高考数学中的内切球和外接球问题

合集下载

几何体外接球或内切球问题的类型与解法

几何体外接球或内切球问题的类型与解法

几何体外接球或内切球问题的类型与解法 几何体外接球和内切球问题是近几年的高考热点内容之一,尤其是几何体外接球问题,基本上近几年的高考试题中都有出现。

从题型上看是5分小题,可能是选择题,也可能是填空题;从难易程度上看,属于中、低档难度的问题。

纵观近几年高考,归结起来几何体外接球或内切球问题主要包括:①已知几何体的顶点都在同一球面上,几何体满足一定的条件,求球的体积(或几何体的体积);②已知几何体的顶点都在同一球面上,几何体满足一定的条件,求球的表面积(或几何体的表面积);③已知球内切于几何体,求内切球的体积(或表面积)等几种类型。

解答这类问题的基本思路是根据问题给出的条件,求出球的半径,然后运用球的体积(或表面积)公式通过运算就可得出结果。

各种类型问题结构上具有某些特征,解答方法也有一定的规律可寻,那么在实际解答几何体外接球或内切球问题时,到底应该如何抓住问题的结构特征,快捷,准确地解答问题呢?下面通过典型例题的详细解析来回答这个问题。

【典例1】解答下列问题:1、(理)如图,在边长为2的正方形A 1P 2P 3P 中,线段BC 的端点B ,C 分别在边1P 2P ,2P 3P 上滑动,且1P B=2P C=x ,现将∆ A 1P B , ∆ C 3P A 分别沿AB ,CA 折起使点1P , 3P 重合,重合后记为点P ,得到三棱锥P —ABC ,现有以下结论:①AP ⊥平面PBC ;②当B ,C 分别为1P 2P ,2P 3P 的中点时,三棱锥P —ABC 的外接球的表面积为6π;③x 的取值范围为(0,4-22);④三棱锥P —ABC 体积的最大值为13。

则正确结论的个数为( ) A 1 B 2 C 3 D 4(文)如图,在边长为2的正方形A 1P 2P 3P 中,边1P 2P ,2P 3P 的中点分别为B ,C ,现将∆ A 1P B ,∆ B 2P C ,∆ C 3P A 分别沿AB ,BC ,CA 折起使点1P ,2P ,3P 重合,重合后记为点P ,得到三棱锥P —ABC ,则三棱锥P —ABC 的外接球体积为 (2020成都市高三一诊)(理科图) (文科图) 【解析】【考点】①正方形定义与性质;②三棱锥定义与性质;③判断直线垂直平面的基本方法;④求三棱锥外接球表面积的基本方法;⑤求三棱锥体积的基本方法;⑥求函数最值的基本方法。

高考数学中的内切球和外接球问题(附习题)-精选.pdf

高考数学中的内切球和外接球问题(附习题)-精选.pdf
高考数学中的内切球和外接球问题
一、 有关外接球的问题
如果一个多面体的各个顶点都在同一个球面上, 那么称这个多面
体是球的内接多面体,这个球称为多面体的外接球 . 有关多面体外接
球的问题, 是立体几何的一个重点, 也是高考考查的一个热点 . 考查
学生的空间想象能力以及化归能力 .研究多面体的外接球问题,既要
学习 .
五 .确定球心位置法
例 5 在矩形 ABCD 中, AB 4, BC 3,沿 AC 将矩形 ABCD 折成一
个直二面角 B AC D ,则四面体 ABCD 的外接球的体积为
125
A. 12
125
B. 9
125
C. 6
125
D. 3
D
A
O
C
图4 B
解 设矩形对角线的交点为 O ,则由矩形对角线互相平分,可知
例 2 一个正方体的各顶点均在同一球的球面上,若该正方体的
表面积为 24 ,则该球的体积为 ______________.4 3 . 2、求长方体的外接球的有关问题
例 3 一个长方体的各顶点均在同一球面上, 且一个顶点上的三条
棱长分别为 1,2,3 ,则此球的表面积为
.14 .
例 4、已知各顶点都在一个球面上的正四棱柱高为 4,
只是希望能有个人,在我说没事的时候,知道我不是真的没事;能有个人,在我强颜欢笑的时候,知道我不是真的开心。 ——张小娴
OA OB OC OD .∴点 O 到四面体的四个顶点 A、B、C、D 的距离相
等,即点 O 为四面体的外接球的球心,如图 2 所示 .∴外接球的半径
5 R OA
V 球 4 R3 125
2 .故
3
6 .选 C.

高考数学空间几何体的外接球与内切球常见题型

高考数学空间几何体的外接球与内切球常见题型

高考数学空间几何体的外接球与内切球常见题型本文介绍了空间几何体的外接球与内切球的经典类型,其中第一种类型为墙角模型,即三条棱两两垂直,不需要找球心的位置即可求出球半径。

具体方法是找到三条两两垂直的线段,然后使用公式2R=a+b+c或2R=a^2+b^2+c^2来求出R。

例如,在已知各顶点都在同一球面上的正四棱柱的高为4,体积为16的情况下,可以求出该球的表面积为32π。

第二种类型为对棱相等模型,补形为长方体。

在这种情况下,需要找到对棱相等的空间几何体,并补成长方体。

例如,如果三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积为36π。

除此之外,文章还给出了一些具体的例子,如正三棱锥S-ABC中,M、N分别是棱SC、BC的中点,且AM⊥MN,若侧棱SA=23,则正三棱锥S-ABC外接球的表面积为36π。

同时,文章还提到了一些需要注意的引理,如正三棱锥的对棱互相垂直等。

需要注意的是,文章中存在一些格式错误和明显有问题的段落,需要进行删除或修改。

题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(AB=CD,AD=BC,AC=BD)首先,我们可以画出一个长方体,标出三组互为异面直线的对棱,如图2-1所示。

设出长方体的长宽高分别为a,b,c,AD=BC=x,AB=CD=y,AC=BD=z,列方程组:a^2+b^2=x^2b+c=yc^2+a^2=z^2根据墙角模型,我们可以得到2R=a+b+c=2(x^2+y^2+z^2)/(x^2+y^2+z^2),化简得到R=sqrt(2)/2*(x^2+y^2+z^2)/(x^2+y^2+z^2),求出R即可。

例2(1)如下图所示三棱锥A-BCD,其中AB=CD=5,AC=BD=6,AD=BC=7,则该三棱锥外接球的表面积为。

2)在三棱锥A-BCD中,AB=CD=2,AD=BC=3,AC=BD=4,则三棱锥A-BCD外接球的表面积为。

3)正四面体的各条棱长都为2,则该正面体外接球的体积为。

高考数学复习考点题型专题讲解17 球的切、接、截问题

高考数学复习考点题型专题讲解17 球的切、接、截问题

高考数学复习考点题型专题讲解专题17 球的切、接、截问题1.球的切接问题(1)长方体的外接球①球心:体对角线的交点;②半径:r=a2+b2+c22(a,b,c为长方体的长、宽、高).(2)正方体的外接球、内切球及与各条棱相切的球(a为正方体的棱长)①外接球:球心是正方体中心,半径r=32a,直径等于体对角线长;②内切球:球心是正方体中心,半径r=a2,直径等于正方体棱长;③与各条棱都相切的球:球心是正方体中心,半径r=22a,直径等于面对角线长.(3)正四面体的外接球与内切球(正四面体可以看作是正方体的一部分,a为正四面体的棱长)①外接球:球心是正四面体的中心,半径r=64a;②内切球:球心是正四面体的中心,半径r=612a.2.平面截球平面截球面得圆.截面圆的圆心与球心的连线与截面圆圆面垂直且R2=d2+r2(R为球半径,r为截面圆半径,d为球心到截面圆的距离).类型一外接球问题考向1 墙角模型墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长.长方体同一顶点的三条棱长分别为a,b,c,外接球半径为R.则(2R)2=a2+b2+c2,即2R=a2+b2+c2.常见的有以下三种类型:例1 已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为( )A.86πB.46πC.26πD.6π答案 D解析因为点E,F分别为PA,AB的中点,所以EF∥PB.因为∠CEF=90°,所以EF⊥CE,所以PB⊥CE.取AC的中点D,连接BD,PD,易证AC⊥平面BDP,所以PB⊥AC,又AC∩CE=C,AC,CE⊂平面PAC,所以PB⊥平面PAC,所以PB⊥PA,PB⊥PC,因为PA=PB=PC,△ABC为正三角形,所以PA⊥PC,即PA,PB,PC两两垂直,将三棱锥P-ABC放在正方体中如图所示. 因为AB=2,所以该正方体的棱长为2,所以该正方体的体对角线长为6,所以三棱锥P-ABC的外接球的半径R=6 2,所以球O的体积V=43πR3=43π⎝⎛⎭⎪⎫623=6π,故选D.考向2 对棱相等模型对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长,如图所示,(2R)2=a2+b2+c2(长方体的长、宽高分别为a,b,c),即R2=18(x2+y2+z2),如图.例2 在三棱锥A -BCD 中,AB =CD =2,AD =BC =3,AC =BD =4,则三棱锥A -BCD 外接球的表面积为________. 答案29π2解析 构造长方体,三个长度为三对面的对角线长,设长方体的长宽高分别为a ,b ,c ,则a 2+b 2=9,b 2+c 2=4,c 2+a 2=16, 所以2(a 2+b 2+c 2)=9+4+16=29, 即a 2+b 2+c 2=4R 2=292, 则外接球的表面积为S =4πR 2=29π2.考向3 汉堡模型汉堡模型是直三棱柱、圆柱的外接球模型,模型如下,由对称性可知,球心O 的位置是△ABC 的外心O 1与△A 1B 1C 1的外心O 2的连线的中点,算出小圆O 1的半径AO 1=r ,OO 1=h2,所以R 2=r 2+h 24.例3(2022·金华调研)在三棱柱ABC -A 1B 1C 1中,AB =BC =AC ,侧棱AA 1⊥底面ABC ,若该三棱柱的所有顶点都在同一个球O 的表面上,且球O 的表面积的最小值为4π,则该三棱柱的侧面积为( ) A.63B.3 3 C.32D.3 答案 B解析 如图,设三棱柱上、下底面中心分别为O 1,O 2,则O 1O 2的中点为O ,设球O 的半径为R ,则OA =R ,设AB =BC =AC =a ,AA 1=h ,则OO 2=12h ,O 2A =23×32AB =33a .在Rt△OO 2A 中,R 2=OA 2=OO 22+O 2A 2=14h 2+13a 2≥2×12h ×33a =33ah , 当且仅当h =233a 时,等号成立,所以S 球=4πR 2≥4π×33ah , 所以43π3ah =4π, 所以ah =3,所以该三棱柱的侧面积为3ah=3 3.考向4 垂面模型垂面模型是有一条侧棱垂直底面的棱锥模型,可补为直棱柱内接于球;如图所示,由对称性可知球心O的位置是△CBD的外心O1与△AB2D2的外心O2连线的中点,算出小圆O1的半径CO1=r,OO1=h2,则R=r2+h24.例4(2022·广州模拟)已知四棱锥S-ABCD的所有顶点都在球O的球面上,SD⊥平面ABCD,底面ABCD是等腰梯形,AB∥CD且满足AB=2AD=2DC=2,且∠DAB=π3,SC=2,则球O的表面积是( ) A.5π B.4πC.3πD.2π答案 A解析依题意,得AB=2AD=2,∠DAB=π3,由余弦定理可得BD=3,则AD2+DB2=AB2,则∠ADB=π2.又四边形ABCD是等腰梯形,故四边形ABCD的外接圆直径为AB,半径r=AB2=1,设AB的中点为O1,球的半径为R,因为SD ⊥平面ABCD , 所以SD =SC 2-CD 2=1, R 2=12+⎝ ⎛⎭⎪⎫SD 22=54,则S =4πR 2=5π. 考向5 切瓜模型切瓜模型是有一侧面垂直底面的棱锥模型,常见的是两个互相垂直的面都是特殊三角形,在三棱锥A -BCD 中,侧面ABC ⊥底面BCD ,设三棱锥的高为h ,外接球的半径为R ,球心为O ,△BCD 的外心为O 1,O 1到BC 的距离为d ,O 与O 1的距离为m ,△BCD 和△ABC 外接圆的半径分别为r 1,r 2,则⎩⎨⎧R 2=r 21+m 2,R 2=d 2+(h -m )2,解得R ,可得R =r 21+r 22-l 24(l 为两个面的交线段长).例5(2022·济宁模拟)在边长为6的菱形ABCD 中,∠A =π3,现将△ABD 沿BD 折起,当三棱锥A -BCD 的体积最大时,三棱锥A -BCD 的外接球的表面积为________. 答案 60π解析 边长为6的菱形ABCD ,在折叠的过程中, 当平面ABD ⊥平面BCD 时,三棱锥的体积最大; 由于AB =AD =CD =BC =6, ∠C =∠A =π3.所以△ABD 和△CBD 均为正三角形,设△ABD 和△CBD 的外接圆半径为r , 则2r =BDsin C,所以r =2 3.△ABD 和△CBD 的交线段为BD ,且BD =6. 所以三棱锥A -BCD 的外接球的半径R =(23)2+(23)2-624=15.故S 球=4·π(15)2=60π.训练1 (1)(2022·青岛一模)设三棱柱的侧棱垂直于底面,所有棱的长都为1,顶点都在一个球面上,则该球的表面积为( ) A.5π B.π C.113π D.73π (2)在三棱锥P -ABC 中,平面PAB ⊥平面ABC ,平面PAC ⊥平面ABC ,且PA =4,底面△ABC 的外接圆的半径为3,则三棱锥P -ABC 的外接球的表面积为________. 答案 (1)D (2)52π解析 (1)由三棱柱所有棱的长a =1,可知底面为正三角形, 底面三角形的外接圆直径2r =1sin 60°=233,所以r =33, 设外接球的半径为R ,则有R 2=r 2+⎝ ⎛⎭⎪⎫a 22=13+14=712,所以该球的表面积S =4πR 2=73π,故选D.(2)因为平面PAB ⊥平面ABC ,平面PAC ⊥平面ABC , 所以PA ⊥平面ABC .设三棱锥P -ABC 的外接球的半径为R ,结合底面△ABC 的外接圆的半径r =3,可得R 2=⎝ ⎛⎭⎪⎫PA 22+r 2=22+33=13,所以三棱锥P -ABC 的外接球的表面积为S 表=4πR 2=52π. 类型二 内切球问题内切球问题的解法(以三棱锥为例)第一步:先求出四个表面的面积和整个锥体的体积;第二步:设内切球的半径为r ,建立等式V P -ABC =V O -ABC +V O -PAB +V O -PAC +V O -PBC ⇒V P -ABC =13S △ABC ·r +13S △PAB ·r +13S △PAC ·r +13S PBC ·r =13(S △ABC +S △PAB +S △PAC +S △PBC )r ; 第三步:解出r =3V P -ABCS △ABC +S △PAB +S △PAC +S △PBC.例6 (1)(2022·成都石室中学三诊)《九章算术》中将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P -ABC 为鳖臑,PA ⊥平面ABC ,PA =BC =4,AB =3,AB ⊥BC ,若三棱锥P -ABC 有一个内切球O ,则球O 的体积为( ) A.9π2B.9π4 C.9π16D.9π (2)在直三棱柱ABC -A 1B 1C 1中,AA 1=AB =6,BC =8,AC =10,则该三棱柱内能放置的最大球的表面积是( ) A.16π B.24π C.36π D.64π答案(1)C (2)A解析(1)设球O的半径为r,则三棱锥P-ABC的体积V=13×12×3×4×4=13×(12×3×4+12×4×3+12×5×4+12×4×5)×r,解得r=34,所以球O的体积V=43πr3=9π16,故选C.(2)由题意,球的半径为底面三角形内切圆的半径r,因为底面三角形的边长分别为6,8,10,所以底面三角形为直角三角形,r=AB+BC-AC2=6+8-102=2.又因为AA1=6,2r=4<6,所以该三棱柱内能放置的最大球半径为2,此时S表面积=4πr2=4π×22=16π.训练 2 已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.答案2 3π解析圆锥内半径最大的球即为圆锥的内切球,设其半径为r.作出圆锥的轴截面PAB,如图所示,则△PAB的内切圆为圆锥的内切球的大圆.在△PAB中,PA=PB=3,D为AB的中点,AB=2,E为切点,则PD=22,△PEO∽△PDB,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝ ⎛⎭⎪⎫223=23π.类型三 球的截面问题解决球的截面问题抓住以下几个方面:(1)球心到截面圆的距离;(2)截面圆的半径;(3)直角三角形(球心到截面圆的距离、截面圆的半径、球的半径构成的直角三角形).例7(2022·杭州质检)在正三棱锥P -ABC 中,Q 为BC 中点,PA =2,AB =2,过点Q 的平面截三棱锥P -ABC 的外接球所得截面面积的取值范围为________. 答案⎣⎢⎡⎦⎥⎤π,3π2解析 因为正三棱锥P -ABC 中,PB =PC =PA =2,AC =BC =AB =2,所以PB 2+PA 2=AB 2,即PB ⊥PA , 同理PB ⊥PC ,PC ⊥PA ,因此正三棱锥P -ABC 可看作正方体的一角,如图.记正方体的体对角线的中点为O ,由正方体结构特征可得,点O 即是正方体的外接球球心,所以点O 也是正三棱锥P -ABC 外接球的球心,记外接球半径为R , 则R =122+2+2=62,因为球的最大截面圆为过球心的圆,所以过点Q 的平面截三棱锥P -ABC 的外接球所得截面的面积最大为S max =πR 2=3π2. 又Q 为BC 中点,由正方体结构特征可得OQ =12PA =22;由球的结构特征可知,当OQ 垂直于过点Q 的截面时,截面圆半径最小为r =R 2-OQ 2=1, 所以S min =πr 2=π.因此,过Q 的平面截三棱锥P -ABC 的外接球所得截面面积的取值范围为⎣⎢⎡⎦⎥⎤π,3π2. 训练3 (1)设球O 是棱长为4的正方体的外接球,过该正方体棱的中点作球O 的截面,则最小截面的面积为( ) A.3π B.4π C.5π D.6π(2)(2022·武汉质检)已知棱长为2的正方体ABCD -A 1B 1C 1D 1,球O 与该正方体的各个面相切,则平面ACB 1截此球所得的截面的面积为________. 答案 (1)B (2)2π3解析 (1)当球O 到截面圆心连线与截面圆垂直时,截面圆的面积最小, 由题意,正方体棱的中点与O 的距离为22,球的半径为23, ∴最小截面圆的半径为12-8=2, ∴最小截面面积为π·22=4π.(2)∵正方体ABCD -A 1B 1C 1D 1的棱长为2,球O 与该正方体的各个面相切,则球O 的半径为1,设E ,F ,G 分别为球O 与平面ABCD 、平面BB 1C 1C 、平面AA 1B 1B 的切点, 则等边三角形EFG 为平面ACB 1截此球所得的截面圆的内接三角形, 由已知可得EF =EG =GF =2, ∴平面ACB 1截此球所得的截面圆的半径r =22sin 60°=63,∴截面的面积为π×⎝ ⎛⎭⎪⎫632=2π3.一、基本技能练1.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A.π B.3π4C.π2D.π4 答案 B解析 如图画出圆柱的轴截面ABCD ,O 为球心.球的半径R =OA=1,球心到底面圆的距离为OM =12.∴底面圆半径r =OA 2-OM 2=32故圆柱体积V =π·r 2·h =π·⎝ ⎛⎭⎪⎫322×1=3π4.2.若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为( ) A.12π B.24π C.36π D.144π 答案 C解析 由题意知球的直径2R =(23)2+(23)2+(23)2=6, ∴R =3,∴S 球=4πR 2=36π.故选C.3.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( ) A.3π B.4π C.33π D.6π 答案 A解析 构造棱长为1的正方体,该四面体的外接球也是棱长为1的正方体的外接球, 所以外接球半径R =32, 所以外接球表面积为S =4πR 2=3π.4.已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172B.210C.132D.310 答案 C解析 将直三棱柱补为长方体ABEC -A 1B 1E 1C 1, 则球O 是长方体ABEC -A 1B 1E 1C 1的外接球. ∴体对角线BC 1的长为球O 的直径. 因此2R =32+42+122=13,则R =132.5.(2022·南阳二模)已知边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕进行折叠,使折后的∠BDC =π2,则过A ,B ,C ,D 四点的球的表面积为( )A.3πB.4πC.5πD.6π 答案 C解析 折后的几何体构成以D 为顶点的三棱锥,且三条侧棱互相垂直,可构造长方体,其对角线即为球的直径,三条棱长分别为1,1,3,所以2R =1+1+3=5,球的表面积S =4π⎝ ⎛⎭⎪⎫522=5π.6.(2022·青岛模拟)如图是一个由6个正方形和8个正三角形围成的十四面体,其所有顶点都在球O 的球面上,若十四面体的棱长为1,则球O 的表面积为( )A.2πB.4πC.6πD.8π 答案 B解析 根据图形可知,该十四面体是由一个正方体切去八个角得到的,如图所示,十四面体的外接球球心与正方体的外接球球心相同, 建立空间直角坐标系,∵该十四面体的棱长为1,故正方体的棱长为2, ∴该正方体的外接球球心的坐标为O ⎝ ⎛⎭⎪⎫22,22,22,设十四面体上一顶点为D ,则D ⎝ ⎛⎭⎪⎫2,22,0,所以十四面体的外接球半径R =OD =⎝ ⎛⎭⎪⎫2-222+⎝ ⎛⎭⎪⎫22-222+⎝ ⎛⎭⎪⎫0-222=1,故外接球的表面积为S =4πR 2=4π.故选B.7.四面体ABCD 的四个顶点都在球O 上且AB =AC =BC =BD =CD =4,AD =26,则球O 的表面积为( )A.70π3B.80π3C.30πD.40π答案 B解析如图,取BC的中点M,连接AM,DM,由题意可知,△ABC和△BCD都是边长为4的等边三角形. ∵M为BC的中点,∴AM⊥BC,且AM=DM=23,又∵AD=26,∴AM2+DM2=AD2,∴AM⊥DM,∵BC∩DM=M,BC,DM⊂平面BCD,∴AM⊥平面BCD,∵AM⊂平面ABC,∴平面ABC⊥平面BCD,△ABC与△BCD外接圆半径r=23DM=433,又△ABC与△BCD的交线段BC=4. 所以四面体外接球半径R =⎝ ⎛⎭⎪⎫4332+⎝ ⎛⎭⎪⎫4332-424=2153,四面体ABCD 的外接球的表面积为4π×R 2=803π. 8.已知三棱锥P -ABC 的棱AP ,AB ,AC 两两垂直,且长度都为3,以顶点P 为球心,2为半径作一个球,则球面与三棱锥的表面相交所得到的四段弧长之和等于( ) A.2π3B.5π6C.πD.3π2答案 D解析 如图,∠APC =π4,AP =3,AN =1,∠APN =π6,∠NPM =π12,MN ︵=π12×2=π6,同理GH ︵=π6,HN ︵=π2,GM ︵=2π3,故四段弧长之和为π6+π6+π2+2π3=3π2.9.(多选)(2022·石家庄调研)已知一个正方体的外接球和内切球上各有一个动点M 和N ,若线段MN 长的最小值为3-1,则( ) A.该正方体的外接球的表面积为12π B.该正方体的内切球的体积为π3C.该正方体的棱长为1D.线段MN长的最大值为3+1 答案AD解析设该正方体的棱长为a,则其外接球的半径R=32a,内切球的半径R′=a2,该正方体的外接球与内切球上各有一个动点M,N,由于两球球心相同,可得MN的最小值为3a2-a2=3-1,解得a=2,故C错误;所以外接球的半径R=3,表面积为4π×3=12π,故A正确;内切球的半径R′=1,体积为43π,故B错误;MN的最大值为R+R′=3+1,故D正确.故选AD.10.(多选)设圆锥的顶点为A,BC为圆锥底面圆O的直径,点P为圆O上的一点(异于B,C),若BC=43,三棱锥A-PBC的外接球表面积为64π,则圆锥的体积为( ) A.4π B.8πC.16πD.24π答案BD解析如图,设圆锥AO的外接球球心为M,半径为r,则M在直线AO上,4πr2=64π,解得r=4.由勾股定理得BM2=OM2+OB2,即42=(23)2+OM2,可得OM=2,即OM=|AO-r|=|AO-4|=2,解得AO=6或AO=2.当AO=6时,圆锥AO的体积为V=13π×(23)2×6=24π;当AO=2时,圆锥AO的体积为V=13π×(23)2×2=8π.故选BD.11.在三棱锥A-BCD中,△BCD和△ABD均是边长为1的等边三角形,AC=2,则该三棱锥外接球的表面积为________.答案2π解析取AC的中点O,连接OB,OD,在△ABC中,AB=BC=1,AC=2,所以∠ABC=90°,所以OA=OB=OC=2 2,同理得OD=22,故点O为该三棱锥外接球的球心,所以球O的半径r=22,S球=4πr2=2π.12.如图,已知球O是棱长为3的正方体ABCD-A1B1C1D1的内切球,则平面ACD1截球O的截面面积为________.答案3π2解析 根据题意知,平面ACD 1是边长为9+9=32的正三角形,且所求截面的面积是该正三角形的内切圆的面积,则由图得,△ACD 1内切圆的半径r =13(32)2-⎝⎛⎭⎪⎫3222=62, 所以平面ACD 1截球O 的截面面积为 S =π×⎝ ⎛⎭⎪⎫622=3π2.二、创新拓展练13.(多选)(2022·华大新高考联考)已知三棱锥S -ABC 中,SA ⊥平面ABC ,SA =AB =BC =2,AC =2,点E ,F 分别是线段AB ,BC 的中点,直线AF ,CE 相交于G ,则过点G 的平面α截三棱锥S -ABC 的外接球O 所得截面面积可以是( ) A.23π B.89π C.π D.32π答案 BCD解析 因为AB 2+BC 2=AC 2,故AB ⊥BC , 故三棱锥S -ABC 的外接球O的半径R =2+2+22=62,取AC 的中点D ,连接BD 必过G , 因为AB =BC =2,故DG =13BD =13,因为OD =22, 故OG 2=⎝ ⎛⎭⎪⎫222+⎝ ⎛⎭⎪⎫132=1118,则过点G 的平面截球O 所得截面圆的最小半径r 2=⎝ ⎛⎭⎪⎫622-1118=89,故截面面积的最小值为89π,最大值为πR 2=32π,故选BCD.14.(多选)(2022·济南模拟)已知三棱锥P -ABC 的四个顶点都在球O 上,AB =BC =AC =1,∠APC =π6,平面PAC ⊥平面ABC ,则( )A.直线OA 与直线BC 垂直B.点P 到平面ABC 的距离的最大值为1+32C.球O 的表面积为13π3D.三棱锥O -ABC 的体积为18答案 ACD解析 设△ABC 外接圆的圆心为O 1,连接OO 1,O 1A . 因为O 为三棱锥P -ABC 外接球的球心, 所以OO 1⊥平面ABC ,所以OO 1⊥BC ,因为AB =BC =AC =1,所以O 1A ⊥BC ,所以BC ⊥平面OO 1A , 所以OA ⊥BC ,故A 选项正确; 设△PAC 外接圆的圆心为O 2,AC 的中点为D ,连接O 2D , 由于AC =1,∠APC =π6,所以圆O 2的半径r 2=12×1sinπ6=1,则易知O 2D =32, 所以点P 到平面ABC 的距离的最大值为1+32(此时P ,O 2,D 三点共线),故B 选项错误;由于AB =BC =AC =1,平面PAC ⊥平面ABC ,平面PAC ∩平面ABC =AC , 所以圆O 1的半径r 1=12×1sin π3=33, 圆O 2的半径r 2=1,△ABC 与△PAC 的交线段AC =1, 所以三棱锥P -ABC 外接球半径R 2=⎝ ⎛⎭⎪⎫332+12-14=1312.故球O 的表面积S =4π×1312=13π3,故C 选项正确;由于OO 1⊥平面ABC ,且OO 1=O 2D =32,S △ABC =34,所以三棱锥O-ABC的体积为13×OO1×S△ABC=13×32×34=18,故D选项正确,故选ACD.15.(多选)(2022·湖州调研)已知正四面体ABCD的棱长为3,其外接球的球心为O.点E 满足AE→=λAB→(0<λ<1),过点E作平面α平行于AC和BD,设α分别与该正四面体的棱BC,CD,DA相交于点F,G,H,则( )A.四边形EFGH的周长为定值B.当λ=12时,四边形EFGH为正方形C.当λ=13时,平面α截球O所得截面的周长为13π4D.四棱锥A-EFGH的体积的最大值为22 3答案ABD解析将正四面体ABCD放入正方体中.因为正四面体ABCD的棱长为3,所以正方体的棱长为322.如图所示,过点E作平面α平行于AC和BD,平面α与正方体的棱交于M,N,P,Q四点.因为AE→=λAB→,故AH→=λAD→,即有EH=λBD,同理FG=λBD,EF=(1-λ)AC,HG=(1-λ)AC,且EH∥BD,EF∥AC,故四边形EFGH 为平行四边形.因为AC ⊥BD ,故EF ⊥EH ,则四边形EFGH 为矩形.对于A ,四边形EFGH 的周长为2(EF +EH )=2[(1-λ)AC +λBD ]=2[(1-λ)AC +λAC ]=2AC =6,为定值,故A 选项正确;对于B ,当λ=12时,E 为AB 的中点,故EF =EH ,所以四边形EFGH 为正方形,故B 选项正确;对于C ,当λ=13时,球心O 到平面EFGH 的距离即球心到平面MNPQ 的距离,即BC 中点到MF 的距离,经计算为24,球半径为322×32=364,故截面圆的半径为⎝ ⎛⎭⎪⎫3642-⎝ ⎛⎭⎪⎫242=132,所以截面圆的周长为132×2π=13π,故C 选项错误;对于D ,四棱锥A -EFGH 的高为AQ ,所以其体积V =13×322λ×3(1-λ)×3λ=922λ2(1-λ),0<λ<1, 令f (λ)=922λ2(1-λ),则f ′(λ)=922(2λ-3λ2),令f ′(λ)=0得λ=23,故当λ=23时,四棱锥A -EFGH 的体积最大,最大值为922×49×13=223,故D 选项正确,故选ABD.16.(多选)(2022·嘉兴测试)如图,在等腰梯形ABCD 中,AB =2AD =2BC =2CD =4.现将△DAC沿对角线AC所在的直线翻折成△D′AC,记二面角D′-AC-B的大小为α(0<α<π),则( )A.存在α,使得D′A⊥BCB.存在α,使得D′A⊥平面D′BCC.存在α,使得三棱锥D′-ABC的体积为3 3D.存在α=π2,使得三棱锥D′-ABC的外接球的表面积为20π答案ACD解析如图1,取AB的中点E,连接DE交AC于点F.因为AB=2CD,所以CD=EB=AE,所以四边形AECD为菱形,四边形EBCD为菱形,所以△AED,△DEC,△EBC均为等边三角形,所以AC⊥ED,∠DAC=∠BAC=π6,∠ACB=π2,在翻折过程中,如图2,AC⊥D′F,AC⊥FE,所以∠D′FE为二面角D′-AC-B的平面角,所以∠D′FE=α.对于A,当α=π2时,平面D′AC⊥平面ABC.因为BC⊥AC,所以BC⊥平面D′AC.又因为D′A⊂平面D′AC,所以D′A⊥BC,所以存在α,使得D′A⊥BC,故A选项正确;对于B,假设存在α,使得D′A⊥平面D′BC.因为D′C⊂平面D′BC,所以D′A⊥D′C,与∠AD′C=2π3矛盾,故B选项不正确;对于C,由分析可得,D′F=12DE=12AD=1,AC=2AF=2×32×AD=2 3.设D′到平面ABC的距离为d,则V三棱锥D′-ABC=13×S△ABC×d=13×12×AC×BC×d=13×12×23×2×d=33,解得d=1 2,所以sin α=dD′F=12,所以α=π6或5π6,故C选项正确;对于D,当α=π2时,平面D′AC⊥平面ABC,所以BC⊥平面D′AC,D′F⊥平面ABC.如图2所示,因为E,F分别为AB,AC的中点,所以EF∥BC,且EF=12BC=1,所以EF⊥平面D′AC.设△D′AC外接圆圆心为O1,则O1A=O1D′=AD′=2.因为E是Rt△ABC斜边的中点,所以E为Rt△ABC的外心.过O1作平面D′AC的垂线,过点E作平面ABC的垂线,则两垂线的交点O即为三棱锥D′-ABC外接球的球心,显然四边形EFO1O是矩形,所以OO1=EF=1.设三棱锥D′-ABC的外接球半径为R,则在Rt△OO1D′中,R=OD′=O1O2+O1D′2=1+4=5,所以三棱锥D′-ABC的外接球的表面积S=4πR2=20π,故D选项正确.综上所述,故选ACD.17.在菱形ABCD中,AB=23,∠ABC=60°,若将菱形ABCD沿对角线AC折成大小为60°的二面角B-AC-D,则四面体DABC的外接球球O的体积为________.答案5239π27解析如图,设M,N分别为△ABC,△ACD的外心,E为AC的中点,则EN=EM=13BE=1,在平面BDE内过点M作BE的垂线与过点N作DE的垂线交于点O. ∵BE⊥AC,DE⊥AC,BE∩DE=E,∴AC⊥平面BDE.∵OM⊂平面BDE,∴OM⊥AC,∵OM⊥BE,BE∩AC=E,∴OM⊥平面ABC,同理可得ON⊥平面ACD,则O为四面体DABC的外接球的球心,连接OE,∵EM=EN,OE=OE,∠OME=∠ONE=90°,∴△OME≌△ONE,∴∠OEM=30°,∴OE=EMcos 30°=233.∵AC⊥平面BDE,OE⊂平面BDE,∴OE⊥AC,∴OA=OE2+AE2=39 3,即球O的半径R=39 3.故球O的体积V=43πR3=5239π27.18.(2022·湖南三湘名校联考)在直三棱柱ABC-A1B1C1中,AB⊥BC,AB=BC=AA1=4,M 为棱AB的中点,N是棱BC的中点,O是三棱柱外接球的球心,则平面MNB1截球O所得截面的面积为________.答案8π解析如图1,将直三棱柱补形成正方体ABCD-A1B1C1D1,连接BD1,则直三棱柱的外接球也是正方体的外接球,球心O是BD1的中点,半径R=2 3. 连接BD交MN于点E,连接B1E交BD1于点F,过点O作OO1⊥B1E于点O1,连接B1D1,因为MN∥AC,AC⊥平面BB1D1D,所以MN⊥平面BB1D1D,所以OO1⊥MN,所以OO1⊥平面MNB1.如图2,31 / 31 在矩形BB 1D 1D 中,BF FD 1=BE B 1D 1=14, 所以BF OF =23,过点B 作BG ⊥B 1E 于点G , 则BG =BE ·BB 1B 1E =43,BGOO 1=BF OF =23,所以OO 1=2,设截面圆的半径为r , 则r 2=R 2-OO 21=(23)2-22=8,所以截面的面积为8π.。

高考数学一轮复习第六章专题六几何体的外接球与内切球问题课件

高考数学一轮复习第六章专题六几何体的外接球与内切球问题课件

)
A.4 3π
B.8π
C.12π
D.20π
解析:在底面△ABC 中,由正弦定理得底面△ABC 外接圆的
半径为
r=2sin B∠CBAC=2sin2
3π= 4
2.
直三棱柱 ABC-A1B1C1 的外接球的半径 R= ( 2)2+12= 3,
r2+A2A12=
则直三棱柱 ABC-A1B1C1 的外接球的体积为43πR3=4 3π.

λ=12时,cos〈E→B,E→G〉=2
3
2 .
∴cos〈E→B,E→G〉的最大值为2
3
2 .
∵A→C=(-1,1,0),A→F=(0,1,1), ∴E→B·A→C=E→B·A→F=0. ∴EB⊥AC,EB⊥AF. ∵AC∩AF=A,∴EB⊥平面 AFC. ∵E→B·E→G>0,∴cos〈E→B,E→G〉即为 EG 与平面 AFC 所成角
如图 6-7 所示,把四面体 S-ABC 补全为长方体 ABCD-SPMN, 其中 SA,AB,BC 为长方体中首尾相连且两两相互垂直的三条棱, 点 H 为 PM 中点.
图 6-7
∵GH∥AP,∴G,H 两点到平面 AEF 的距离相等.
设点 H 到平面 AEF 的距离为 d.
∵△APF 是边长为 2 2的等边三角形,
[例 1]已知一个圆锥底面半径为 1,母线长为 3,则该圆锥内
切球的表面积为( )
A.π
B.32π
C.2π
D.3π
解析:依题意,作出圆锥与球的轴截面,如图
6-1 所示.设球的半径为 r,易知轴截面三角形边 AB
上的高为 2 2,因为△SOD∽△SBE,所以SSOB=OBED,
即2 32-r=1r,解得 r= 22.所以圆锥内切球的表面

高考数学立体几何体的外接球与内切球常见题型

高考数学立体几何体的外接球与内切球常见题型

高考数学立体几何体的外接球与内切球常见题型介绍在高考数学中,立体几何是一个重要的考点。

其中,经常涉及到求解立体几何体的外接球和内切球的问题。

本文将介绍几种常见的题型以及解题方法,帮助考生更好地理解和应对这类题目。

以下是具体内容。

外接球的题型题型1:求立体几何体的外接球的半径或直径这类题型要求求解一个给定立体几何体的外接球的半径或直径。

解题的关键是找到立体几何体的特性和几何关系。

解题步骤:1. 确定给定立体几何体的特性,如边长、角度等。

2. 根据立体几何体的几何关系,得出外接球与立体几何体的关系。

3. 利用几何关系,建立方程。

4. 求解方程,得到外接球的半径或直径。

题型2:求多个立体几何体的共同外接球的半径或直径这类题型要求求解多个给定立体几何体的共同外接球的半径或直径。

解题的关键是找到多个立体几何体之间的共同特性和几何关系。

解题步骤:1. 确定给定立体几何体的特性,如边长、角度等。

2. 找到多个立体几何体之间的共同特性和几何关系。

3. 根据几何关系,建立方程。

4. 求解方程,得到共同外接球的半径或直径。

内切球的题型题型1:求立体几何体的内切球的半径或直径这类题型要求求解一个给定立体几何体的内切球的半径或直径。

解题的关键是找到立体几何体的特性和几何关系。

解题步骤:1. 确定给定立体几何体的特性,如边长、角度等。

2. 根据立体几何体的几何关系,得出内切球与立体几何体的关系。

3. 利用几何关系,建立方程。

4. 求解方程,得到内切球的半径或直径。

题型2:求多个立体几何体的共同内切球的半径或直径这类题型要求求解多个给定立体几何体的共同内切球的半径或直径。

解题的关键是找到多个立体几何体之间的共同特性和几何关系。

解题步骤:1. 确定给定立体几何体的特性,如边长、角度等。

2. 找到多个立体几何体之间的共同特性和几何关系。

3. 根据几何关系,建立方程。

4. 求解方程,得到共同内切球的半径或直径。

总结本文介绍了高考数学立体几何体的外接球和内切球常见题型,并给出了解题的步骤和方法。

2023届高三数学一轮复习专题 空间几何体的外接球与内切球问题 讲义 (解析版)

2023届高三数学一轮复习专题  空间几何体的外接球与内切球问题  讲义 (解析版)

空间几何体的外接球与内切球问题高考分析: 球与几何体的切接问题是近几年高考的高频考点,常以选择题和填空题的形式出现,以中档题和偏难题为主. 一、几种常见几何体的外接与内切球 1.长方体的外接球 (1)球心:体对角线的交点;(2)半径:R =a 2+b 2+c 22(a ,b ,c 为长方体的长、宽、高).2.正方体的外接球、内切球及与各条棱相切的球 (1)外接球:球心是正方体的中心;半径R =32a(a 为正方体的棱长); (2)内切球:球心是正方体的中心;半径r =2a(a 为正方体的棱长);(3)与各条棱都相切的球:球心是正方体的中心;半径=2r a (a 为正方体的棱长). 3.正四面体的外接球与内切球(1)外接球:球心是正四面体的中心;半径R (a 为正四面体的棱长);(2)内切球:球心是正四面体的中心;半径r (a 为正四面体的棱长).求外接球问题常用方法:1.补体法。

将几何体补形成长方体正方体等常见模型去求解2.外接球的球心都在过底面外接圆圆心的垂线上(注意球体可以滚动所以可以选择较为方便计算的那一面作为底面)3.利用外接球球心到几何体各顶点距离都等于半径4.球心与截面圆圆心的连线垂直于截面圆求外接球的关键是确定球心位置,进而计算出外接球半径。

题型一:柱体的外接球1.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为_________.2.已知三棱柱111ABC A B C -的底面是边长为6的正三角形,侧棱垂直于底面,且该三棱柱的外接球的表面积为12 ,则该三棱柱的体积为_________.3.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( )A .16πB .20πC .24πD .32π4.已知圆柱的底面半径为12,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A.πB.3π4 C.π2 D.π4题型二:锥体的外接球5.求棱长为1的正四面体外接球的体积为_________.6.已知正四棱锥P -ABCD 内接于一个半径为R 的球,则正四棱锥P -ABCD 体积的最大值是( )A.16R 381B.32R 381C.64R 381 D .R 3 7.如图,在四棱锥P -ABCD 中,底面ABCD 为菱形,PB ⊥底面ABCD ,O 为对角线AC 与BD 的交点,若PB =1,∠APB =∠BAD =π3,则三棱锥P -AOB 的外接球的体积是_________.8.已知△ABC 是面积为的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A.B.C. 1D.9.已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A. 64πB. 48πC. 36πD. 32π10.《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵.将一堑堵沿其一顶点与相对的棱切开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均是直角三角形的四面体).在如图所示的堑堵ABC -A 1B 1C 1中,AA 1=AC =5,AB =3,BC =4,则阳马C 1-ABB 1A 1的外接球的表面积是( )A .25πB .50πC .100πD .200π11.已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为 A .68πB .64πC .62πD .6π12.已知正三棱锥的所有顶点都在球O 的球面上,其底面边长为3,E,F ,G 分别为为侧棱AB,AC,AD 的中点.若O 在三棱锥A -BCD 内,且三棱锥A -BCD 的体积是三棱锥O -BCD 体积的3倍,则平面EFG 截球O 所得截面的面积为微专题 球与几何体的切接问题——内切球1.半径为R 的球的外切圆柱(球与圆柱的侧面、两底面都相切)的表面积为_________,体积为_________.2.若正四面体的棱长为a ,则其内切球的半径为_________.3.已知正三棱锥的高为6,内切球(与四个面都相切)的表面积为16π,则其底面边长为( ) A .18 B .12 C .6 3 D .434.将半径为3,圆心角为2π3的扇形围成一个圆锥(接缝处忽略不计),则该圆锥的内切球的体积为( )A.2π3 B.3π3 C.4π3D .2π 5.如图,已知球O 是棱长为1的正方体ABCD -A 1B 1C 1D 1的内切球,则平面ACD 1截球O 的截面面积为( )A.66π B.π3 C.π6 D.33π题型三 最值问题6.已知底面是正六边形的六棱锥P -ABCDEF 的七个顶点均在球O 的表面上,底面正六边形的边长为1,若该六棱锥体积的最大值为3,则球O 的表面积为_________.7.四棱锥S -ABCD 的所有顶点都在同一球面上,底面ABCD 是正方形且和球心O 在同一平面内,当此四棱锥的体积取得最大值时,其表面积等于8+83,则球O 的体积等于( )A.32π3B.322π3 C .16π D.162π38.已知SAB 是边上为2的等边三角形,045ACB ∠=,则三棱锥体积最大时,CA = ;其外接球的表面积为。

高考球的外接、内接球问题

高考球的外接、内接球问题
途径3:若已知棱锥含有线面垂直关系,则可将棱锥补成长方体 或正方体或直棱柱.
途径4:若三棱锥的三个侧面两两垂直,则可将三棱锥补成长方 体或正方体.
途径1:正四面体、三条侧棱两两垂直的正三棱锥、四个面 都是是直角三角形的三棱锥都分别可构造正方体.
例1、如下图所示,在等腰梯形ABCD中,AB=2CD=2,DAB 60
.
途径3:若已知棱锥含有线面垂直关系,则可将棱锥补成长方 体或正方体或直棱柱.
例3、在三棱锥中A-BCD中,AB 平面BCD ,CD BC ,
AB=3,BC=4,CD=5, 则三棱锥A-BCD外接球的表面

. 50
途径3:若已知棱锥含有线面垂直关系,则可将棱锥补成长方 体或正方体或直棱柱.
.( 1)6
结论2:正棱柱的外接球的球心是上下底面中心的连线的中点.
例2、一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该
正六棱柱的顶点都在同一个球面上,且该六棱柱的体积为 9 ,底
面周长为3,则这个球的体积为 4 .
8
3
结论3:直三棱柱的外接球的球心是上下底面三角形外心的连线的 中点.
(1)截面图为正方形的内切圆EFGH,得

(2)与正方体各棱相切的球:球与正方体的各棱相切,切点为各棱的中点,
如图4作截面图,圆o为正方形EFGH的外接圆,易得

(3)正方体的外接球:正方体的八个顶点都在球面上,如图5,以对角面AA1
作截面图得,圆O为矩形AA1C1C的外接圆,易得

图3
图4
图5
2.棱锥的内切球(分割法)
.
4
3
结论5:若棱锥的顶点可构成共斜边的直角三角形,则公共
斜边的中点就是其外接球的球心.

高中数学丨外接球与内切球解题方法,8大模型

高中数学丨外接球与内切球解题方法,8大模型

高中数学I夕卜接球与内切球解题方法,8大模型空间几何体的外接球与内切球-、有关定义1.球的定义:空间中到定点的距离等于定长的点的集合(轨迹)叫球面,简称球。

2.外接球的定义:若一个多面体的各个顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。

3.内切球的定义:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球。

二、外接球的有关知识与方法1.性质:性质1:过球心的平面截球面所得圆是大圆,大圆的半径与球的半径相等;性质2:经过小圆的直径与小圆面垂直的平面必过球心,该平面截球所得圆是大圆;性质3:过球心与小圆圆心的直线垂直于小圆所在的平面(类比:圆的垂径定理);性质4:球心在大圆面和小圆面上的射影是相应圆的圆心;性质5:在同一球中,过两相交圆的圆心垂直于相应的圆面的直线相交,交点是球心(类比:在同圆中,两相交弦的中垂线交点是圆心).初图1初图22.结论:结论1:长方体的外接球的球心在体对角线的交点处,即长方体的体对角线的中点是球心;结论2:若由长方体切得的多面体的所有顶点是原长方体的顶点,则所得多面体与原长方体的外接球相同;结论3:长方体的外接球直径就是面对角线及与此面垂直的棱构成的直角三角形的外接圆圆心,换言之,就是:底面的一条对角线与一条高(棱)构成的直角三角形的外接圆是大圆;结论4:圆柱体的外接球球心在上下两底面圆的圆心连一段中点处;结论5:圆柱体轴截面矩形的外接圆是大圆,该矩形的对角线(外接圆直径)是球的直径;结论6:直棱柱的外接球与该棱柱外接圆柱体有相同的外接球;结论7:圆锥体的外接球球心在圆锥的高所在的直线上;结论8:圆锥体轴截面等腰三角形的外接圆是大圆,该三角形的外接圆直径是球的直径;结论9:侧棱相等的棱锥的外接球与该棱锥外接圆锥有相同的外接球.3.终极利器:勾股定理、正弦定理及余弦定理(解三角形求线段长度);三、内切球的有关知识与方法1.若球与平面相切,则切点与球心连线与切面垂直。

高中数学关于球的内切外接问题

高中数学关于球的内切外接问题

处理球的“内切”“外接”问题与球有关的组合体问题,一种是内切,一种是外接。

作为这种特殊的位置关系在高考中也是考查的重点,但同学们又因缺乏较强的空间想象能力而感到模糊。

解决这类题目时要认真分析图形,明确切点和接点的位置及球心的位置,画好截面图是关键,可使这类问题迎刃而解。

一、棱锥的内切、外接球问题例1.正四面体的外接球和内切球的半径是多少? 分析:运用正四面体的二心合一性质,作出截面图,通过点、线、面关系解之。

解:如图1所示,设点O 是内切球的球心,正四面体棱长为a .由图形的对称性知,点O 也是外接球的球心.设内切球半径为r ,外接球半径为R .正四面体的表面积223434a a S =⨯=表. 正四面体的体积22221234331BE AB a AE a V BCD A -=⨯⨯=- BCD A V r S -=⋅表31Θ,a aaS V r BCD A 12631223323=⨯==∴-表在BEO Rt ∆中,222EO BE BO +=,即22233r a R +⎪⎪⎭⎫ ⎝⎛=,得a R 46=,得r R 3= 【点评】由于正四面体本身的对称性可知,内切球和外接球的两个球心是重合的,为正四面体高的四等分点,即内切球的半径为4h ( h 为正四面体的高),且外接球的半径43h,从而可以通过截面图中OBE Rt ∆建立棱长与半径之间的关系。

图1例2.设棱锥ABCD M -的底面是正方形,且MD MA =,AB MA ⊥,如果AMD ∆的面积为1,试求能够放入这个棱锥的最大球的半径.解:?⊥∴⊥⊥AB MA AB AD AB ,,Θ平面MAD , 由此,面⊥MAD 面AC .记E 是AD 的中点, 从而AD ME ⊥.⊥∴ME 平面AC ,EF ME ⊥设球O 是与平面MAD 、平面AC 、平面MBC 都相切的球.如图2,得截面图MEF ∆及内切圆O不妨设∈O 平面MEF ,于是O 是MEF ∆的内心. 设球O 的半径为r ,则MFEM EF S r MEF++=∆2,设a EF AD ==,1=∆AMD S Θ.222,2⎪⎭⎫⎝⎛+==∴a a MF a EM ,12222222222-=+≤⎪⎭⎫⎝⎛+++=a a a a r当且仅当aa 2=,即2=a 时,等号成立. ∴当2==ME AD 时,满足条件的球最大半径为12-.练习:一个正四面体内切球的表面积为π3,求正四面体的棱长。

内切球和外接球例题培训讲学

内切球和外接球例题培训讲学

高考数学中的内切球和外接球问题一、直接法(公式法)1、求正方体的外接球的有关问题例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为___________ .27 .例2 一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为_______________ . 4爲 .2、求长方体的外接球的有关问题例3 (2007年天津高考题)一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为_____________ .14 .例4、(2006年全国卷I)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为().C.A. 16B. 20C. 24D. 323•求多面体的外接球的有关问题例5. 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的9顶点都在同一个球面上,且该六棱柱的体积为8,底面周长为3,则这个球的体积为 ________ .解设正六棱柱的底面边长为x,高为h,则有6x 3,9 G .3 2.6 x h,8 4距离1X2,h ' 3°「.正六棱柱的底面圆的半径J2••••外接球的半径R . r2 d2 11r2,球心到底面的二、构造法(补形法)1、构造正方体例5 (2008年福建高考题)若三棱锥的三条侧棱两两垂直,且侧棱长均为聽,则其外接球的表面积是__________________ . 9解据题意可知,该三棱锥的三条侧棱两两垂直,•把这个三棱锥可以补成一个棱长为「3的正方体,于是正方体的外接球就是三棱锥的外接球.设其外接球的半径为R,则有22R.—2.—222 9■3 3'3 9「4•故其外接球2的表面积S 4 R 9 .小结一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b、c,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长j2 2 2 就是该三棱锥的外接球的直径.设其外接球的半径为R,则有2R a b c .出现“墙角”结构利用补形知识,联系长方体。

高考数学中的内切球和外接球问题 (1)

高考数学中的内切球和外接球问题 (1)

高考数学中的内切球和外接球问题一、 有关外接球的问题 一、直接法(公式法)1、求正方体的外接球的有关问题例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ .例2一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________.2、求长方体的外接球的有关问题例3一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为 .例4已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( ).A. 16πB. 20πC. 24πD. 32π3.求多面体的外接球的有关问题例5一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为89,底面周长为3,则这个球的体积为 .解 设正六棱柱的底面边长为x ,高为h ,则有⎪⎩⎪⎨⎧⨯==h x x 24368936⎪⎩⎪⎨⎧==213x h∴正六棱柱的底面圆的半径21=r ,球心到底面的距离23=d .∴外接球的半径22d r R +=. 体积:334R V π=. 小结 本题是运用公式222d r R +=求球的半径的,该公式是求球的半径的常用公式.二、构造法(补形法) 1、构造正方体例5 若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是_______________.例3 若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 .故其外接球的表面积ππ942==r S .小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为c b a ,,,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2222c b a R ++=. 出现“墙角”结构利用补形知识,联系长方体。

【原理】:长方体中从一个顶点出发的三条棱长分别为c b a ,,,则体对角线长为222c b a l ++=,几何体的外接球直径为R 2体对角线长l 即2222c b a R ++=练习:在四面体ABCD 中,共顶点的三条棱两两垂直,其长度分别为 3,6,1,若该四面体的四个顶点在一个球面上,求这个球的表面积。

高考中与内切球和外接球相关的几个问题

高考中与内切球和外接球相关的几个问题

1 1 1 槡 3 + + + )= . (1 6 2 2 2 2
面体 ABCD 中, 共顶点 A 的三条棱两两相互垂直, 且其长分 3, 6, 若四面体的四个顶点同在一个球面上, 则这个 别为 1 , 槡 . 球的表面积为 答案 16 π.
于是 r =
1 r 3 -1 , =槡 . 选 D. 3 3 R 3 +槡

126
专 题 研 究
ZHUANTI YANJIU
解析 由正四面体的图像的对称性可知, 内切球的球 球与各棱相切, 其切点必为各棱中 心必为正四面体的中心, 点, 考查三组对棱中点的连线交于一点, 即为内切球的球 所 以 每 组 对 棱 间 的 距 离 即 为 内 切 球 的 直 径, 于 是 有: 心, 2 4 2 3 2 2 r = 槡 a, ∴ V = · π· 槡 a = 槡 πa . 2 3 24 4 问题 3 ( 湖北黄冈麻城博达学校 2008 届三月综合测 则这个正三棱 试) 正三棱锥 P - ABC 的三条侧棱两两垂直, ). 锥 P - ABC 的内切球与外接球的半径之比为( A. 1∶ 3 C. ( 槡 3 + 1) ∶ 3 B. 1∶ ( 3 + 槡 3) D. ( 槡 3 - 1) ∶ 3
数学学习与研究 20BOC - S △ABC . a+b+c
A, B, C 是球 O 面上的四个 应用 1 ( 书本 P91 : ex7 ) P, PA , PB , PC PA = PB = PC = 1 , 点, 两两垂直, 且 求球的体积 与表面积. 应用 2 ( 2008 年福建 15 ) 若三棱锥的三条侧棱两两垂 . 3, 且侧棱长均为槡 则其外接球的表面积是 直, 9 . 答案 π

高考数学专题突破:外接球和内切球问题【解析版】

高考数学专题突破:外接球和内切球问题【解析版】

高考数学专题突破:外接球模型模板一:222)2(r h R += 即422r h R +=一、题型描述几何体的外接球问题:题目中涉及几何体外接球体,或者球内接几何体,再或者说成球面上有几个点围成几何体,这类题型称之为几何体的外接球问题。

二、模法讲解以下这幅图,大家应该都能看明白吧!一个底面半径为,高为的圆柱,求它的外接球半径。

那么问题来了?422r h R +=这个式子怎么来的。

那么这个式子有何妙用?1、如果我们对圆柱上下底面对应位置处,取相同数量的点,比如都取三个点,如图所示:我们可以得到(直)三棱柱,它的外接球其实就是这个圆柱的外接球,所以说直棱柱的外接球求半径符合这个模型。

在这里棱柱的高就是公式中h 的,而棱柱底面外接圆的半径则是公式中的r (至于怎么求外接圆半径可以用正弦定理。

2、我们再继续进行,如果我把刚刚那个三棱柱上面的两点去掉,我将得到三棱锥,如图:这个三棱锥的特点是AA1⊥底面ABC,即有一根侧棱⊥底面的锥体,依然符合这个模型。

那条竖直棱AA1就是公式中的h,而底面ABC的外接圆半径是公式中的r。

3、题目还喜欢这么干:面PAD垂直面ABCD。

它非常符合圆柱外接球模型!我们知道,这里的r为PAD的外接圆半径,h为AB或者CD为的长。

接着看,当我对第二幅图中的三棱柱 ABC-A1B1C1只去掉C1这个点,会得到什么呢?没错!这就是刚刚那个四棱锥放倒了!它的特点是:底面A1B1AB⊥CAB侧面,出题的时候则不会这么仁慈,就会像上一幅图那样,有一个侧面⊥矩形底面的四棱锥!圆柱外接球模型——适用于:①圆柱-------r,h自带②直棱柱-------r:底面外接圆半径;h:直棱柱的高③一根侧棱⊥底面的锥体-------r:底面外接圆半径;h:垂直于底面的那条侧棱④一个侧面⊥矩形底面的四棱锥-------r:垂直底面的侧面的外接圆半径;h:垂直于那个侧面的底边长那么接下来第二步就是找到,求出,而又怎么求呢?用正弦定理。

高考数学专题:外接球与内切球九大模型(解析版)

高考数学专题:外接球与内切球九大模型(解析版)

空间几何体的外接球与内切球九大模型模型一墙角模型【方法总结】墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长(在长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.),秒杀公式:R 2=a 2+b 2+c 24.可求出球的半径从而解决问题.有以下四种类型:【例题选讲】[例](1)已知三棱锥A -BCD 的四个顶点A ,B ,C ,D 都在球O 的表面上,AC ⊥平面BCD ,BC ⊥CD ,且AC =3,BC =2,CD =5,则球O 的表面积为()A .12πB .7πC .9πD .8π答案A解析由AC ⊥平面BCD ,BC ⊥CD 知三棱锥A -BCD 可构造以AC ,BC ,CD 为三条棱的长方体,设球O 的半径为R ,则有(2R )2=AC 2+BC 2+CD 2=3+4+5=12,所以S 球=4πR 2=12π,故选A .(2)若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为().A .3B .6C .36D .9答案A解析616164)2(2=++=R ,3=R ,故选A .(3)已知S ,A ,B ,C ,是球O 表面上的点,SA ⊥平面ABC ,AB ⊥BC ,SA =AB =1,BC =2,则球O 的表面积等于().A .4πB .3πC .2πD .π答案解析由已知,222211(2)2R =++=,244S R π∴==球π.(4)在正三棱锥S -ABC 中,M ,N 分别是棱SC ,BC 的中点,且AM MN ⊥,若侧棱23SA =,则正三棱锥S -ABC 外接球的表面积是________.答案π36解析 MN AM ⊥,MN SB //,∴SB AM ⊥, SB AC ⊥,∴⊥SB 平面SAC ,∴SA SB ⊥,SC SB ⊥, SA SB ⊥,SA BC ⊥,∴⊥SA 平面SBC ,∴SC SA ⊥,故三棱锥ABC S -的三棱条侧棱两两互相垂直,222(2)(23)(23)R ∴=+2(23)+36=,即3642=R ,∴正三棱锥ABC S -外接球的表面积是π36.(5)(2019全国Ⅰ)已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为().A .68πB .64πC .62πD .6π答案D 解析解法一:, PA PB PC ABC == △为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥ 平面PAC ,∴PB ⊥平面PAC ,2APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体的一部分,2222R =++,6=,即364466,π62338R V R ππ=∴==⨯=,故选D .解法二:设2PA PB PC x ===,, E F 分别为, PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC △为边长为2的等边三角形,3CF ∴=,又90CEF ∠=︒,213, 2CE x AE PA x ∴=-==,AEC △中,由余弦定理可得()2243cos 22x x EAC x+--∠=⨯⨯作PD AC ⊥于D ,PA PC = ,D ∴为AC 的中点,cos E ∠12AD AC PA x==,2243142x x x x +-+∴=,2212212 22x x x ∴+=∴==,,,2PA PB PC ∴===,又2AB BC AC ===,, , PA PB PC ∴两两垂直,22226R ∴=++=,62R ∴=,34433V R ππ∴==⨯668=6π=,故选D .(6)已知二面角α-l -β的大小为π3,点P ∈α,点P 在β内的正投影为点A ,过点A 作AB ⊥l ,垂足为点B ,点C ∈l ,BC =22,PA =23,点D ∈β,且四边形ABCD 满足∠BCD +∠DAB =π.若四面体PACD 的四个顶点都在同一球面上,则该球的体积为________.答案86π解析∵∠BCD +∠DAB =π,∴A ,B ,C ,D 四点共圆,直径为AC ,∵PA ⊥平面β,AB ⊥l ,∴易得PB ⊥l ,即∠PBA 为二面角α-l -β的平面角,即∠PBA =π3,∵PA =23,∴BA =2,∵BC =22,∴AC=23.设球的半径为R ,则23-R 2-(3)2=R 2-(3)2,∴R =6,V =4π3(6)3=86π.模型二对棱相等模型【方法总结】对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长,即2222R a b c =++(长方体的长、宽、高分别为a 、b 、c ).秒杀公式:R 2=x 2+y 2+z 28(三棱锥的三组对棱长分别为x 、y 、z ).可求出球的半径从而解决问题.【例题选讲】[例](1)正四面体的各条棱长都为2,则该正面体外接球的体积为________.答案32π解析这是特殊情况,但也是对棱相等的模式,放入长方体中,32=R ,23=R ,ππ2383334=⋅=V .(2)在三棱锥A -BCD 中,AB =CD =2,AD =BC =3,AC =BD =4,则三棱锥BCD A -外接球的表面积为__.答案292π解析构造长方体,三个长度为三对面的对角线长,设长宽高分别为c b a ,,,则922=+b a ,422=+c b ,1622=+a c ∴291649)(2222=++=++c b a ,291649)(2222=++=++c b a ,229222=++c b a ,22942=R ,π229=S .(3)在三棱锥A -BCD 中,AB =CD =6,AC =BD =AD =BC =5,则该三棱锥的外接球的体积为____.答案43436π解析依题意得,该三棱锥的三组对棱分别相等,因此可将该三棱锥补形成一个长方体,设该长方体的长、宽、高分别为a 、b 、c ,且其外接球的半径为R ,则a 2+b 2=62,b 2+c 2=52,c 2+a 2=52,得a 2+b 2+c 2=43,即(2R )2=a 2+b 2+c 2=43,易知432R =,即为该三棱锥的外接球的半径,所以该三棱锥的外接球的表面积为34434336R ππ=.(4)在正四面体A BCD -中,E 是棱AD 的中点,P 是棱AC 上一动点,BP PE +的最小值为7,则该正四面体的外接球的体积是()A .6πB .6πC .3632πD .32π答案A解析将侧面ABC ∆和ACD ∆展成平面图形,如图所示:设正四面体的棱长为a ,则BP PE +的最小值为22172cos1207422a BE a a a a =+-︒== ,2a ∴=.在正四面体A BCD -的边长为2,外接球的半径6642R a ==,外接球的体积3463V R ππ==.(5)已知三棱锥A BCD -,三组对棱两两相等,且1AB CD ==,3AD BC ==,若三棱锥A BCD -的外接球表面积为92π.则AC =________.答案5解析将四面体A BCD -放置于长方体中, 四面体A BCD -的顶点为长方体八个顶点中的四个,∴长方体的外接球就是四面体A BCD -的外接球,1AB CD == ,3AD BC ==,且三组对棱两两相等,∴设AC BD x ==,得长方体的对角线长为222211[1(3)](4)22x x ++=+,可得外接球的直径212(4)2R x =+,所以22(4)4x R +=, 三棱锥A BCD -的外接球表面积为92π,2942R ππ∴=,解得324R =,即22(4)3244x +=,解之得5x =,因即5AC BD ==.模型三汉堡模型【方法总结】汉堡模型是直棱柱的外接球、圆柱的外接球模型,用找球心法(多面体的外接球的球心是过多面体的两个面的外心且分别垂直这两个面的直线的交点.一般情况下只作出一个面的垂线,然后设出球心用算术方法或代数方法即可解决问题.有时也作出两条垂线,交点即为球心.)解决.以直三棱柱为例,模型如下图,由对称性可知球心O 的位置是△ABC 的外心O 1与△A 1B 1C 1的外心O 2连线的中点,算出小圆O 1的半径AO 1=r ,OO 1=2h ,2224h R r ∴=+.【例题选讲】[例](1)(2013辽宁)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上.若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为().A .3172B .210C .132D .310答案C 解析如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =522+62=132.另解过C 点作AB 的平行线,过B 点作AC 的平行线,交点为D ,同理过C 1作A 1B 1的平行线,过B 1作A 1C 1的平行线,交点为D 1,连接DD 1,则ABCD -A 1B 1C 1D 1恰好成为球的一个内接长方体,故球的半径r =22234121322++=.故选C .(2)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为().A .2a πB .273a πC .2113a πD .237a π答案B 解析222222274312a a R OB OE BE a ==+=+=,22743S a a ππ∴==.故选B .(3)(2009全国Ⅰ)直三棱柱ABC -A 1B 1C 1的各顶点都在同一球面上,若AB =AC =AA 1=2,∠BAC =120°,则此球的表面积等于().A .10πB .20πC .30πD .40π答案B解析如图,先由余弦定理求出BC =23,再由正弦定理求出r =AO 1=2,外接球的直径R =12+22=5,所以该球的表面积为4πR 2=20π.故选B .(4)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于()A .4πB .16π3C .32π3D .16π答案D解析由题意知圆柱的中心O 为这个球的球心,于是,球的半径r =OB =OA 2+AB 2=12+(3)2=2.故这个球的表面积S =4πr 2=16π.故选D .(5)若一个圆柱的表面积为12π,则该圆柱的外接球的表面积的最小值为()A .(12512)π-B .123πC .(1233)π+D .16π答案A解析设圆柱的底面半径为r ,高为h ,则22212r rh πππ+=,则6h r r=-.设该圆柱的外接球的半径为R ,则222222222165959()()3233532444h R r r r r r r r r =+=+-=+--=- ,当且仅当22594r r =,即4365r =时,等号成立.故该圆柱的外接球的表面积的最小值为4(353)(12512)ππ-=-.模型四垂面模型【方法总结】垂面模型是有一条侧棱垂直底面的棱锥模型,可补为直棱柱内接于球,由对称性可知球心O 的位置是△CBD的外心O 1与△AB 2D 2的外心O 2连线的中点,算出小圆O 1的半径AO 1=r ,OO 1=2h ,2224h R r ∴=+.【例题选讲】[例](1)已知在三棱锥S -ABC 中,SA ⊥平面ABC ,且∠ACB =30°,AC =2AB =23,SA =1.则该三棱锥的外接球的体积为()A .13813πB .13πC .136πD .13136π答案D解析∵∠ACB =30°,AC =2AB =23,∴△ABC 是以AC 为斜边的直角三角形,其外接圆半径r =AC2=3,则三棱锥外接球即为以△ABC 为底面,以SA 为高的三棱柱的外接球,∴三棱锥外接球的半径R 满足R =r 2+SA 22=132,故三棱锥外接球的体积V =43πR 3=13136π.故选D .第(1)小题图第(2)小题图1第(2)小题图2(2)三棱锥P -ABC 中,平面PAC ⊥平面ABC ,AB ⊥AC ,PA =PC =AC =2,AB =4,则三棱锥P -ABC 的外接球的表面积为()A .23πB .234πC .64πD .643π答案D解析如图1,设O 为三棱锥外接球的球心,O 1为正△PAC 的中心,则OO 1=12AB =2.2AO 1=2sinπ3=433,AO 1=233,R 2=OA 2=O 1A 2+O 1O 2=43+4=163,故几何体外接球的表面积S =4πR 2=643π.另解:如图2,设O ′为正△PAC 的中心,D 为Rt △ABC 斜边的中点,H 为AC 中点.由平面PAC ⊥平面ABC ,则O ′H ⊥平面ABC .作O ′O ∥HD ,OD ∥O ′H ,则交点O 为三棱锥外接球的球心,连接OP ,又O ′P =23PH =23×32×2=233,OO ′=DH =12AB =2.∴R 2=OP 2=O ′P 2+O ′O 2=43+4=163.故几何体外接球的表面积S =4πR 2=643π.(3)在三棱锥S -ABC 中,侧棱SA ⊥底面ABC ,AB =5,BC =8,∠ABC =60°,SA =25,则该三棱锥的外接球的表面积为()A .643πB .2563πC .4363πD .2048327π答案B解析由题意知,AB =5,BC =8,∠ABC =60°,则在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2×AB ×BC ×cos ∠ABC ,解得AC =7,设△ABC 的外接圆半径为r ,则△ABC 的外接圆直径2r =ACsin ∠ABC =732,∴r =73,又∵侧棱SA ⊥底面ABC ,∴三棱锥的外接球的球心到平面ABC 的距离h =12SA =5,则外接球的半径R =732+(5)2=643,则该三棱锥的外接球的表面积为S =4πR 2=2563π.(4)在三棱锥P -ABC 中,已知PA ⊥底面ABC ,∠BAC =120˚,PA =AB =AC =2,若该三棱锥的顶点都在同一个球面上,则该球的表面积为()A .103πB .18πC .20πD .93π答案C解析如图1,先由余弦定理求出BC =23,再由正弦定理求出r =AO 1=2,外接球的直径R =12+22=5,所以该球的表面积为4πR 2=20π.第(3)小题图第(4)小题图1第(4)小题图2另解如图2,该三棱锥为图中正六棱柱内的三棱锥P -ABC ,PA =AB =AC =2,所以该三棱锥的外接球即该六棱柱的外接球,所以外接球的直径2R =42+22=25⇒R =5,所以该球的表面积为4πR 2=20π.(5)在三棱锥P ABC -中,PA ⊥平面ABC ,120BAC ∠=︒,2AC =,1AB =,设D 为BC 中点,且直线PD 与平面ABC 所成角的余弦值为55,则该三棱锥外接球的表面积为________.答案373π解析在ABC ∆中,120BAC ∠=︒,2AC =,1AB =,由余弦定理得:22BC AC =+22cos AB AC BC BAC -⋅⋅∠,即22221221cos1207BC =+-⨯⨯⨯︒=,解得:7BC =.设ABC ∆的外接圆半径为r ,由正弦定理得7272sin sin1203BC r BAC ===∠︒解得:72133r ==;且222cos 2AB BC AC ABC AB BC +-∠=2221(7)2277217+-==⨯⨯,又D 为BC 中点,在ABD ∆中,1722BD BC ==,1AB =,27cos 7ABD ∠=.由余弦定理得:2222cos AD AB BD AB BD ABD =+-∠ ,即:222772731()212274AD =+-⨯⨯⨯=,解得32AD =.又因为PA ⊥平面ABC ,所以PDA ∠为直线PD 与平面ABC 所成角,由5cos 5PDA ∠=,得25sin 5PDA ∠=,tan 2PDA ∠=,所以在Rt PAD ∆中,3tan 232PA AD PDA =∠== .设三棱锥P ABC -的外接球半径为R ,所以222232137()()()22312PA R r =+=+=,三棱锥P ABC -外接球表面积为23743S R ππ==.模型五切瓜模型【方法总结】切瓜模型是有一侧面垂直底面的棱锥型,常见的是两个互相垂直的面都是特殊三角形且平面ABC ⊥平面BCD ,如类型Ⅰ,△ABC 与△BCD 都是直角三角形,类型Ⅱ,△ABC 是等边三角形,△BCD 是直角三角形,类型Ⅲ,△ABC 与△BCD 都是等边三角形,解决方法是分别过△ABC 与△BCD 的外心作该三角形所在平面的垂线,交点O 即为球心.类型Ⅳ,△ABC 与△BCD 都一般三角形,解决方法是过△BCD 的外心O 1作该三角形所在平面的垂线,用代数方法即可解决问题.设三棱锥A -BCD 的高为h ,外接球的半径为R ,球心为O .△BCD 的外心为O 1,O 1到BD 的距离为d ,O 与O 1的距离为m ,则R 2=r 2+m 2,R 2=d 2+(h -m )2,解得R .可用秒杀公式:R 2=r 12+r 22-l 24(其中r 1、r 2为两个面的外接圆的半径,l 为两个面的交线的长)【例题选讲】[例](1)已知在三棱锥P -ABC 中,V P ­ABC =433,∠APC =π4,∠BPC =π3,PA ⊥AC ,PB ⊥BC ,且平面PAC ⊥平面PBC ,那么三棱锥P -ABC 外接球的体积为________.答案32π3解析如图,取PC 的中点O ,连接AO ,BO ,设PC =2R ,则OA =OB=OC =OP =R ,∴O 是三棱锥P -ABC 外接球的球心,易知,PB =R ,BC =3R ,∵∠APC =π4,PA ⊥AC ,O 为PC 的中点,∴AO ⊥PC ,又平面PAC ⊥平面PBC ,且平面PAC ∩平面PBC =PC ,∴AO ⊥平面PBC ,∴V P ­ABC =V A ­PBC =13×12×PB ×BC ×AO =13×12×R ×3R ×R=433,解得R =2,∴三棱锥P -ABC 外接球的体积V =43πR 3=32π3.(2)如图,已知平面四边形ABCD 满足AB =AD =2,∠A =60˚,∠C =90˚,将△ABD 沿对角线BD 翻折,使平面ABD ⊥平面CBD ,则四面体ABCD 外接球的体积为__.答案323π27解析在四面体ABCD 中,∵AB =AD =2,∠BAD =60˚,∴△ABD为正三角形,设BD 的中点为M ,连接AM ,则AM ⊥BD ,又平面ABD ⊥平面CBD ,平面ABD ∩平面CBD =BD ,∴AM ⊥平面CBD .∵△CBD 为直角三角形,∴其外接圆的圆心是斜边BD 的中点M ,由球的性质知,四面体ABCD 外接球的球心必在线段AM 上,又△ABD 为正三角形,∴球心是△ABD 的中心,则外接球的半径为23×2×32=233,∴四面体ABCD 外接球的体积为43×π×(233)3=323π27.(3)已知三棱锥A -BCD 中,△ABD 与△BCD 是边长为2的等边三角形且二面角A -BD -C 为直二面角,则三棱锥A -BCD 的外接球的表面积为()A .10π3B .5πC .6πD .20π3答案D解析如图,取BD 中点M ,连接AM ,CM ,取△ABD ,△CBD 的中心即AM ,CM 的三等分点P ,Q ,过P 作平面ABD 的垂线,过Q 作平面CBD 的垂线,两垂线相交于点O ,则点O 为外接球的球心,如图,其中OQ =33,CQ =233,连接OC ,则外接球的半径R =OC =153,表面积为4πR 2=20π3,故选D .(4)已知ABC ∆是以BC 为斜边的直角三角形,P 为平面ABC 外一点,且平面PBC ⊥平面ABC ,3BC =,22PB =,5PC =,则三棱锥P ABC -外接球的表面积为________.答案10π解析由题意知BC 的中点O 为ABC ∆外接圆的圆心,且平面PBC ⊥平面ABC ,过O 作面ABC 的垂线l ,则垂线l 一定在面ABC 内.根据球的性质,球心一定在垂线l 上, 球心1O 一定在平面PBC 内,且球心1O 也是PBC ∆外接圆的圆心.在PBC ∆中,由余弦定理得2222cos 22PB BC PC PBC PB BC +-∠==,2sin 2PBC ∴∠=,由正弦定理得:2sin PCR PBC=∠,解得102R =,∴三棱锥的外接球的表面积2410R ππ==.(5)已知等腰直角三角形ABC 中,AB =AC =2,D ,E 分别为AB ,AC 的中点,沿DE 将△ABC 折成直二面角(如图),则四棱锥A -DECB 的外接球的表面积为________.答案10π解析取DE 的中点M ,BC 的中点N ,连接MN (图略),由题意知,MN ⊥平面ADE ,因为△ADE是等腰直角三角形,所以△ADE 的外接圆的圆心是点M ,四棱锥A -DECB 的外接球的球心在直线MN 上,又等腰梯形DECB 的外接圆的圆心在MN 上,所以四棱锥A -DECB 的外接球的球心就是等腰梯形DECB 的外接圆的圆心.连接BE ,易知△BEC 是钝角三角形,所以等腰梯形DECB 的外接圆的圆心在等腰梯形DECB 的外部.设四棱锥A -DECB 的外接球的半径为R ,球心到BC 的距离为d ,则R 2=d 2+(2)2,R 2=(d +22)2+(22)2,解得R 2=52,故四棱锥A -DECB 的外接球的表面积S =4πR 2=10π.模型六斗笠模型【方法总结】圆锥、顶点在底面的射影是底面外心的棱锥.秒杀公式:R =h 2+r 22h(其中h 为几何体的高,r 为几何体的底面半径或底面外接圆的圆心)【例题选讲】[例](1)一个圆锥恰有三条母线两两夹角为60︒,若该圆锥的侧面积为33π,则该圆锥外接球的表面积为________.答案272π解析设60ASB BSC CSA ∠=∠=∠=︒,则SA SB SC AB AC BC =====.设AB x =,则底面圆的直径为22sin 603x x r ==︒,该圆锥的侧面积为123323xx ππ= ,解得3x =,高223(3)6OS =-.333r ∴=.设圆锥外接球的半径为R ,所以222(6)R r R -+=,解得36R =,则外接球的表面积为22742R ππ=.(2)(2020·全国Ⅰ)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为()A .64πB .48πC .36πD .32π答案A解析设⊙O 1的半径为r ,球的半径为R ,依题意,得πr 2=4π,∴r =2.由正弦定理可得ABsin 60°=2r ,∴AB =2r sin 60°=23.∴OO 1=AB =23.根据球的截面性质,得OO 1⊥平面ABC ,∴OO 1⊥O 1A ,R =OA =OO 21+O 1A 2=OO 21+r2=4,∴球O 的表面积S =4πR 2=64π.故选A .(3)在三棱锥P ABC -中,PA PB =26, 4PC AC AB ====,且AC AB ⊥,则该三棱锥外接球的表面积为________.答案36π解析设顶点P 在底面中的射影为1O ,由于PA PB PC ==,所以111O A O B O C ==,即点1O 是底面ABC ∆的外心,又AC AB ⊥,所以1O 为BC 的中点,因为PA PB =26, 4PC AC AB ====,所以1142, 22, 4BC AO PO ===,设外接球的球心为O ,半径为R ,则O 必在1PO 上,=-14O O R ,在∆1Rt O OA中,()()222422R R -+=,解得3R =,所以22436S R ππ==.(4)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A .81π4B .16πC .9πD .27π4答案A解析如图所示,设球半径为R ,底面中心为O ′且球心为O ,∵正四棱锥P ­ABCD 中AB =2,∴AO ′=2,∵PO ′=4,∴在Rt △AOO ′中,AO 2=AO ′2+OO ′2,∴R 2=(2)2+(4-R )2,解得R =94,∴该球的表面积为4πR 2=4π×942=81π4.(5)如图所示,在正四棱锥P -ABCD 中,底面ABCD 是边长为4的正方形,E ,F 分别是AB ,CD 的中点,cos ∠PEF =22,若A ,B ,C ,D ,P 在同一球面上,则此球的体积为________.答案36π解析由题意,得底面ABCD 是边长为4的正方形,cos ∠PEF =22,故高PO 1为2.易知正四棱锥P -ABCD 的外接球的球心在它的高PO 1上,记球心为O ,则AO 1=22,PO =AO =R ,PO 1=2,OO 1=2-R 或OO 1=R -2(此时O 在PO 1的延长线上),在直角△AO 1O 中,R 2=AO 21+OO 21=(22)2+(2-R )2,解得R =3,所以球的体积为V =43πR 3=4π3×33=36π.(6)在三棱锥P ABC -中,2PA PB PC ===,1AB AC ==,3BC =,则该三棱锥外接球的体积为()A .43πB .823πC .43πD .323π答案A解析由2PA PB PC ===,过P 作PG ⊥平面ABC ,垂足为G ,则G 为三角形ABC 的外心,在ABC ∆中,由1AB AC ==,3BC =,可得120BAC ∠=︒,则由正弦定理可得:32sin120AG =︒,即1AG =.221PG PA AG ∴=-=.取PA 中点H ,作HO PA ⊥交PG 于O ,则O 为该三棱锥外接球的球心.由PHO PGA ∆∆∽,可得PH PG PO PA =,则22211PH PA PO PG ⨯=== .可知O 与G 重合,即该棱锥外接球半径为1.∴该三棱锥外接球的体积为43π.模型七已知球心或球半径模型【例题选讲】[例](1)(2017·全国Ⅰ)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为________.答案36π解析如图,连接AO ,OB ,∵SC 为球O 的直径,∴点O 为SC 的中点,∵SA =AC ,SB =BC ,∴AO ⊥SC ,BO ⊥SC ,∵平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,∴AO ⊥平面SCB ,设球O 的半径为R ,则OA =OB =R ,SC =2R .∴V S ­ABC =V A ­SBC =13×S △SBC ×AO =13×12×SC ×OB ×AO ,即9=13×12×2R ×R ×R ,解得R =3,∴球O 的表面积为S =4πR 2=4π×32=36π.(2)已知三棱锥A -BCD 的所有顶点都在球O 的球面上,AB 为球O 的直径,若该三棱锥的体积为3,BC =3,BD =3,∠CBD =90˚,则球O 的体积为________.答案32π3解析设A 到平面BCD 的距离为h ,∵三棱锥的体积为3,BC =3,BD =3,∠CBD =90˚,∴13×12×3×3×h =3,∴h =2,∴球心O 到平面BCD 的距离为1.设CD 的中点为E ,连接OE ,则由球的截面性质可得OE ⊥平面CBD ,∵△BCD 外接圆的直径CD =23,∴球O 的半径OD =2,∴球O 的体积为32π3.(3)(2012全国Ⅰ)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为()A .26B .36C .23D .22答案A解析由于三棱锥S -ABC 与三棱锥O -ABC 底面都是△ABC ,O 是SC 的中点,因此三棱锥S -ABC 的高是三棱锥O -ABC 高的2倍,所以三棱锥S -ABC 的体积也是三棱锥O -ABC 体积的2倍.在三棱锥O -ABC 中,其棱长都是1,如图所示,S △ABC =34×AB 2=34,高OD =12-332=63,∴V S -ABC =2V O -ABC =2×13×34×63=26.故选A .(4)(2020·新高考全国Ⅰ)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________.答案2π2解析如图,设B 1C 1的中点为E ,球面与棱BB 1,CC 1的交点分别为P ,Q ,连接DB ,D 1B 1,D 1P ,D 1E ,EP ,EQ ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形,∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形,则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心,设截面圆的半径为r ,则r =R 2球-D 1E 2=5-3=2.又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ .又D 1P =5,∴B 1P =D 1P 2-D 1B 21=1,同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点,∴∠PEQ =π2,知 PQ的长为π2×2=2π2,即交线长为2π2.(5)三棱锥S -ABC 的底面各棱长均为3,其外接球半径为2,则三棱锥S -ABC 的体积最大时,点S 到平面ABC 的距离为()A .2+3B .2-3C .3D .2答案C 解析如图,设三棱锥S -ABC 底面三角形ABC 的外心为G ,三棱锥外接球的球心为O ,要使三棱锥S -ABC 的体积最大,则O 在SG 上,由底面三角形的边长为3,可得AG =32sin60°=3.连接OA ,在Rt △OGA 中,由勾股定理求得OG =OA 2-GA 2=22-(3)2=1.∴点S 到平面ABC 的距离为OS +OG =2+1=3.故选C .模型八最值模型【方法总结】最值问题的解法有两种方法:一种是几何法,即在运动变化过程中得到最值,从而转化为定值问题求解.另一种是代数方法,即建立目标函数,从而求目标函数的最值.【例题选讲】[例](1)已知三棱锥P -ABC 的顶点P ,A ,B ,C 在球O 的球面上,△ABC 是边长为3的等边三角形,如果球O 的表面积为36π,那么P 到平面ABC 距离的最大值为________.答案3+22解析依题意,边长是3的等边△ABC 的外接圆半径r =12·3sin 60°=1.∵球O 的表面积为36π=4πR 2,∴球O 的半径R =3,∴球心O 到平面ABC 的距离d =R 2-r 2=22,∴球面上的点P 到平面ABC 距离的最大值为R +d =3+22.(2)在四面体ABCD 中,AB =1,BC =CD =3,AC =2,当四面体ABCD 的体积最大时,其外接球的表面积为()A .2πB .3πC .6πD .8π答案C 解析∵AB =1,BC =3,AC =2,由勾股定理可得AB 2+AC 2=BC 2,所以△ABC 是以BC 为斜边的直角三角形,且该三角形的外接圆直径为BC =3,当CD ⊥平面ABC 时,四面体ABCD 的体积取最大值,此时,其外接球的直径为2R =BC 2+CD 2=6,因此,四面体ABCD 的外接球的表面积为4πR 2=π×(2R )2=6π.故选C .(3)已知四棱锥S -ABCD 的所有顶点在同一球面上,底面ABCD 是正方形且球心O 在此平面内,当四棱锥的体积取得最大值时,其表面积等于16+163,则球O 的体积等于()A .42π3B .162π3C .322π3D .642π3答案D解析由题意得,当四棱锥的体积取得最大值时,该四棱锥为正四棱锥.因为该四棱锥的表面积等于16+163,设球O 的半径为R ,则AC =2R ,SO =R ,如图,所以该四棱锥的底面边长AB =2R ,则有(2R )2+4×12×2R ×16+163,解得R =22,所以球O 的体积是43πR 3=6423π.故选D .(4)三棱锥A -BCD 内接于半径为5的球O 中,AB =CD =4,则三棱锥A -BCD 的体积的最大值为()A .43B .83C .163D .323答案C解析如图,过CD 作平面ECD ,使AB ⊥平面ECD ,交AB 于点E ,设点E 到CD 的距离为EF ,当球心在EF 上时,EF 最大,此时E ,F 分别为AB ,CD 的中点,且球心O 为EF 的中点,所以EF =2,所以V max =13×12×4×2×4=163,故选C .(5)已知正四棱柱的顶点在同一个球面上,且球的表面积为12π,当正四棱柱的体积最大时,正四棱柱的高为_.答案8解析设正四棱柱的底面边长为a ,高为h ,球的半径为r ,由题意知4πr 2=12π,所以r 2=3,又2a 2+h 2=(2r )2=12,所以a 2=6-h 22,所以正四棱柱的体积V =a 2h =6-h 22h ,则V ′=6-32h 2,由V ′>0,得0<h <2,由V ′<0,得h >2,所以当h =2时,正四棱柱的体积最大,V max =8.模型九内切球模型【方法总结】以三棱锥P -ABC 为例,求其内切球的半径.方法:等体积法,三棱锥P -ABC 体积等于内切球球心与四个面构成的四个三棱锥的体积之和;第一步:先求出四个表面的面积和整个锥体体积;第二步:设内切球的半径为r ,球心为O ,建立等式:V P -ABC =V O -ABC +V O -P AB +V O -P AC +V O -PBC ⇒V P -ABC =13S △ABC ·r +13S △P AB ·r +13S △P AC ·r +13S △PBC ·r =13(S △ABC +S △P AB +S △P AC +S △PBC )·r ;第三步:解出r =3V P -ABC S O -ABC +S O -P AB +S O -P AC +S O -PBC =3VS 表.秒杀公式(万能公式):r =3VS 表【例题选讲】[例](1)已知一个三棱锥的所有棱长均为2,则该三棱锥的内切球的体积为________.答案354π解析由题意可知,该三棱锥为正四面体,如图所示.AE =AB ·sin 60°=62,AO =23AE =63,DO =AD 2-AO 2=233,三棱锥的体积V D ­ABC =13S △ABC ·DO =13,设内切球的半径为r ,则V D ­ABC =13r (S △ABC +S △ABD +S △BCD +S △ACD )=13,r =36,V 内切球=43πr 3=354π.(2)(2020·全国Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.答案23π解析圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面PAB ,如图所示,则△PAB 的内切圆为圆锥的内切球的大圆.在△PAB 中,PA =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OEDB ,即22-r 3=r 1,解得r =22,故内切球的体积为43π223=23π.(3)阿基米德(公元前287年~公元前212年)是古希腊伟大的哲学家、数学家和物理学家,他和高斯、牛顿并列被称为世界三大数学家.据说,他自己觉得最为满意的一个数学发现就是“圆柱内切球体的体积是圆柱体积的三分之二,并且球的表面积也是圆柱表面积的三分之二”.他特别喜欢这个结论.要求后人在他的墓碑上刻着一个圆柱容器里放了一个球,如图,该球顶天立地,四周碰边.若表面积为54π的圆柱的底面直径与高都等于球的直径,则该球的体积为()A .4πB .16πC .36πD .64π3答案C解析设该圆柱的底面半径为R ,则圆柱的高为2R ,则圆柱的表面积S =S 底+S 侧=2×πR 2+2·π·R ·2R =54π,解得R 2=9,即R =3.∴圆柱的体积为V =πR 2×2R =54π,∴该圆柱的内切球的体积为23×54π=36π.故选C .(4)已知三棱锥P -ABC 的三条侧棱PA ,PB ,PC 两两互相垂直,且PA =PB =PC =2,则三棱锥P -ABC 的外接球与内切球的半径比为________.答案33+32解析以PA ,PB ,PC 为过同一顶点的三条棱,作长方体,由PA =PB =PC =2,可知此长方体即为正方体.设外接球的半径为R ,则R =4+4+42=3,设内切球的半径为r ,则内切球的球心到四个面的距离均为r ,由13(S △ACP +S △APB+S △PCB +S △ABC )·r =13·S △PCB ·AP ,解得r =23+3,所以Rr =323+3=33+32.(5)正四面体的外接球和内切球上各有一个动点P 、Q ,若线段PQ 长度的最大值为463,则这个四面体的棱长为________.答案4解析设这个四面体的棱长为a ,则它的外接球与内切球的球心重合,且半径64R a =外,612r =内,依题意得6664123a a +=,4a ∴=.。

高考数学中的内切球和外接球问题

高考数学中的内切球和外接球问题

高考数学中的内切球和外接球问题一、 有关外接球的问题一、直接法(公式法)1、求正方体的外接球的有关问题例 1 若棱长为 3 的正方体的顶点都在同一球面上,则该球的表面积为.例 2 一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24 ,则该球的体积为.2、求长方体的外接球的有关问题例 3 一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1, 2, 3 ,则此球的表面积为. 例 4 已知各顶点都在一个球面上的正四棱柱高为 4, 体积为 16,则这个球的表面积为( ).A. 16B. 20C. 24D. 323.求多面体的外接球的有关问题例 5 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为9,底面8 周长为3 ,则这个球的体积为.解 设正六棱柱的底面边长为x ,高为h ,则有⎧6x = 3 ⎪ ⎧h = 3⎪ ⎨9 = 6 ⨯ 3 x 2h ⎨x = 1 ⎪⎩8 ⎩⎪ 2a 2 +b 2 +c 2 ∴正六棱柱的底面圆的半径r = 1 ,球心到底面的距离d =2 3 .∴2外接球的半径R = . 体积:V = 4R 3 . 3小结 本题是运用公式R 2 = r 2 + d 2 求球的半径的,该公式是求球的半径的常用公式.二、构造法(补形法)1、构造正方体例 5 若三棱锥的三条侧棱两两垂直,且侧棱长均为 3 ,则其外接球的表面积是.例 3 若三棱锥的三个侧面两两垂直,且侧棱长均为 3 ,则其外接球的表面积是 .故其外接球的表面积S = 4r 2 = 9.小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a , b , c ,则就可以将这个三棱锥补成一个长方体,于是长方体 的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2R = 长方体。

. 出现“墙角”结构利用补形知识,联系【原理】:长方体中从一个顶点出发的三条棱长分别为a , b , c ,则体对角线长为l = ,几何体的外接球直径为2R 体对角线长l 即R =2r 2 + d 2a 2 +b 2 +c 2 a 2 + b 2 + c 2AO练习:在四面体 ABCD 中,共顶点的三条棱两两垂直,其长度分别为1, 6,3 ,若该四面体的四个顶点在一个球面上,求这个球的表面积。

2024高考数学专项立体几何系统班7、外接球与内切球

2024高考数学专项立体几何系统班7、外接球与内切球

第7讲外接球与内切球知识与方法1.外接球与内切球是全国高考常考题型,模型杂、方法多,但归纳起来不外乎两大类处理方法.(1)补形:将几何体补全成长方体、正方体、直棱柱等常见几何体,计算外接球半径.(2)构建平面截球模型:寻找截面圆心以及球心到截面的距离,通过222R r d =+计算外接球半径.2.设球的半径为R ,有5个常用计算公式.(1)正方体外接球半径:R =,其中a 为正方体棱长,如图1.(2)长方体外接球半径:R =a ,b ,c 分别为长方体的长、宽、高,如图2.(3)正四面体外接球半径,4R a =,其中a 为正四面体棱长,如图3.(4)直三棱柱外接球半径:R =,其中r 为底面外接圆半径,h 为直三棱柱的高,如图4.(5)圆柱外接球半径:R =,其中r 为底面圆半径,h 为圆柱的母线长,如图5.提醒:①上面列出了一些简单模型的外接球半径计算公式,需结合图形将其记住,还有一些其他模型可以通过补形的方法转化为上述模型处理;②一些不能通过简单补形求解的模型,如球内接正棱锥,球内接圆锥等,可以通过分析几何关系,转化为平面截球模型计算外接球的半径.题组一1.(★★)已知一个正方体的所有顶点在一个球面上.若这个正方体的表面积为18,则这个球的体积为_______.【解析】设正方体的棱长为a ,则2618a =,故a =3322R a ==,其体积34932V R ππ==.【答案】92π2024高考数学专项立体几何系统班7、外接球与内切球【提炼】正方体棱长a 与其外接球半径R 之间的关系为32R =.2.(★★★)如图,在等腰梯形ABCD 中,22AB DC ==,60DAB ∠=︒,E 为AB 中点,将ADE 与BEC 分别沿ED ,EC 向上折起,使点A ,B 重合于点P ,则三棱锥P DCE -的外接球的体积为()【解析】由题意,可将平面图形等腰梯形ABCD 补全为正三角形FAB ,如图,那么在完成题干所描述的翻折后,还可将CDF △沿着CD 翻折,使得点F 也与点P 重合,显然此时得到的是一个棱长为1的正四面体,即三棱锥P DCE -是棱长为1的正四面体,其外接球半径R =343V R π==.【答案】C【提炼】正四面体的棱长为a ,则其外接球半径为64a ,内切球半径为612a ,证明方法可参考附赠的小册子《高考数学常用二级结论》.3.(★★)长方体的长,宽,高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为______.【解析】长方体的外接球半径R =,其中a ,b ,c 分别为长、宽、高,故R =O 的表面积2414S R ππ==.【答案】14π【提炼】设长方体的长、宽、高分别为a ,b ,c ,则其外接球半径2R =4.(★★)已知底面边长为1的正四棱柱的各顶点均在同一个球面上,则该球的体积为()A.323π B.4π C.2π D.43π【解析】首先得知道什么是正四棱柱,它指的是底面为正方形、侧棱与底面垂直的四棱柱,也是一种特殊的长方体,高考这种名词都是直接给,必须清楚其结构特征.外接球半径1R ==,故该球的体积34433V R ππ==.【答案】D5.(★★)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是()A.16πB.20πC.24πD.32π【解析】设正四棱柱底面边长为a ,则2416a =,即2a =,其外接球的半径2242R ==,故所求球的表面积2424S R ππ==.【答案】C 6.(★★★)一个正四棱柱的各个顶点在一个直径为2的球面上,如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为______cm 2.【解析】设正四棱柱的高为h cm ,则1112=,故h =,即该棱柱的表面积(2S =+cm 2.【答案】2+题组二7.(★★★)已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若3AB =,4AC =,AB AC ⊥,112AA =,则球O 的半径为()B. C.132D.【解析】这道题可能不少同学会有这么一个困惑,就是题干没给出三棱柱111ABC A B C -为直三棱柱,是不是题干有问题呢?当然不是,事实上,斜棱柱是没有外接球的,所以题干的说法本身就隐含了三棱柱111ABC A B C -为直三棱柱这一条件.本题的直三棱柱可通过补形为长方体来计算外接球半径,如图,三棱柱111ABC A B C -与长方体有相同的外接球,该球的半径为34121322R ==.【答案】C 8.(★★★)3______.【解析】本模型一般称为墙角三棱锥,可补形为正方体(或长方体)来处理.如图,将三棱锥B ACD -补全为正方体,并放到了球体之中,可以看到二者有相同的外接球,正方体棱332R =,故外接球表面积249S R ππ==.【答案】9π【提炼】三条侧棱两两垂直的三棱锥(墙角三棱锥)可补形为长方体或正方体来计算外接球半径.题组三9.(★★★)设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为()A.2a π B.273a π C.2113a π D.25a π【解析】如图,设G 为ABC △的中心,ABC △外接圆半径233323r AG ==⨯=,1122a OG AA ==,球的半径22712R r OG a =+,故球的表面积22743S R a ππ==.【答案】B【提炼】①设直三棱柱底面外接圆半径为r ,高为h ,则其外接球半径222h R r ⎛⎫=+ ⎪⎝⎭;②关键是计算底面三角形外接圆半径,对于直角三角形,外接圆半径等于斜边长的一半,若是倍,等于高的23倍;若是普通的三角形,则可利用正弦定理计算外接圆半径.10.(★★★)直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA -==,120BAC ∠=︒,则此球的表面积等于______.【解析】如图,在ABC △中,由余弦定理得222122222122BC ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,解得BC =.由正弦定理得42sin BC r BAC ==∠,解得2r =,故1112OG AA ==,所以球的半径R ==,故球的表面积2420S R ππ==.【答案】20π题组四11.(★★★)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为,则三棱锥D ABC -体积的最大值为()A. B. C. D.【解析】如图,先计算ABC △外接圆的半径r ,设ABC △边长为a .则2122a ⋅⋅=,解得6a =,所以62sin 60r =︒,解得r =,所以2OG ==,当D 点位于GO 延长线上时,三棱锥D ABC -的高最大,底面积不变,此时体积最大,最大值为()1243V =⨯+=【答案】B【提炼】本题三棱锥D ABC -的体积最大时,D ABC -是正三棱锥,正三棱锥外接球的计算问题,解题的关键是构建AOG △,在这个三角形中,满足222OA AG OG =+,即222R r d =+,其实这就是前一小节的平面截球模型,只要是正棱锥,都可以采用这个办法处理.12.(★★★)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.814πB.16πC.9πD.274π【解析】如图,由题意,得14PO =,1AO =设外接球的半径为R ,则OA OP R ==,故14OO R =-.在1OO A △中,22211AO OO AO +=,即()2224R R +-=,解得94R =,故该球的表面积28144S R ππ==.【答案】A【提炼】正四棱锥外接球的有关计算,关键是构建1AOO ,在这个三角形中,利用22211OA AO OO =+建立等量关系,其实就是平面截球模型的处理方法.13.(★★★)正四棱锥S ABCD -点S ,A ,B ,C ,D 都在同一个球面上,则该球的体积为_____.【解析】解法1:如图1,设正方形ABCD 的中心为1O ,由题意,11AO =,11SO =.设正四棱锥外接球球心为O ,半径为R ,则OA R =,11OO R =-,在1AOO 中,22211OO AO AO +=,故()2211R R -+=,解得1R =,即外接球体积为34433V R ππ==.解法2:设正方形ABCD 的中心为1O ,由题意,11AO =,11SO ==,因为11SO AO =,所以1O 即为球心,球的半径为1,体积34433V R ππ==,本题实际的图形是图2.【答案】43π14.(2021·全国甲卷·理·11·★★★)已知A ,B ,C 是半径为1的球O 的球面上的三个点,且AC BC ⊥,1AC BC ==,则三棱锥O ABC -的体积为()A.212B.312C.24D.34【解析】如图,由题意,2AB =,设D 为ABC △的外心,则1222AD AB ==,2222OD OA AD =-=,所以1112211332212O ABC ABC V S OD -=⋅=⨯⨯⨯⨯ .【答案】A题组五15.(★★)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.34πC.2π D.4π【解析】如图,由题意得1OA =,112OO =,故132O A =,圆柱体积233124V ππ⎛⎫=⋅= ⎪ ⎪⎝⎭.【答案】B【提炼】圆柱外接球半径222h R r ⎛⎫=+ ⎪⎝⎭,其中r 为底面圆半径,h 为圆柱的高.16.(★★★★)如图,半径为R 的球O 中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是______.【解析】设圆柱的底面半径为r ,高为h ,则2224h r R rh +=≥,当且仅当2h r =时等号成立,故圆柱的侧面积2S rh π=的最大值为22R π,此时球的表面积与圆柱的侧面积之差为222422R R R πππ-=.【答案】22R π题组六17.(★★)正方体的内切球与其外接球的体积之比为()A. B.1:3C.1:D.1:9【解析】设正方体的棱长为a ,则其内切球、外接球的半径分别为12aR =,2R =,故正方体的内切球与其外接球的体积之比3113224343R V V R ππ==.【答案】C【提炼】设正方体的棱长为a ,则其内切球的半径2a R =.18.(★★)如图,圆柱12O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱12O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是______.【解析】如图,设球的半径为R ,则213223423V R R V R ππ⋅==.【答案】3219.(2020·新课标Ⅲ卷·理·15·★★★)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_______.【解析】如图,该圆锥内半径最大的球即圆锥的内切球,设其半径为R ,则OB OG R ==,1AB AG ==.由题意得PG =OP R =-,2PB PA AB =-=.在POB 中,222OB PB OP =+,故()224R R +=,解得22R =,即球的体积3433V R π==.【答案】2320.(★★★★)在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球.若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是()A.4π B.92π C.6π D.323π【解析】要解决这道题,得先搞清楚一件事,那就是最大的球到底是和棱柱的侧面相切,还是与底面相切?如图,可求得底面直角三角形的斜边10AC =,将底面Rt ABC △单独拿出来分析其内切圆半径r ,图中BP NQ r ==,故8PC r =-,即8CM PC r ==-,PN BQ r ==,故6AQ r =-,即6AM AQ r ==-,所以8614210AC CM AM r r r =+=-+-=-=,解得2r =,由123r AA >=知最大球的半径为32,体积3439322V ππ⎛⎫=⨯=⎪⎝⎭.【答案】B题组七21.(★★★)已知A,B是球O的球面上两点,90AOB∠=︒,C为该球面上的动点.若三棱锥O ABC-体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【解析】设球O的半径为R,当点C位于如图所示位置(OC⊥平面AOB)时,三棱锥O ABC-的体积最大,最大值为321136326RR R⨯⨯==,即6R=,故球O的表面积24144S Rππ==.【答案】C22.(★★★)已知三棱锥S ABC-的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA AC=,SB BC=,三棱锥S ABC-的体积为9,则球O的表面积为________.【解析】如图,由题意知,SAC△,SBC△都是以SC为斜边的等腰直角三角形,设球O的半径为R,故31129323S ABCRV R R R-=⋅⋅⋅⋅==,即3R=,故球O的表面积2436S Rππ==.【答案】36π第8讲经典模型之对棱相等知识与方法四面体ABCD 中,AB CD m ==,AC BD n ==,AD BC t ==,这种四面体叫做对棱相等四面体,可以通过构造长方体来解决这类四面体的外接球问题.如图,设长方体的长宽高分别为a 、b 、c ,则222222222a b t b c n a c m ⎧+=⎪+=⎨⎪+=⎩,三式相加可得2222222m n t a b c ++++=,而显然四面体和长方体有相同的外接球,设外接球半径为R ,则22224a b c R ++=,所以R =.典型例题【例题】四面体ABCD中,AB CD ==AC BD ==,5AD BC ==,则该四面体外接球的体积为_______.【解析】由题意,四面体ABCD是对棱相等模型3464233R V R π⇒===.【答案】3变式1三棱锥A BCD -中,6AB CD ==,5AC BD AD BC ====,则该三棱锥外接球表面积为()C.432π D.43π【解析】由题意,四面体ABCD是对棱相等模型24432R S R ππ⇒====.【答案】D 变式2A 、B 、C 、D四点在半径为2的球面上,且5AC BD ==,AD BC ==,AB CD =,则四面体ABCD 的体积为______.【解析】由题意,四面体ABCD 是对棱相等模型,设AB CD x ==,则R x ==ABCD补全为如图所示的长方体,设长方体的长、宽、高分别为a 、b 、c ,则222222413425a b b c a c ⎧+=⎪+=⎨⎪+=⎩,解得:453a b c =⎧⎪=⎨⎪=⎩,所以四面体ABCD 的体积1134543452032V =⨯⨯-⨯⨯⨯⨯⨯=.【答案】20强化训练1.(★★★)四面体ABCD中,AB CD ==AC BD ==,AD BC ==,则四面体ABCD 外接球的表面积为()A.25πB.45πC.50πD.100π【解析】由题意,四面体ABCD是对棱相等模型,2524502R S R ππ====.【答案】C2.(★★★)半径为1的球面上有不共面的A 、B 、C 、D 四点,且AB CD x ==,BC AD y ==,AC BD z ==,则222x y z ++=()A.16B.8C.4D.2【解析】由题意,四面体ABCD是对棱相等模型,22218R x y z =⇒++=【答案】B3.(★★★)四面体ABCD 中,5AB CD ==,AC BD ==,AD BC ==接球的半径为()A.2B. C.132 D.13【解析】由题意,四面体ABCD是对棱相等模型,132R =【答案】C4.(★★★)在四面体ABCD 中,2AB CD ==,AC BD AD BC ====接球的表面积为_______.【解析】由题意,四面体ABCD是对棱相等模型,2144R S R ππ==⇒==【答案】4π5.(★★★★)在三棱锥P ABC -中,2PA BC ==,PB AC =,PC AB =,且4PB PC ⋅=,则三棱锥P ABC -的外接球的表面积的最小值为________.【解析】设PB AC x ==,PC AB y ==,则4xy =,所以三棱锥P ABC -的外接球半径62R =≥,当且仅当2x y ==时取等号,所以三棱锥P ABC -的外接球的表面积的最小值为246ππ⨯=⎝⎭.【答案】6π6.(★★★★)四面体ABCD 的顶点都在球O 的表面上,4AB BC CD DA ====,AC BD ==,E 为AC 中点,过点E 作球O 的截面,则截面面积的最大值与最小值之比为()A.5:42D.5:2【解析】四面体ABCD是对棱相等模型,所以R =,将四面体ABCD 放入长方体如图,截面面积的最大值为215S R ππ==,当截面面积最小时,截面与OE 垂直,其中O 为球心,设FA a =,FB b =,FC c =,则222222216182216a a b a c b OE b r c b c =⎧⎧+=⎪⎪+=⇒=⇒=⇒=⎨⎨⎪⎪=+=⎩⎩,即截面面积的最小值为222S r ππ==,故12:5:2S S =.【答案】D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学中的内切球和外接球问题一、 有关外接球的问题 一、直接法(公式法)1、求正方体的外接球的有关问题例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ .例2一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________.2、求长方体的外接球的有关问题例3一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为 .例4已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( ).A. 16πB. 20πC. 24πD. 32π3.求多面体的外接球的有关问题例5一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为89,底面周长为3,则这个球的体积为 .解 设正六棱柱的底面边长为x ,高为h ,则有⎪⎩⎪⎨⎧⨯==h x x 24368936⎪⎩⎪⎨⎧==213x h∴正六棱柱的底面圆的半径21=r ,球心到底面的距离23=d .∴外接球的半径22d r R +=. 体积:334R V π=. 小结 本题是运用公式222d r R +=求球的半径的,该公式是求球的半径的常用公式.二、构造法(补形法) 1、构造正方体例5 若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是_______________.例3 若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 .故其外接球的表面积ππ942==r S .小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为c b a ,,,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2222c b a R ++=. 出现“墙角”结构利用补形知识,联系长方体。

【原理】:长方体中从一个顶点出发的三条棱长分别为c b a ,,,则体对角线长为222c b a l ++=,几何体的外接球直径为R 2体对角线长l 即2222c b a R ++=练习:在四面体ABCD中,共顶点的三条棱两两垂直,其长度分别为3,6,1,若该四面体的四个顶点在一个球面上,求这个球的表面积。

球的表面积为ππ1642==RS例6一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为()A. π3B. π4C. π33 D. π6例7 已知球O的面上四点A、B、C、D,ABCDA平面⊥,BCAB⊥,3===BCABDA,则球O的体积等于.解析:本题同样用一般方法时,需要找出球心,求出球的半径.而利用长方体模型很快便可找到球的直径,由于ABCDA平面⊥,BCAB⊥,联想长方体中的相应线段关系,构造如图4所示的长方体,又因为3===BCABDA,则此长方体为正方体,所以CD长即为外接球的直径,利用直角三角形解出3=CD.故球O的体积等于π29.(如图4)AO 图4C BO图52、例8已知点A 、B 、C 、D 在同一个球面上,BCD AB 平面⊥,BC DC ⊥,若8,132,6===AD AC AB ,则球的体积是解析:首先可联想到例7,构造下面的长方体,于是AD 为球的直径,O 为球心,4==OC OB 为半径,要求B 、C 两点间的球面距离,只要求出BOC ∠即可,在ABC Rt ∆中,求出4=BC ,所以 60=∠BOC ,故B 、C 两点间的球面距离是π34.(如图5)本文章在给出图形的情况下解决球心位置、半径大小的问题。

三.多面体几何性质法例.已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.π16B.π20C.π24D.π32.小结:本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的. 四.寻求轴截面圆半径法例正四棱锥ABCD S -的底面边长和各侧棱长都为2,点D C B A S ,,,,都在同一球面上,则此球的体积为解:设正四棱锥的底面中心为1O ,外接球的球心为O ,如图1所示.∴由球的截面的性质,可得ABCD OO 平面⊥1.又ABCD SO 平面⊥1,∴球心O 必在1SO 所在的直线上. ∴ASC ∆的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ASC ∆中,由222,2,2AC SC SA AC SC SA =+===得,CDABSO 1图3∴为斜边的直角三角形是以AC ASC ∆. ∴12=AC 是外接圆的半径,也是外接球的半径.故π34=球V . 五 .确定球心位置法例5 在矩形ABCD 中,3,4==BC AB ,沿AC 将矩形ABCD 折成一个直二面角D AC B --,则四面体ABCD 的外接球的体积为A.π12125 B.π9125 C.π6125 D.π3125 解:设矩形对角线的交点为O ,则由矩形对角线互相平分,可知OD OC OB OA ===.∴点O 到四面体的四个顶点D C B A ,,,的距离相等,即点O 为四面体的外接球的球心,如图2所示.∴外接球的半径25==OA R .故ππ6125343==R V 球. 出现两个垂直关系,利用直角三角形结论。

【原理】:直角三角形斜边中线等于斜边一半。

球心为直角三角形斜边中点。

【例题】:已知三棱锥的四个顶点都在球O 的球面上,BC AB ⊥且10,51,5,7====AC PC PB PA 求球O 的体积。

解:BC AB ⊥且10,51,5,7====AC PC PB PA 因为 22210)51(7=+ 所以知:222PC PA AC =+ 所以 PC AP ⊥ 所以可得图形为: 在ABC Rt ∆中斜边为AC 在APC Rt ∆中斜边为AC 取斜边的中点,C AO DB图4在ABC Rt ∆中OC OB OA == 在APC Rt ∆中OC OB OP ==所以在几何体中OA OC OB OP ===,即为该四面体的外接球的球心52==AC R 所以该外接球的体积为ππ3500343==R V 球 【总结】斜边一般为四面体中除了直角顶点以外的两个点连线。

1. (陕西理•6)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( )A .433B .33C .43D .123答案 B2. 直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于 。

解:在ABC ∆中2AB AC ==,120BAC ∠=︒,可得BC =,由正弦定理,可得ABC ∆外接圆半径r=2,设此圆圆心为O ',球心为O ,在RT OBO '∆中,易得球半径R =2420R ππ=. 3.正三棱柱111ABC A B C -内接于半径为2的球,若,A B 两点的球面距离为π,则正三棱柱的体积为 . 答案 84.表面积为的正八面体的各个顶点都在同一个球面上,则此球的体积为A .3 B .13π C .23π D .3 答案 A【解析】此正八面体是每个面的边长均为a 的正三角形,所以由8=知,1a =,故选A 。

5.已知正方体外接球的体积是π332,那么正方体的棱长等于( ) A.22 B.332 C.324 D.334 答案 D6.(山东卷)正方体的内切球与其外接球的体积之比为 ( )A . 1∶3B . 1∶3C . 1∶33D . 1∶9 答案 C7.(海南、宁夏理科)一个六棱柱的底面是正六边 形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上, 且该六棱柱的体积为98,底面周长为3,则这个球的体积为. 答案34π 8. (天津理•12)一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为 .答案 14π 9.(全国Ⅱ理•15)一个正四棱柱的各个顶点在一个直径为2 cm 的球 面上。

如果正四棱柱的底面边长为1 cm ,那么该棱柱的表面积为cm 2. 答案 242+10.(辽宁)如图,半径为2的半球内有一内接正六棱锥P ABCDEF -,则此正六棱锥的侧面积是________. 答案 711.棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图,则图中 三角形(正四面体的截面)的面积是 . 答案 212.(枣庄一模)一个几何体的三视图如右图所示,则该几何体外接 球的表面积为 ( ) A .π3 B .π2C .316πD .以上都不对答案C13.设正方体的棱长为233,则它的外接球的表面积为( ) A .π38 B .2π C .4π D .π34 答案CAB CPD EF。

相关文档
最新文档