液压系统

合集下载

液压系统的工作原理和应用

液压系统的工作原理和应用

液压系统的工作原理和应用液压系统是一种利用液体传递力量和控制运动的技术。

它通过运用流体力学原理,将液体(通常是油)作为介质,在输油管道和液压机构中传递力量,实现机械装置的控制和动作。

液压系统广泛应用于各个领域,例如机械制造、航空航天、汽车工业、工程机械等,为生产和生活提供了极大的便利和效益。

一、液压系统的工作原理液压系统的工作原理主要基于帕斯卡定律。

根据帕斯卡定律,封闭于容器内的任何一点受到的压力都会均匀传递到容器内的各个部分。

液压系统利用这一原理,通过增加或减少液体的压力,实现力量的传递和控制。

液压系统中常见的元件包括:液压泵、储油箱、液压马达、液压缸、控制阀等。

液压泵负责将机械能转化为流体能;储油箱用于存储和调节油压;液压马达将液体动能转化为机械能,驱动机械装置工作;液压缸则是将液体能量转化为机械能量,通过拉伸和压缩实现线性运动;控制阀调节液体的流量和压力,控制系统的工作。

液压系统的工作过程中,液体从液压泵吸入并推送到液压马达或液压缸。

当液压泵施加一定压力将液体推向液压马达或液压缸时,液体在马达或缸内产生动力,推动马达或缸做出相应的运动。

二、液压系统的应用液压系统具有许多优点,因此广泛应用于各种工业和民用领域。

1. 机械制造 industry液压系统在机械制造领域中被广泛应用于各种机械设备,如冲床、注塑机、压铸机等。

液压系统可以提供高的力量密度和精确的控制,满足了对压力、速度和位置的要求。

此外,液压系统的工作平稳、噪音低,使用寿命长,可靠性高,为机械制造业带来了卓越的性能和效益。

2. 航空航天 industry在航空航天领域,液压系统用于飞机和飞行器的起落架、襟翼、刹车系统等。

液压系统在这些应用中承担着重要的作用,提供了动力和控制,确保了飞行器的安全和可靠性。

3. 汽车工业 industry液压系统在汽车工业中被广泛应用于刹车系统、悬挂系统和转向系统等。

液压刹车系统能够提供稳定的制动力,提高刹车效果和安全性能;液压悬挂系统可根据车辆状态和道路状况自动调节悬挂高度和刚度,提高乘坐舒适性和操控性;液压转向系统通过液压力量传递,实现方向盘操纵的轻松和精确。

液压系统的介绍

液压系统的介绍

液压系统的介绍
液压系统是一种利用液体传递能量的系统,广泛应用于工业和机械领域。

液压系统主要由液压液、液压泵、液压阀、液压缸、油箱、油管路等组成,通过控制液压液的流动和压力来实现各种机械运动。

液压系统的工作原理是利用液体在封闭的管路中传递压力和能量。

液压泵将液压液从油箱中抽入,压力增加后通过液压阀控制液压液的流动方向和压力,最终驱动液压缸实现各种机械动作,如提升、压缩、伸缩等。

液压系统具有以下优点:
1. 高功率密度:液压系统具有高功率密度,可以在较小的体积内实现较大的功率输出,适用于各种工业和重型机械设备。

2. 精密控制:液压系统可以实现精密的动作控制,通过调节液压阀来实现各种速度、力度和位置的控制。

3. 负载平衡:液压系统可以实现负载平衡,即使在负载变化较大的情况下仍能保持稳定的工作状态。

4. 可靠性高:液压系统由液体传递能量,无需润滑,因此寿命较长,且可以在恶劣的工作环境下工作。

液压系统的应用涵盖了各个领域,如工程机械、冶金设备、船舶、航空航天、农业机械等。

液压系统在工程机械中的应用尤为广泛,如挖掘机、压路机、装载机等,这些机械通常需要承受较大的工作负载,液压系统能够为其提供稳定的动力输出和精确的控制。

总的来说,液压系统作为一种高效、精密的能量传递系统,已经成为现代工业领域不可或缺的重要组成部分,其在提高生产效率、节约能源、保护环境等方面发
挥着重要作用。

液压技术的不断发展和创新将进一步推动液压系统在各个领域的广泛应用和发展。

液压系统的组成和作用

液压系统的组成和作用

液压系统的组成和作用
液压系统是由液压泵、液压阀、液压缸(液压马达)、油箱、接头和管路以及液压油等组成的一种动力传递和控制系统。

其主要作用是将液压能转变成机械能进行工作。

液压系统的组成主要包括以下几个部分:
1. 液压泵:将机械能转变为液压能,使液压油得以流动和压力增大。

2. 液压阀:用于控制液压油的流动、压力和流量方向,包括方向控制阀、压力控制阀、流量控制阀等。

3. 液压缸(液压马达):通过液压油的作用,将液压能转变为机械能,实现力的传递、运动控制和执行工作。

4. 油箱:用于存放液压油,并起到冷却润滑和气体分离的作用。

5. 接头和管路:用于连接液压元件和管道,使液压油能够流通和传递压力。

6. 液压油:作为液压传动介质,具有压力传递、密封、冷却和润滑等功能。

液压系统的作用主要有以下几个方面:
1. 力的传递和放大:通过液压缸或液压马达,可以将液压能转
变为机械能,实现力的传递和放大,广泛应用于起重、挖掘、压力机械等工业领域。

2. 运动控制:通过液压系统中的阀门控制液压缸的动作方式(如单作用、双作用、行程限制等),实现机械部件的运动控制,提高工作效率和精度。

3. 动力传递:液压系统可以将动力从一个地方传递到另一个地方,用于实现复杂的运动和力矩传递,例如起重机的工作机构。

4. 自动控制:通过控制液压系统的压力、流量和方向,使用逻辑阀、比例阀等,可以实现自动化的工作过程,提高生产效率和产品质量。

总之,液压系统的组成和作用是实现力的传递和运动控制,通过液压油的流动和压力变化,将液压能转换为机械能,广泛应用于各个工业领域。

液压系统的工作原理

液压系统的工作原理

液压系统的工作原理液压系统是一种利用液体传递能量的技术,广泛应用于工业领域。

它通过液体在封闭管路中的传递和控制,在各种机械装置中产生力和运动。

本文将介绍液压系统的工作原理及其应用。

一、液压系统的基本组成液压系统主要由以下几个基本组成部分构成:1. 液压液:常用的液压液有液压油和液压液体。

液压油具有优异的润滑性能和良好的密封性能,适用于高压系统。

液压液体则对环境友好,适用于低压系统。

2. 液压泵:液压泵负责将液压液从储液器中抽取,并提供足够的压力供液压系统使用。

3. 液压马达/液压缸:液压马达将液压能转化为机械能,产生旋转动力;液压缸则将液压能转化为机械能,产生直线运动。

4. 控制阀:控制阀用于调节和控制液压系统中的流量、压力和方向,实现机械装置的运动和控制。

5. 液压传动管路:液压传动管路负责液压能的传递和控制,包括液压油管、连接管件和密封件等。

二、液压系统的工作原理1. 原理介绍液压系统的工作原理基于帕斯卡原理,即在密闭的液体中,施加在液体上的压力会均匀传递到液体中的每一个部分。

根据这个原理,当液压泵施加压力将液压液推入液压系统时,液压液会传递和控制液压能,在液压马达/液压缸中产生力和移动。

2. 工作过程液压系统的工作过程可以分为以下几个步骤:(1)液压泵将液压液从储液器中吸入,并施加压力将液压液推入液压系统。

(2)液压液进入控制阀,由控制阀控制流向、流量和压力。

(3)液压液进入液压马达/液压缸,通过驱动装置(如电机)提供的动力,将液压能转化为机械能。

(4)液压液释放回储液器或再次进入液压泵,形成循环。

三、液压系统的应用液压系统广泛应用于各个工业领域,包括机械制造、汽车工业、建筑工程等。

以下是一些常见的应用示例:1. 挖掘机:液压系统用于控制挖掘机的臂、斗、回转等部分的运动,实现挖掘、装载和倾倒等功能。

2. 汽车制动系统:液压制动系统利用液压能产生制动力,实现汽车的减速和停车。

3. 船舶起重机:液压系统用于控制起重机的伸缩臂、舵机和升降装置,实现货物的起升、移动和定位。

液压系统的用途

液压系统的用途

液压系统的用途一、液压系统简介液压系统是一种利用液体传递能量的系统,广泛应用于工程机械、航空航天、冶金、船舶等领域。

液压系统通过调节液体流动来实现机械的控制和动力传递,具有力传递平稳、动态响应快、传动效率高等优势。

二、工程机械中的液压系统1. 液压系统的组成液压系统一般由液压泵、液压阀、液压缸和液压油箱等组成。

液压泵通过旋转运动提供压力,液压阀控制液体的流向和压力,液压缸通过液压力驱动执行工作。

2. 液压系统在挖掘机中的应用挖掘机是工程机械中的重要设备,其液压系统承担着挖掘、掘进、装载等工作。

液压系统使挖掘机能够灵活地进行各种作业,同时具有负载能力大、稳定性好等优势。

3. 液压系统在起重机中的应用起重机是用于起重和搬运重物的设备,其液压系统通过调节油液流动来控制起重机的升降和回转等动作。

液压系统使起重机具有载荷平稳、动作准确等特点,广泛应用于港口、工地等场合。

三、航空航天中的液压系统1. 液压系统的重要性航空航天领域对液压系统的要求较高,液压系统在航空航天中起到了关键的作用。

液压系统能够提供动力和控制信号,保证飞机和航天器的安全飞行。

2. 液压系统在飞机中的应用飞机的起落架、襟翼、刹车等系统都依赖于液压系统来提供动力和执行控制。

液压系统不仅能够保证飞机平稳起降,还能够提供力和力矩,保证机翼的变形和整体结构的稳定。

3. 液压系统在航天器中的应用航天器在离地面的环境中也需要使用液压系统来提供动力和控制。

航天器的推进系统、姿态控制系统等都依赖于液压系统来完成。

液压系统能够在极端环境下保持特定的工作性能,确保航天器顺利完成任务。

四、液压系统在冶金和船舶中的应用1. 冶金中的液压系统在冶金过程中,液压系统被广泛应用于铸造、轧制、冷却等环节。

液压系统能够提供高压力和大流量,满足冶金设备对动力的要求。

此外,液压系统还能够准确控制工艺参数,提高生产效率和产品质量。

2. 船舶中的液压系统船舶的液压系统主要用于舵机、缆绳张紧器、卸货设备等。

完整液压系统ppt课件

完整液压系统ppt课件
设计原则
设计流程
负载分析
负载分类
负载特点
负载计算
元件选择与计算
液压泵选择
根据系统流量和压力要 求,选择合适的液压泵
类型和规格
执行元件选择
根据负载特性和工艺要 求,选择合适的执行元 件(如液压缸、液压马
达)
控制元件选择
根据系统控制要求,选 择合适的控制元件(如
阀、传感器)
辅助元件选择
根据系统需要,选择合 适的辅助元件(如油箱、
液压缸根据其结构可分为单杆缸、双 杆缸、柱塞缸等。
工作原理
液压缸由活塞、缸筒、端盖等组成, 当液体压力作用于活塞上时,活塞在 压力的作用下产生运动,推动负载进 行直线运动。
液压阀
定义
工作原理 分类
液压油箱
定义
液压油箱是液压系统中的辅助元 件,它的作用是储存液压油,并
对液压油进行过滤和冷却。
工作原理
目 录
• 液压系统概述 • 液压系统元件 • 液压系统回路 • 液压系统设计 • 液压系统维护与保养 • 液压系统故障诊断与排除
contents
液压系统的定义与组成
总结词
详细描述
液压系统的特点与优势
总结词
液压系统的特性和优点
详细描述
液压系统具有功率密度高、响应速度快、输出力矩大、易于实现自动化控制等优 点,广泛应用于工程机械、农业机械、机床、航空航天等领域。
元件的检查与保养
总结词 详细描述
系统的调试与维护
总结词
详细描述
故障分类与原因分析
故障分类 原因分析
故障诊断方法与流程
诊断方法 诊断流程
故障排除技巧与实践
排除技巧
实践经验

液压系统的组成和作用

液压系统的组成和作用

液压系统的组成和作用液压系统是一种利用液体传递能量的技术系统,广泛应用于工程机械、航空航天、汽车、冶金、船舶等领域。

液压系统由多个组成部分组成,每个部分都有不同的作用和功能。

本文将从液压系统的组成和作用两个方面进行阐述。

一、液压系统的组成1. 液压液:液压系统中使用的液体通常是油,具有良好的润滑性、密封性和稳定性。

液压液在系统中承担传递能量、润滑摩擦、密封和冷却的重要作用。

2. 液压泵:液压泵是液压系统的动力源,负责将液压液从储油器中抽吸出来,并产生一定的压力,使液压液能够在系统中流动。

3. 液压阀:液压阀是液压系统中的控制元件,用于控制液压系统中的液压液流动方向、压力和流量。

常见的液压阀有换向阀、节流阀、溢流阀等。

4. 液压缸:液压缸是液压系统中的执行元件,将液压能转化为机械能,实现对物体的推拉运动。

液压缸由缸体、活塞和密封件组成,通过液压液的压力作用,使活塞在缸体内做往复运动。

5. 液压管路:液压管路是液压系统中的传输通道,用于连接液压泵、液压阀、液压缸等各个组成部分,使液压液能够在系统中流动,并传递能量、控制信号。

二、液压系统的作用1. 动力传递:液压系统通过液压泵提供的动力,将液压液传递到液压缸中,通过液压缸的工作,将液压能转化为机械能,实现对物体的推拉运动。

2. 力量放大:液压系统中液压缸的面积比例可以根据需要进行设计,通过液压缸的工作,可以将输入的力量放大到输出端,实现对大型物体的控制和操作。

3. 精确控制:液压系统中的液压阀可以根据需要进行调节,用于控制液压系统中的液压液流量、压力和方向。

通过液压阀的控制,可以实现对液压系统的精确控制,满足不同工况的需求。

4. 灵活性:液压系统具有较高的灵活性,可以根据需要进行设计和布置,适应不同的工作环境和空间要求。

液压系统可以通过改变液压泵的转速、液压阀的开启程度等方式,实现对系统的灵活调节和控制。

5. 安全性:液压系统具有较高的安全性,液压缸的移动速度可以通过液压阀进行调节,避免了因速度过快而引起的危险。

液压系统的概念

液压系统的概念

液压系统的概念液压系统是一种利用液体传递能量和信号的工程系统。

它通过液体的压力传递力量和运动,并对运动进行控制和调节。

液压系统广泛应用于各个领域,如工业、农业、交通运输、航空航天等,常见的应用有液压机械、液压传动装置、液压控制系统等。

液压系统的基本组成包括液压液体、液压泵、液压执行器、液压控制阀、液压储气器(或液压蓄能器)、液压元件、液压管路和液压辅助装置等。

液压液体是液压系统的工作介质,常见的液压液体有矿物油、合成液压油和水等。

液压泵是液压系统的动力源,它通过驱动液压液体,产生高压,并将其传递给液压执行器。

液压执行器是液压系统的工作机构,根据不同的工作要求,液压执行器可以是液压缸或液压马达。

液压控制阀通过控制液压液体的流动方向、流量和压力,实现对液压系统的控制。

液压储气器(或液压蓄能器)主要用于储存液压系统中的能量,以应对系统中发生的瞬变负荷。

液压元件主要包括油缸、活塞、连杆和阀体等,用于构成液压系统的各个部分。

液压管路用于连接液压元件,传递液压液体。

液压辅助装置包括油箱、过滤装置、油温降低装置和油液回收装置等,用于辅助液压系统的运行。

液压系统的工作过程主要包括液压系统的供油、液压液体的压力传递、液压执行器的动作以及压力释放等。

在液压系统中,液压泵将液压液体从油箱中抽取出来,并产生一定的压力,然后通过液压管路将压力传递给液压执行器(如液压缸)。

在液压系统的控制阀调节下,液压液体进入液压执行器,使其产生一定的力或运动。

当液压执行器的工作完成后,通过控制阀将液压液体排回油箱,同时释放液压系统中的压力,使其恢复初始状态。

液压系统具有许多优点,如传动效率高、传动力矩大、运动平稳、精度高、灵活性强、可自动化控制、结构简单等。

这使得液压系统在许多应用中得到了广泛的应用,特别是在重型机械、高精度机床等领域,液压系统已成为不可或缺的关键技术。

总之,液压系统是一种利用液体传递能量和信号的工程系统,由液压液体、液压泵、液压执行器、液压控制阀、液压储气器(或液压蓄能器)、液压元件、液压管路和液压辅助装置等组成。

液压系统(完整)介绍

液压系统(完整)介绍

液压系统(完整)介绍一、液压系统的基本概念液压系统,是一种利用液体传递压力和能量的动力传输系统。

它主要由液压泵、液压缸(或液压马达)、控制阀、油箱、油管等部件组成。

液压系统广泛应用于各类机械设备中,如挖掘机、起重机、汽车制动系统等,其优势在于结构紧凑、输出力大、操作简便。

二、液压系统的工作原理液压系统的工作原理基于帕斯卡原理,即在密闭容器内,液体受到的压力能够大小不变地向各个方向传递。

具体来说,液压系统的工作过程如下:1. 液压泵:将机械能转化为液体的压力能,为系统提供动力源。

2. 液压缸(或液压马达):将液体的压力能转化为机械能,实现直线或旋转运动。

3. 控制阀:调节液体流动方向、压力和流量,实现对液压系统的控制。

4. 油箱:储存液压油,为系统提供油源。

5. 油管:连接各液压部件,传递压力和能量。

三、液压系统的分类1. 水基液压系统:以水作为工作介质,具有环保、成本低等优点,但易腐蚀金属、密封性能较差。

4. 气液联动液压系统:以气体和液体为工作介质,结合了气压传动和液压传动的优点,适用于特殊场合。

四、液压系统的关键部件详解1. 液压泵:作为液压系统的“心脏”,液压泵负责将低压油转化为高压油,为整个系统提供动力。

常见的液压泵有齿轮泵、叶片泵和柱塞泵等。

每种泵都有其独特的特点和适用范围,选择合适的液压泵对系统的性能至关重要。

2. 液压缸:液压缸是系统的执行元件,它将液压油的压力能转化为机械能,实现直线往复运动或推送力量。

根据结构不同,液压缸可分为活塞式、柱塞式和膜片式等。

3. 控制阀:控制阀是液压系统的“大脑”,它负责调节和分配液压油流动的方向、压力和流量。

常用的控制阀包括方向阀、压力阀和流量阀等,它们共同确保系统按照预定的要求稳定运行。

4. 滤清器:液压油中的杂质会对系统造成损害,滤清器的作用就是过滤液压油中的杂质,保护系统的正常运行。

合理选择和使用滤清器,对延长液压系统寿命具有重要意义。

五、液压系统的优势与应用1. 优势:力量大:液压系统能够实现大范围的力矩放大,轻松完成重物搬运等任务。

液压系统中常见的问题有哪些?

液压系统中常见的问题有哪些?

液压系统中常见的问题有哪些?
1. 液压泄漏:液压系统中最常见的问题之一是泄漏。

泄漏可能
发生在管道连接、阀门密封或液压缸密封等部位。

泄漏会导致系统
压力下降,影响系统的性能和稳定性。

2. 油温过高:液压系统油温过高是另一个常见的问题。

油温过
高可能是由于油液不足、油液质量不合格或液压系统设计不当等原
因引起的。

高温会导致油液的粘度变化,影响液压系统的运行效果。

3. 液压缸卡死:液压缸卡死是指液压缸在工作过程中无法正常
运动或停止在某一位置。

这可能是由于液压系统供油不足、液压缸
密封损坏或缸体内部部件损坏等原因引起的。

4. 噪音和振动:液压系统在工作过程中产生异常噪音和振动也
是常见的问题。

噪音和振动可能是由于系统中的某些部件松动、损
坏或不平衡引起的。

这会对系统正常运行造成影响,同时也可能导
致其他问题的出现。

5. 污染和杂质:液压系统中的污染和杂质也是一个常见的问题。

污染和杂质可能来自于油液本身的污染、管道和阀门的腐蚀或损坏
等原因引起的。

污染和杂质会影响液压系统的工作效果,甚至导致
系统故障。

要保持液压系统的正常运行,我们应该定期进行系统检查和维护,包括检查油液的质量和量、检查密封件的状况、保持管道和阀
门的清洁、注意系统的工作温度等。

在发现问题时,应及时采取适
当的措施进行修理和维护,以确保液压系统的稳定性和可靠性。

液压系统工作原理

液压系统工作原理

液压系统工作原理
液压系统是一种利用液体来传递力量和控制运动的技术。

它基于液体的不可压缩性和体积不变性的原理,通过液体在密闭的管路中传递压力来实现机械装置的工作。

液压系统由液压泵、液压元件、液压控制阀以及液压油箱等组成。

液压系统的工作原理如下:
1. 液压泵负责产生高压流体:液压泵利用驱动装置(如电动机)带动泵叶片旋转,将液体吸入并压缩。

液压泵产生的高压流体被送到液压系统中。

2. 液压元件传递力量和控制运动:在液压系统中,液压元件包括液压缸、液压马达和液压缸阀。

液压流体通过液压阀控制进出液压元件,实现对机械装置的控制。

液压缸通过将液压流体的压力转化为机械运动,产生直线运动。

液压马达则将液压流体的压力转化为旋转运动。

3. 液压控制阀控制流动方向和压力:液压控制阀是液压系统中的关键组件,用于控制液体的流动方向和压力。

通过合理的液压阀组合和控制,可以实现对液压系统的精确控制。

4. 液压油箱储存液压油及冷却液:液压系统中的液压油用来传递压力和润滑液压元件。

液压油箱作为液压油的储存器,还起到冷却液压油的作用,保证系统的正常运行温度。

总之,液压系统的工作原理是利用液体的性质来传递力量和控
制运动。

通过液压泵产生高压流体,液压元件将液压流体的压力转化为机械运动,液压控制阀控制流动方向和压力,液压油箱储存液压油及冷却液,实现了液压系统的正常运行。

液压系统的分类

液压系统的分类

液压系统的分类液压系统是一种利用液体传递能量的控制系统,广泛应用于各个领域,如工业、农业、航空航天等。

根据其应用领域和工作原理的不同,液压系统可以分为多个分类。

本文将从不同的角度对液压系统进行分类,并介绍每个分类的特点和应用。

一、按工作原理分类1.静压液压系统:静压液压系统是利用静态液压力来实现工作的液压系统。

它通过改变液体的静态压力来实现工作,常见的应用有液压机、液压千斤顶等。

静压液压系统具有结构简单、工作可靠等优点,但其工作速度较慢,适用于对速度要求不高的场合。

2.动压液压系统:动压液压系统是利用动态液压力来实现工作的液压系统。

它通过液压泵产生的动态压力来驱动液压缸或液压马达等执行元件工作。

动压液压系统具有工作速度快、功率大等优点,广泛应用于各个领域。

二、按控制方式分类1.开环液压系统:开环液压系统是指液压系统的工作状态不能自动调节,需要通过人工干预才能实现工作目标。

开环液压系统通常由液压泵、执行元件和控制阀等组成,常见的应用有液压升降台、液压夹紧装置等。

2.闭环液压系统:闭环液压系统是指液压系统的工作状态能够自动调节,通过传感器对系统的工作状态进行监测和反馈,实现对系统的闭环控制。

闭环液压系统通常由液压泵、执行元件、控制阀和传感器等组成,常见的应用有液压机床、液压伺服系统等。

三、按液体介质分类1.水液压系统:水液压系统是指利用水作为液体介质传递能量的液压系统。

水液压系统具有介质廉价、可再生等优点,广泛应用于农业灌溉、水力发电等领域。

2.油液压系统:油液压系统是指利用液体油作为液体介质传递能量的液压系统。

油液压系统具有介质稳定、润滑性好等优点,广泛应用于工业生产、航空航天等领域。

四、按系统结构分类1.单工液压系统:单工液压系统是指只有一个液压执行元件的液压系统。

单工液压系统通常由液压泵、液压缸或液压马达等组成,常见的应用有液压千斤顶、液压门禁系统等。

2.双工液压系统:双工液压系统是指有两个相对工作的液压执行元件的液压系统。

液压系统的工作原理

液压系统的工作原理

液压系统的工作原理
液压系统的工作原理是利用液体的压力传递力量和运动的。

液压系统主要由液压泵、液压缸、液压阀和液压油等几个基本部件组成。

液压系统的工作过程如下:当液压泵启动时,它会通过吸入管将液压油从油箱中吸入到泵的工作室。

然后,当液压泵工作室的容积减小时,液压油被压缩并排出泵的排油口。

液压油经过油管传递到液压阀中。

液压阀中的控制阀芯根据需要控制液压油的流向和压力。

当阀芯调整到特定位置时,液压油进入液压缸的进油腔,从而推动液压缸的活塞运动。

通过液压传递的力将被传递到被推动的机械装置上,实现所需的工作。

当阀芯调整到另一个位置时,液压油的流向改变,液压缸的回油腔与油箱相连,液压油从回油腔流回油箱。

这样,液压缸的活塞会根据阀芯的调整而发生相应的运动变化。

为了保证液压系统的正常工作,需要定期检查液压油的质量和油液的温度,确保液压泵和液压缸的密封性能良好,同时及时清洁液压系统,防止异物进入系统影响工作。

液压泵和液压缸的选择应根据所需的工作压力和输出力量来确定。

总之,液压系统通过利用液体的压力传递力量和运动,实现机械装置的控制和工作。

它具有传递力量平稳、可靠性高、密封性好等优点,在许多工业领域被广泛应用。

液压系统的介绍

液压系统的介绍

液压系统的介绍
液压系统是一种利用油液作为工作介质,通过油液的压力能来驱动液压执行机构工作的系统。

其主要由五个部分组成:动力元件、执行元件、控制元件、辅助元件和液压油。

1.动力元件:主要是各种油泵,它的作用是将原动机(如电动机)的机械能转换成液体的压力能,从而向整个液压系统提供动力。

2.执行元件:如液压缸和液压马达,它们的作用是将液体的压力能转换为机械能,从而驱动负载做直线往复运动或回转运动。

3.控制元件:即各种液压阀,它们在液压系统中控制和调节液体的压力、流量和方向。

液压阀的种类繁多,根据功能不同,可分为压力控制阀(如溢流阀、减压阀、顺序阀、压力继电器等)、流量控制阀(如节流阀、调整阀、分流集流阀等)和方向控制阀(如单向阀、液控单向阀、梭阀、换向阀等)。

根据控制方式的不同,液压阀还可分为开关式控制阀、定值控制阀和比例控制阀。

4.辅助元件:包括油箱、滤油器、冷却器、加热器、蓄能器、油管及管接头、密封圈、快换接头、高压球阀、胶管总成、测压接头、压力表、油位计、油温计等,它们在整个液压系统中起到保障系统正常运行和提供必要辅助功能的作用。

5.液压油:是液压系统中传递能量的工作介质,有各种矿物油、乳化液和合成型液压油等几大类。

液压油的选择对于液压系统的性能和寿命有着至关重要的影响。

液压系统的工作原理基于流体静力学中的帕斯卡定律,即利用油
液或其他液体在不可压缩的静止液体中,任何一点受到外力产生的效果会瞬间传递到流体的各点。

这使得我们可以通过较小的力产生较大的力,实现力的放大。

回答完毕。

液压系统学习总结5篇

液压系统学习总结5篇

液压系统学习总结5篇第1篇示例:液压系统学习总结一、液压系统的基本工作原理液压系统是利用液体在封闭容器中随压力传递的功效来进行动力传递和控制的。

其基本工作原理涉及到流体力学、热力学、机械原理和控制理论等多个学科。

其基本工作原理可以概括为:通过液压泵将液体从低压输送到高压,然后经过阀门的控制,液体在执行元件中产生推动力或运动的效果。

通过改变控制元件的位置和开启程度来控制液压系统的工作效果。

二、液压系统的组成结构液压系统主要由液压传动装置、辅助装置、液压元件和控制装置四个部分组成。

其中液压传动装置主要包括液压泵、执行元件和传动管路等部件;辅助装置主要包括润滑装置、冷却装置和密封装置等部件;液压元件主要包括液压缸、液压马达等部件;控制装置主要包括阀门、控制台、传感器等部件。

1. 高工作可靠性:液压系统具有结构简单、零部件少、不易损坏等优点,因此其工作可靠性很高。

2. 工作压力范围广:液压系统的工作压力范围可以从几兆帕到几百兆帕,适用范围很广。

3. 动力密度大:液压系统的动力密度是一般机械传动装置的几倍甚至几十倍,可以满足大功率、大扭矩的传动需求。

4. 可进行远距离传输:液压系统可以通过管路将动力源远距离地传输到执行机构,适用于需要在远距离控制和传输动力的场合。

5. 动作平稳、可调速:液压系统的执行元件可以根据需要进行无级调速,动作平稳,运动快慢可以方便地进行控制。

四、液压系统的应用范围液压系统广泛应用于各种工程机械中,如挖掘机、铲车、压路机、推土机、起重机、石材机械、建筑机械及工业自动化生产线等。

液压系统还广泛应用于军事装备、航空航天、海洋工程以及采矿、冶金、化工等领域。

在学习液压系统的过程中,我们深刻认识到液压技术的重要性和广泛应用性。

了解到液压系统在工程领域中具有独特的优势,而且在工程实践中有着非常广泛的应用。

液压系统所具备的高传动效率、大功率密度、可靠性、可控性、可远距离传输等特点,使得其在工程领域中得到了广泛的应用。

液压系统工作原理

液压系统工作原理

液压系统工作原理液压系统是一种利用液体传递能量的工作原理,广泛应用于各个领域,如机械工程、航空航天、汽车工程等。

本文将介绍液压系统的工作原理和其应用。

一、液压系统的基本原理液压系统的基本原理是利用液体的压力传递力量。

液压系统由液压泵、液压阀、液压缸和液压马达等组成。

液压泵通过机械力将液体压入系统,液压阀控制液体的流向和压力,液压缸将液体的压力转化为线性运动力,液压马达将液体的压力转化为旋转运动力。

液压系统的工作原理可以简单描述为以下几个步骤:1. 液压泵通过机械力将液体从油箱中吸入,然后通过压力产生装置(如齿轮、柱塞等)将液体压缩,并推动液体进入液压系统。

2. 液压阀控制液体的流向和压力。

液压阀有多种类型,如单向阀、双向阀、溢流阀等。

它们根据系统的需求来控制液体的流动方向和压力大小。

3. 液压缸是液压系统中的重要组成部分,它将液体的压力转化为线性运动力。

液压缸由活塞和缸体组成,当液体进入液压缸时,液体的压力作用在活塞上,从而推动活塞产生线性运动。

4. 液压马达是将液体的压力转化为旋转运动力的装置。

液压马达由马达本体和齿轮箱组成,当液体进入液压马达时,液体的压力作用在齿轮箱上,从而推动齿轮箱产生旋转运动。

二、液压系统的应用液压系统广泛应用于各个领域,以下是几个常见的应用领域:1. 工程机械:液压系统在工程机械中扮演着重要的角色,如挖掘机、起重机、推土机等。

液压系统可以通过液压缸实现机械的运动,提高工作效率和精度。

2. 汽车工程:液压系统在汽车工程中应用广泛,如制动系统、转向系统等。

制动系统利用液压系统将踏板的力量转化为制动力,提高制动效果。

转向系统利用液压系统将驾驶员的转向力转化为车轮的转向力,提高操控性能。

3. 航空航天:液压系统在航空航天领域中也有重要的应用,如飞机的起落架、飞行控制系统等。

液压系统可以提供高压力和高精度的力量传递,确保飞机的安全和稳定。

4. 石油工业:石油工业中的钻井设备、输送设备等也广泛使用液压系统。

液压系统

液压系统
按调节方式分:手动式和自动式,自 动式又分限压式、恒功率式、恒压式 和恒流式等。
按自吸能力分:自吸式合非自吸式
液压泵和液压马达的图形符号
定量泵
变量泵 定量马达 变量马达 双向变量泵 双向变量马达
图3-3 液压泵和液压马达的图形符号
3-2 齿轮泵和齿轮马达
一、概述
齿轮泵是液压泵中结构最简单的一种泵, 它的抗污染能力强,价格最便宜。但一般齿 轮泵容积效率较低,轴承上不平衡力大,工 作压力不高,齿轮泵的另一个重要缺点是流 量脉动大,运行是噪声水平较高,在高压下 运行时尤为突出。齿轮泵主要用于低压或噪 声水平限制不严的场合。
一、液压泵的基本工作原理
容积式液压泵的共同工作原理
(1)容积式泵必定有一个或若干个周 期变化的密封容积 。 (2)合适的配流装置
二、液压泵的主要性能参数
图3-2 泵的实际流量和效率
1、流量和容积效率
泵的流量是指泵在单位时间内排出 液流的体积。其有理论流量和实际流量 之分。
泵的理论流量QT=qn 其中q是泵的每转排量,它决定于泵 的几何尺寸,简称排量。
的。
压力对固体壁面的总作用力 1、压力作用在平面上的总作用力 F=p.A
2、油液压力作用在曲面上的总作用力 FX=p.Ax FY=p.Ay
二、液体流动的连续性方程
ρV1A1= ρV2A2=常量即:V1A1= V2A2=常 量
它说明在同一管路中无论通流面积怎 么变化,只要没有泄漏,液体通过任 意截面的流量是相等的;同时还说明 了在同一管路中通流面积大的地方液 体流速小。通流面积小的地方则液体 流速大;此外,当通流面积一定时, 通过的液体流量越大,其流速也越大。
可见液压马达的排量q是决定其
输出扭矩的主要参数。

液压基本原理

液压基本原理

液压基本原理
液压系统是一种利用液体在封闭的容器中传递力和能量的技术。

其基本原理是根据波义耳定律,通过使用液体传递力量。

液压系统包括主要的液压泵、液压马达(或液压缸)、液压执行元件和液压控制元件等。

液压系统的工作原理如下:
1. 液压泵将液体从液压油箱中抽出,并提高其压力。

2. 高压液体通过液压管道传递到液压执行元件(液压马达或液压缸),施加力或产生运动。

3. 通过液压控制元件(如液控阀)的控制,调节液压系统的工作过程、方向、速度和压力等。

4. 工作完成后,液体返回液压油箱,液压系统进入待机状态。

液压系统的优点包括:
1. 可以传递大功率:液压系统可以传递更大的力和扭矩,适用于大型工程及机械设备。

2. 灵活性高:通过液压控制元件的组合和调节,可以实现多种工艺需求和运动模式的控制。

3. 传递效率高:液体是不可压缩的,液压系统的传动效率相对较高。

4. 运行稳定可靠:液压系统运行平稳、噪音低,寿命长,可靠性高。

液压系统的应用广泛,包括机械工程、航空航天、汽车工程、建筑工程等领域。

通过合理的设计和优化,可以使液压系统更加高效、安全和可靠。

液压控制系统

液压控制系统

液压控制系统:技术原理与应用实践液压控制系统,作为现代工业领域的关键技术之一,以其强大的动力传输和精确的控制性能,广泛应用于各种机械设备和工业生产过程中。

本文旨在剖析液压控制系统的技术原理,并结合实际应用场景,探讨其广泛用途及操作要点。

一、技术原理1. 基本概念液压控制系统,顾名思义,是利用液体作为传递介质,通过控制阀门、泵、缸等元件,实现能量传递和动作控制的系统。

其主要组成部分包括液压泵、液压缸、液压马达、控制阀、油箱、管路等。

2. 工作原理液压控制系统的工作原理基于帕斯卡原理,即在密闭容器内,液体受到的压力会均匀传递到容器各个方向。

当系统中的一个小面积活塞受到力的作用时,会在液体中产生压力,这个压力会传递到大面积的活塞上,从而实现力的放大和传递。

3. 控制方式(1)方向控制:通过控制换向阀,改变液体流动方向,从而实现液压缸或液压马达的正反转。

(2)压力控制:通过调节溢流阀、减压阀等元件,实现对系统压力的调节,保证系统稳定运行。

(3)流量控制:通过调节流量控制阀,改变液体流量,实现液压缸或液压马达的运动速度控制。

二、应用实践1. 工程机械液压控制系统在工程机械领域具有广泛的应用,如挖掘机、装载机、起重机等。

通过精确控制,实现机械设备的各种动作,提高作业效率。

2. 交通运输在交通运输领域,液压控制系统应用于汽车刹车系统、转向系统等,保障行车安全。

3. 冶金行业液压控制系统在冶金行业中,用于轧机、液压锻造机等设备,实现金属材料的加工成型。

4. 船舶工程在船舶工程中,液压控制系统应用于船舶的舵机、锚机等设备,保证船舶的航行安全。

5. 航空航天在航空航天领域,液压控制系统用于飞行器的起落架、襟翼等部位,实现飞行器的精确控制。

三、系统优势与挑战1. 优势(1)动力强大:液压系统能够实现大功率的输出,适用于需要大力量驱动的设备。

(2)精度高:通过精细的控制系统,可以实现高精度的运动控制,满足复杂作业需求。

液压系统结构

液压系统结构

液压系统结构
液压系统是一种通过液体传递能量来实现机械运动的系统。

液压系统由五个主要部分组成:能源、执行器、液体、控制和管路。

下面将对这五个部分进行详细介绍:
1. 能源:
液压系统的能源通常是液压泵。

液压泵将液体从低压区域移动到高压区域,从而提供系统所需的压力和流量。

液压泵可以是手动或自动控制的,具体取决于系统的使用方式。

2. 执行器:
执行器是液压系统中的核心部件,用于将液体转换为机械运动。

常见的执行器包括液压缸和液压马达。

液压缸用于产生直线运动,而液压马达则用于产生旋转运动。

3. 液体:
液压系统中使用的液体通常是矿物油,因为它具有出色的润滑性和防腐能力。

液体在系统中循环,通过泵提供压力和流量来推动执行器执行任务。

4. 控制:
液压系统的控制部分用于控制液体的流动方向和压力。

控制部分通常包括阀门、活塞和其他液压组件。

控制系统通常是手动或自动控制的,具体取决于系统的使用方式。

5. 管路:
管路是液压系统中的连接部分,用于将液体从一个组件传递到另一个组件。

管路通常由钢管或橡胶软管制成,具有耐压和耐腐蚀性能。

液压系统的结构可以根据使用的应用和需求进行调整和改变。

例如,一些系统可能需要使用不同类型的执行器或控制部件,以适应不同的应用场景。

无论是哪种液压系统,其结构都需要经过仔细的设计和调整,以确保其能够高效、可靠地工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章典型液压系统第一节第一节组合机床液压系统一、组合机床液压系统组合机床液压系统主要由通用滑台和辅助部分(如定位、夹紧)组成。

动力滑台本身不带传动装置,可根据加工需要安装不同用途的主轴箱,以完成钻、扩、铰、镗、刮端面、铣削及攻丝等工序。

图8—1液压系统工作原理所示为带有液压夹紧的他驱式动力滑台的液压系统原理图,这个系统采用限压式变量泵供油,并配有二位二通电磁阀卸荷,变量泵与进油路的调速阀组成容积节流调速回路,用电液换向阀控制液压系统的主油路换向,用行程阀实现快进和工进的速度换接。

它可实现多种工作循环,下面以定位夹紧→快进→工进→二工进→死挡铁停留→快退→原位停止松开工件的自动工作循环为例,说明液压系统的工作原理。

1. 夹紧工件夹紧油路一般所需压力要求小于主油路,故在夹紧油路上装有减压阀6,以减低夹紧缸的压力。

按下启动按钮,泵启动并使电磁铁4DT通电,夹紧缸24松开以便安装并定位工件。

当工件定好位以后,发出讯号使电磁铁4DT断电,夹紧缸活塞夹紧工作。

其油路:泵1→单向阀5→减压阀6→单向阀7→换向阀11→左位夹紧缸上腔,夹紧缸下腔的回油→换向阀11左位回油箱。

于是夹紧缸活塞下移夹紧工件。

单向阀7用以保压。

2.进给缸快进前进当工件夹紧后,油压升高压力继电器14发出讯号使1DT通电,电磁换向阀13和液动换向阀9均处于左位。

其油路为:进油路:泵1→单向阀5→液动阀9→左位行程阀23右位→进给缸25左腔回油路:进给缸25右腔→液动阀9左位→单向阀10→行程阀23右位→进给缸25左腔。

于是形成差动连接,液压缸25快速前进。

因快速前进时负载小,压力低,故顺序阀4打不开(其调节压力应大于快进压力),变量泵以调节好的最大流量向系统供油。

3.一工进当滑台快进到达预定位置(即刀具趋近工件位置),挡铁压下行程阀23,于是调速阀12接入油路,压力油必须经调速阀12才能进入进给缸左腔,负载增大,泵的压力升高,打开液控顺序阀4,单向阀10被高压油封死,此时油路为:进油路:泵1→单向阀5→换向阀9左位→调速阀12→换向阀20右位→进给缸25左腔回油路:进给缸25右腔→换向阀9左位→顺序阀4→背压阀3→油箱。

一工进的速度由调速阀12调节。

由于此压力升高到大于限压式变量泵的限定压力p B,泵的流量便自动减小到与调速阀的节流量相适应。

4.二工进当第一工进到位时,滑台上的另一挡铁压下行程开关,使电磁铁3DT通电,于是阀20左位接入油路,由泵来的压力油须经调速阀12和19才能进入25的左腔。

其他各阀的状态和油路与一工进相同。

二工进速度由调速阀19来调节,但阀19的调节流量必须小于阀12的调节流量,否则调速阀19将不起作用。

5.死挡铁停留当被加工工件为不通孔且轴向尺寸要求严格,或需刮端面等情况时,则要求实现死挡铁停留。

当滑台二工进到位碰上预先调好的死挡铁,活塞不能再前进,停留在死挡铁处,停留时间用压力继电器21和时间继电器(装在电路上)来调节和控制。

6.快速退回滑台在死挡铁上停留后,泵的供油压力进一步升高,当压力升高到压力继电器21的预调动作压力时(这时压力继电器入口压力等于泵的出口压力,其压力增值主要决定于调速阀19的压差),压力继电器21发出信号,使1DT断电,2DT通电,换向阀13和9均处于右位。

这时油路为:进油路:泵1→单向阀5→换向阀9右位→进给缸25右腔。

回油路:进给缸25左腔→单向阀22→换向阀9右位→单向阀8→油箱。

于是液压缸25便快速左退。

由于快速时负载压力小(小于泵的限定压力p B),限压式变量泵便自动以最大调节流量向系统供油。

又由于进给缸为差动缸,所以快退速度基本等于快进速度。

7.进给缸原位停止,夹紧缸松开当进给缸左退到原位,挡铁碰行程开关发出信号,使2DT、3DT断电,同时使4DT通电,于是进给缸停止,夹紧缸松开工件。

当工件松开后,夹紧缸活塞上挡铁碰行程开关,使5DT通电,液压泵卸荷,一个工作循环结束。

当下一个工件安装定位好后,则又使4DT、5DT均断电,重复上述步骤。

二、液压系统的特点本系统采用限压式变量泵和调速阀组成容积节流调速系统,把调速阀装在进油路上,而在回油路上加背压阀。

这样就获得了较好的低速稳定性、较大的调速范围和较高的效率。

而且当滑台需死挡铁停留时,用压力继电器发出信号实现快退比较方便。

采用限压式变量泵并在快进时采用差动连接,不仅使快进速度和快退速度相同(差动缸),而且比不采用差动连接的流量可减小一倍,其能量得到合理利用,系统效率进一步得到提高。

采用电液换向阀使换向时间可调,改善和提高了换向性能。

采用行程阀和液控顺序阀来实现快进与工进的转换,比采用电磁阀的电路简化,而且使速度转换动作可靠,转换精度也较高。

此外,用两个调速阀串联来实现两次工进,使转换速度平稳而无冲击。

夹紧油路中串接减压阀,不仅可使其压力低于主油路压力,而且可根据工件夹紧力的需要来调节并稳定其压力;当主系统快速运动时,即使主油路压力低于减压阀所调压力,因为有单向阀7的存在,夹紧系统也能维持其压力(保压)。

夹紧油路中采用二位四通阀11,它的常态位置是夹紧工件,这样即使在加工过程中临时停电,也不至于使工件松开,保证了操作安全可靠。

本系统可较方便地实现多种动作循环。

例如可实现多次工进和多级工进。

工作进给速度的调速范围可达6.6~660mm/min,而快进速度可达7m/min。

所以它具有较大的通用性。

此外,本系统采用两位两通阀卸荷,比用限压式变量泵在高压小流量下卸荷方式的功率消耗要小。

第二节M1432A型万能外圆磨床液压系统一、机床液压系统的功能M1432A型万能外圆磨床主要用于磨削IT5~IT7精度的圆柱形或圆锥形外圆和内孔,表面粗糙度在Ra1.25~0.08之间。

该机床的液压系统具有以下功能:1.能实现工作台的自动往复运动,并能在0.05~4m/min之间无级调速,工作台换向平稳,起动制动迅速,换向精度高。

2.在装卸工件和测量工件时,为缩短辅助时间,砂轮架具有快速进退动作,为避免惯性冲击,控制砂轮架快速进退的液压缸设置有缓冲装置。

3.为方便装卸工件,尾架顶尖的伸缩采用液压传动。

4.工作台可作微量抖动:切入磨削或加工工件略大于砂轮宽度时,为了提高生产率和改善表面粗糙度,工作台可作短距离(1~3mm)、频繁往复运动(100~150次/min)。

5.传动系统具有必要的联锁动作:(1)工作台的液动与手动联锁,以免液动时带动手轮旋转引起工伤事故。

(2)砂轮架快速前进时,可保证尾架顶尖不后退,以免加工时工件脱落。

(3)磨内孔时,为使砂轮不后退,传动系统中设置有与砂轮架快速后退联锁的机构,以免撞坏工件或砂轮。

(4)砂轮架快进时,头架带动工件转动,冷却泵启动;砂轮架快速后退时,头架与冷却泵电机停转。

二、液压系统的工作原理图8-2为M1432型外圆磨床液压系统原理图。

其工作原理如下:图8-2M1432A型万能外圆磨床1—1—先导阀2—换向阀3—开停阀4—互锁缸5—节流阀6—抖动缸7—挡块8—选择阀9—进给阀10—进给缸11—尾架换向阀12—快动换向阀13—闸缸14—快动缸15—尾架缸16—润滑稳定器17—油箱18—粗过滤器19—油泵20—溢流阀21—精过滤器22—工作台进给缸1.工作台的往复运动(1)工作台右行:如图所示状态,先导阀、换向阀阀芯均处于右端,开停阀处于右位。

其主油路为:进油路:液压泵19→换向阀2右位(P→A)→液压缸2右腔;回油路:液压缸9左腔→换向阀2右位(B→T2)→先导阀1右位→开停阀3右位→节流阀5→油箱。

液压油推液压缸带动工作台向右运动,其运动速度由节流阀来调节。

(2)工作台左行:当工作台右行到预定位置,工作台上左边的挡块拨与先导阀1的阀芯相连接的杠杆,使先导阀芯左移,开始工作台的换向过程。

先导阀阀芯左移过程中,其阀芯中段制动锥A的右边逐渐将回油路上通向节流阀5的通道(D2→T)关小,使工作台逐渐减速制动,实现预制动;当先导阀阀芯继续向左移动到先导阀芯右部环形槽,使a2点与高压油路a2′ 相通,先导阀芯左部环槽使a1→a1′接通油箱时,控制油路被切换。

这时借助于抖动缸推动先导阀向左快速移动(快跳)。

其油路是:进油路:泵19→精滤油器21→先导阀1左位(a2′→a2)→抖动缸6左端。

回油路:抖动缸6右端→先导阀1左位(a1→a1′)→油箱。

因为抖动缸的直径很小,上述流量很小的压力油足以使之快速右移,并通过杠杆使先导阀芯快跳到左端,从而使通过先导阀到达换向阀右端的控制压力油路迅速打通,同时又使换向阀左端的回油路也迅速打通(畅通)。

这时的控制油路是:进油路:泵19→精滤油器21→先导阀1左位(a2′→a2)→单向阀I2→换向阀2右端。

回油路:换向阀2左端回油路在换向阀芯左移过程中有三种变换。

首先:换向阀2左端b1′→先导阀1左位(a1→a1′)→油箱。

换向阀芯因回油畅通而迅速左移,实现第一次快跳。

当换向阀芯1快跳到制动锥C的右侧关小主回油路 (B→T2)通道,工作台便迅速制动(终制动)。

换向阀芯继续迅速左移到中部台阶处于阀体中间沉割槽的中心处时,液压缸两腔都通压力油,工作台便停止运动。

换向阀芯在控制压力油作用下继续左移,换向阀芯左端回油路改为:换向阀2左端→节流阀J1→先导阀1左位→油箱。

这时换向阀芯按节流阀(停留阀)J1调节的速度左移由于换向阀体中心沉割槽的宽度大于中部台阶的宽度,所以阀芯慢速左移的一定时间内,液压缸两腔继续保持互通,使工作台在端点保持短暂的停留。

其停留时间在0~5s内由节流阀J1、J2调节。

最后当换向阀芯慢速左移到左部环形槽与油路(b1→b1′)相通时,换向阀左端控制油的回油路又变为换向阀2左端→油路b1→换向阀2左部环形槽→油路b1′→先导阀1左位→油箱。

这时由于换向阀左端回油路畅通,换向阀芯实现第二次快跳,使主油路迅速切换,工作台则迅速反向启动(左行)。

这时的主油路是:进油路:泵19→换向阀2左位(P→B)→液压缸22左腔。

回油路:液压缸22右腔→换向阀2左位 (A→T1)→先导阀1左位(D1→T)→开停阀3右位→节流阀5→油箱。

当工作台左行到位时,工作台上的挡铁又碰杠杆推动先导阀右移,重复上述换向过程。

实现工作台的自动换向。

2.工作台液动与手动的互锁工作台液动与手动的互锁是由互锁缸4来完成的。

当开停阀3处于图8-2所示位置时,互锁缸4的活塞在压力油的作用下压缩弹簧并推动齿轮Z1和Z2脱开,这样,当工作台液动(往复运动)时,手轮不会转动。

当开停阀3处于左位时,互锁缸4通油箱,活塞在弹簧力的作用下带着齿轮Z2移动,Z2与Z1啮合,工作台就可用手摇机构摇动。

3.砂轮架的快速进、退运动砂轮架的快速进退运动是由手动二位四通换向阀12(快动阀)来操纵,由快动缸来实现的。

相关文档
最新文档