minitab实例分析 (1)
Minitab实际应用
Minitab还提供了强大的数据管理和过程控制功能,可以帮助用户管理和跟踪数据, 以及进行过程改进和控制。
Minitab与其他统计软件的比较
与其他统计软件相比,Minitab具有 易用性和直观性强的特点,使得用户 可以快速学习和掌握各种统计方法。
描述性统计量
计算数据的均值、中位数、众数、标准差等统计 量,以全面了解数据的基本特征。
数据筛选和整理
对数据进行筛选和整理,去除异常值和缺失值, 确保数据质量。
推论性统计分析
参数估计
使用参数估计方法,对总体参数进行估计,如总体均 值和总体比例。
假设检验
通过假设检验方法,对总体参数进行假设检验,判断 假设是否成立。
方差分析
使用方差分析方法,比较不同组数据的均值是否存在 显著差异。
图表制作与展示
01
02
03
直方图
使用直方图展示数据的分 布情况,直观地了解数据 的形状和变化趋势。
箱线图
使用箱线图展示数据的中 心趋势、异常值和离群点。
散点图
使用散点图展示两个变量 之间的关系,判断是否存 在相关性。
03
Minitab在质量控制中的应用
制定改进计划
利用Minitab的流程图和矩阵工具,制 定详细的改进计划和时间表。
测量阶段的应用
数据收集
使用Minitab的数据输入和整理功能,确保数据准确无误地录 入。
测量系统分析
通过Minitab的统计分析工具,评估测量系统的稳定性和准确 性。
分析阶段的应用
描述性统计分析
利用Minitab的图表和统计功能,对数据进行初步的描述性分析,了解数据的 分布和异常值情况。
MSA测量系统分析之Minitab中文应用案例(步骤清晰实用)精选全文
应多数值在控 制限外
在控制限外表示过程实际 的变差大,同时表明测量 能力高。
均值
部件对比图:可显示在研究过程中所测量的并按部件排列的所有测量结果。测量结果用 点表示,平均值用带十字标的圆形符号表示。 判断:1.每个部件的多个测量值应紧靠在一起,表示测量的重复再现性的变差 小。
2.各平均值之间的差别应明显,这样可以清楚地看出各部件之间的差别。 例:图中的7#、10#重复测量的精确度较其他点要差,如果测量系统的R&R偏大时,可 以对7#、10#进行分析。
所有点落在管理界限内 ->良好
大部分点落在管理界限外 ->主变动原因:部品变动
->良好
->测量值随部品的变动 ->测量值随OP的变动
->对于部品10,OP有较大分歧;
M--测量系统分析: 离散型案例(名目型):gage名目.Mtw
背景:3名测定者对30部品反复2次TEST
检查者1需要再教育; 检查者3需要追加训练; (反复性)
(2).在量具信息与选项栏分别填入相关资料与信息。
填入相关 资料
注:其他选项若无要求,选择 默认项,不做改动。
一般为6 倍标准差
零件公差 规格
4.5、结果生成:数据表与图表
图表分析表
数据会话表
5.结果分析: (1)图表分析
变异分量条形图:展示了会话窗口中的计算结果,此图显示整个散布中R&R 占的比重是否充分小。 判断:量具R&R,重复(Repeat), 再现性(Reprod)越小越好。
A—假设测定:案例:2sample-t.MTW (2): 2-sample t(单样本)
① 正态性验证:
<统计-基本统计- 正态性检验 : >
minitab 分类模型案例
minitab 分类模型案例Minitab是一种常用的统计分析软件,它可以用于各种分类模型的建立和分析。
下面列举了10个基于Minitab的分类模型案例,来说明其在实际应用中的作用和效果。
1. 疾病诊断模型:医院收集了大量患者的临床数据和诊断结果,利用Minitab建立了一个疾病诊断模型。
该模型可以根据患者的临床指标,如血压、血糖、血脂等,预测患者是否患有某种疾病,并给出相应的诊断建议。
2. 信用评分模型:银行通过Minitab分析了大量客户的信用记录和还款情况,建立了一个信用评分模型。
该模型可以根据客户的个人信息、财务状况和信用历史等因素,预测客户的还款能力和风险等级,并据此决定是否给予贷款。
3. 市场细分模型:一家电商公司利用Minitab分析了大量用户的购物行为和偏好数据,建立了一个市场细分模型。
该模型可以根据用户的购买记录、浏览行为和兴趣标签等,将用户分为不同的市场细分群体,并据此进行个性化推荐和营销策略。
4. 员工离职预测模型:一家公司利用Minitab分析了员工的离职记录和个人信息,建立了一个员工离职预测模型。
该模型可以根据员工的职位、工龄、绩效等因素,预测员工是否有离职倾向,并据此采取相应的人力资源管理措施。
5. 欺诈检测模型:一家保险公司利用Minitab分析了保单的理赔记录和客户信息,建立了一个欺诈检测模型。
该模型可以根据保单的理赔金额、申请时间、客户的历史记录等因素,预测保单是否存在欺诈嫌疑,并据此采取相应的调查和处理措施。
6. 产品质量分类模型:一家制造公司利用Minitab分析了产品的质量数据和生产参数,建立了一个产品质量分类模型。
该模型可以根据产品的生产批次、工艺参数、质量指标等因素,预测产品的合格率和质量等级,并据此进行质量控制和改进。
7. 股票市场预测模型:一家投资公司利用Minitab分析了股票市场的历史数据和宏观经济指标,建立了一个股票市场预测模型。
该模型可以根据股票的历史价格、交易量、市场情绪等因素,预测股票的涨跌趋势,并据此进行投资决策和风险管理。
1.minitab之MSA分析实例
15% 总 计 节 约 金 额=月 平均工 资*节约 人数=5200* 63人 =32.76万 公 司 收 入 金 额=月 平均工 资*节约 人数*50% =5200* 63人 *50% =16.38万 员 工 激 励 金 额=月 平均工 资*节约 人数*50% =5200* 63人 *50% =16.38万
部门
提升总金额
1
一厂品质部
人 均 值 +523
2
3
4
5
6
7
总计
备 注 : 第 二 阶段激 励根据 生产计 件效果 及品质 第二阶 段减人 情况确 定绩效 激励方 案。
拟制:
审核:
批准:
二厂品质部
三厂品质部 16.38万 四厂品质部
客服
来料
实验室
线体数量 减少 560 13% 600 0% 720 31% 550 26% 6% 25% 0% 376
部门
提升总金额
1
一厂品质部
人 均 值 +523
2
3
4
5
6
7
总计
备 注 : 第 二 阶段激 励根据 生产计 件效果 及品质 第二阶 段减人 情况确 定绩效 激励方 案。
拟制:
审核:
批准:
二厂品质部
三厂品质部 16.38万 四厂品质部
客服
来料
实验室
线体数量 减少 560 13% 600 0% 720 31% 550 26% 6% 25% 0% 376
313
原编制 76 92 90 84 16 8 10 313
编制人数 80
103 73 75 15 6 10
优化后编制 66 92 62 62 15 6 10 63
MSA测量系统误差分析Minitab实例解读
确定基准值
随机抽取基准值不同的五个零件(包 括量具的全程)。 用全尺寸检验测量每个零件以确定其 准值并确认了包括量具的操作范围。 通常用这个仪器的操作者中的一人测 量每个零件m≥10次。
测量样件
计算、作图
判断
17
MSA
测量系统的线性与偏倚分析
选取标准样本
确定基准值
把5个样件送到一个比待分析的测量系统 更高级别的测量系统上,对每一个样件分 别进行多次测量(≥10),分别取其平均 值,得到5个基准值。
27
MSA
重复性与再现性分析
选择交叉或嵌套分析法的原因:
量具重复性和再现性研究确定观测到的过程变异中有多少是因测量系统变异 所致。使 用 Minitab 可以执行交叉或嵌套量具 R&R 研究。 ①当每个部件由每个操作员多次测量时,请使用量具 R&R 研究(交叉)。 ②当每个部件只由一名操作员测量(如在破坏性试验 中)时,请使用量具 R&R 研究( 嵌套)。在破坏性试验中,测量特征在测量过程后与其在开始时不同。撞击试验即是 破坏性试验的一个例子。 选择交叉或嵌套 如果需要使用破坏性试验,必须能够假定一批中所有部件的相同程度足够高,以致于 可以把它们当作是同一部件。如果无法做该假定,则一批中部件之间的变异将掩盖测 量系统变异。 如果可以做该假定,那么,是选择交叉量具 R&R 研究还是嵌套量具 R&R 研究进行破 坏性试验取决于测量过程的设置方式。如果所有操作员都测量每一批部件,则使用量 具 R&R 研究(交叉)。如果每个批次只由一名操作员测量,则必须使用量具 R&R 研 究(嵌套)。实际上,只要操作员测量独特的部件,就属于嵌套设计。
Minitab教程案例总结
Minitab
- 非母数分析
品质管理
- 品质管理工具 - 计数值数据分析 - 测定系统分析 - 管理图分析 - 计量值数据分析 - 工程能力分析
信赖性 及 数据分析
- 分布分析 - 数据的回归分析 - 受益分析
实验计划
- 要因 实验计划 - 混合 实验计划 - 反应表面 实验计划 - Robust 实验计划
分析、离散资料分析、非母数统计分析等构成
Graph : 为编辑 Graph的Graph Layout, Chart副菜单及文字Graph构成 Editor : 不使用菜单,使用命令直接作业及Clipboard setting等副菜单 Window : 由控制 Window 画面构成的副菜单及 管理 Graph 画面的副菜单构成
打印
打印当前选择 window : File -> Print
练习) 把 当前的 Worksheet 保存为 Temp.mtw, 并关闭后重新打开
(#) 7
Minitab 菜单(Edit)
<Cell的 修改/复制/删除>
用鼠标拖动工作窗口 按鼠标的右键会出现 pop up menu 通过此项可编辑 把 Col/Row 的全部作为工作的对象 时,选择上端/左侧。 恢复已删除资料
练习) 在平均 300, 标准偏差5的正态分布当中抽出 40个 sample 保存到 C5上。
(#) 12
Minitab 菜单(Window)
Minitab
window : 集合了把 Minitab的所有 window 调节的命令和总体管理的 Graph, Worksheet的命令等, 全面性 Window 的运营命令。
(#)
13
minitab应用实例
PIVs
客户经理 经验 每月工作时间 客户类型 销售区域
KPOV
} 每周销售拜访数量
小结一下这个“研究”是为了确保收集到正确的数据!
如何测量拜访次数?
收集数据前...
• 记录销售拜访的指导方针:
-与客户面对面 -至少有30分钟 -讨论客户的问题,新产品报价,客户产品需求,促销等。
•测量系统分析:
•说明客户的交互作用 •要求销售员给一些情形分类,用“销售拜访”或“无” •培训所有客户经理直到他们能100% 正确分类 •销售员用数据收集表记录调查结果
抽取样本!
抽样
起草项目数据收集计划
建立数据 收集目标
决定 测量对象
决定 如何测量
观察少数 . . . 以估计总体
第1步
起草项目数据收集计划
建立数据 收集目标
决定 测量对象
决定 如何测量
收集数据的目标或期望结果是什么? 一般来讲,为了达到目的需要收集什么数据? 为收集数据,你将监测什么过程和产品?
• 数据来源: 销售拜访登记簿
• 问题的具体化:
– 情况: 根据客户调查,销售拜访在月初时很少,且间隔很长;而在月末时戏剧性地 增加很多。
– 程度: 至少有3个客户由于LLC缺乏与他们的联系而降低了交易量,并主要由此原 因将生意转给了其竞争对手。
– 现状: 测量单位是每周的拜访数量。以前我们只有来自客户经理们关于每周拜访数 的估计。这样,我们将需要收集数据以了解每周实际拜访数。
销售l 拜访
是否达到销售拜访的目标 (35个/周)?
•• •• •
时间序列图或趋势图
为什么使用? • 研究一段时间内的数据是否有一定的趋势
如何使用? • 随着时间变化的线图. • 图形可能反映出过程的变化.
minitab实例分析(1)
查出力 1-β = 0.8
差值:u0-ua =25-30=-5
功效值(查出力): 1-β =0.8 标准差:sigma=10
A—假设测定-决定标本大小:
(2):1-sample T(未知u)
<统计-功效和样本数量- 1-sample t: >
背景:Ha~N(30,100/25) H0~ N(25,100/n )-为测定分布差异的标本大小
H0: u1=u2=…=un
Ha: 至少一个不等;
背景:确认三根弹簧弹力比较?
P-Value < 0.05 → Ha → u不等,有差异;
信赖区间都重叠 -> u无有意差; 1和2可以说无有意差,1和3有有意差;
A—ANOVA(分散分析): 两个以上母集团的平均是否相等;
(1): Two-way A(2因子多水平数)
A—假设测定: Chi-Square-1.MTW
应用一: 测定频度数的同质性:
(5): Chi-Square t(离散-单样本)
H0: P1=P2=…=Pn Ha: 至少一个不等;
背景:确认4个不同条件下,某不良是否有差异?
P-Value > 0.05
→ Ho →P1 = P2=…(无差异)
A—假设测定: Chi-Square-2.MTW
背景:3名测定者对30部品反复2次TEST
检查者1需要再教育; 检查者3需要追加训练; (反复性)
个人与标准的一致性 (再现性?)
两数据不能相差较大, 否则说明检查者一致的 判定与标准有一定差异
M--测量系统分析: 离散型案例(顺序型):散文.Mtw 背景:3名测定者对30部品反复2次TEST
minitab实例分析
A—假设测定-决定标本大小:
(2):1-sample T(未知u)
<统计-功效和样本数量- 1-sample t: >
背景:Ha~N(30,100/25) H0~ N(25,100/n )-为测定分布差异的标本大小
有意水平 α = 0.05
查出力 1-β = 0.8
差值:u0-ua =25-30=-5
背景:为确认两台设备不良率是否相等,
A: 检查1000样本,检出14不良, B: 检查1200样本,检出13不良, 能否说P1=P2? (α = 0.05 )
P-Value > 0.05 → Ho →P1 = P2
minitab实例分析
A—假设测定: Chi-Square-1.MTW
应用一: 测定频度数的同质性:
< 统计-基本统计量- 1 proportion t: >
能否说P=1%? (α = 0.05 )
P-Value > 0.05 → H0 → P=0.01
minitab实例分析
A—假设测定:
(4): 2 proportion t(离散-单样本)
< 统计-基本统计量- 2 proportion t: >
最大的data minitab实例分析
③ 统计性分析:
实施对因子效果的t-test,判断与data有意的因子。 A、B对结果有意;AB交互对结果无有意;
通过分散分析,判断1次效果、2次效果的有意性; - 主效果有有意, - 交互效果无有意。
显示因子的水准不能线性变换 (Coded) 时的回归系数. - Coded是指实际因子水准 (-1, +1)变换为线性变换。
背景:H0:P= 0.9
msa minitab例题详解
msa minitab例题详解MSA(Measurement System Analysis)是对测量系统进行全面评估的一种统计技术,主要用于确定测量系统测量的准确性、重复性和再现性。
在质量控制领域,MSA是确保测量数据准确性的重要手段。
以下是一个使用MINITAB软件进行MSA分析的示例:1. 假设我们要分析一个测量设备在测量长度方面的准确性,首先需要收集数据。
可以请3名检验员使用该设备对同一个部件进行多次测量,得到一系列的测量值。
将这些数据记录在表格中,包括检验员编号、部件编号、测量长度等。
2. 将数据输入MINITAB软件中,选择“质量工具”-“量具研究”-“量具R&R研究(交叉)”。
3. 在弹出的对话框中,输入检验员编号、部件编号和测量长度等变量,并指定部件号和检验员作为分类变量。
点击“确定”开始分析。
4. MINITAB软件会自动进行方差分析,计算测量系统的重复性和再现性。
分析结果会显示量具的R&R值、P/T值、可区分类别数等指标。
5. 根据分析结果,可以对测量系统进行评估。
如果R&R值和P/T值都大于30%,则说明测量系统的重复性和再现性较差,需要采取措施改进。
如果可区分类别数小于5,则说明测量系统的分辨力较低,也需要进行改进。
6. 如果需要进一步了解方差的构成,可以在MINITAB中选择“方差分量”,软件会分别计算重复性和再现性的方差分量,以及合计量具R&R的方差分量。
这些信息有助于了解测量系统各组成部分对总变异的贡献。
7. 除了方差分析外,还可以使用线性回归分析等方法对测量系统进行分析,以评估其准确性和可靠性。
例如,可以请更高一级别的测量设备对同一部件进行多次测量,取其平均值作为真值,然后将该值与被评估设备的测量值进行线性回归分析,以评估被评估设备的准确性。
8. 在完成MSA分析后,可以根据分析结果采取相应的措施,如对设备进行校准、培训检验员等,以提高测量系统的准确性和可靠性。
用Minitab进行公差分析实例
产生的8组随机数据表如图源自根据尺寸链设置表达式和存储单元
输入step的规格
结果如图
Example one 尺寸链如下:
尺寸链尺寸及公差
TOLERANCE ANALYSIS DATA SHEET
Name of Stack-Up: ODD bezel to D part - Step(x) Dimension Identification 1 ODD Bezel: Cav. Side to rib on code side 2 ODD: Tray盤至Device鐵殼 3 Length of ODD Device 4 ODD conn: Mapping position to align pin 5 ODD conn: Align pin size 6 Assy Gap 7 Lower Case: Align hole size 8 Lower Case: Align hole to edge 9 Nominal Positive Negative Tolerance Note (mm) (mm) + 17.290 0.900 17.290 0.900 0.100 0.200 0.200 0.100 2.500 0.050 2.600 149.250 0.050 0.100 0.050 0.100
126.100 126.100 4.750 2.500 0.050 2.600 149.250 4.750
用Minitab进行公差 1. 定义表头
①输入随机数据个数 2. 产生正态随机数据
②左击,删除以前存储列 再选择左面的存储列 ③输入尺寸值 ④输入公差/3
尺寸1 产生的随机数据如图, 依次类推产生8个随机数据
minitab之MSA分析实例
③ 统计性分析:
④ 确认此后试验方向:
通过分散分析,判断1次效果、2次效果的有意性;
- 主效果有有意, - 交互效果无有意。
最佳方向
I — DOE: (3):2水准部分配置
① 因子配置设计:
背景: - 反应值 : 收率(Yield) - 因 子 : 流入量(10, 15), 触媒(1, 2), 旋转数(100,120), 温度(140, 180), 浓度( 3, 6)
假设P:H0的P值(0.9)
母比率0.8 实际上是否小于0.9,需要样本217个
A—假设测定:案例:Camshaft.MTW (1): 1-sample t(单样本)
背景:对零件尺寸测定100次,数据能否说明与目标值(600)一致 (α = 0.05 )
P-Value > 0.05 → Ho(信赖区间内目标值存在) →可以说平均值为600
在中心点实验的次数!
一次试验-- (2)统计性分析:
实施对因子效果的 t-test, 判断有意的因子。 -A, B 有意;
通过分散分析判断1次效果、交互作用及曲率效果的有意性。 - 1次效果(Main Effect) 有意; - 弯曲不有意,故而没有曲率效果。
一次试验-- (3)确认最大倾斜方向:
-> 确认哪个因子影响收率,利用2(5-1)配置法
表示2 5-1 部分配置的清晰度 和部分实施程度.
输入data:
② 曲线分析:
-B、D、E有意;
-在A=10,B=2,C=120,D=180,E=3时, Y=95最佳;
-BD、DE有交互作用;
③ 统计性分析:
实施t-test,判断有意因子 B、D、E、BD、DE有意