在3到4之间D .在4到5之间6.估计的值( )A .在3到4之间B .在4到5之间C .在5到6之间D .在6到7之间7.估计+3的值()A.在5和6之间B.在6和7之间C.在7和8之间D.在8和9之间8.一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间9.如图,在数轴上表示实数的点可能是()A.点P B.点Q C.点M D.点N10.数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C所表示的数是()A.﹣1 B.1﹣C.2﹣D.﹣211.下列说法不正确的是()A.1的平方根是±1 B.﹣1的立方根是﹣1C.是2的平方根D.﹣3是的平方根12.下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,,,无理数的个数有()A.1个 B.2个 C.3个 D.4个13.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c二.填空题(共13小题)14.的平方根是.15.﹣8的立方根是.16.的算术平方根是.17.﹣()2=.18.已知a、b为两个连续的整数,且,则a+b=.19.已知一个正数的平方根是3x﹣2和5x+6,则这个数是.20.若实数a、b满足|a+2|,则=.21.比较大小:﹣3﹣2.22.=.23.5﹣的小数部分是.24.比较大小:(填“>”“<”“=”).25.若x,y为实数,且,则(x+y)2010的值为.26.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.三.解答题(共14小题)27.计算:(﹣2)2+(﹣3)×2﹣.28.计算:(﹣2)2+|﹣1|﹣.29.求值:+()2+(﹣1)2015.30.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵,即,∴的整数部分为2,小数部分为.请解答:(1)如果的小数部分为a,的整数部分为b,求的值;(2)已知:,其中x是整数,且0<y<1,求x﹣y的相反数.31.已知:x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.32.已知,a、b互为倒数,c、d互为相反数,求的值.33.设2+的整数部分和小数部分分别是x、y,试求x、y的值与x﹣1的算术平方根.34.计算:(﹣2)2﹣(3﹣5)﹣+2×(﹣3)35.(1)有这样一个问题:与下列哪些数相乘,结果是有理数?A、;B、;C、;D、;E、0,问题的答案是(只需填字母):;(2)如果一个数与相乘的结果是有理数,则这个数的一般形式是什么(用代数式表示).36.求值:已知y=x2﹣5,且y的算术平方根是2,求x的值.37.画一条数轴,把﹣1,,2各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接.38.求x的值:(1)4x2=25;(2)(x﹣0.7)3=0.027.39.已知2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求12a+2b的立方根.40.已知M=是m+3的算术平方根,N=是n﹣2的立方根,试求M﹣N的值.初一实数所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共13小题)1.(2017•武汉模拟)9的平方根为()A.3 B.﹣3 C.±3 D.【分析】根据平方根的定义求解即可,注意一个正数的平方根有两个.【解答】解:9的平方根有:=±3.故选C.【点评】此题考查了平方根的知识,属于基础题,解答本题关键是掌握一个正数的平方根有两个,且互为相反数.2.(2015•日照)的算术平方根是()A.2 B.±2 C.D.±【分析】先求得的值,再继续求所求数的算术平方根即可.【解答】解:∵=2,而2的算术平方根是,∴的算术平方根是,故选:C.【点评】此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.3.(2002•杭州)下列各组数中,互为相反数的一组是()A.﹣2与B.﹣2与C.﹣2与﹣D.|﹣2|与2【分析】根据相反数的概念、性质及根式的性质化简即可判定选择项.【解答】解:A、=2,﹣2与2互为相反数,故选项正确;B、=﹣2,﹣2与﹣2不互为相反数,故选项错误;C、﹣2与不互为相反数,故选项错误;D、|﹣2|=2,2与2不互为相反数,故选项错误.故选A.【点评】本题考查的是相反数的概念,只有符号不同的两个数叫互为相反数.如果两数互为相反数,它们的和为0.4.(2009•江苏)如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.a+b>0 B.ab>0 C.a﹣b>0 D.|a|﹣|b|>0【分析】本题要先观察a,b在数轴上的位置,得b<﹣1<0<a<1,然后对四个选项逐一分析.【解答】解:A、∵b<﹣1<0<a<1,∴|b|>|a|,∴a+b<0,故选项A错误;B、∵b<﹣1<0<a<1,∴ab<0,故选项B错误;C、∵b<﹣1<0<a<1,∴a﹣b>0,故选项C正确;D、∵b<﹣1<0<a<1,∴|a|﹣|b|<0,故选项D错误.故选:C.【点评】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.5.(2015•新疆)估算﹣2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间【分析】先估计的整数部分,然后即可判断﹣2的近似值.【解答】解:∵5<<6,∴3<﹣2<4.故选C.【点评】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.6.(2014•营口)估计的值()A.在3到4之间B.在4到5之间C.在5到6之间D.在6到7之间【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围.【解答】解:∵5<<6,∴在5到6之间.故选:C.【点评】此题主要考查了估算无理数的那就,“夹逼法”是估算的一般方法,也是常用方法.7.(2006•沈阳)估计+3的值()A.在5和6之间B.在6和7之间C.在7和8之间D.在8和9之间【分析】先估计的整数部分,然后即可判断+3的近似值.【解答】解:∵42=16,52=25,所以,所以+3在7到8之间.故选:C.【点评】此题主要考查了估算无理数的大小的能力,理解无理数性质,估算其数值.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.8.(2012•义乌市)一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间【分析】先根据正方形的面积是15计算出其边长,在估算出该数的大小即可.【解答】解:∵一个正方形的面积是15,∴该正方形的边长为,∵9<15<16,∴3<<4.故选B.【点评】本题考查的是估算无理数的大小及正方形的性质,根据题意估算出的取值范围是解答此题的关键.9.(2008•遵义)如图,在数轴上表示实数的点可能是()A.点P B.点Q C.点M D.点N【分析】先对进行估算,再确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【解答】解:∵≈3.87,∴3<<4,∴对应的点是M.故选C【点评】本题考查实数与数轴上的点的对应关系,应先看这个无理数在哪两个有理数之间,进而求解.10.(2006•西岗区)数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C所表示的数是()A.﹣1 B.1﹣C.2﹣D.﹣2【分析】首先根据数轴上表示1,的对应点分别为A,B可以求出线段AB的长度,然后由AB=AC利用两点间的距离公式便可解答.【解答】解:∵数轴上表示1,的对应点分别为A,B,∴AB=﹣1,∵点B关于点A的对称点为C,∴AC=AB.∴点C的坐标为:1﹣(﹣1)=2﹣.故选:C.【点评】本题考查的知识点为:求数轴上两点间的距离就让右边的数减去左边的数.知道两点间的距离,求较小的数,就用较大的数减去两点间的距离.11.(2012秋•安新县期末)下列说法不正确的是()A.1的平方根是±1 B.﹣1的立方根是﹣1C.是2的平方根D.﹣3是的平方根【分析】A、根据平方根的定义即可判定;B、根据立方根的定义即可判定;C、根据平方根的定义即可判定;D、根据平方根的定义即可判定.【解答】解:A、1的平方根是±1,故A选项正确;B、﹣1的立方根是﹣1,故B选项正确;C、是2的平方根,故C选项正确;D、=3,3的平方根是±,故D选项错误.故选:D.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.(2013•安顺)下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,,,无理数的个数有()A.1个 B.2个 C.3个 D.4个【分析】无限不循环小数为无理数,由此可得出无理数的个数.【解答】解:由定义可知无理数有:0.131131113…,﹣π,共两个.故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.13.(2015•枣庄)实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c【分析】先根据各点在数轴上的位置比较出其大小,再对各选项进行分析即可.【解答】解:∵由图可知,a<b<0<c,∴A、ac<bc,故A选项错误;B、∵a<b,∴a﹣b<0,∴|a﹣b|=b﹣a,故B选项错误;C、∵a<b<0,∴﹣a>﹣b,故C选项错误;D、∵﹣a>﹣b,c>0,∴﹣a﹣c>﹣b﹣c,故D选项正确.故选:D.【点评】本题考查的是实数与数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.二.填空题(共13小题)14.(2015•庆阳)的平方根是±2.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±2【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.15.(2015•茂名)﹣8的立方根是﹣2.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.【点评】本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.16.(2009•峨边县模拟)的算术平方根是3.【分析】首先根据算术平方根的定义求出的值,然后即可求出其算术平方根.【解答】解:∵=9,又∵(±3)2=9,∴9的平方根是±3,∴9的算术平方根是3.即的算术平方根是3.故答案为:3.【点评】此题主要考查了算术平方根的定义,解题的关键是知道,实际上这个题是求9的算术平方根是3.注意这里的双重概念.17.(2009•江苏)﹣()2=﹣3.【分析】直接根据平方的定义求解即可.【解答】解:∵()2=3,∴﹣()2=﹣3.【点评】本题考查了数的平方运算,是基本的计算能力.18.(2012•枣庄)已知a、b为两个连续的整数,且,则a+b=11.【分析】根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.【解答】解:∵,a、b为两个连续的整数,∴<<,∴a=5,b=6,∴a+b=11.故答案为:11.【点评】此题主要考查了无理数的大小,得出比较无理数的方法是解决问题的关键.19.(2009•凉山州)已知一个正数的平方根是3x﹣2和5x+6,则这个数是.【分析】由于一个非负数的平方根有2个,它们互为相反数.依此列出方程求解即可.【解答】解:根据题意可知:3x﹣2+5x+6=0,解得x=﹣,所以3x﹣2=﹣,5x+6=,∴()2=故答案为:.【点评】本题主要考查了平方根的逆运算,平时注意训练逆向思维.20.(2013•东莞市)若实数a、b满足|a+2|,则=1.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则原式==1.故答案是:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.21.(2014•射阳县三模)比较大小:﹣3<﹣2.【分析】先把两数平方,再根据实数比较大小的方法即可比较大小.【解答】解:∵(3)2=18,(2)2=12,∴﹣3<﹣2.故答案为:<.【点评】此题主要考查了实数的大小的比较,实数大小比较法则:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.22.(2013•南平)=3.【分析】33=27,根据立方根的定义即可求出结果.【解答】解:∵33=27,∴;故答案为:3.【点评】本题考查了立方根的定义;掌握开立方和立方互为逆运算是解题的关键.23.(2014•辽阳)5﹣的小数部分是2﹣.【分析】根据1<<2,不等式的性质3,可得﹣的取值范围,再根据不等式的性质1,可得答案.【解答】解:由1<<2,得﹣2<﹣<﹣1.不等式的两边都加5,得5﹣2<5﹣<5﹣1,即3<5﹣<4,5﹣的小数部分是(5﹣)﹣3=2﹣,故答案为:2﹣.【点评】本题考查了估算无理数的大小,利用了不等式的性质:不等式的两边都乘以或除以同一个负数,不等号的方向改变,不等式的两边都加同一个数,不等号的方向不变.24.(2014•岳麓区校级自主招生)比较大小:>(填“>”“<”“=”).【分析】因为分母相同所以比较分子的大小即可,可以估算的整数部分,然后根据整数部分即可解决问题.【解答】解:∵﹣1>1,∴>.故填空结果为:>.【点评】此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法、比较n次方的方法等.当分母相同时比较分子的大小即可.25.(2010•成都)若x,y为实数,且,则(x+y)2010的值为1.【分析】先根据非负数的性质列出方程组,求出x、y的值,然后代入(x+y)2010中求解即可.【解答】解:由题意,得:x+2=0,y﹣3=0,解得x=﹣2,y=3;因此(x+y)2010=1.故答案为:1.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.26.(2010•河南)若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.【分析】首先利用估算的方法分别得到﹣,,前后的整数(即它们分别在那两个整数之间),从而可判断出被覆盖的数.【解答】解:∵﹣2<﹣<﹣1,2<<3,3<<4,且墨迹覆盖的范围是1﹣3,∴能被墨迹覆盖的数是.【点评】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.三.解答题(共14小题)27.(2014•钦州)计算:(﹣2)2+(﹣3)×2﹣.【分析】原式第一项利用乘方的意义化简,第二项利用异号两数相乘的法则计算,最后一项利用平方根定义化简,计算即可得到结果.【解答】解:原式=4﹣6﹣3=﹣5.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.28.(2015•乌鲁木齐)计算:(﹣2)2+|﹣1|﹣.【分析】原式第一项利用乘方的意义化简,第二项利用绝对值的代数意义化简,最后一项利用立方根定义计算即可得到结果.【解答】解:原式=4+﹣1﹣3=.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.29.(2015•大庆)求值:+()2+(﹣1)2015.【分析】原式第一项利用算术平方根定义计算,第二项利用乘方的意义化简,第三项利用乘方的意义化简,计算即可得到结果.【解答】解:原式=+﹣1=﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.30.(2014春•嘉祥县期末)阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵,即,∴的整数部分为2,小数部分为.请解答:(1)如果的小数部分为a,的整数部分为b,求的值;(2)已知:,其中x是整数,且0<y<1,求x﹣y的相反数.【分析】(1)先估计、的近似值,然后判断的小数部分a,的整数部分b,最后将a、b的值代入并求值;(2)先估计的近似值,然后判断的整数部分并求得x、y的值,最后求x ﹣y的相反数.【解答】解:∵4<5<9,∴2<<3,∴的小数部分a=﹣2 ①∵9<13<16,∴3<<4,∴的整数部分为b=3 ②把①②代入,得﹣2+3=1,即.(2)∵1<3<9,∴1<<3,∴的整数部分是1、小数部分是,∴10+=10+1+(=11+(),又∵,∴11+()=x+y,又∵x是整数,且0<y<1,∴x=11,y=;∴x﹣y=11﹣()=12﹣,∴x﹣y的相反数y﹣x=﹣(x﹣y)=.【点评】此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.31.(2015秋•偃师市期中)已知:x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.【分析】根据平方根、立方根的定义和已知条件可知x﹣2=4,2x+y+7=27,列方程解出x、y,最后代入代数式求解即可.【解答】解:∵x﹣2的平方根是±2,∴x﹣2=4,∴x=6,∵2x+y+7的立方根是3∴2x+y+7=27把x的值代入解得:y=8,∴x2+y2的算术平方根为10.【点评】本题主要考查了平方根、立方根的概念,难易程度适中.32.(2013秋•滨湖区校级期末)已知,a、b互为倒数,c、d互为相反数,求的值.【分析】由a、b互为倒数可得ab=1,由c、d互为相反数可得c+d=0,然后将以上两个代数式整体代入所求代数式求值即可.【解答】解:依题意得,ab=1,c+d=0;∴==0.【点评】本题主要考查实数的运算,解题关键是运用整体代入法求代数式的值,涉及到倒数、相反数的定义,要求学生灵活掌握各知识点.33.(2015秋•吉安校级期末)设2+的整数部分和小数部分分别是x、y,试求x、y的值与x﹣1的算术平方根.【分析】先找到介于哪两个整数之间,从而找到整数部分,小数部分让原数减去整数部分,然后代入求值即可.【解答】解:因为4<6<9,所以2<<3,即的整数部分是2,所以2+的整数部分是4,小数部分是2+﹣4=﹣2,即x=4,y=﹣2,所以==.【点评】此题主要考查了无理数的估算能力,解题关键是估算出整数部分后,然后即可得到小数部分.34.(2009•江西)计算:(﹣2)2﹣(3﹣5)﹣+2×(﹣3)【分析】根据实数的运算顺序计算即可求解.注意实数混合运算的顺序:先算乘方、开方,再算乘除,最后算加减,遇有括号,先算括号内的.【解答】解:原式=4﹣(﹣2)﹣2﹣6=﹣2.【点评】此题主要考查了实数的运算,解题要注意实数的混合运算顺序.35.(2009•佛山)(1)有这样一个问题:与下列哪些数相乘,结果是有理数?A、;B、;C、;D、;E、0,问题的答案是(只需填字母):A、D、E;(2)如果一个数与相乘的结果是有理数,则这个数的一般形式是什么(用代数式表示).【分析】(1)根据实数的乘法法则和有理数、无理数的定义即可求解;(2)根据(1)的结果可以得到规律.【解答】解:(1)A、D、E;(2)设这个数为x,则x•=a(a为有理数),所以x=(a为有理数).【点评】此题主要考查了实数的运算,也考查了有理数、无理数的定义,文字阅读比较多,解题时要注意审题,正确理解题意.36.(2010秋•西盟县期末)求值:已知y=x2﹣5,且y的算术平方根是2,求x 的值.【分析】由于被开方数应等于它算术平方根的平方.那么由此可求得y,然后即可求出x.【解答】解:∵y的算术平方根是2,∴∴y=4;。

相关文档
最新文档