人教版2020年秋九年级数学上册第一次月考卷附答案
24-25九年级数学第一次月考卷(考试版A4)【人教版九年级上册第二十一章~第二十二章】(贵州专用)
2024-2025学年九年级数学上学期第一次月考卷(贵州专用)(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版九年级上册第二十一章~第二十二章。
5.难度系数:0.8。
第一部分(选择题共36分)一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若关于x的方程(m﹣2)x2+mx﹣1=0是一元二次方程,则m的取值范围是( )A.m≠2B.m=2C.m≥2D.m≠02.将抛物线y=x2+2x﹣1向右平移3个单位后得到新抛物线的顶点坐标为( )A.(﹣4,﹣1)B.(﹣4)C.(2,1)D.(2,﹣2)3.若一元二次方程ax2+bx+c=0(a≠0)的一个根是x=1,则a+b+c的值是( )A.0B.﹣1C.1D.不能确定4.延时课上,4个同学以接龙的方式解一元二次方程,每人负责完成一个步骤,如图所示,其中有一位同学所负责的步骤是错误的,则这位同学是( )A.小张B.小王C.小李D.小赵5.关于x的一元二次方程x2+bx﹣8=0的根的情况,下列判断正确的是( )A.只有一个实数根B.没有实数根C.有两个相等的实数根D.有两个不相等的实数根6.已知a,b,c为实数,且b+c=5﹣4a+3a2,c﹣b=1﹣2a+a2,则a,b,c之间的大小关系是( )A.a<b≤c B.b<a≤c C.b≤c<a D.c<a≤b7.新能源汽车销量的快速增长,促进了汽车企业持续的研发投入和技术创新.某上市公司今年1月份一品牌的新能源车单台的生产成本是13万元,由于技术改进和产能增长,生产成本逐月下降,3月份的生产成本为12.8万元.假设该公司今年一季度每个月生产成本的下降率都相同,设每个月生产成本的下降率为x,则根据题意所列方程正确的是( )A.13(1﹣x)2=12.8B.13(1﹣x2)=12.8C.12.8(1﹣x2)=13D.13(1+x)2=12.88.一次函数y=ax+b与二次函数y=ax2+bx在同一坐标系中的图象大致为( )A.B.C.D.9.已知抛物线y=ax2﹣2ax+b(a<0)的图象上三个点的坐标分别为A(3,y1),,C,则y1,y2,y3的大小关系为( )A.y3<y1<y2B.y2<y1<y3C.y1<y3<y2D.y1<y2<y310.点A(a,b1),B(a+2,b2)在函数y=﹣x2+2x+3的图象上,当a≤x≤a+2时,函数的最大值为4,最小值为b1,则a的取值范围是( )A.0≤a≤2B.﹣1≤a≤2C.﹣1≤a≤1D.﹣1≤a≤011.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc>0;②b<a+c;③4a+2b+c >0;④b2﹣4ac>0;其中正确的结论有( )A.1个B.2个C.3个D.4个12.如图所示,在菱形ABCD中,AB=6,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD上滑动,且E、F不与B.C、D重合.当点E、F在BC、CD上滑动时,△CEF的面积最大值是( )A.4B.C.3D.第二部分(非选择题共114分)二、填空题:本题共4小题,每小题4分,共16分。
2022-2023学年人教版九年级数学上册第一次阶段性(21-1-23-3)综合测试题(附答案)
2022-2023学年人教版九年级数学上册第一次阶段性(21.1-23.3)综合测试题(附答案)一、选择题:(本大题共10个小题,每小题3分,共30分)1.下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下列函数表达式中,是二次函数的是()A.y=B.y=x+2 C.y=x2+1 D.y=(x+3)2﹣x23.若α和β是关于x的方程x2+bx﹣1=0的两根,且αβ﹣2α﹣2β=﹣11,则b的值是()A.﹣3B.3C.﹣5D.54.“玉兔”在月球表面行走的动力主要来自于太阳光能,要使接收太阳光能最多,就要使光线垂直照射在太阳光板上.某一时刻太阳光的照射角度如图所示,要使得此时接收的光能最多,那么太阳光板绕支点A逆时针旋转的最小角度为()A.44°B.46°C.36°D.54°5.已知点P(m2,n),点Q(4m+5,n),下列关于点P与点Q的位置关系说法正确的是()A.点P在点Q的右边B.点P在点Q的左边C.点P与点Q重合D.点P与点Q的位置关系无法确定6.在同一直角坐标系中,函数y=ax+a和函数y=ax2+x+2(a是常数,且a≠0)的图象可能是()A.B.C.D.7.抛物线的函数表达式为y=(x﹣2)2﹣9,则下列结论中,正确的序号为()①当x=2时,y取得最小值﹣9;②若点(3,y1),(4,y2)在其图象上,则y2>y1;③将其函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y=(x﹣5)2﹣5;④函数图象与x轴有两个交点,且两交点的距离为6.A.②③④B.①②④C.①③D.①②③④8.有一人患了流感,经过两轮传染后,共有121人患了流感,每轮传染中平均每人传染了x个人,下列结论错误的是()A.1轮后有(x+1)个人患了流感B.第2轮又增加(x+1)•x个人患流感C.依题意可得方程(x+1)2=121D.不考虑其他因素经过三轮一共会有1210人感染9.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4cm,CD⊥AB,垂足为点D,动点M从点A出发沿AB方向以cm/s的速度匀速运动到点B,同时动点N从点C 出发沿射线DC方向以1cm/s的速度匀速运动.当点M停止运动时,点N也随之停止,连接MN.设运动时间为ts,△MND的面积为Scm2,则下列图象能大致反映S与t之间函数关系的是()A.B.C.D.10.如图,将抛物线y=x2﹣2x﹣3在x轴下方部分沿x轴翻折,其余部分保持不变,得到图形C1,当直线y=x+b(b<1)与图形C1恰有两个公共点时,则b的取值范围是()A.﹣3<b<1B.﹣3≤b<1C.﹣1≤b<1D.﹣1<b<1二、填空题:(本大题共6个小题,每题3分,共18分)11.已知二次函数y=﹣x2+ax﹣a+1的图象顶点在x轴上,则a=.12.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=63°,∠E=71°,且AD⊥BC,则∠BAC的度数为.13.直线y=x+2关于原点中心对称的直线的方程为.14.如果一元二次方程x2+3x﹣2=0的两个根为x1,x2,则x13+3x12﹣x1x2+2x2=.15.抛物线的部分图象如图所示,则当y<0时,x的取值范围是.16.如图,抛物线y=x2﹣ax与函数y=x的图象在第一象限交点的横坐标为4,点A(t,y1)在抛物线上,点B(t+1,y2)在正比例函数的图象上,当0≤t≤3时,y2﹣y1的最大值为.三、解答题(本大题共9个小题,共72分)17.解方程:2x2﹣2=3x.18.如图,在等腰直角△ACF中,AC=AF,△ABE是由△ACF绕点A按顺时针方向旋转得到的,连接EF、BC.(1)求证:EF=BC;(2)当旋转角为40°时,求∠BCF的度数.19.已知关于x的方程x2﹣(k+1)x+k2+1=0(1)k取什么值时,方程有两个实数根;(2)如果方程的两个实数根x1、x2满足|x1|=x2,求k的值.20.如图,在△ABC中,AC=BC,∠ACB=90°,D是线段AC延长线上一点,连接BD,过点A作AE⊥BD于E.(1)求证:∠CAE=∠CBD.(2)将射线AE绕点A顺时针旋转45°后,所得的射线与线段BD的延长线交于点F,连接CE.①依题意补全图形;②用等式表示线段EF,CE,BE之间的数量关系,并证明.21.如图,抛物线y=x2+bx+c经过点A(﹣1,0),点B(2,﹣3),与y轴交于点C,抛物线的顶点为D.(1)求抛物线的解析式;(2)抛物线上是否存在点P,使△PBC的面积是△BCD面积的4倍,若存在,请直接写出点P的坐标;若不存在,请说明理由.22.成都市将在2022年举办第31届世界大学生夏季运动会,成都大运会吉祥物是一只名叫“蓉宝”的大熊猫.(1)据市场调研发现,某工厂今年四月份共生产200个“蓉宝”,该工厂为增大生产量,平均每月生产量增加20%,则该工厂在今年第二季度(4、5、6月)共生产个“蓉宝”;(2)已知某商店以30元的单价购入一批吉祥物“蓉宝”准备进行销售,据市场分析,若每个“蓉宝”售价为60元,则每天可售出40个.商店经过调研发现,如果每个“蓉宝”降价1元,那么平均每天可多售出8个,若商店想平均每天盈利2000元,销售单价应定为多少元?23.跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K为飞行距离计分的参照点,落地点超过K点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA为66m,基准点K到起跳台的水平距离为75m,高度为hm(h为定值).设运动员从起跳点A起跳后的高度y(m)与水平距离x(m)之间的函数关系为y=ax2+bx+c(a≠0).(1)c的值为;(2)①若运动员落地点恰好到达K点,且此时a=﹣,b=,求基准点K的高度h;②若a=﹣时,运动员落地点要超过K点,则b的取值范围为;(3)若运动员飞行的水平距离为25m时,恰好达到最大高度76m,试判断他的落地点能否超过K点,并说明理由.24.在平面直角坐标系xOy中,抛物线G:y=ax2+ax+c(a、c为常数且a<c)过点A(1,0),顶点为B.(1)用含a的式子表示c;(2)判断点B所在象限,并说明理由;(3)若直线l:y=2x﹣b经过点A,且与抛物线G交于另一点C,当△ABC的面积为时,求y=ax2+ax+c在﹣1<x<1时的取值范围.25.如图,在平面直角坐标系中,抛物线C1:y=﹣x2+2x+3分别交x轴,y轴于点A,B和点C,抛物线C2与抛物线C1关于直线y=对称,两条抛物线的交点为E,F(点E在点F的左侧).(1)求抛物线C2的表达式;(2)将抛物线C2沿x轴正方向平移,使点E与点C重合,求平移的距离;(3)在(2)的条件下:规定抛物线C1和抛物线C2在直线EF下方的图象所组成的图象为C3,点F(x1,y1)和Q(x2,y2)在函数C3上(点P在点Q的右侧),在(2)的条件下,若y1=y2,且x1﹣x2=1,求点P坐标.参考答案一、选择题:(本大题共10个小题,每小题3分,共30分)1.解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、不是轴对称图形,是中心对称图形,故此选项不合题意;D、既是轴对称图形,也是中心对称图形,故此选项符合题意.故选:D.2.解:∵y=中y与x成反比例函数关系,∴选项A不符合题意;∵y=x+2中y与x成一次函数关系,∴选项B不符合题意;∵y=x2+1中y与x成二次函数关系,∴选项C符合题意;∵y=(x+3)2﹣x2=6x+9,是一次函数定义,∴选项D不符合题意;故选:C.3.解:∵α和β是关于x的方程x2+bx﹣1=0的两根,∴α+β=﹣b,αβ=﹣1,∴αβ﹣2α﹣2β=αβ﹣2(α+β)=﹣1+2b=﹣11.∴b=﹣5.故选:C.4.解:一束光线与太阳光板的夹角为134°,要使光线垂直照射在太阳光板上,则太阳光板绕支点A逆时针旋转的最小角度为134°﹣90°=44°,故选:A.5.解:∵m2﹣(4m+5)=(m﹣2)2﹣9,∴无法确定点P与点Q的位置关系,故选:D.6.解:当a>0时,一次函数过一二三象限,抛物线开口向上,对称轴x=<0,故B、C不符合题意,当a<0时,一次函数过二三四象限,抛物线开口向下,对称轴x=>0,故A不符合题意.故选:D.7.解:∵y=(x﹣2)2﹣9,∴抛物线对称轴为直线x=2,抛物线开口向上,顶点坐标为(2,﹣9),∴x=2时,y取最小值﹣9,①正确.∵x>2时,y随x增大而增大,∴y2>y1,②正确.将函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y=(x+1)2﹣5,③错误.令(x﹣2)2﹣9=0,解得x1=﹣1,x2=5,∴5﹣(﹣1)=6,④正确.故选:B.8.解:患流感的人把病毒传染给别人,自己仍然患病,包括在总数中.设每轮传染中平均一个人传染了x个人,则第一轮传染了x个人,第一轮后共有(x+1)人患流感,故A正确,不符合题意;第二轮作为传染源的是(x+1)人,则增加传染x(x+1)人,故B正确,不符合题意;根据题意列方程得到(x+1)2=121,故C正确,不符合题意;解(x+1)2=121得x1=10,x2=﹣12.经检验,x=10符合题意.答:平均一个人传染了10个人.经过三轮传染后患上流感的人数为:121+10×121=1331(人),故D错误,符合题意.故选:D.9.解:∵∠ACB=90°,∠A=30°,AB=4,∴∠B=60°,BC=AB=2,AC=BC=6,∵CD⊥AB,∴CD=AC=3,AD=CD=3,BD=BC=,∴当M在AD上时,0≤t≤3,MD=AD﹣AM=3﹣t,DN=DC+CN=3+t,∴S=MD•DN=(3﹣t)(3+t)=﹣t2+,当M在BD上时,3<t≤4,MD=AM﹣AD=t﹣3,∴S=MD•DN=(t﹣3)(3+t)=t2﹣,故选:B.10.解:如图,当y=0时,x2﹣2x﹣3=0,即:x1=3,x2=﹣1,∴A(﹣1,0),B(3,0),当直线y=x+b经过点B时,与新图象有一个公共点,把B(3,0)代入y=x+b得:3+b=0,∴b=﹣3,当直线y=x+b经过点A时,与新图象有三个公共点,把A(﹣1,0)代入y=x+b中得:﹣1+b=0,∴b=1,∴当直线y=x+b(b<1)与此图象有两个公共点时,b的取值范围是﹣3<b<1.故选:A.二、填空题:(本大题共6个小题,每题3分,共18分)11.解:根据题意,得=0,将a=﹣1,b=a,c=﹣a+1代入,得=0,所以解得:a=2.故答案为:2.12.解:∵△ABC绕点A逆时针旋转一定角度,得到△ADE,∴∠ACB=∠E=71°,∠BAD=∠CAE=63°,∵AD⊥BC,∴∠CAD=90°﹣∠ACB=90°﹣71°=19°,∴∠BAC=∠BAD+∠CAD=63°+19°=82°.故答案为:82°.13.解:线y=x+2关于原点中心对称的直线的方程为y=x﹣2.故答案为:y=x﹣2.14.解:∵一元二次方程x2+3x﹣2=0的两个根为x1,x2,∴x12+3x1﹣2=0即x12+3x1=2,x1+x2=﹣3,x1x2=﹣2,∴x13+3x12﹣x1x2+2x2=x1(x12+3x1)+2x2﹣x1x2=2(x1+x2)﹣x1x2=2×(﹣3)+2=﹣4.故答案为:﹣4.15.解:根据函数图象可知:抛物线的对称轴为x=1,抛物线与x轴一个交点的坐标为(﹣1,0),由抛物线的对称性可知:抛物线与x轴的另一个交点坐标为(3,0).∵y<0,∴x>3或x<﹣1.故答案为:x>3或x<﹣1.16.解:当x=4时,,∴它们的交点为(4,2),把(4,2)代入,得8﹣4a=2,∴,∴,∴,,∴y2﹣y1====,∵0⩽t⩽3,∴t=2时,y2﹣y1有最大值,最大值为,故答案为:.三、解答题(本大题共9个小题,共72分)17.解:方程整理得:2x2﹣3x﹣2=0,分解因式得:(2x+1)(x﹣2)=0,所以2x+1=0或x﹣2=0,解得:x1=﹣,x2=2.18.(1)证明:∵△ABE是由△ACF绕点A按顺时针方向旋转得到的,∴△ABE≌△ACF,∴AE=AF,AB=AC;∠BAE=∠CAF,∴∠BAC=∠EAF,∵△ACF是等腰直角三角形,∴AE=AF=AB=AC,∴△ACB≌△AFE(SAS),∴EF=BC;(2)解:∵旋转角为40°,∴∠CAB=40°,∵AB=AC,∴∠ACB=70°,∵△ACF是等腰直角三角形,∴∠ACF=45°,∴∠BCF=∠ACB﹣∠ACF=25°.19.解:(1)Δ=[﹣(k+1)]2﹣4(k2+1)=2k﹣3,∵△≥0,即2k﹣3≥0,∴k≥,∴当k≥时,方程有两个实数根;(2)由|x1|=x2,①当x1≥0时,得x1=x2,∴方程有两个相等实数根,∴Δ=0,即2k﹣3=0,k=.又当k=时,有x1=x2=>0∴k=符合条件;②当x1<0时,得x2=﹣x1,∴x1+x2=0由根与系数关系得k+1=0,∴k=﹣1,由(1)知,与k≥矛盾,∴k=﹣1(舍去),综上可得,k=.20.解:(1)∵∠ACB=90°,∴∠BCD=90°,∴∠CBD+∠BDC=90°,∵AE⊥BD,∴∠AED=90°,∴∠CAE+∠BDC=90°,∴∠CAE=∠CBD;(2)①由题意补全图形如图所示:②过点C作CG⊥CE交AE于G,∴∠BCG+∠BCE=90°,∵∠ACB=90°,∴∠ACG+∠BCG=90°,∴∠ACG=∠BCE,由(1)知,∠CAE=∠CBD,在△ACG和△BCE中,,∴△ACG≌△BCE(ASA),∴AG=BE,CG=CE,在Rt△ECG中,CG=CE,∴EG=CE,∴AE=AG+EG=BE+CE,由旋转知,∠EAF=45°,∵∠AEF=90°,∴∠F=90°﹣∠EAF=45°=∠EAF,∴EF=AE,∴EF=BE+CE.21.解:(1)∵抛物线y=x2+bx+c经过点A(﹣1,0),点B(2,﹣3),∴,解得b=﹣2,c=﹣3,∴抛物线的解析式:y=x2﹣2x﹣3;(2)存在,理由如下:∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴D点坐标为(1,﹣4),令x=0,则y=x2﹣2x﹣3=﹣3,∴C点坐标为(0,﹣3),又∵B点坐标为(2,﹣3),∴BC∥x轴,∴S△BCD=×2×1=1,设抛物线上的点P坐标为(m,m2﹣2m﹣3),∴S△PBC=×2×|m2﹣2m﹣3﹣(﹣3)|=|m2﹣2m|,当|m2﹣2m|=4×1时,解得m=1±,当m=1+时,m2﹣2m﹣3=1,当m=1﹣时,m2﹣2m﹣3=1,综上,P点坐标为(1+,1)或(1﹣,1).22.解:(1)200+200×(1+20%)+200×(1+20%)2,=200+200×1.2+200×1.44=200+240+288=728(个).故答案为:728.(2)设每个“蓉宝”降价x元,则每个的销售利润为(60﹣x﹣30)=(30﹣x)元,每天可售出(40+8x)个,依题意得:(30﹣x)(40+8x)=2000,整理得:x2﹣25x+100=0,解得:x1=5,x2=20,当x=5时,60﹣x=60﹣5=55;当x=20时,60﹣x=60﹣20=40.答:销售单价应定为40元或55元.23.解:(1)∵起跳台的高度OA为66m,∴A(0,66),把A(0,66)代入y=ax2+bx+c得:c=66,故答案为:66;(2)①∵a=﹣,b=,∴y=﹣x2+x+66,∵基准点K到起跳台的水平距离为75m,∴y=﹣×752+×75+66=21,∴基准点K的高度h为21m;②∵a=﹣,∴y=﹣x2+bx+66,∵运动员落地点要超过K点,∴x=75时,y>21,即﹣×752+75b+66>21,解得b>,故答案为:b>;(3)他的落地点能超过K点,理由如下:∵运动员飞行的水平距离为25m时,恰好达到最大高度76m,∴抛物线的顶点为(25,76),设抛物线解析式为y=a(x﹣25)2+76,把(0,66)代入得:66=a(0﹣25)2+76,解得a=﹣,∴抛物线解析式为y=﹣(x﹣25)2+76,当x=75时,y=﹣×(75﹣25)2+76=36,∵36>21,∴他的落地点能超过K点.24.解:(1)y=ax2+ax+c过点A(1,0),∴a+a+c=0,∴c=﹣2a;(2)y=ax2+ax﹣2a=a(x+)2﹣a的顶点B为(﹣,﹣a),∵c=﹣2a,a<c,∴a<﹣2a,∴a<0,∴点B在第二象限;(3)y=2x﹣b经过点A(1,0),∴b=2,由得:,即C(,),过点B作BD∥y轴,交l:y=2x﹣2于点D,则D(﹣,﹣3),∴S△ABC=BD•|x A﹣x C|=(﹣a+3)(1﹣+2)=(﹣a+3)(3﹣),∴(﹣a+3)(3﹣)=,解得a=﹣,∴y=﹣x2﹣x+顶点B(﹣,),∴﹣1<x<1时,0<y≤.25.解:(1)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线C1的顶点坐标为:(1,4),∵点(1,4)关于直线y=对称点为(1,﹣1),抛物线C2与抛物线C1关于y=对称,∴抛物线C2的顶点为(1,﹣1),且抛物线C2与抛物线C1的形状、大小相同,开口方向相反,∴抛物线C2的表达式为y=(x﹣1)2﹣1=x2﹣2x;(2)在y=﹣x2+2x+3中,令x=0得y=3,∴C(0,3),设抛物线C2向右平移m个单位后E与C(0,3)重合,即y=(x﹣m)2﹣2(x﹣m)过(0,3),∴3=m2+2m,解得m=1或m=﹣3(舍去),∴平移的距离是1;(3)由(2)知,抛物线C2向右平移1个单位,可得y=(x﹣1)2﹣2(x﹣1)=x2﹣4x+3,∵x1﹣x2=1,∴x2=x1﹣1,∴Q(x1﹣1,y2),当Q在C左侧图象上时,如图:∵Q在抛物线C1上,P在抛物线C2上,∴y2=﹣(x1﹣1)2+2(x1﹣1)+3,y1=x12﹣4x1+3,∵y1=y2,∴﹣(x1﹣1)2+2(x1﹣1)+3=x12﹣4x1+3,解得x1=2+(舍去)或x1=2﹣,∴P1(2﹣,);当Q在C、B之间的图象上时,分两种情况:①P在抛物线C1上,如图:∵y1=﹣x12+2x1+3,y2=(x1﹣1)2﹣4(x1﹣1)+3,且y1=y2,∴﹣x12+2x1+3=(x1﹣1)2﹣4(x1﹣1)+3,即得x1=2+或x1=2﹣(舍去),∴P2(2+,﹣);②P在C、B之间的图象上,如图:∵y1=x12﹣4x1+3,y2=(x1﹣1)2﹣4(x1﹣1)+3,且y1=y2,∴x12﹣4x1+3=(x1﹣1)2﹣4(x1﹣1)+3,解得x1=,∴P3((,﹣).综上所述,点P坐标为:(2﹣,)或(2+,﹣)或(,﹣).。
2020—2021年人教版九年级数学上册第一次月考考试卷及答案【最新】
2020—2021年人教版九年级数学上册第一次月考考试卷及答案【最新】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .12020 2.若单项式a m ﹣1b 2与212n a b 的和仍是单项式,则n m 的值是( ) A .3 B .6 C .8 D .93.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )A .9人B .10人C .11人D .12人4.下列方程组中,是二元一次方程组的是( )A .4237x y x y +=⎧⎨+=⎩B .2311546a b b c -=⎧⎨-=⎩C .292x y x ⎧=⎨=⎩D .284x y x y +=⎧⎨-=⎩5.若α,β是方程2x 2x 20180+-=的两个实数根,则2α3αβ++的值为( )A .2015B .2016-C .2016D .20196.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是( )A .8B .9C .10D .127.如图,在▱ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于 ( )A .1cmB .2cmC .3cmD .4cm8.如图,在ABC ∆中,2AC =,4BC =,D 为BC 边上的一点,且CAD B ∠=∠.若ADC ∆的面积为a ,则ABD ∆的面积为( )A .2aB .52aC .3aD .72a 9.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是( )A .B .C .D .10.已知0ab <,一次函数y ax b =-与反比例函数a y x=在同一直角坐标系中的图象可能( ) A . B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.因式分解:a 3-a =_____________.3.若代数式1x x -有意义,则x 的取值范围为__________.4.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D 在y轴上,则点C的坐标是__________.5.如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C 处测得A,B两点的俯角分别为45和30.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为______米(结果保留根号).6.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_____________.三、解答题(本大题共6小题,共72分)1.(138(23)-13cos30°(2)解方程:32xx--+1=32x-2.若二次函数y=ax2+bx+c的图象的顶点是(2,1)且经过点(1,﹣2),求此二次函数解析式.3.如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+3.(1)求抛物线的表达式;(2)在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;(3)在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.4.如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE,(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.5.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.8 32 29.6 28 …(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?6.东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、A5、C6、A7、B8、C9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、-22、a (a -1)(a + 1)3、0x ≥且1x ≠. 4、(﹣5,4).5、)120016、5三、解答题(本大题共6小题,共72分)1、(1)2;(2)x =12、231211y x x =-+-3、(1)y=﹣x 2+2x+3;(2)P (97 ,127);(3)当Q 的坐标为(0,0)或(9,0)时,以A 、C 、Q 为顶点的三角形与△BCD 相似.4、解:(1)证明:∵点O 为AB 的中点,连接DO 并延长到点E ,使OE=OD , ∴四边形AEBD 是平行四边形.∵AB=AC ,AD 是△ABC 的角平分线,∴AD ⊥BC .∴∠ADB=90°.∴平行四边形AEBD 是矩形.(2)当∠BAC=90°时,矩形AEBD 是正方形.理由如下:∵∠BAC=90°,AB=AC,AD是△ABC的角平分线,∴AD=BD=CD.∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.5、(1)当天该水果的销售量为33千克;(2)如果某天销售这种水果获利150元,该天水果的售价为25元.6、(1)第一批悠悠球每套的进价是25元;(2)每套悠悠球的售价至少是35元.。
2024-2025学年初中九年级上学期数学(第21-22章)第一次月考卷及答案(人教版)
2.对于二次函数()21y x =−−的图象,下列说法不正确的是( ) A .开口向下B .对称轴是直线xx =1C .当xx =1时,y 有最大值0D .当xx <1时,y 随x 的增大而减小A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .只有一个实数根4.将抛物线2y x 向左平移2个单位长度,再向上平移3个单位长度,所得抛物线的表达式为( ) A .()223y x =++ B .()223y x =+− C .()223y x =−+D .()223y x =−−5.设1x 、2x 是一元二次方程2320x x −−=的两个实数根,则2211223x x x x ++的值为( )A .4B .5C .6D .76.保障国家粮食安全是一个永恒的课题,任何时候这根弦都不能松.某农科实验基地,大力开展种子实验,让农民能得到高产、易发芽的种子.该农科实验基地两年前有81种农作物种子,经过两年不断的努力培育新品种,现在有100种农作物种子.若这两年培育新品种数量的平均年增长率为x ,则根据题意列出的符合题意的方程是( )A .()1001281x −=B .()1001281x +=C .()2811100x −=D .()2811100x +=7.函数y mx m =+和函数222y mx x =−++(m 是常数,且0m ≠)的图象可能是( )A .B .C .D .8.已知抛物线24(0)y ax ax c a =−++≠经过()()()1231,,2,,3,A y B y C y −三点,则下列说法正确的是( )9.某水利工程公司开挖的池塘,截面呈抛物线形,蓄水之后在图中建立平面直角坐标系,并标出相关数据1²525y x −10.对称轴为直线1x =的抛物线2y ax bx c ++(a ,b ,c 为常数,且0a ≠)如图所示,小明同学得出了以下结论:①0abc <,②24b ac >,③420a b c ++>,④30a c +>,⑤()a b m am b +≤+(m 为任意实数),⑥当1x <−时,y 随x 的增大而增大.其中结论正确的个数为( )A .3B .4C .5D .6二、填空题(本大题共5小题,每小题3分,共15分)11.若关于x 的方程()22140x m x m −+++=两根互为负倒数,则m 的值为 . 12.如图,在宽为20m ,长为30m 的矩形地面上修建两条宽均为m x 的小路(阴影),余下部分作为草地,草地面积为2551m ,根据图中数据,求得小路宽x 的值为 .13.如图为一座拱桥的部分示意图,中间桥洞的边界线是抛物线形,涝季的最高水位线在AB 处,此时桥洞中水面宽度AB 仅为4米,桥洞顶部点O 到水面AB 的距离仅为1米;旱季最低水位线在CD 处,此时桥洞中水面宽度CD 达12米,那么最低水位CD 与最高水位AB 之间的距离为 米.14.已知抛物线()20y ax bx c a ++≠的图象如图所示,抛物线的顶点坐标为()1,n −,且与x 轴的一个交点的横坐标在3−和2−之间,则下列结论正确的是 .①0abc <;②0a b c ++<;③30a c +>;④关于x 的方程210ax bx c n ++−+=有实根.15.抛物线,与x 轴的正半轴交于点A ,顶点C 的坐标为()2,4−.若点P 为抛物线上一动点,其横坐标为t ,作PQ x ⊥轴,且点Q 位于一次函数4y x =−的图像上.当4t <时,PQ 的长度随t 的增大而增大,则t 的取值范围是 .三、解答题(本大题共8小题,共75分)16.(7分)(1)以配方法解方程:22420x x +−=;17.(7分)关于x 的一元二次方程2610x x k −+−=.18.(8分)已知抛物线23(0)y ax bx a ++<.(1)求证:在平面直角坐标系中,该抛物线与x 轴总有两个公共点;(2)若点1(,)A m y ,2(8,)B y ,1(6,)C m y +都在抛物线上,且213y y <<,求m 的取值范围.19.(9分)如图,在长为10米,宽为8米的矩形土地上修建同样宽度的两条道路(互相垂直),其余部分种植花卉,并使种植花卉的总面积为63平方米.(1)求道路的宽度;(2)园林部门要种植A 、B 两种花卉共400株,其中A 种花卉每株10元,B 种花卉每株8元,园林部门采购花卉的费用不超过3680元,则最多购进A 种花卉多少株?20.(10分)春节期间,全国各影院上映多部影片,某影院每天运营成本为2000元,该影院每天售出的电影票数量y (单位:张)与售价x (单位:元/张)之间满足一次函数关系(3080x ≤≤,且x 是整数),部分数据如下表所示:电影票售价x (元/张)4050售出电影票数量y (张) 164 124(1)请求出y 与x 之间的函数关系式;(2)设该影院每天的利润(利润=票房收入−运营成本)为w (单位:元),求w 与x 之间的函数关系式; (3)该影院将电影票售价x 定为多少时,每天获利最大?最大利润是多少?21.(10分)如图,抛物线2y x mx =−+与直线y x b =+交于点A 和点B ,直线AB 与y 轴交于点()0,2C −.22.(12分)如图,抛物线22y x x c =−++经过坐标原点O 和点A ,点A 在x 轴上.(1)求此抛物线的解析式,并求出顶点B 的坐标; (2)连接OB ,AB ,求OAB S ;(3)若点C 在抛物线上,且8OAC S =△,求点C 的坐标.23.(12分)如图甲,直线3y x =−+与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线2y x bx c =++与x 轴的另一个交点为A ,顶点为P .(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M ,使以C 、P 、M 为顶点的三角形为等腰三角形?若存在,请求出所符合条件的点M 的坐标;若不存在,请说明理由;(3)当03x <<时,在抛物线上求一点E ,使CBE △的面积有最大值(图乙、丙供画图探究),并求出最大面积及E 点的坐标.2.对于二次函数()21y x =−−的图象,下列说法不正确的是( ) A .开口向下B .对称轴是直线xx =1C .当xx =1时,y 有最大值0D .当xx <1时,y 随x 的增大而减小【答案】D【详解】解:∵二次函数()21y x =−−, ∴该函数图象开口向下,故选项A 正确,不符合题意; 对称轴是直线1x =,故选项B 正确,不符合题意; 顶点坐标为10(,),故选项C 正确,不符合题意; 当1x <时,y 随x 的增大而增大,故选项D 错误,符合题意;故选:D .3.关于x 的一元二次方程22310x kx +−=根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .只有一个实数根【答案】A【详解】解:在关于x 的一元二次方程22310x kx +−=中,2a =,3b k =,1c =−,22Δ498b ac k =−=+,因为20k >,所以22Δ4980b ac k =−=+>,所以关于x 的一元二次方程22310x kx +−=根的情况是有两个不相等的实数根. 故选A .4.将抛物线2y x =向左平移2个单位长度,再向上平移3个单位长度,所得抛物线的表达式为( )5.设1x 、2x 是一元二次方程2320x x −−=的两个实数根,则2211223x x x x ++的值为( )A .4B .5C .6D .7【答案】D【详解】解:由题意得,123x x +=,122x x =−,所以2211223x x x x ++()21212x x x x =++()232=+−92=−7=,故选:D .6.保障国家粮食安全是一个永恒的课题,任何时候这根弦都不能松.某农科实验基地,大力开展种子实验,让农民能得到高产、易发芽的种子.该农科实验基地两年前有81种农作物种子,经过两年不断的努力培育新品种,现在有100种农作物种子.若这两年培育新品种数量的平均年增长率为x ,则根据题意列出的符合题意的方程是( )A .()1001281x −=B .()1001281x +=C .()2811100x −= D .()2811100x +=【答案】D【详解】解:∵两年前有81种种子,经过两年不断的努力,现在有100种种子, 281(1)100x ∴+=,故选:D .7.函数y mx m =+和函数222y mx x =−++(m 是常数,且0m ≠)的图象可能是( ). .. .故选:D .8.已知抛物线24(0)y ax ax c a =−++≠经过()()()1231,,2,,3,A y B y C y −三点,则下列说法正确的是( )9.某水利工程公司开挖的池塘,截面呈抛物线形,蓄水之后在图中建立平面直角坐标系,并标出相关数据(单位:m ),某学习小组探究之后得出如下结论,其中正确的为( )A .水面宽度为30m10.对称轴为直线1x =的抛物线2y ax bx c ++(a ,b ,c 为常数,且0a ≠)如图所示,小明同学得出了以下结论:①0abc <,②24b ac >,③420a b c ++>,④30a c +>,⑤()a b m am b +≤+(m 为任意实数),⑥当1x <−时,y 随x 的增大而增大.其中结论正确的个数为( )C .5 0<, 11.若关于x 的方程()22140x m x m −+++=两根互为负倒数,则m 的值为 .草地面积为2551m ,根据图中数据,求得小路宽x 的值为 .【答案】1【详解】解:根据题意得:()()3020551x x −−=, 化简得:250490x x −+=, 解得:11x =,249x =,∵当249x =时,20290x −=−<, ∴249x =舍去,13.如图为一座拱桥的部分示意图,中间桥洞的边界线是抛物线形,涝季的最高水位线在AB处,此时桥洞中水面宽度AB仅为4米,桥洞顶部点O到水面AB的距离仅为1米;旱季最低水位线在CD处,此时桥洞中水面宽度CD达12米,那么最低水位CD与最高水位AB之间的距离为米.为坐标原点建立平面直角坐标系,2,14.已知抛物线()20y ax bx c a ++≠的图象如图所示,抛物线的顶点坐标为()1,n −,且与x 轴的一个交点的横坐标在3−和2−之间,则下列结论正确的是 .15.抛物线,与x 轴的正半轴交于点A ,顶点C 的坐标为()2,4−.若点P 为抛物线上一动点,其横坐标为t ,作PQ x ⊥轴,且点Q 位于一次函数4y x =−的图像上.当4t <时,PQ 的长度随t 的增大而增大,则t三、解答题(本大题共8小题,共75分)16.(7分)(1)以配方法解方程:2+−=;x x2420(3)123,5x x ==; (6分)17.(7分)关于x 的一元二次方程2610x x k −+−=.(1)如果方程有实数根,求k 的取值范围;(2)如果1x ,2x 是这个方程的两个根,且221212324x x x x ++=,求k 的值. 【详解】(1)解:∵方程有实数根,∴()()26410k ∆=−−−≥,解得:10k ≤;(2分)(2)∵1x ,2x 是这个方程的两个根,∴126x x +=,121x x k =−,(4分) ∵221212324x x x x ++=,∴()2121224x x x x ++=,(6分)26124k +−=,解得:11k =−.(7分)18.(8分)已知抛物线23(0)y ax bx a ++<.(1)求证:在平面直角坐标系中,该抛物线与x 轴总有两个公共点;(2)若点1(,)A m y ,2(8,)B y ,1(6,)C m y +都在抛物线上,且213y y <<,求m 的取值范围.由图可得,8383m m m m > +−>+−,8m ∴>.(8分)作抛物线草图如图4:由图可得,688(3)6(3)8(3)3m m m m m m +<−−>+−+−+<+ ,12m ∴<<.综上所述,m 的取值范围是8m >或12m <<.(8分)19.(9分)如图,在长为10米,宽为8米的矩形土地上修建同样宽度的两条道路(互相垂直),其余部分(1)求道路的宽度;(2)园林部门要种植A 、B 两种花卉共400株,其中A 种花卉每株10元,B 种花卉每株8元,园林部门采购花卉的费用不超过3680元,则最多购进A 种花卉多少株? 【详解】(1)解:设道路的宽度为x 米,根据题意得:()()10863x x −−=.(2分) 解得:11x =,217x =,∵178>,故舍去.(4分)1x ∴=, 答:道路的宽度为1米.(5分)(2)解:设购进A 种花卉m 株,则购进B 种花卉()400m −株, 根据题意得:()1084003680m m +−≤.(7分) 解得:240m ≤.∴最多购进A 种花卉240株.(9分)20.(10分)春节期间,全国各影院上映多部影片,某影院每天运营成本为2000元,该影院每天售出的电影票数量y (单位:张)与售价x (单位:元/张)之间满足一次函数关系(3080x ≤≤,且x 是整数),部分数据如下表所示:电影票售价x (元/张)4050售出电影票数量y (张) 164 124(1)请求出y 与x 之间的函数关系式;(2)设该影院每天的利润(利润=票房收入−运营成本)为w (单位:元),求w 与x 之间的函数关系式; (3)该影院将电影票售价x 定为多少时,每天获利最大?最大利润是多少?答:该影院将电影票售价x 定为40元或41元时,每天获利最大,最大利润是4560元.(10分) 21.(10分)如图,抛物线2y x mx =−+与直线y x b =+交于点A 和点B ,直线AB 与y 轴交于点()0,2C −.(1)求抛物线的解析式及顶点坐标.(2)求点A 的坐标,并结合图象直接写出关于x 不等式2x mx x b −+≤+的解集.(3)若关于x 的方程2x mx n −+=在12x −≤≤的范围内只有一个实数根或两个相等的实数根,直接写出n 的取值范围.【详解】(1)解:将点()0,2C −代入y x b =+,得2b =−,∴2y x =−.当0y =时,20x −=, 解得2x =,∴点()2,0B .将点()2,0B 代入2y x mx =−+,得2220m −+=,解得2m =,∴抛物线的解析式为22y x x =−+.(2分) ∵222(1)1y x x x =−+=−−+, ∴顶点坐标为()1,1.(4分)(2)解:∵直线2y x =−与抛物线22y x x =−+的交点在第三象限, ∴222−+=−x x x ,解得2x =(不符合题意,舍去)或=1x −, ∴=1x −, ∴=3y −,∴点A 的坐标为()1,3−−.(6分)观察图象,得不等式2x mx x b −+≤+的解集为1x ≤−或2x ≥.(7分)(3)解:方程2x mx n −+=在12x −≤≤的范围内只有一个实数根,可以理解为抛物线22y x x =−+与直线y n =在12x −≤≤的范围内只有一个交点,如图,当30n −≤<时,直线y n =与抛物线22y x x =−+始终有一个交点; 当直线y n =经过抛物线顶点时,直线y n =与抛物线22y x x =−+有一个交点, ∴n 的取值范围为30n −≤<或1n =.(10分)22.(12分)如图,抛物线22y x x c =−++经过坐标原点O 和点A ,点A 在x 轴上.(1)求此抛物线的解析式,并求出顶点B 的坐标;(2)连接OB ,AB ,求OAB S ;(3)若点C 在抛物线上,且8OAC S =△,求点C 的坐标.综上所述,C 点坐标为()2,8−−或()4,8−.(12分)23.(12分)如图甲,直线3y x =−+与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线2y x bx c =++与x 轴的另一个交点为A ,顶点为P .(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M ,使以C 、P 、M 为顶点的三角形为等腰三角形?若存在,请求出所符合条件的点M 的坐标;若不存在,请说明理由;(3)当03x <<时,在抛物线上求一点E ,使CBE △的面积有最大值(图乙、丙供画图探究),并求出最大面积及E 点的坐标.。
2020—2021年人教版九年级数学上册第一次月考试卷及答案【精品】
2020—2021年人教版九年级数学上册第一次月考试卷及答案【精品】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.估计)A.5和6之间B.6和7之间C.7和8之间D.8和9之间2.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.5152x yx y=+⎧⎪⎨=-⎪⎩B.5{1+52x yx y=+=C.5{2-5x yx y=+=D.-5{2+5x yx y==3.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A.2xx y+-B.22yxC.3223yxD.222()yx y-4.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A.9天B.11天C.13天D.22天5.若关于x的不等式mx- n>0的解集是15x<,则关于x的不等式()m n x n m>-+的解集是()A.23x>-B.23x<-C.23x<D.23x>6.定义运算:21m n mn mn=--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根7.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b ≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤8.下列图形具有稳定性的是( )A .B .C .D .9.如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( )A .122°B .151°C .116°D .97°10.如图,抛物线2y ax bx c =++的对称轴是1x =.下列结论:①0abc >;②240b ac ->;③80a c +<;④520a b c ++>,正确的有( )A .4个B .3个C .2个D .1个二、填空题(本大题共6小题,每小题3分,共18分)1.4的算术平方根是__________.2.分解因式:2ab a -=_______.3.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________.4.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E =__________度.5.如图,已知正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF=45°,将DAE 绕点D 逆时针旋转90°,得到DCM .若AE=1,则FM 的长为__________.6.如图,小军、小珠之间的距离为2.7 m ,他们在同一盏路灯下的影长分别为1.8 m ,1.5 m ,已知小军、小珠的身高分别为1.8 m ,1.5 m ,则路灯的高为__________m.三、解答题(本大题共6小题,共72分)1.(1)计算:|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°(2)解分式方程:244x -+1=12x -2.在平面直角坐标系xOy 中,抛物线21y ax bx a与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含a 的式子表示);(2)求抛物线的对称轴;(3)已知点11(,)2P a,(2,2)Q .若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围.3.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值;(3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.4.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.5.老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.6.小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x(元),日销量为y(件),日销售利润为w(元).(1)求y与x的函数关系式.(2)要使日销售利润为720元,销售单价应定为多少元?(3)求日销售利润w(元)与销售单价x(元)的函数关系式,当x为何值时,日销售利润最大,并求出最大利润.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、D4、B5、B6、A7、A8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、a (b +1)(b ﹣1).3、k<6且k ≠34、805、2.56、3三、解答题(本大题共6小题,共72分)1、(1)1;(2)分式方程的解为x=﹣1.2、(1)点B 的坐标为1(2,)a -;(2)对称轴为直线1x =;(3)当12a ≤-时,抛物线与线段PQ 恰有一个公共点.3、(1)二次函数的解析式为233642y x x =--+;(2)当23x =-时,ADE ∆的面积取得最大值503;(3)P 点的坐标为()1,1-,(1,-,(1,2--. 4、(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.5、(1)条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率为512;(3)36、(1)10280y x =-+;(2)10元;(3)x 为12时,日销售利润最大,最大利润960元。
九年级上册第一次月考数学质量检测试题(人教版,含答案)
A. 1995
B. 2008
C. 2009
D. 2021
二、填空题:本大题共 8 小题,每小题 3 分,共 24 分.
11. 一元二次方程 x2 - 5 = 0 的根是 __________.
12. 方程(x - 1)(x + 5)= 3 转化为一元二次方程的一般形式是 ____________. 13. 一元二次方程 3(x - 5)2 + 2 = 0 的顶点坐标是 ____________. 14. 一元二次方程(k - 1)x2 + 6x + k2 - k = 0 有一个根为 0,则 k 的值是 ____________.
正确吗?为什么? 28. (12 分)如图①,已知抛物线 y = - x2 - 2x + 3 与 x 轴交于 A、B 两点(点 A 在点 B 的左侧),与
y 轴交于点 C,其顶点为 D,对称轴是直线 l,且 l 与 x 轴交于点 H.
l Dy C
A
HO B x
lD y
F
C
E A G HO B x
图①
A. k > - 2 且 k≠1
B. k < 2
C. k > 2
D. k < 2 且 k≠1
4. 一元二次方程 x2 - 4x + 5 = 0 的根的情况为
A. 有两个不等的实数根
B. 有两个相等的实数根
C. 只有一个实数根
D. 没有实数根
5. 用配方法解方程 2x2 - x - 1 = 0 时,变形结果正确的是
y
(1)求这个二次函数的解析式;
(2)观察图象,当 - 2 < x ≤ 1 时,求 y 的取值范围. 25. (8 分)已知关于 x 的方程 x2 -(m + 2)x +(2m - 1)= 0.
人教版数学九年级上册第一次月考试卷(有答案)
2019-2019 学年度人教版数学九年级上册第一次月考试卷考试范围: 21---22.1;考试时间: 120 分钟;总分: 150 分题号一二三总分得分第Ⅰ 卷(选择题)评卷人得分一、选择题 (每题 4 分,总计 40 分。
请将独一正确答案的字母填写在表格内 )题号12345678910选项1.以下对于 x 的方程中,属于一元二次方程的是()A.x﹣1=0 B.x2+3x﹣5=0 C.x3+x=3D.ax2+bx+c=02.对于 x 的一元二次方程2x2﹣3x+5=0 的二次项系数和一次项系数分别是()A.2,﹣ 3 B.2,3 C.﹣ 3,2 D.3,53.以下对于抛物线y=3(x﹣1)2+1 的说法,正确的选项是()A.张口向下B.对称轴是 x=﹣1C.极点坐标是(﹣ 1,1)D.有最小值 y=14.用配方法将二次函数y=x2﹣8x﹣9 化为 y=a(x﹣h)2+k 的形式为()A.y=(x﹣4)2+7 B.y=(x﹣ 4)2﹣25C.y=(x+4)2+7 D.y=(x+4)2﹣255.对于 x 的一元二次方程x2﹣( k+3)x+k=0 的根的状况是()A.有两不相等实数根B.有两相等实数根C.无实数根 D .不可以确立6.方程 x2﹣x﹣1=0 的根是()A.x1=,x2=B.x1=,x2=C.x1=,x2=D.没有实数根7.已知 a、b 为实数,则 a2+ab+b2﹣a﹣2b 的最小值为()A.﹣ 2 B.﹣ 1 C.1 D.28.某公司 2019 年初获收益 300 万元,到 2020 年初计划收益达到507万元.设这两年的年收益均匀增加率为x.应列方程是()A.300(1+x)=507 B.300(1+x)2=507C.300(1+x)+300(1+x)2=507 D.300+300(1+x) +300(1+x)2=5079.将抛物线 y=(x+2)2先向左平移 2 个单位,再向下平移 3 个单位,那么所得抛物线的函数关系式是()A.y=﹣2(x+2)2+3 B.y=x2﹣3 C.y=x2+3 D.( x+4)2﹣3 10.如图,函数 y=ax2﹣2x+1 和 y=ax﹣a(a 是常数,且 a≠0)在同一平面直角坐标系的图象可能是()A.B.C.D.第Ⅱ 卷(非选择题)评卷人得分二、填空题 (每空 5 分,总计 20 分)11.方程 x2=2x 的根为.12.若( a2+b2)( a2+b2﹣1)=12,则 a2+b2为.13.如图,将一块正方形空地划出部分地区进行绿化,原空地一边减少了 2m,另一边减少了3m,节余一块面积为20m2的矩形空地,则原正方形空地的边长为m.14.如图,抛物线 y=ax2+bx+c(a≠0)的对称轴为直线 x=﹣1,以下结论中:①a bc<0;② 9a﹣3b+c<0;③ b2﹣4ac>0;④ a>b,正确的结论是(只填序号)评卷人得分三.解答题(共8 小题 90 分)15.( 10 分)解以下方程:(1)x2+10x+25=0(2)x2 x 1=0.16(.10 分)于数 m、n,我定一种运算“※” :m※n=mn+m+n.(1)化:( a+b)※( a b);(2)解对于 x 的方程: x※( 1※x)= 1.17.( 10 分)已知对于x 的一元二次方程x2( 2m 2)x+ (m22m)=0.(1)求:方程有两个不相等的数根.(2)假如方程的两数根 x1,x2,且 x12+x 22=10,求 m 的.18.( 10 分)已知二次函数y=ax2+bx+c 的象上部分点的坐(x,y)足下表:x⋯1012⋯y⋯4228⋯(1)求个二次函数的分析式;(2)用配方法求出个二次函数象的点坐和称.19.( 12 分)中秋前夜,某公司的李会受公司委派去商场若干盒美心月,商场出了种月不一样数目的价钱惠,如,折 ABCD 表示种月每盒的价钱y(元)与盒数 x(盒)之的函数关系.( 1 )当种月盒数不超10 盒,一盒月的价钱元;(2)求出当 10<x<25 , y 与 x 之的函数关系式;(3)当时李会计支付了 3600 元购置这类月饼,那么李会计买了多少盒这类月饼?20.(12 分)如图,在长方形 ABCD 中,AB=10 厘米, BC=6 厘米,点 P 沿 AB 边从点 A 开始向点 B 以 3 厘米 /秒的速度挪动;点 Q 沿 DA 边从点 D 开始向点 A 以 2 厘米 /秒的速度挪动,假如 P、Q 同时出发,用 t(秒)表示挪动的时间,那么:(1)如图 1,用含 t 的代数式表示 AP=,AQ=,并求出当 t 为什么值时线段 AP=AQ .(2)如图 2,在不考虑点 P 的状况下,连结 QB,问:当 t 为什么值时△QAB 的面积等于长方形面积的.21.( 12 分)已知二次函数的图象如下图.(1)求这个二次函数的表达式;(2)将该二次函数图象向上平移个单位长度后恰巧过点(﹣2,0);(3)察看图象,当﹣ 2<x<1 时, y 的取值范围为.22.(14 分)如图,抛物线y=﹣x2+bx+c 经过 A(﹣ 1,0),B(3,0)两点,交 y 轴于点 C,点 D 为抛物线的极点,连结BD,点 H 为BD 的中点.请解答以下问题:(1)求抛物线的分析式及极点 D 的坐标;(2)在 y 轴上找一点 P,使 PD+PH 的值最小,则 PD+PH 的最小值为.(注:抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣,极点坐标为(﹣,)参照答案与试题分析一.选择题(共10 小题)1.解: A、该方程的未知数的最高次数是1,不是一元二次方程,故本选项错误;B、该方程切合一元二次方程的定义,故本选项正确;C、该方程中未知数的最高次数是3,不是一元二次方程,故本选项错误;D、当 a=0 时,该方程不是一元二次方程,故本选项错误;应选: B.2.解:对于 x 的一元二次方程2x2﹣3x+5=0 的二次项系数和一次项系数分别是 2,﹣ 3.应选: A.3.解:抛物线y=3(x﹣1)2+1 中a=3>0,张口向上;对称轴为直线x=1;极点坐标为( 1,1);当 x=1 时获得最小值 y=1;应选: D.4.解: y=x2﹣8x﹣9=x2﹣8x+16﹣25=(x﹣4)2﹣25.应选: B.5.解:△ =(k+3)2﹣4×k=k2+2k+9=(k+1)2+8,∵( k+1)2≥0,∴( k+1)2+8>0,即△> 0,因此方程有两个不相等的实数根.应选: A.6.解:这里 a=1, b=﹣1,c=﹣1,b2﹣4ac=(﹣ 1)2﹣4×1×(﹣ 1)=5,x=,x1=,x2=,应选: B.7.解: a2+ab+b2﹣a﹣2b=a2+(b﹣1)a+b2﹣2b=a2+(b﹣1)a++b2﹣2b﹣=(a+)2+(b﹣1)2﹣1≥﹣1,当 a+=0,b﹣ 1=0,即 a=0,b=1 时,上式不等式中等号建立,则所求式子的最小值为﹣1.应选: B.8.解:设这两年的年收益均匀增加率为x,依据题意得: 300(1+x)2=507.应选: B.9.解:抛物线 y=(x+2)2的极点坐标为(﹣ 2,0),把点(﹣ 2,0)向左平移 2 个单位,再向下平移 3 个单位所得对应点的坐标为(﹣ 4,﹣3),因此平移后所得抛物线的函数关系式是 y=(x+4)2﹣3.应选: D.10.解:A、由一次函数 y=ax﹣a 的图象可得: a<0,此时二次函数 y=ax2﹣2x+1 的图象应当张口向下,应选项错误;B、由一次函数 y=ax﹣a 的图象可得:a>0,此时二次函数 y=ax2﹣2x+1的图象应当张口向上,对称轴x=﹣>0,应选项正确;C、由一次函数 y=ax﹣a 的图象可得:a>0,此时二次函数 y=ax2﹣2x+1的图象应当张口向上,对称轴x=﹣>0,和x轴的正半轴订交,故选项错误;D、由一次函数y=ax﹣a 的图象可得: a>0,此时二次函数y=ax2﹣2x+1 的图象应当张口向上,应选项错误.应选: B.二.填空题(共 4 小题)11.解: x2=2x,x2﹣2x=0,x(x﹣2)=0,x=0,或 x﹣2=0,x1=0,x2=2,故答案为: x1=0,x2=2.12.解:设 a2+b2=x,则原方程可化为: x(x﹣1)=12,整理得 x2﹣x﹣12=0,x1=﹣3,x2=4,a2+b2=﹣3 无心义,∴a2+b2=4,故答案为: 4.13.解:设原正方形的边长为xm,依题意有(x﹣3)( x﹣2)=20,解得: x1=7,x2=﹣2(不合题意,舍去)即:原正方形的边长7m.故答案是: 7.14.解:∵抛物线张口向下∴a<0,∵对称轴为 x=﹣1∴=﹣1∴b=2a<0,∵抛物线与 y 轴交点在 y 轴正半轴∴c>0∴a bc>0 故①错误∵由图象得 x=﹣3 时 y< 0∴9a﹣3b+c<0 故②正确,∵图象与 x 轴有两个交点∴△=b2﹣4ac>0 故③正确∵a﹣b=a﹣2a=﹣a>0∴a>b 故④正确故答案为②③④三.解答题(共 8 小题)15.解:( 1)配方,得(x+5)2=0,开方,得x+5=0,解得 x=﹣5,x1=x2=﹣5;(2)移项,得x2﹣x=1,配方,得x2﹣x+ = ,(x﹣)2=,开方,得x﹣=±,x1=,x2=.16.解:( 1)∵ m※n=mn+m+n,∴( a+b)※( a﹣b)=(a+b)( a﹣b)+a+b+a﹣b=a2﹣b2+2a;(2)∵ x※( 1※x)=﹣1,∴x2+2x+1=0,∴x1=x2=﹣1.17.解:( 1)由题意可知:△ =(2m﹣2)2﹣4(m2﹣2m)=4>0,∴方程有两个不相等的实数根.(2)∵ x1+x 2=2m﹣2,x1x2=m2﹣2m,∴ + =(x1+x2)2﹣2x1x2=10,∴( 2m﹣2)2﹣2(m2﹣2m)=10,∴m2﹣2m﹣3=0,∴m=﹣1 或 m=3第11页/共14页18.解:( 1)由题意,得,解这个方程组,得a=1,b=3,c=﹣2,因此,这个二次函数的分析式是y=x2+3x﹣2;(2)y=x 2+3x﹣2=(x+ )2﹣,极点坐标为(﹣,﹣),对称轴是直线 x=﹣.19.解:( 1)∵当 0≤x≤10 时, y=240.故答案为: 240.(2)当 10<x<25 时,设 y=kx+b (此中 k、b 为常数且 k≠0),将 B(10,240)、 C(25,150)代入 y=kx+b 中,得:,解得:,∴当 10<x<25 时, y=﹣6x+300.(3)∵3600÷240=15(盒),3600÷150=24(盒),∴收费标准在 BC 段.依据题意得:(﹣ 6x+300)x=3600,解得: x1=20,x2=30(不合题意,舍去).答:李会计买了20 盒这类月饼.20.解:( 1)由题意得: AP=3t,DQ=2t ,则 AQ=6 ﹣2t,当 AP=AQ 时, 3t=6﹣2t,t=1.2;故答案为: 3t,6﹣2t;(2)∵,得: t=121.解:( 1)设 y=a(x+h)2﹣k.∵图象经过极点(﹣ 1,﹣ 4)和点( 1,0),∴y=a(x+1)2﹣4.将( 1,0)代入可得 a=1,∴y=(x+1)2﹣4.(2)设向上平移 n 个单位,得y=(x+1)2﹣4+n,将(﹣ 2,0)代入,得1﹣4+n=0,解得 n=3,故答案为: 3.(3)由图象,得当﹣ 2<x<1 时,图象位于x 轴的下方,图象的极点坐标是(﹣1,﹣4),∴﹣ 4≤y<0,故答案为:﹣ 4≤y<0.22.解:( 1)∵抛物线 y=﹣ x2+bx+c 过点 A(﹣ 1,0), B(3,0)解得∴所求函数的分析式为:y=﹣x2+2x+3y=﹣x2+2x+3=﹣( x﹣1)2+4∴极点 D(1,4)(2)∵ B(3,0), D(1,4)∴中点 H 的坐标为( 2,2)其对于 y 轴的对称点 H′坐标为(﹣ 2,2)连结 H′D与 y 轴交于点 P,则 PD+PH 最小且最小值为:=∴答案:。
人教版九年级数学上册单元测试题全套及答案
九年级数学上册半月测试题姓名:分数:时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.一元二次方程x2-8x-1=0配方后为( )A.(x-4)2=17 B.(x+4)2=15C.(x+4)2=17 D.(x-4)2=17或(x+4)2=172.若二次函数y=x2+bx+5配方后为y=(x-2)2+k,则b,k的值分别为( )A.0,5 B.0,1 C.-4,5 D.-4,13.已知关于x的一元二次方程x2+mx-8=0的一个实数根为2,则另一实数根及m的值分别为( ) A.4,-2 B.-4,-2 C.4,2 D.-4,24.已知x为实数,且满足(x2+3x)2+2(x2+3x)-3=0,那么x2+3x的值为( )A.1 B.-3或1 C.3 D.-1或35.抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是( )A.4 B.6 C.8 D.106.已知关于x的一元二次方程x2+2x-(m-2)=0有实数根,则m的取值范围是( )A.m>1 B.m<1 C.m≥1 D.m≤17.如图,抛物线y=x2+bx+c与x轴交于点A,B,与y轴交于点C,∠OBC=45°,则下列各式成立的是( )A.b-c-1=0 B.b+c+1=0C.b-c+1=0 D.b+c-1=08.如图,在▱ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x-3=0的根,则▱ABCD的周长为( )A.4+2 2 B.12+6 2C.2+2 2 D.2+2或12+6 29.当x取何值时,代数式x2-6x-3的值最小?( )A.0 B.-3 C.3 D.-910.如图,将边长为12 cm的正方形ABCD沿其对角线AC剪开,再把ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为32 cm2,则它移动的距离AA′等于()A .4 cmB .8 cmC .6 cmD .4 cm 或8 cm二、填空题(每小题3分,共24分)11.把方程3x(x -1)=(x +2)(x -2)+9化成ax 2+bx +c =0的形式为__ __.12.方程2x -4=0的解也是关于x 的方程x 2+mx +2=0的一个解,则m 的值为__ __.13.若抛物线y =ax 2+bx +c 的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为__ __. 14.下面是某同学在一次测试中解答的填空题:①若x 2=a 2,则x =a ;②方程2x(x -2)=x -2的解为x =0;③已知x 1,x 2是方程2x 2+3x -4=0的两根,则x 1+x 2=32,x 1x 2=-2.其中错误的答案序号是____.15.已知一元二次方程x 2+3x -4=0的两根为x 1,x 2,则x 12+x 1x 2+x 22=___.16.如图,一个矩形铁皮的长是宽的2倍,四角各截去一个正方形,制成高是5 cm ,容积是500 cm 3的无盖长方体容器,那么这块铁皮的长为__ __,宽为__ __.17.三角形的每条边的长都是方程x 2-6x +8=0的根,则三角形的周长是__ _.18.若二次函数y =2x 2-4x -1的图象与x 轴交于A(x 1,0),B(x 2,0)两点,则1x 1+1x 2的值为__ __.三、解答题(共66分)19.(8分)用适当的方法解下列方程:(1)(x +1)(x -2)=x +1; (2)2x 2-4x =4 2.20.(8分) 已知:如图,二次函数y=ax2+bx+c 的图象与x 轴交于A 、B 两点,其中A 点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M 为 它的顶点.(1)求抛物线的解析式; (2)求△MCB 的面积S △MCB.21.(6分)随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现仅卖98元/瓶,现假定两次降价的百分率相同,求该种药品平均每次降价的百分率.22.(8分)关于x的一元二次方程x2+3x+m-1=0的两个实数根分别为x1,x2.(1)求m的取值范围;(2)若2(x1+x2)+x1x2+10=0,求m的值.23.(8分) 已知二次函数y=x2+bx-c的图象与x轴两交点的坐标分别为(m,0),(-3m,0)(m≠0).(1)求证:4c=3b2;(2)若该函数图象的对称轴为直线x=1,试求二次函数的最小值.24.(8分) 某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数解析式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.25.(10分)端午节期间,某食品店平均每天可卖出300只粽子,卖出1只粽子的利润是1元.经调查发现,零售单价每降0.1元,每天可多卖出100只粽子.为了使每天获取的利润更多,该店决定把零售单价下降m(0<m<1)元.(1)零售单价下降m元后,该店平均每天可卖出__ __只粽子,利润为__ __元;(2)在不考虑其他因素的条件下,当m定为多少时,才能使该店每天获取的利润是420元,并且卖出的粽子更多?26.(10分)要在一块长52 m,宽48 m的矩形绿地上,修建同样宽的两条互相垂直的甬路,下面分别是小亮和小颖的设计方案.(1)求小亮设计方案中甬路的宽度x;(2)求小颖设计方案中四块绿地的总面积.(友情提示:小颖设计方案中的x与小亮设计方案中的x取值相同)。
人教版初中数学九年级数学上册第一单元《一元二次方程》测试题(有答案解析)
一、选择题1.某口罩厂六月份的口罩产量为100万只,由于市场需求量减少,八月份的产量减少到81万只,则该厂七八月份的口罩产量的月平均减少率为 ( )A .10%B .29%C .81%D .14.5%2.x = ) A .22730x x ++=B .22730x x --=C .22730x x +-=D .22730x x -+=3.已知a ,b ,c 分别是三角形的三边长,则关于x 的方程()()220a b x cx a b ++++=根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .有且只有一个实数根D .没有实数根 4.方程()55x x x +=+的根为( )A .15=x ,25x =-B .11x =,25x =-C .0x =D .125x x ==- 5.一元二次方程2304y y +-=,配方后可化为( ) A .21()12y += B .21()12y -= C .211()22y += D .213()24y -= 6.若关于x 的一元二次方程260x x c -+=有两个相等的实数根,则常数c 的值为( ) A .3B .6C .8D .9 7.若方程()200++=≠ax bx c a 中,,,a b c 满足420a b c ++=和420a b c -+=,则方程的根是( )A .1,0B .1,0-C .1,1-D .2,2- 8.已知2x 2+x ﹣1=0的两根为x 1、x 2,则x 1•x 2的值为( )A .1B .﹣1C .12D .12- 9.若关于x 的方程(m ﹣1)x 2+mx ﹣1=0是一元二次方程,则m 的取值范围是( ) A .m ≠1B .m =1C .m ≥1D .m ≠0 10.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) A .290x +=B .24410x x -+=C .210x x ++=D .210x x +-= 11.已知方程2202030x x +-=的根分别为a 和b ,则代数式2a a 2020a b ++的值为( )A .0B .2020C .1D .-202012.若()()2222230xy x y ++--=,则22x y +的值是( ) A .3 B .-1 C .3或1 D .3或-1 二、填空题13.用因式分解法解关于x 的方程 260x px --=,将左边分解因式后有一个因式为3x -,则的p 值为_______14.已知a 为方程210x x -+=的一个根,则代数式2233a a -+的值为_____15.已知函数2y mx m m =++为正比例函数,则常数m 的值为______.16.2019女排世界杯于9月14月至29日在日本举行,赛制为单循环比赛(即每两个队之间比赛一场)一共比赛66场,中国女排以全胜成绩卫冕世界杯冠军为国庆70周年献上大礼,则中国队在本届世界杯比赛中连胜__场17.已知a 、b 、c 满足227a b +=,221b c -=-,2617c a -=-,则a b c ++=_______.18.若方程()22110a x ax -+-=的一个根为1x =,则a =_______.19.当x=______时,−4x 2−4x+1有最大值.20.关于x 的一元二次方程有两个根0和3,写出这个一元二次方程的一个一般式为______.参考答案三、解答题21.已知关于x 的方程x 2﹣8x ﹣k 2+4k +12=0.(1)求证:无论k 取何值,这个方程总有两个实数根;(2)若△ABC 的两边AB ,AC 的长是这个方程的两个实数根,第三边BC 的长为5,当△ABC 是等腰三角形时,求k 的值.22.解方程:(1)()2316x -=(2)22410x x --=(用公式法解)23.某地区2018年投入教育经费2000万元,2020年投入教育经费2420万元(1)求2018年至2020年该地区投入教育经费的年平均增长率;(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2022年需投入教育经费2900万元,如果按(1)中教育经费投入的增长率,到2022年该地区投入的教育经费是否能达到2900万元?请说明理由.24.某玩具店购进一批甲、乙两款乐高积木,它们的进货单价之和是720元.甲款积木零售单价比进货单价多80元.乙款积木零售价比进货单价的1.5倍少120元,按零售单价购买甲款积木4盒和乙款积木2盒,共需要2640元.(1)分别求出甲乙两款积木的进价.(2)该玩具店平均一个星期卖出甲款积木40盒和乙款积木24盒,经调查发现,甲款积木零售单价每降低2元,平均一个星期可多售出甲款积木4盒,商店决定把甲款积木的零售价下降()0m m >元,乙款积木的零售价和销量都不变.在不考虑其他因素的条件下,为了顾客能获取更多的优惠,当m 为多少时,玩具店一个星期销售甲、乙两款积木获取的总利润恰为5760元.25.已知关于x 的一元二次方程x 2-2x+k=0.(1)若方程有实数根,求k 的取值范围;(2)在(1)的条件下,如果k 是满足条件的最大的整数,且方程x 2-2x+k=0一根的相反数是一元二次方程(m-1)x 2-3mx-7=0的一个根,求m 的值.26.阅读下列材料,解答问题.222(25)(37)(52)x x x -++=+.解:设25,37m x n x =-=+,则52m n x +=+, 原方程可化为222()m n m n +=+,0mn ,即(25)(37)0x x -+=.250x ∴-=或370x +=,解得1257,23x x ==-. 请利用上述方法解方程:222(45)(32)(3)x x x -+-=-.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设该厂七八月份的口罩产量的月平均减少率为x ,根据该厂六月份及八月份的口罩产量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设该厂七八月份的口罩产量月平均减少率为x ,根据题意得,()2100181x -=,解得10.110%x ==,2 1.9x =(不合题意,舍去).故选A .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 2.C解析:C【分析】根据求根公式逐一列出每个方程根的算式即可得出答案.【详解】A 、22730x x ++=的解为x =B 、22730x x --=的解为x =C 、22730x x +-=的解为x =D 、22730x x -+=的解为x =故选:C .【点睛】 本题主要考查了一元二次方程的根,用求根公式解一元二次方程的方法是公式法. 3.D解析:D【分析】由于这个方程是一个一元二次方程,所以利用根的判别式可以判断其根的情况.而()()2(2)4c a b a b =-++,根据三角形的三边关系即可判断.【详解】∵a ,b ,c 分别是三角形的三边,∴a+b >c .∴c+a+b >0,c-a-b <0,∴()()2(2)4c a b a b =-++2244()c a b =-+()()40c a b c a b =++--<,∴方程没有实数根.故选:D .【点睛】本题主要考查了三角形三边关系、一元二次方程的根的判别式等知识点.重点是对2244()c a b -+进行因式分解.4.B解析:B【分析】根据因式分解法解方程即可;【详解】()55x x x +=+,()()550+-+=x x x ,()()510x x +-=,11x =,25x =-;故答案选B .【点睛】本题主要考查了因式分解法解一元二次方程,准确计算是解题的关键.5.A解析:A【分析】根据配方法解一元二次方程的步骤计算可得.【详解】解:∵2304y y +-=, ∴y 2+y=34, 则y 2+y+14=34+14, 即(y+12)2=1, 故选:A .【点睛】本题主要考查解一元二次方程-配方法,用配方法解一元二次方程的步骤:①把原方程化为ax 2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边; ③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.6.D解析:D【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于c 的一元一次方程,解方程即可得出结论.【详解】解:260x x c -+=有两个相等的实根,2(6)40c ∴∆=--=,解得:9c =故选:D .【点睛】本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于c 的一元一次方程是解题的关键.7.D解析:D【分析】联立420a b c ++=和420a b c -+=,前式减后式,可得0b =,前式加后式,可得4c a =-,将a 、c 代入原方程计算求出方程的根.【详解】∵根据题意可得:420420a b c a b c ++=⎧⎨-+=⎩①②, ①-②=40b =,得0b =,①+②=820a c +=,∴解得:0b =,4c a =-.将a 、b 、c 代入原方程()200++=≠ax bx c a 可得, ∵240ax bx a +-=,240ax a -=24ax a =∴2x =±故选:D .【点睛】本题考查解一元二次方程,联立关于a 、b 、c 的方程组,由方程组推出a 、b 、c 的数量关系是解题关键.8.D解析:D【分析】直接利用根与系数的关系解答.【详解】解:∵2x 2+x ﹣1=0的两根为x 1、x 2,∴x 1•x 2=12-=﹣12. 故选:D .【点睛】 此题主要考查了根与系数的关系,一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系为:x 1+x 2=-b a ,x 1•x 2=c a. 9.A解析:A【分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可.【详解】解:由题意得:m ﹣1≠0,解得:m≠1,故选:A .【点睛】本题考查了一元二次方程的定义,注意掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.10.D解析:D【分析】分别求出每个方程的根的判别式即可得到方程的根的情况.【详解】A 选项:2049360∆=-⨯=-<,∴该方程没有实数根,故A 错误;B 选项:()244410∆=--⨯⨯=,∴该方程有两个相等的实数根,故B 错误; C 选项:2141130∆=-⨯⨯=-<,∴该方程没有实数根,故C 错误;D 选项:()2141150∆=-⨯⨯-=>,∴方程有两个不相等的实数根,故D 正确; 故选:D.【点睛】此题考查一元二次方程的根的情况,正确求根的判别式的值,掌握一元二次方程的根的三种情况是解题的关键.11.A解析:A【分析】将a 代入方程,可得2202030a a +-=,即220302a a =-,代入要求的式子,即可得到3+ab ,而a 、b 是方程的两个根,根据韦达定理,可求出ab 的值,即可求出答案.【详解】解:∵方程2202030x x +-=的根分别为a 和b∴2202030a a +-=,即220302a a =-∴2a a 2020a b ++=32020a -+ab+2020a=3+ab∵ab=-3∴2a a 2020a b ++=32020a -+ab+2020a=3+ab=3-3=0故选:A .【点睛】本题主要考查一元二次方程的解以及韦达定理,熟练解代入方程以及观察式子特点,抵消部分式子是解决本题的关键.12.A解析:A【分析】用22a x y =+,解出关于a 的方程,取正值即为22x y +的值是.【详解】解:令22a x y =+,则(2)30a a --=,即2230a a --=,即(3)(1)0a a ,解得13a =,21a =-,又因为220a x y =+>,所以3a =故22x y +的值是3,故选:A .【点睛】本题考查解一元二次方程,掌握换元思想可以使做题简单,但需注意220a x y =+>. 二、填空题13.1【分析】方法一:根据题意因式分解得到再展开去括号根据恒等式即可求出p 的值;方法二:将代入方程可得一个关于p 的一元一次方程解方程即可得【详解】方法一:由题意得解得则;方法二:由题意得是关于x 的方程的 解析:1【分析】方法一:根据题意因式分解得到26(3)()x px x x a --=-+,再展开去括号,根据恒等式即可求出p 的值;方法二:将3x =代入方程可得一个关于p 的一元一次方程,解方程即可得.【详解】方法一:由题意得,226(3)()(3)3x px x x a x a x a --=-+=+--, 3p a ∴-=-,36a -=-,解得2a =,则1p =;方法二:由题意得,3x =是关于x 的方程260x px --=的一个解,则将3x =代入得:23360p --=,解得1p =,故答案为:1.【点睛】本题考查了多项式因式分解的方法、利用因式分解法解一元二次方程,熟练掌握多项式的运算法则和方程的解法是解题关键.14.【分析】把代入已知方程求得然后将其整体代入所求的代数式求值【详解】由题意得:则所以故答案为:【点睛】本题考查了一元二次方程的解的定义解题时注意整体代入数学思想的应用解析:5【分析】把x a =代入已知方程,求得21a a =-,然后将其整体代入所求的代数式求值.【详解】由题意,得:210a a -+=,则21a a =-,所以,()2233231323335a a a a a a -+=--+=-++=. 故答案为:5.【点睛】本题考查了一元二次方程的解的定义.解题时,注意“整体代入”数学思想的应用. 15.-1【分析】根据正比例函数的概念可直接进行列式求解【详解】解:∵函数为正比例函数∴且解得:;故答案为-1【点睛】本题主要考查正比例函数的概念及一元二次方程的解法熟练掌握正比例函数的概念及一元二次方程 解析:-1【分析】根据正比例函数的概念可直接进行列式求解.【详解】解:∵函数2y mx m m =++为正比例函数,∴20m m +=,且0m ≠,解得:1m =-;故答案为-1.【点睛】本题主要考查正比例函数的概念及一元二次方程的解法,熟练掌握正比例函数的概念及一元二次方程的解法是解题的关键.16.11【分析】设中国队在本届世界杯比赛中连胜x 场则共有(x+1)支队伍参加比赛根据一共比赛66场即可得出关于x 的一元二次方程解之取其正值即可得出结论【详解】设中国队在本届世界杯比赛中连胜x 场则共有(x解析:11【分析】设中国队在本届世界杯比赛中连胜x 场,则共有(x+1)支队伍参加比赛,根据一共比赛66场,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】设中国队在本届世界杯比赛中连胜x 场,则共有(x+1)支队伍参加比赛,依题意,得:12x(x+1)=66, 整理,得:x 2+x-132=0,解得:x 1=11,x 2=-12(不合题意,舍去).所以,中国队在本届世界杯比赛中连胜11场.故答案为11.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 17.3【分析】题中三个等式左右两边分别相加后再移项可以通过配方法得到三个平方数的和为0然后根据非负数的性质可以得到abc 的值从而求得a+b+c 的值【详解】解:题中三个等式左右两边分别相加可得:即∴∴a=解析:3【分析】题中三个等式左右两边分别相加后再移项,可以通过配方法得到三个平方数的和为0.然后根据非负数的性质可以得到a 、b 、c 的值,从而求得a+b+c 的值.【详解】解:题中三个等式左右两边分别相加可得:2222267117a b b c c a ++-+-=--,即222226110a b b c c a ++-+-+=,∴()()()2223110a b c -+++-=, ∴a=3,b=-1,c=1,∴a+b+c=3-1+1=3,故答案为3.【点睛】本题考查配方法的应用,熟练掌握配方法的方法和步骤并灵活运用是解题关键. 18.或【分析】分类讨论方程为一元一次和一元二次把x=1代入方程计算即可求出a 的值【详解】解:若方程为一元一次方程此时此时解得当时方程的解是满足条件当时方程的解是不满足题意;若方程为一元二次方程此时此时此 解析:1或2-【分析】分类讨论方程为一元一次和一元二次,把x =1代入方程计算即可求出a 的值.【详解】解:若方程为一元一次方程,此时210a -=,此时解得±1a =,当1a =时,方程的解是1x =满足条件,当1a =-时,方程的解是1x =-不满足题意;若方程为一元二次方程,此时210a -≠,此时±a ≠1,此时将1x =代入方程可得2110a a -+-=解得122,1()a a =-=舍综上所述,a =1或-2故答案为:1或2-【点睛】本题主要考查方程的相关定义,分类讨论是解题的关键.19.【分析】先根据完全平方公式将原式配方进而利用非负数的性质求出即可【详解】解:∵-4x2-4x+1=-(4x2+4x-1)=-(2x+1)2+2-(2x+1)2≤0∴当x=-时4x2-4x+1有最大值 解析:12- 【分析】先根据完全平方公式将原式配方,进而利用非负数的性质求出即可.【详解】解:∵-4x 2-4x+1=-(4x 2+4x-1)=-(2x+1)2+2,-(2x+1)2≤0,∴当x=-12时,4x 2-4x+1有最大值是2. 故答案为:-12. 【点睛】此题主要考查了配方法的应用以及非负数的性质,正确配方得出是解题关键.20.【分析】根据方程的解的定义可以得到方程【详解】解:根据题意知方程符合题意即:故答案是:【点睛】本题主要考查了一元二次方程的解的定义熟悉相关性质是解题的关键解析:230x x -=【分析】根据方程的解的定义可以得到方程-=(3)0x x .【详解】解:根据题意,知方程-=(3)0x x 符合题意,即:230x x -=.故答案是:230x x -=.【点睛】本题主要考查了一元二次方程的解的定义,熟悉相关性质是解题的关键.三、解答题21.(1)证明见解析;(2)k 的值为2或1或3.【分析】(1)先计算出△=4(k ﹣2)2,然后根据判别式的意义即可得到结论;(2)先利用因式分解法求出方程的解为x 1=﹣k +6,x 2=k +2,然后分类讨论:当AB =AC 或AB =BC 或AC =BC 时△ABC 为等腰三角形,然后求出k 的值.【详解】解:(1)证明:∵△=(﹣8)2﹣4(﹣k 2+4k +12)=4(k ﹣2)2≥0,∴无论k 取何值,这个方程总有两个实数根;(2)解:x 2﹣8x ﹣k 2+4k +12=0,(x +k ﹣6)(x ﹣k ﹣2)=0,解得:x 1=﹣k +6,x 2=k +2,当AB =AC 时,﹣k +6=k +2,则k =2;当AB =BC 时,﹣k +6=5,则k =1;当AC =BC 时,则k +2=5,解得k =3,综合上述,k 的值为2或1或3.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了三角形三边的关系以及等腰三角形的性质.22.(1)11x =21x =-2)11x =+,21x =. 【分析】(1)两边除以3后再开方,即可得出两个一元一次方程,求解即可;(2)求出24b ac -的值,代入公式求出即可.【详解】解:(1)()2316x -=方程两边除以3,得:()212x -=,两边开平方,得:1x -=则:11x =+21x =(2)22410x x --=∵2a =,4b =-,1c =-,∴()()224442124b ac -=--⨯⨯-=∴x ==,∴112x =+,212x =-; 【点睛】 本题考查了解一元二次方程的应用,熟悉相关的解法是解题的关键.23.(1)10%;(2)可以,理由见解析【分析】(1)设年平均增长率是x ,列式()2200012420x +=,求出结果;(2)利用(1)中算出的增长率算出2022年的教育经费,看是否超过2900万元.【详解】解:(1)设年平均增长率是x , ()2200012420x +=1 1.1x +=±10.1x =,2 2.1x =-(舍去),答:年平均增长率是10%;(2)2022年的教育经费是()2242010.12928.2⨯+=(万元), 2928.22900>,答:教育经费可以达到2900万元.【点睛】本题考查一元二次方程的应用,解题的关键是掌握增长率问题的列式方法.24.(1)(1)甲款每盒400元,乙款每盒320元;(2)40.【分析】(1)设甲款积木的进价为每盒x 元,乙款积木的进价为每盒y 元,列出二元一次方程组计算即可;(2)根据题意得出()()8040224405760m m -++⨯=,计算即可;【详解】(1)设甲款积木的进价为每盒x 元,乙款积木的进价为每盒y 元,则()()72048021.51202640x y x y +=⎧⎨++-=⎩, 解得:400320x y =⎧⎨=⎩. 答:甲款积木的进价为每盒400元,乙款积木的进价为每盒320元.(2)由题可得:()()8040224405760m m -++⨯=,解得120m =,240m =,因为顾客能获取更多的优惠,所以40m =.【点睛】本题主要考查了一元二次方程的应用,结合二元一次方程组求解计算是解题的关键. 25.(1)k≤1;(2)2【分析】(1)结合题意,根据判别式的性质计算,即可得到答案;(2)结合(1)的结论,可得k 的值,从而计算得方程x 2-2x+k=0的根,并代入到()21370m x mx ---=,通过求解一元一次方程方程,即可得到答案.【详解】(1)由题意知:44k ∆=-且0∆≥即:4-4k≥0∴k≤1(2)k≤1时,k 取最大整数1当k=1时,221x x -+的解为:121x x ==根据题意,1x =是方程()21370m x mx ---=的一个根 ∴()()()2113170m m -⨯--⨯--= ∴m=2.【点睛】本题考查了一元二次方程、一元一次方程的知识;解题的关键是熟练掌握一元二次方程判别式、一元一次方程的性质,从而完成求解.26.x 1=54,x 2=23【分析】 设m =4x -5,n =3x -2,则m -n =(4x -5)-(3x -2)=x -3,代入后求出mn =0,即可得出(4x -5)(3x -2)=0,求出即可.【详解】解:(4x -5)2+(3x -2)2=(x -3)2,设m =4x -5,n =3x -2,则m -n =(4x -5)-(3x -2)=x -3,原方程化为:m 2+n 2=(m -n )2,整理得:mn =0,即(4x -5)(3x -2)=0,∴4x -5=0,3x -2=0,∴x 1=54,x 2=23. 【点睛】 本题考查了解一元二次方程,能把一元二次方程转化成(4x -5)(3x -2)=0是解此题的关键.。
2020—2021年部编人教版九年级数学上册第一次月考考试卷及完整答案
2020—2021年部编人教版九年级数学上册第一次月考考试卷及完整答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+- 3.等式33=11x x x x --++成立的x 的取值范围在数轴上可表示为( ) A .B .C .D . 4.关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根12,x x ,()1212122(2)2x x x x x x -+--+3=-,则k 的值() A .0或2 B .-2或2 C .-2 D .25.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x =的图像上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .213x x x <<C .231x x x <<D .321x x x <<6.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( )A .主视图改变,左视图改变B .俯视图不变,左视图不变C .俯视图改变,左视图改变D .主视图改变,左视图不变7.下列各曲线中表示y 是x 的函数的是( )A .B .C .D .8.如图,A ,B 是反比例函数y=4x在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .19.如图,已知AB 是O 的直径,点P 在BA 的延长线上,PD 与O 相切于点D ,过点B 作PD 的垂线交PD 的延长线于点C ,若O 的半径为4,6BC ,则PA 的长为( )A .4B .23C .3D .2.510.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.4的算术平方根是__________.2.因式分解2242x x -+=_______.3.若a ,b 都是实数,b =12a -+21a -﹣2,则a b 的值为__________.4.如图,在Rt △ACB 中,∠ACB =90°,∠A =25°,D 是AB 上一点,将Rt △ABC 沿CD 折叠,使点B 落在AC 边上的B ′处,则∠ADB ′等于______.5.如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m .6.如图,在ABC ∆中,AB AC =,点A 在反比例函数k y x=(0k >,0x >)的图象上,点B ,C 在x 轴上,15OC OB =,延长AC 交y 轴于点D ,连接BD ,若BCD ∆的面积等于1,则k 的值为_________.三、解答题(本大题共6小题,共72分)1.解分式方程(1)232x x=+(2)21124xx x-=--2.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.3.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.4.如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接DE,BF.判断四边形EBFD的形状,并说明理由.5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.东营市某学校2015年在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2016年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个,恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、D5、B6、D7、D8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、22(1)x -.3、44、40°.5、136、3三、解答题(本大题共6小题,共72分)1、(1)4x =;(2)32x =-2、(1) △ABC 是等腰三角形;(2)△ABC 是直角三角形;(3) x 1=0,x 2=﹣1.3、(1)略;(2.4、(2)略;(2)四边形EBFD 是矩形.理由略.5、()117、20;()22次、2次;()372;()4120人.6、(1)购买一个甲种足球需50元,购买一个乙种足球需70元;(2)这所学校最多可购买18个乙种足球.。
2020—2021年人教版九年级数学上册第一次月考试卷及答案【汇总】
2020—2021年人教版九年级数学上册第一次月考试卷及答案【汇总】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12-D .122.若999999a =,990119b =,则下列结论正确是( )A .a <bB .a b =C .a >bD .1ab =3.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( ) A .9人B .10人C .11人D .12人4.下列方程组中,是二元一次方程组的是( )A .4237x y x y +=⎧⎨+=⎩B .2311546a b b c -=⎧⎨-=⎩C .292x y x ⎧=⎨=⎩D .284x y x y +=⎧⎨-=⎩5.已知平行四边形ABCD ,AC 、BD 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( ) A .∠BAC=∠DCAB .∠BAC=∠DACC .∠BAC=∠ABDD .∠BAC=∠ADB6.用配方法解一元二次方程22310x x --=,配方正确的是( ).A .2317416x ⎛⎫-= ⎪⎝⎭B .23142x ⎛⎫-= ⎪⎝⎭C .231324x ⎛⎫-= ⎪⎝⎭D .231124x ⎛⎫-= ⎪⎝⎭7.如图,等边三角形ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD 上,∠EBC=45°,则∠ACE 等于( )A .15°B .30°C .45°D .60°8.如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,30AOB B ∠=∠=︒,2OA =,将AOB ∆绕点O 逆时针旋转90︒,点B 的对应点B '的坐标是( )A .()1,23-+B .()3,3-C .()3,23-+D .()3,3-9.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度 B .C .线段PC 的长度D .线段PD 的长度10.如图,在△ABC 中,∠C=90°,AC=BC=3cm.动点P 从点A 出发,以2cm/s 的速度沿AB 方向运动到点B .动点Q 同时从点A 出发,以1cm/s 的速度沿折线AC →CB 方向运动到点B .设△APQ 的面积为y (cm 2).运动时间为x (s ),则下列图象能反映y 与x 之间关系的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.9的算术平方根是__________. 2.因式分解:3x 3﹣12x=_______.3.已知a 、b 为两个连续的整数,且28a b <<,则+a b =________. 4.如图,抛物线2y ax c =+与直线y mx n =+交于A(-1,P),B(3,q)两点,则不等式2ax mx c n ++>的解集是__________.5.如图,在矩形ABCD 中,AB=4,AD=3,矩形内部有一动点P 满足S △PAB =13S 矩形ABCD,则点P 到A 、B 两点的距离之和PA+PB 的最小值为__________.6.如图,将正方形OEFG 放在平面直角坐标系中,O 是坐标原点,点E 的坐标为(2,3),则点F 的坐标为__________.三、解答题(本大题共6小题,共72分)1.(1)计算:()21713tan302-⎛⎫---+︒ ⎪⎝⎭(2)解方程:214111x x x ++=--2.已知抛物线2y x bx c =-++经过点A (3,0),B (﹣1,0). (1)求抛物线的解析式; (2)求抛物线的顶点坐标.3.如图,在口ABCD 中,分别以边BC ,CD 作等腰△BCF ,△CDE ,使BC=BF ,CD=DE ,∠CBF =∠CDE ,连接AF ,AE. (1)求证:△ABF ≌△EDA ;(2)延长AB 与CF 相交于G ,若AF ⊥AE ,求证BF ⊥BC .4.如图,点A ,B ,C 都在抛物线y=ax 2﹣2amx+am 2+2m ﹣5(其中﹣14<a <0)上,AB ∥x 轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为 (用含m 的代数式表示); (2)求△ABC 的面积(用含a 的代数式表示);(3)若△ABC 的面积为2,当2m ﹣5≤x ≤2m ﹣2时,y 的最大值为2,求m 的值.5.某区域为响应“绿水青山就是金山银山”的号召,加强了绿化建设.为了解该区域群众对绿化建设的满意程度,某中学数学兴趣小组在该区域的甲、乙两个片区进行了调查,得到如下不完整统计图.请结合图中信息,解决下列问题:(1)此次调查中接受调查的人数为多少人,其中“非常满意”的人数为多少人;(2)兴趣小组准备从“不满意”的4位群众中随机选择2位进行回访,已知这4位群众中有2位来自甲片区,另2位来自乙片区,请用画树状图或列表的方法求出选择的群众来自甲片区的概率.6.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、C4、A5、C6、A7、A8、B9、B 10、D二、填空题(本大题共6小题,每小题3分,共18分)1、3.2、3x (x+2)(x ﹣2)3、114、3x <-或1x >.5、6、(﹣1,5)三、解答题(本大题共6小题,共72分)1、(1)﹣2;(2)无解.2、(1)2y x 2x 3=-++(2)(1,4)3、(1)略;(2)略.4、(1)(m ,2m ﹣5);(2)S △ABC =﹣82a a +;(3)m 的值为72或. 5、(1)50,18;(2)选择的市民均来自甲区的概率为16.6、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.。