高中数学三角函数教学设计.doc

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学三角函数教学设计

写好教案是保证教学取得成功,提高教学质量的基本条件。为了能够很好的帮助各位老师备课,下面是我分享给大家的,希望大家喜欢!

高中数学第一单元三角函数教学设计

第二十四教时

教材:倍角公式,推导"和差化积"及"积化和差"公式

目的:继续复习巩固倍角公式,加强对公式灵活运用的训练;同时,让学生推导出和差化积和积化和差公式,并对此有所了解。

过程:

一、复习倍角公式、半角公式和万能公式的推导过程:

例一、已知,,tan = ,tan = ,求2 +

(《教学与测试》P115 例三)

解:

又∵tan2 < 0,tan < 0 ,

2 + =

例二、已知sin cos = ,,求和tan的值

解:∵sin cos =

化简得:

∵ 即

二、积化和差公式的推导

sin( + ) + sin( ) = 2sincos sincos = [sin( + ) + sin( )]

sin( + ) sin( ) = 2cossin cossin = [sin( + ) sin( )]

cos( + ) + cos( ) = 2coscos coscos = [cos( + ) + cos( )]

cos( + ) cos( ) = 2sinsin sinsin = [cos( + ) cos( )]

这套公式称为三角函数积化和差公式,熟悉结构,不要求记忆,它的优点在于将"积式"化为"和差",有利于简化计算。(在告知公式前提下)

例三、求证:sin3sin3 + cos3cos3 = cos32

证:左边 = (sin3sin)sin2 + (cos3cos)cos2

= (cos4 cos2)sin2 + (cos4 + cos2)cos2

= cos4sin2 + cos2sin2 + cos4cos2 + cos2cos2

= cos4cos2 + cos2 = cos2(cos4 + 1)

= cos22cos22 = cos32 = 右边

原式得证

三、和差化积公式的推导

若令 + = , = ,则,代入得:

这套公式称为和差化积公式,其特点是同名的正(余)弦才能使用,它与积化和差公式相辅相成,配合使用。

例四、已知cos cos = ,sin sin = ,求sin( + )的值

解:∵cos cos = ,①

sin sin = ,②

四、小结:和差化积,积化和差

五、作业:《课课练》P36—37 例题推荐 1—3

P38—39 例题推荐 1—3

P40 例题推荐 1—3

高中数学三角函数的诱导公式教学设计

1 教材分析

1.1 教材的地位与作用

本节课教学内容"诱导公式(二)、(三)"是人教版《高中代数》上册第二章2.6节内容.它既是学生已学习过的三角函数定义、诱导公式(一)等知识的延续和拓展,又是推导诱导公式(四)、(五)的理论依据.是本章"任意角的三角函数"一节及全章中起着承上启下作用的重要纽带.求三角函数值是三角函数中的重要内容.诱导公式是求三角函数值的基本方法.诱导公式的重要作用是把求任意角的三角函数值问题转化为求0~90"角的三角函数值问题,诱导公式的推导过程,体现了数学的数形结合和归纳转化思想方法,反映了从特殊到一般的数学归纳思维形式.这对培养学生的创新意识、发展学生的思维能力、掌握数学的思想方法具有重大的意义

1.2 教学重点与难点

1.2.1 教学重点

诱导公式的推导及应用

1.2.2 教学难点

相关角终边的几何对称关系及诱导公式结构特征的认识.

2 目标分析

根据教学大纲的要求和教学内容的结构特征,依据学生学习的心理规律和素质教育的要求,结合学生的实际水平,本节课的教学目标如下

2.1 知识目标

1)识记诱导公式.

2)理解和掌握公式的内涵及结构特征,会初步运用诱导公式求三角函数的值,并进行简单三角函数式的化简和证明.

2.2 能力目标

1)通过诱导公式的推导,培养学生的观察力、分析归纳能力,领会数学的归纳转化思想方法.

2)通过诱导公式的推导、分析公式的结构特征,使学生体验和理解从特殊到一般的数学归纳推理思维方式.

3)通过基础训练题组和能力训练题组的练习,提高学生分析问题和解决问题的实践能力.

2.3 情感目标

1)通过诱导公式的推导,培养学生主动探索、勇于发现的科学精神,培养学生的创新意识和创新精神.

2)通过归纳思维的训练,培养学生踏实细致、严谨科学的学习习惯,渗透从特殊到一般、把未知转化为已知的辨证唯物主义思想.

3 过程分析

3.1 创设问题情境,引导学生观察、联想,导入课题

1)提问:三角函数定义、诱导公式(一)及其结构特征.

2)板书:诱导公式(一).

sin(k360+)=sin,cos(k360+)=cos.

tan(k360+)=tan,cot(k360+)=cot(kZ)

结构特征:①终边相同的角的同一三角函数值相等.

②把求任意角的三角函数值问题转化为求0~360角的三角函数值问题.教学设想通过提问让学生温习、重视已有相关知识,为学生学习新知识作铺垫.

3)学生练习:试求下列三角函数值

sin1110,sin1290.

教学设想由已有知识导出新的问题,为学习新知识创设问题情境,以引起学生学习需要和学习兴趣,激发学生的求知欲,启迪学生思维的火花.

4)介绍单位圆概念后,引导学生观察演示(一)并思考下列问题:

①210能否用(180+)的形式表达(0<<90)?(210=180+30)

②210与30角的终边位置关系如何?(互为反向延长线或关于原点对称)

③设210,30角的终边分别交单位圆于点P,P,则点P与P的位置关系如何?(关于原点对称)

④设点P(x,y),则点P的坐标怎样表示?[P(-x,-y)]

⑤sin210与sin30的值的关系如何?

教学设想通过微机动态演示,引导学生发现210与30角的终边及其与单位圆交点关于原点对称关系,借助三角函数定义,寻找sin210与sin30值的关系,达到转化为求0~90角三角函数值的目的.

学生通过主动探索、发现解决问题的途径,体验和领会数形结合与归纳

相关文档
最新文档