概率论与数理统计:矩与协方差矩阵的概念
概率论-4.4 矩和协方差矩阵
3
目录
上页
下页
返回
对n维随机变量来说,可作类似推广:
其中
c11 c12 L c1n
C
c21
c22
L
c2n
M M
M
Байду номын сангаас
cn1 cn2 L cnn
cij Cov(Xi , X j ) E Xi E(Xi ) X j E(X j ) ,i, j 1, 2,L , n
称C为n维随机变量 (X1, X 2,L , X n ) 的协方差矩阵。
2020年4月26日星期日
2
目录
上页
下页
返回
令
X1 X2
它的转置为
E( )
X1, X2 这时ξ的数学期望为
E(X1)
E
(
X
2
)
类似于一维随机变量,可以对ξ定义二阶中心矩:
E[
E(
)][
E(
)]
E
X1 X2
E(X1) E(X2)
(
X1
E(
X1),
X
2
E(
X
2
))
E
X
2020年4月26日星期日
1
目录
上页
下页
返回
注意到
D(X ) E X E(X )2
自然地推广到
E X E(X )k
称上式为X的k阶中心矩。
E(X kY l ), E X E(X )k Y E(Y )l
分别称为X的k+l阶混合矩和k+l阶混合中心矩。 特别地,当k=1,l=1时,二阶混合中心矩就是协方差。
第四节 矩和协方差矩阵
由于
4.3 协方差与相关系数及矩与协方差矩阵
由f ( x , y ) f X ( x ) fY ( y )可得X与Y不独立.
注意 1、设有随机变量X,Y,下列事实是等价的:
(1) cov( X ,Y ) 0
( 2) X与Y不相关
( 3) E ( XY ) E ( X ) E (Y ) (4) D( X Y ) D( X ) D(Y )
性质6 若X ,Y相互独立, 则cov( X ,Y ) 0;
性质7 若U ,V为随机变量, 且E (U 2 ), E (V 2 )都存在, 则
[ E (UV )]2 E (U 2 ) E (V 2 );
取U X E ( X ),V Y E (Y ), 则有 [cov( X ,Y )]2 D( X ) D(Y ).
定义3 若 cov( X ,Y ) 0或 XY 0,
则称随机变量X与Y不相关.
几点说明:
(1) cov( X ,Y ) E ( XY ) E ( X ) E (Y ), cov( X , X ) D( X ).
( 2)离散型 : cov( X ,Y ) [ xi E ( X )][ y j E (Y )] pij .
定义2
设( X ,Y )是二维随机变量 若 cov( X ,Y ), D( X ), D(Y )都 , cov( X ,Y ) 存在, 且D( X ) 0, D(Y ) 0, 则称 为随 D( X ) D(Y ) 机变量X与Y的相关系数或标准协方 , 记为 XY ,即 差
XY
cov( X ,Y ) . D( X ) D(Y )
ex3.设随机变量X的概率分布密度为 1 x f ( x) e x , 2 (1)求X的数学期望E(X)和方差D(X). (2)求cov(X,|X|),并问X与|X|是否不相关? (3)问X与|X|是否相互独立?为什么? 1 x 解 (1) EX xf ( x )dx x e dx 0, 2 DX E[ X E ( X )]2 E ( X 2 )
《概率论》第4章矩、协方差矩阵
为 k l 阶混合中心矩
E假(定X )其中各数学1 阶期原望点都矩存在
D“矩(X”) 是来自于2物阶理中学心中矩力矩的概念
Cov(X y,Y )
2 阶混合中心矩
y f (x)
O
x d第x 四章 随机x变量的数字特征
§4 矩、协方差矩阵
2/8
对于二维r.v ( X1,,X记2 )
c11 E[( X1 E( X1))2 ] D( X1) c12 E[(X1 E(X1))(X2 E(X2 ))] Cov(X1, X 2 )
7/8
(X1, X2 ,L , Xn ) ~ N(,C) X1, X2,, Xn 的任一线性
组合 l1X1 l2 X2 ln Xn 服从一维正态分布 正态r.v的线性变换不变性:设
(X1, X2 ,, Xn ) ~ N(,C) 令
Y1 a11 X1 a12 X2 a1n Xn
Y2
§4 矩、协方差矩阵
1/8
对于 r.v X ,Y , 称
E( X k ) ( k 1, 2,)
为 k阶原点矩,简称 k阶矩 .称
E[( X E( X ))k ] ( k 2,3,)
为 k阶中心矩 .称
E( X kY l ) (k,l 1, 2,)
为 k l 阶混合矩 .称
E[( X E(X ))k (Y E(Y ))l ] (k,l 1, 2,)
)e2 xp2{
12(x(X1)1( y)2TC21)(X
(y
)}2
2 2
)2
]}
与一维记再正记C态Xr.vcc12密11xyf度c(c,1x222)函数比11211较2, e2则xp{122(x2
)
2
}
矩协方差矩阵
26 12
设(X1, X2,…, Xn) 是n 维随机变量, Xi与Xj的相关系数 ρij ( i , j =1,2,…,n )存在,
11 12 1n
则称矩阵
R
...2.1........2.2...............2
n
n1 n2 nn
为该随机变量的相关矩阵.
X+Y 与3X –Y 的相关系数为
Cov( X Y ,3X Y ) 2 1
D( X Y ) D(3X Y ) 4 16 4
(X+Y ,3X –Y)的协方差矩阵
C
4 2
2 16
(X+Y ,3X –Y)的相关矩阵
R
1 0.25
C C11 C21
C12 C22
2 1
1
2
1
2 2
2
例1 若 D( X ) 1, D(Y ) 4, XY 1 4,
求(X+Y ,3X –Y)的协方差矩阵和相关矩阵.
解:
Cov(X ,Y ) XY
D( X )
D(Y )
思考题答案:
协方差矩阵的主对角线上的元素Cii是相应的第i个 随机变量的方差;
相关矩阵的主对角线上的元素ρii都为1.
练习题:
1.已知随机变量X,Y 的联合分布为
XY 2 0 1 1 0.30 0.12 0.18
1 0.10 0.18分布随机变量 (X,Y) 的期望向量μ和协 方差矩阵V,分别是
C22 E{[X2 E( X2 )]2} D( X2 )
概率论课件矩、协方差矩阵
中心矩是相对于均值(期望值)的矩,用于描述随机变量分布的形状和离散程 度。
标准化矩
标准化矩是对中心矩进行标准化处理后的矩,用于比较不同随机变量的分布特 性。
样本矩与总体矩
பைடு நூலகம்样本矩
样本矩是从总体中抽取样本后计算得到的矩,用于估计总体矩。
总体矩
总体矩是描述总体分布特性的矩,是样本矩的极限值。
03 协方差矩阵
详细描述
分析矩和协方差矩阵需要使用相关的统计方 法和技巧,如主成分分析、因子分析、聚类 分析等。通过对矩和协方差矩阵的分析,可 以提取数据集中的主要特征、发现变量之间 的潜在关系、对数据进行分类或聚类等。
实例三:数据集的矩和协方差矩阵应用
总结词
数据集的矩和协方差矩阵在概率论中有着广泛的应用 ,如统计推断、假设检验、回归分析等。
THANKS FOR WATCHING
感谢您的观看
VS
第二阶原点矩(即方差)
协方差矩阵的对角线元素是各个随机变量 的方差,非对角线元素是各个随机变量的 协方差。
协方差矩阵与方差-协方差矩阵的关系
方差-协方差矩阵是一个包含各个随机 变量的方差和协方差信息的矩阵,而 协方差矩阵只包含各个随机变量的协 方差信息。
方差-协方差矩阵是协方差矩阵的一个 扩展,它同时包含了随机变量的方差 信息,而协方差矩阵只包含随机变量 的协方差信息。
详细描述
在统计推断中,矩和协方差矩阵可用于估计总体参数和 进行假设检验。例如,利用样本矩估计总体矩,然后使 用这些估计值进行假设检验或置信区间的计算。在回归 分析中,矩和协方差矩阵可用于估计回归系数和进行模 型诊断。通过分析回归模型的矩和协方差矩阵,可以检 验模型的假设是否成立、诊断模型的问题等。此外,在 时间序列分析和金融数据分析等领域,矩和协方差矩阵 也具有重要的应用价值。
协方差矩阵的概念
协方差矩阵的概念协方差矩阵是概率论和统计学中一个重要的概念,用于描述多维随机变量之间的关联程度。
它是一个对称的矩阵,其中包含了各个随机变量之间的协方差以及它们的方差。
协方差是一种描述两个随机变量之间关系的统计量,它衡量了两个随机变量的变化趋势是否一致。
具体而言,对于随机变量X和Y,它们的协方差定义为E[(X - E[X])(Y - E[Y])],其中E[·]表示期望值操作符。
如果协方差大于0,则表明X和Y 之间存在正相关关系;如果协方差小于0,则表明X和Y之间存在负相关关系;如果协方差等于0,则表明X和Y之间没有线性关系。
对于多个随机变量的情况,我们将它们的协方差组成一个矩阵,即协方差矩阵。
设有n个随机变量X1,X2,...,Xn,它们的协方差矩阵记为Σ,其中Σ(i, j)表示随机变量Xi和Xj之间的协方差。
协方差矩阵是一个对称矩阵,满足以下性质:1. 对角线上的元素是随机变量的方差,即Σ(i, i) = Var(Xi);2. 非对角线上的元素是对应两个随机变量的协方差,即Σ(i, j) = Σ(j, i)。
协方差矩阵的作用主要体现在以下几个方面:1. 描述随机变量之间的关联性:协方差矩阵可以直观地展示多个随机变量之间的相关性。
通过对协方差矩阵进行分析,可以了解随机变量之间的关系强度和方向。
2. 变量选择与降维:通过协方差矩阵,可以判断不同随机变量之间的相关性。
在建模分析中,我们可以通过分析协方差矩阵来选择与目标变量相关性最强的变量,去除冗余的变量,从而实现降低维度的目的。
3. 风险度量:在金融领域,协方差矩阵可用于衡量资产之间的风险关系。
通过计算资产收益率之间的协方差矩阵,可以估计投资组合的风险水平,为资产配置、风险控制提供依据。
4. 生成随机样本:协方差矩阵可用于生成符合特定相关性要求的随机样本。
通过给定均值向量和协方差矩阵,可以使用相关多元正态分布的特性生成具有一定相关性的随机样本。
4-4协方差矩阵
矩与协方差矩阵
二、协方差矩阵
为二元随机变量,其有四个二阶中心矩 设(X,Y)为二元随机变量,其有四个二阶中心矩. 为二元随机变量 主要针对多维随机变量的中心矩与混合中心矩来 以二元随机变量为例. 谈,以二元随机变量为例 ∆
E ( X − EX ) 2 = c11 = COV ( X , X )
2 ∆
E (Y − EY ) = c 22 = COV (Y ,Y ) E ( X − EX )(Y − EY ) = c12 = COV ( X ,Y )
∆
E (Y − EY )( X − EX ) = c 21 = COV (Y , X )
∆
c11 由c11,c12,c21,c22,有 有 c 21 协方差矩阵
n 2
2 σ n n−1 n− 3 n− 3 = ⋅ ⋅ Γ 2 2 π 2 n 22σ n n−1 n− 3 1 1 = ⋅ ⋅ ⋅ ⋯ ⋅ Γ 2 2 2 2 π
= 2 σn
n 2
π
(n − 1)!! ⋅
因而, 因而, E X n
( )
2
n 2
π
=σ
n
(n − 1)!!
σ n (n − 1)!! n为偶数, = n为奇数. 0
1 Γ = π 2
矩与协方差矩阵
E Xn 特别是,当X~N(0, 1),则有 特别是, 则有
( )
σ n (n − 1)!! n为偶数, = 0 n为奇数.
EX
( )
n
(n − 1)!! n为偶数 = , n为奇数 0
c12 称此矩阵为(X,Y)的 的 称此矩阵为 c 22
矩与协方差矩阵
第13讲 协方差及相关系数 矩及协方差矩阵
因此
2 2 3 2 Eη E(ξ 2, 因ξ 而 i ξ ) 3 i ξ ~ N(0, ), 3 3 i1
2
1 1 cov(ξ ξ ) E[(ξ 0, i ξ , i ξ ) ξ ] E(ξ i ξ ) E ξ 3 3 即ξ 而它们都是正态分布, i ξ 与 ξ 互不相关,
则
ρ XY
Cov(X,Y) D(X) D(Y)
称为随机变量X与Y的相关系数. XY是一个无量纲的量.
现证明||1
令X'=X-EX,Y'=Y-EY, 则X',Y'都是期望值为0的随机变量. 对于任给的实数t, 相信E(X'+tY')20, 即 EX'2+2tE(X'Y')+t2EY'20, 即是说关于t的一元二次方程 EX'2+2tE(X'Y')+t2EY'2=0最多只有单个实根或者没有实根, 也就说明判别式 b2-4ac0
四、矩
定义 设X和Y是随机变量, 若 E(Xk), k=1,2,... 存在, 称它为X的k阶原点矩, 简称k阶矩. 若 若 E{[X-E(X)]k}, k=1,2,... E(XkYl), k,l=1,2,...
存在, 称它为X的k阶中心矩.
存在, 称它为X和Y的k+l阶混合矩.
若
E{[X-E(X)]k[Y-E(Y)]l}, k,l=1,2,...
定理
两个随机变量X和Y呈线性关系的充分必要条件,
是它们的相关系数的绝对值为1, 即 ||=1
而另一方面, 如果X与Y相互独立, 则它们的相关系数必为0,
概率论第四章随机变量的数字特征第4节矩和协方差矩阵
特别,若 X ~ N 0, 1 , 则
E X n
n 1!!
0
n为偶数 n为奇数 ,
n 4时, EX 4 3.
返回主目8 录
练习一下
• 已知随机变量的X和Y的联合分布为
Y X
-2
0
1
-1
0.30
0.12
0.18
1
0.10
0.18
0.12
求X和Y的协差矩阵.
0.96 0.24
0.24 1 .65
DX
所以,
E X n nE Y n
n yn fY
y dy
n
y
n
e
y2 2
dy
2
⑴.当 n为奇数时,由于被积函 数是奇函数,所以
E X n 0 .
返回主目5 录
第四章 随机变量的数字特征
(2).当n为偶数时,由于被积函 数是偶函数,所以
EX n
2 n
y
n
e
y2 2
E X n
n
22
n
n
1
n
1
n
22
n
n
1
n
3
n
3
2 2 2 2 2
n
22
n
n
1
n
3
1
1
22
2 2
n
22
n
n 1!!
n
22
n n 1!!
返回主目7 录
第四章 随机变量的数字特征
因而,
§5 矩
E X n
n n 1!!
0
n为偶数 n为奇数
其中,
135 n n为奇数 n!! 2 4 6 n n为偶数
范文:概率论与数理统计复习
概率论与数理统计复习概率论与数理统计复习一、概率论的基本概念:1、事件的运算律:交换律:,;结合律:,;分配律:,;德·摩根法则:,;减法运算:。
2、概率的性质:性质1;性质2(有限可加性)当个事件两两互不相容时,;性质3对于任意一个事件,;性质4当事件满足时,,;性质5对于任意两个随机事件,;性质6对于任意一个事件;性质7(广义加法法则)对于任意两个事件,。
3、条件概率:在已知发生的条件下,事件的概率为:()。
注意:所有概率的性质对条件概率依然适用,但使用公式必须在同一条件下进行。
4、全概率公式与贝叶斯公式:设个事件构成样本空间的一个划分,是一个事件,当()时,全概率公式:;贝叶斯公式:当时,,。
应用全概率公式和贝叶斯公式计算事件的概率或其在已知条件下的条件概率时,关键的问题是找到一个完备事件组,使得能且仅能与之一同时发生,然后运用古典概型、概率的加法和乘法法则计算出和,,并套用全概率公式或贝叶斯公式即可。
若一个较复杂的事件是由多种“原因”产生的样本点构成时,多考虑用全概率公式,而这些样本点就构成一个完备事件组;若已知试验结果而要追查“原因”时,往往使用贝叶斯公式,这些“原因”的全体即是所求的完备事件组。
5、随机事件的独立性:事件独立性的结论:(1)事件与独立;(2)若事件与独立,则与,与,与中的每一对事件都相互独立;(3)若事件与独立,且,,则,;(4)若事件相互独立,则;(5)若事件相互独立,则。
注意:(1)事件相互独立只要求满足,而事件互斥(互不相容)只要求,这两个概念前一个与事件的概率有关,后一个与事件有关,两者之间没有必然的联系;(2)如果事件相互独立,则与不相关,反之一般不成立。
(3)对于任意个随机事件,相互独立则两两独立,反之未必;(4)对于任意个相互独立的随机事件,它们中任意一部分事件的运算结果(和、差、积、逆等)与其他一部分事件或它们的运算结果都相互独立,如:与,与,与都相互独立;6、贝努利概型与二项概率公式:设一次试验中事件发生的概率为,则重贝努利试验中,事件恰好发生次的概率为,。
概率论与数理统计(协方差及相关系数、矩)
实验步骤: 实验步骤: (1) 整理数据如图 所示. 整理数据如图4-5所示 所示.
图4-5 整理数据
(2) 计算边缘概率 计算边缘概率P{X = xi}和P{Y = yj} 和 在单元格G2中输入公式 : 在单元格 中输入公式: = SUM(B2:F2), 并将 中输入公式 , 其复制到单元格区域G3:G6 其复制到单元格区域 在单元格B7中输入公式: 在单元格 中输入公式:=SUM(B2:B6),并将其 中输入公式 , 复制到单元格区域C7:F7 复制到单元格区域 (3) 计算期望 计算期望E(XY) 首先在单元格B9中输入公式: 首先在单元格 中输入公式: 中输入公式 =MMULT(B1:F1,B2:F6), ,
−
π
∫ πcos zdz = 0, ∫ πsin z cos zdz = 0
−
1 E ( XY ) = 2π
π
因而Cov(X,Y) = 0,ρXY = 0. , 因而 , . 不相关, 相关系数ρXY = 0,说明随机变量 与Y不相关, ,说明随机变量X与 不相关 但是, 所以X与 不独立 不独立. 但是,由于 X 2 + Y 2 = 1 ,所以 与Y不独立.
Cov ( X , Y ) = E ( XY ) − E ( X ) E (Y ) = 19 / 400,
所以
ρ XY =
Cov( X , Y ) 19 / 400 133 = = = 0.87 D( X ) D(Y ) 153 / 2800 153
4.3.2 相关系数 下面不加证明地给出相关系数的两条性质: 下面不加证明地给出相关系数的两条性质: (1) |ρXY | ≤ 1; ; 的充要条件是, (2) |ρXY | = 1的充要条件是,存在常数 ,b,使 的充要条件是 存在常数a, P{Y = aX + b} = 1. . 定义4.6 若ρXY = 0,称X与Y不相关.0 < ρXY ≤ 1,称 定义 , 与 不相关. , 不相关 X与Y正相关,– 1 ≤ ρXY < 0,称X与Y负相关. 正相关, 负相关. 与 正相关 , 与 负相关 事实上,相关系数 事实上 相关系数ρXY是X与Y线性关系强弱的一个 与 线性关系强弱的一个 度量,X与 的线性关系程度随着 的线性关系程度随着| 的减小而减弱, 度量 与Y的线性关系程度随着 ρXY|的减小而减弱 的减小而减弱 的线性关系最强, 时 与 的线性关系最强 当|ρXY| = 1时X与Y的线性关系最强, 的不存在线性关系, 当ρXY = 0时,意味 与Y的不存在线性关系,即X 时 意味X与 的不存在线性关系 不相关. 与Y不相关 不相关
概率论与数理统计电子教案:c4_3 协方差.相关系数与矩
3)C是非负定矩阵;
4)ci2j cii c jj , i, j 1,2,..., n
2020/8/27
4
协方差、相关系数、矩
二. 相关系数
定义:设二维随机变量X,Y的D(X)>0,D(Y)>0
称
XY
covX ,Y DX DY
为随机变量X与Y的相关系数。
注:1)ρXY是一无量纲的量。
a1a2 a1a2
XY
证明
相关系数是衡量两个随机变量之间线性相关程度 的数字特征.
2020/8/27
6
协方差、相关系数、矩
定义:设随机变量X,Y的相关系数存在
1)ρXY=1 称 X,Y正相关. 2)ρXY=-1 称 X,Y负相关. 3)ρXY=0 称 X,Y不相关.
注:ρXY=0仅说明X,Y之间没有线性关系,但可以 有其他非线性关系. 参见书上P116 例4.4.4.
2) XY
E
X
EX DX
Y
E
Y
D Y
E X * Y * cov X * ,Y *
2020/8/27
5
协方差、相关系数、矩
性质:设随机变量X,Y的相关系数ρ存在,则
1) |ρ|1
证明
2) |ρ|=1
X与Y依概率为1线性相关。即
, 0 s .t PY X 1
证明
3)若=a 1X+b1 , = a 2Y+b2 则
PY X 1
证明:" " 必要性 1时 由1)有
D X Y 0 E X Y 0
由 方 差 的 性 质4) 得
P X Y E X Y 1 即
P X Y 0 1
PY -
矩、协方差矩阵【概率论与数理统计+浙江大学】
E(Z)=2E(X)-E(Y)(Y)=8+1=9
Z~N(5, 32)
故 Z 的概率密度是
fZ (z)
3
1
2
( z5)2
e 18 ,
z
例 设随机变量X,Y独立,均服从正态分布 N (, 2)
令U=aX+bY, V=aX-bY,问常数a,b满足什么条件时 随机变量U,V相互独立?
若它的概率密度为
f
(x1,x2,
…,xn)
(2
1 )n 2
|
C
|1
2
exp{
1 2
(X
)C 1( X
)}
则称 X 服从 n 元正态分布.
其中C是(X1,X2, …,Xn) 的协方差矩阵.
|C|是它的行列式,C 1表示C的逆矩阵,
X 和 是 n 维列向量,X 表示X 的转置.
概率论与数理统计
第四节 矩、协方差矩阵
原点矩 中心矩 协方差矩阵 n 元正态分布的概率密度
一、 原点矩 中心矩
定义 设X和Y是随机变量,若 E( X k ), k 1,2,
存在,称它为X的k阶原点矩,简称 k阶矩. 若 E{[ X E( X )]k}, k 2,3,
存在,称它为X的k阶中心矩.
2. 正态变量的线性变换不变性.
若 X=(X1, X2 , … , Xn) 服从 n 元正态分布, Y1,Y2, …,Yk是Xj(j=1,2,…,n)的线性函数, 则 (Y1,Y2, …,Yk) 也服从多元正态分布.
3. 设(X1,X2, …,Xn)服从n元正态分布,则 “X1,X2, …,Xn相互独立”
可见,均值 E(X)是X一阶原点矩,方差D(X)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩与协方差矩阵的概念
§4.4 矩与协方差矩阵
数学期望和方差可以纳入到一个更一般的概念范畴之中,那就是随机变量的矩。
4.4.1 矩与协方差矩阵的概念
定义4.7 设X 和Y 为随机变量.
若)(k X E (1,2,
)k =存在,称它为X 的k 阶原点矩,简称k 阶矩. 若{[()]}k E X E X -(1,2,
)k =存在,称它为X 的k 阶中心矩. 若)(l k Y X E (,1,2,)k l =存在,称它为X 和Y 的l k +阶混合矩.
若})]([)]({[l k Y E Y X E X E --(,1,2,)k l =存在,称它为X 和Y 的l k +阶混合中
心矩.
注:①X 的数学期望)(X E 是X 的一阶原点矩.
②X 的方差)(X D 是X 的二阶中心矩.
③协方差Cov(,)X Y 是X 和Y 的二阶混合中心矩.
定义4.8 设二维随机变量),(21X X 的四个二阶中心矩都存在,记为
2111112112221221122222{[()]},
{[()][()]},
{[()][()]},
{[()]},
c E X E X c E X E X X E X c E X E X X E X c E X E X =-=--=--=-
称矩阵 ⎪⎪⎭⎫ ⎝⎛22211211c c c c 为),(21X X 的协方差矩阵. 类似地,可定义n 维随机变量),,,(21n X X X 的协方差矩阵.
若 ()Cov(,){[()][()]},1,2,,ij i j i i j j c X X E X E X X E X i j n ==--=都存在,则称矩阵
111212122212
n n n n nn c c c c c c c c c ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭
C 为随机变量),,,(21n X X X 的协方差矩阵.
注:协方差矩阵中的元素ij c 有如下性质:
①
(),1,2,,ii i c D X i n ==, ② ,,1,2,,ij ji c c i j n ==,即C 为对称矩阵.
③2ij ii jj c c c ≤⋅.
特别地,2=n 时,二维随机变量的),(Y X 协方差矩阵定义如下: 定义矩阵⎪⎪⎭
⎫ ⎝⎛=)(),(),()(Y D Y X Cov Y X Cov X D C 称为),(Y X 的协方差矩阵 例4.48 设二维连续型随机变量),(Y X 的联合密度函数为
⎪⎩
⎪⎨⎧<<<<+=其它,020,10),21(76),(2y x xy x y x f ,求),(Y X 的协方差矩阵。
解:75)21(76),()(10202=+==⎰⎰⎰⎰∞+∞-∞+∞-dydx xy x x dxdy y x xf X E , 7039)21(76)(102
0222=+=⎰⎰dxdy xy x x X E , 49023)75(7039)]([)()(222=-=
-=X E X E X D , 78)21(76),()(10202=+=
=⎰⎰⎰⎰∞+∞-∞+∞-dydx xy x y dxdy y x yf Y E , 2134)21(76)(102
0222=+=⎰⎰dydx xy x y Y E , 14746)78(2134)]([)()(222=-=
-=Y E Y E Y D , 21
17)21(76)(10202=+=⎰⎰dydx xy x xy XY E , 147178752117)()()(),(-=⨯-=
-=Y E X E XY E Y X Cov ,
于是),(Y X 的协方差矩阵为:⎪⎪⎪⎪⎭
⎫ ⎝⎛--1474614711471490
23。
例4.49 设),(Y X 的协方差矩阵为⎪⎪⎭
⎫ ⎝⎛--=9111C ,求XY ρ. 解 由协方差矩阵的定义可知9)(,1)(,1),(==-=Y D X D Y X Cov 则 31911)()(),(-=⨯-==
Y D X D Y X Cov XY ρ。