北师大版七年级下册数

合集下载

北师大版七年级(下册)数学知识点总结

北师大版七年级(下册)数学知识点总结

北师大版数学七年级下册知识点总结第一章 整式的乘除1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。

2、多项式:几个单项式的和叫做多项式。

多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。

3、整式:单项式和多项式统称整式。

注意:凡分母含有字母代数式都不是整式。

也不是单项式和多项式。

4、同底数幂的乘法法则:n m n m a a a +=•(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。

注意:底数可以是多项式或单项式。

如:532)()()(b a b a b a +=+•+5、幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。

如:10253)3(=-幂的乘方法则可以逆用:即m n n m mn a a a )()(==如:23326)4()4(4==6、积的乘方法则:n n n b a ab =)((n 是正整数)积的乘方,等于各因数乘方的积。

如:(523)2z y x -=5101555253532)()()2(z y x z y x -=•••-7、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m同底数幂相除,底数不变,指数相减。

如:3334)()()(b a ab ab ab ==÷8、零指数和负指数;10=a ,(ɑ≠0)即任何不等于零的数的零次方等于1。

p p aa 1=-(p a ,0≠是正整数),即一个不等于零的数的p -次方等于这个数的p 次方的倒数。

9、科学记数法:如:0.00000721=6-1021.7⨯(第一个非零数字前零的个数)10、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

北师大版《数学》(七年级下册)知识点总结

北师大版《数学》(七年级下册)知识点总结

北师大版《数学》(七年级下册)知识点总结第一章整式的运算 组长检查签名 _________ 家长检查签名_________一. 整式※1. 单项式①由数与字母的积组成的代数式叫做单项式。

单独一个数或字母也是单项式。

②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.③一个单项式中,所有字母的指数和叫做这个单项式的次数.※2.多项式①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数. ②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.※3.整式单项式和多项式统称为整式.⎪⎩⎪⎨⎧⎩⎨⎧其他代数式多项式单项式整式代数式二. 整式的加减1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.三. 同底数幂的乘法※同底数幂的乘法法则: n m n m a a a +=⋅(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n m a a a a ++=⋅⋅(其中m 、n 、p 均为正数);⑤公式还可以逆用:n m n m a a a ⋅=+(m 、n 均为正整数)四.幂的乘方与积的乘方※1. 幂的乘方法则:mn n m a a =)((m,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.),()()(都为正数n m a a a mn m n n m ==.在应用时需要注意以下几点:(1) 底数有负号时,运算时要注意,底数是a 与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a )3化成-a 3⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n(2)底数有时形式不同,但可以化成相同。

北师大版数学七年级下册幂的乘方与积的乘方——积的乘方课件(第二课时20张)

北师大版数学七年级下册幂的乘方与积的乘方——积的乘方课件(第二课时20张)
第一章 整式的乘除
2 幂的乘方与积的乘方 课时2 积的乘方
学习目标
1.了解并掌握积的乘方的法则,熟练运用幂的乘方的运算法则 进行实际计算.(重点) 2.掌握积的乘方的运算法则的推导.(难点) 3.体会数式通性和从具体到抽象的思想方法在研究数学问题中 的作用.
新课导入
思 考 边长为 x 的正方形面积为 x2 ,将边长扩大3倍后,新的正方形 的面积为多少呢?
(2)1 [(-a3)2]2 ;
3
解:(1) (-3×102)3 =(-3)3×(102)3=-27×106=-2.7×107 ;
(2)
1
[(-3
a3)2]2
1
=(9
)2·(a6)2=811
a12 ;
(3) (-a2b3)3 =(-1)3·(a2)3·(b3)3=-a6b9 .
(3) (-a2b3)3 .
) B. m2·m3=m6
C. (mn)3=mn3
分析:选项A中,m2和2m3不是同类项,不能合并,故而错误; 选项B中,m2·m3=m5,故而错误; 选项D中,(mn)3=m3n3,故而错误.
拓展与延伸
若(4am+nbm)3=64a15b9成立,则( A )
A. m=3,n=2
B. m=n=2
C. m=6,n=2
思考:你能总结出积的乘方的运算法则吗?
新课讲授
知识点1 积的乘方
性质:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘
一. 般地,对于任意底数a,b与任意正整数 n.
(ab)n (ab)( ab)( ab)
符号表示: (ab)n=anbn (n为正整数).
n个ab
(a a a)( b b b)

(完整版)新北师大版七年级数学下册全册教案

(完整版)新北师大版七年级数学下册全册教案

周次日期教学内容课时备注1 2.15---2.16 同底数幂的乘法 12 2.17---2.21 幂的乘方与积的乘方法—同底数幂的除 52015—2016 学年度第二学期教学进度任课教师:学科:数学年(班)级:3 2.24---2.28 整式的乘法—平方差公式 54 3.3—3.7 完全平方公式—回顾与思考 55 3.10---3.14 两条直线的位置关系—探索直线平 5行的条件6 3.17---3.21 探索直线平行的条件—平行线的性质 57 3.24—3.28 回顾与思考—认识三角形 58 3.31---4.4 图形的全等—探索三角形全等的条件 4 清明节9 4.7---4.11 探索三角形全等的条件—用尺规作三 5角形10 4.14---4.18 利用三角形全等测距离—回顾与思考 511 4.21—4.25 复习期中考试 312 4.28---5.2 用表格表示的变量间关系—用关系 4 劳动节式表示的变量间关系13 5.5---5.9 用图象表示的变量间关系—回顾与 5思考14 5.12---5.16 轴对称现象—探索轴对称的性质 515 5.19---5.23 简单的轴对称图形 516 5.26---5.30 利用轴对称进行设计—回顾与思考 517 6.2---6.6 感受可能性—概率的稳定性 518 6.9---6.13 等可能事件发生的概率—回顾与思考 519 6.16—6.20 总复习 520 6.23---6.27 期末考试 5本学期总目标:培养学生良好的学习习惯,提高他们学习数学的热情,力争取得一个比较优异的学习成绩教研组长签字:说明:此表一式两份,一份作为教案附件之一粘贴在教案本上,一份上交教务处。

1.1 同底数幂的乘法教学目标:知识与技能:使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算。

过程与方法:在推导“性质”的过程中,培养学生观察、概括与抽象的能力。

(完整版)最新北师大版数学七年级下册第一章_整式的乘除知识点总结及练习题

(完整版)最新北师大版数学七年级下册第一章_整式的乘除知识点总结及练习题

☆☆☆ 北师大版数学七年级【下册】第一章 整式的乘除一、 同底数幂的乘法同底数幂的乘法法则: n m n ma a a +=⋅(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是 一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n ma a a a ++=⋅⋅(其中m 、n 、p 均为正数);⑤公式还可以逆用:n m nm a a a⋅=+(m 、n 均为正整数)二.幂的乘方与积的乘方1。

幂的乘方法则:mnnm a a =)((m ,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.2. ),()()(都为正数n m a a a mn mn nm ==.3。

底数有负号时,运算时要注意,底数是a 与(-a )时不是同底,但可以利用乘方法则化成同底,如将(-a )3化成—a 3⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n4.底数有时形式不同,但可以化成相同。

5.要注意区别(ab )n与(a+b)n意义是不同的,不要误以为(a+b )n=a n+b n(a 、b 均不为零).6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即nnnb a ab =)((n 为正整数)。

7.幂的乘方与积乘方法则均可逆向运用。

三. 同底数幂的除法1。

同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n ma a a -=÷ (a ≠0,m 、n 都是正数,且m 〉n ).2。

在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除"而且0不能做除数,所以法则中a ≠0。

北师大版数学七年级下册全套备课优秀教学案例:1.1同底数幂的乘法

北师大版数学七年级下册全套备课优秀教学案例:1.1同底数幂的乘法
在实际教学中,我发现很多学生在学习同底数幂的乘法时,容易将底数和指数混淆,无法正确理解和运用同底数幂的乘法法则。因此,我制定了以下教学目标:
1.让学生理解同底数幂的乘法概念,掌握同底数幂的乘法法则。
2.培养学生运用同底数幂的乘法解决实际问题的能力。
3.培养学生的逻辑思维能力和团队合作能力。
针对这些教学目标,我设计了以下教学活动和教学策略,以期达到良好的教学效果。
二、教学目标
(一)知识与技能
1.理解同底数幂的乘法概念,掌握同底数幂的乘法法则。
2.能够运用同底数幂的乘法法则进行计算,解决相关数学问题。
3.了解同底数幂的乘法在实际生活中的应用,提高运用数学知识解决实际问题的帮助学生掌握同底数幂的乘法法则。同时,我会设计一些实际问题,让学生在解决这些问题过程中,运用同底数幂的乘法知识,提高学生的应用能力。
三、教学策略
(一)情景创设
1.生活情境:设计一些与生活密切相关的问题,让学生在解决问题的过程中,自然引入同底数幂的乘法概念。
2.数学情境:通过展示一些数学问题或数学现象,引发学生的好奇心,激发学生探究同底数幂的乘法法则的兴趣。
3.实验情境:设计一些简单的实验,让学生直观地感受同底数幂的乘法过程,帮助学生理解乘法法则。
在导入环节,我会根据学生的实际情况,选择合适的导入方式。通过生活实例、数学情境和实验情境的创设,让学生在自然、有趣的环境中,接触和理解同底数幂的乘法概念。
(二)讲授新知
1.讲解同底数幂的乘法概念:通过讲解,让学生理解同底数幂的乘法是指指数相同或底数相同的幂相乘。
2.阐述同底数幂的乘法法则:讲解同底数幂的乘法法则,让学生掌握同底数幂的乘法运算方法。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习数学的积极性。

北师大版七年级数学下册知识点梳理

北师大版七年级数学下册知识点梳理

北师大版七年级数学下册知识点梳理七年级数学(下)重要知识点总结第一章:整式的运算一、概念1.代数式是由数字、字母及其乘积、和、差、积、商等符号组成的式子。

2.单项式是由数字与字母的乘积组成的代数式,不含加减运算,分母中不含字母。

3.多项式是由几个单项式相加(减)组成的代数式,含加减运算。

4.整式是单项式和多项式的统称。

二、公式、法则:1.同底数幂的乘法法则:a的m次方乘以a的n次方等于a的m+n次方。

逆用:a的m+n次方等于a的m次方乘以a的n次方。

2.同底数幂的除法法则:a的m次方除以a的n次方等于a的m-n次方(a≠0)。

逆用:a的m-n次方等于a的m次方除以a的n次方(a≠0)。

3.幂的乘方法则:a的m次方的n次方等于a的mn次方。

逆用:a的mn次方等于a的m次方的n次方。

4.积的乘方法则:ab的n次方等于a的n次方乘以b的n次方。

逆用:a的n次方乘以b的n次方等于ab的n次方(当ab=1或-1时常逆用)。

5.零指数幂:任何数的0次方等于1(注意考虑底数范围,底数a≠0)。

6.负指数幂:任何数的负整数次幂等于该数的倒数的正整数次幂(底数a≠0)。

7.单项式与多项式相乘:单项式m乘以多项式(a+b+c)等于ma+mb+mc。

8.多项式与多项式相乘:多项式(m+n)乘以多项式(a+b)等于ma+mb+na+nb。

9.平方差公式:(a+b)乘以(a-b)等于a的平方减去b的平方。

推广:有一项完全相同,另一项只有符号不同,结果等于相同。

连用变化。

10.完全平方公式:a+b)的平方等于a的平方加上2ab加上b的平方。

a-b)的平方等于a的平方减去2ab加上b的平方。

逆用:a的平方加上2ab加上b的平方等于(a+b)的平方。

a的平方减去2ab加上b的平方等于(a-b)的平方。

完全平方公式变形:a的平方加上b的平方等于(a-b)的平方加上2ab。

2a的平方加上b的平方等于(a+b)的平方减去2ab等于(a-b)的平方加上2ab等于1.完全平方和公式中间项等于完全平方差公式中间项的相反数,等于完全平方公式中间项的一半。

新北师大版七年级数学下册目录

新北师大版七年级数学下册目录

第五章相交线与平行线
5.1相交线
观察与猜想看图时的错觉
5.2平行线及其判定
5.3平行线的性质
信息技术应用探索两条直线的位置关系数学活动
小结
复习题5
第六章平面直角坐标系
6.1平面直角坐标系
阅读与思考用经纬度表示地理位置
6.2坐标方法的简单应用
数学活动
小结
复习题6
第七章三角形
7.1与三角形有关的线段
信息技术应用画图找规律
7.2与三角形有关的角
阅读与思考为什么要证明
7.3多边形及其内角和
阅读与思考多边形的三角剖分
7.4课题学习镶嵌
数学活动
小结
复习题7
第八章二元一次方程组
8.1二元一次方程组
8.2消元——二元一次方程组的解法
8.3实际问题与二元一次方程组
阅读与思考一次方程组的古今表示及解法
8.4三元一次方程组解法举例
数学活动
小结
复习题8
第九章不等式与不等式组
9.1不等式
阅读与思考用求差法比较大小
9.2实际问题与一元一次不等式
实验与探究水位升高还是降低
9.3一元一次不等式组
阅读与思考利用不等关系分析比赛数学活动
小结
复习题9
第十章数据的收集、整理与描述
10.1统计调查
实验探究瓶子中有多少粒豆子
10.2直方图
信息技术应用利用计算机画统计图
10.3课题学习从数据谈节水
数学活动
小结
复习题10。

北师大版数学七年级下册第一章1同底数幂的乘法(共33张PPT)

北师大版数学七年级下册第一章1同底数幂的乘法(共33张PPT)

栏目索引
1 同底数幂的乘法
5.计算:(1)22×23×2;(2)4×27×8;(3)(-a)4·(-a)3. 解析 (1)22×23×2=22+3+1=26. (2)4×27×8=22×27×23=22+7+3=212. (3)(-a)4·(-a)3=(-a)4+3=(-a)7.
栏目索引
1 同底数幂的乘法
栏目索引
1 同底数幂的乘法
2.(2017河北保定十七中期末)已知x+y-3=0,则2y·2x的值是 A.6 B.-6 C. 1 D.8
8
答案 D ∵x+y-3=0,∴x+y=3, ∴2y·2x=2x+y=23=8, 故选D. 3.化简(-x)3·(-x)2,结果正确的是 ( ) A.-x6 B.x6 C.x5 D.(-x)5 答案 D (-x)3·(-x)2=(-x)3+2=(-x)5.
1 同底数幂的乘法
二、填空题 3.(2019山东菏泽东明月考,15,★★☆)(2.5×102)×(4×103)= 答案 106 解析 原式=(2.5×4)×102×103=10×102×103=101+2+3=106.
栏目索引
.
1 同底数幂的乘法
栏目索引
(2018陕西西安音乐学院附中期中,2,★☆☆)已知3a=1,3b=2,则3a+b的值为 () A.1 B.2 C.3 D.27
答案 B 3a+b=3a·3b=1×2=2.
1 同底数幂的乘法
栏目索引
一、选择题 1.(2019江苏淮安中考,2,★☆☆)计算a·a2的结果是 ( ) A.a3 B.a2 C.3a D.2a2
答案 A 原式=a1+2=a3.故选A.

北师大版七年级下册数学教案全册

北师大版七年级下册数学教案全册

三、提高练习:1、1、计算 5(P3)4·(-P2)3+2[(-P)2]4·(-P5)2[(-1)m]2n+1m-1+02002―(―1)19902、若(x2)n=x8,则m=_____________.3、、若[(x3)m]2=x12,则m=_____________。

4、若x m·x2m=2,求x9m的值。

5、若a2n=3,求(a3n)4的值。

6、已知a m=2,a n=3,求a2m+3n的值.板书设计:课后体会:1.4 积的乘方教学目的:1、经历探索积的乘方的运算的性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。

2、了解积的乘方的运算性质,并能解决一些实际问题。

教学重点:积的乘方的运算教学难点:正确区别幂的乘方与积的乘方的异同。

教学方法:探索、猜想、实践法教学用具:课件教学过程:一、课前练习:1、计算下列各式:4 整式的乘法(3)——多项式乘以多项式 教学目标1.理解和掌握单项式与多项式乘法法则及其推导过程.2.熟练运用法则进行单项式与多项式的乘法计算.3.通过用文字概括法则,提高学生数学表达能力.4.通过反馈练习,培养学生计算能力和综合运用知识的能力.5.渗透公式恒等变形的和谐美、简洁美. 教学重点、多项式与多项式乘法的法则及应用. 教学难点:多项式乘法法则的推导过程以及法则的应用 教学过程: 一、 课前练习:1、 计算:(1)________)3(3=-xy (2)________)23(23=-y x (3)________)102(47=⨯- (4)_________)()(2=-⋅-x x(5)_________)(62=-⋅-a a (6)_____)(53=-x(7)______)(532=⋅-a a (8)______)()2(2532=-⋅-bc a b a2、计算:(1))132(22---x x x(2))6)(1253221(xy y x --+-二、 探索练习:如图,计算此长方形的面积有几种方法?如何计算? 小组讨论 你从计算中发现了什么?多项式与多项式相乘, 三、 巩固练习: 1、计算下列各题:(1))3)(2(++x x (2))1)(4(+-a a (3))31)(21(+-y y(4))436)(42(-+x x (5))3)(3(n m n m -+ (6)2)2(+x5 平方差公式(二)教学目的:进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异.教学重点和难点:公式的应用及推广教学过程一、复习提问1.(1)用较简单的代数式表示下图纸片的面积.(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积.讲评要点:沿HD、GD裁开均可,但一定要让学生在裁开之前知道HD=BC=GD=FE=a-b,这样裁开后才能重新拼成一个矩形.希望推出公式:2.(1)叙述平方差公式的数学表达式及文字表达式;(2)试比较公式的两种表达式在应用上的差异.说明:平方差公式的数学表达式在使用上有三个优点.(1)公式具体,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁.但数学表达式中的a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的问题,否则容易对公式产生各种主观上的误解.依照公式的文字表达式可写出下面两个正确的式子:经对比,可以让人们体会到公式的文字表达式抽象、准确、概括.因而也就“欠”明确(如结果不知是谁与谁的平方差).故在使用平方差公式时,要全面理解公式的实质,灵活运用公式的两种表达式,比如用文字公式判断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又灵活.3.判断正误:(1)(4x+3b)(4x-3b)=4x2-3b2;(×) (2)(4x+3b)(4x-3b)=16x2-9;(×)(3)(4x+3b)(4x-3b)=4x2+9b2;(×) (4)(4x+3b)(4x-3b)=4x2-9b2;(×)二、新课例1 运用平方差公式计算:(1)102×98; (2)(y+2)(y-2)(y2+4).解:(1)102×98 (2)(y+2)(y-2)(y2+4)=(100+2)(100-2) =(y2-4)(y2+4)=1002-22=10000-4 =(y2)2-42=y4-16.=9996;2.运用平方差公式计算:(1)103×97;(2)(x+3)(x-3)(x2+9);(3)59.8×60.2;3.请每位同学自编两道能运用平方差公式计算的题目.例2 填空:(1)a2-4=(a+2)( );(2)25-x2=(5-x)( );(3)m2-n2=( )( );思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?(某两数平方差的二项式可逆用平方差公式写成两数和与这两数的差的积)练习空:1.x2-25=( )( );2.4m2-49=(2m-7)( );3.a4-m4=(a2+m2)( )=(a2+m2)( )( );例3 计算:(1)(a+b-3)(a+b+3); (2)(m2+n-7)(m2-n-7).三、小结1.什么是平方差公式?一般两个二项式相乘的积应是几项式?2.平方差公式中字母a、b可以是那些形式?3.怎样判断一个多项式的乘法问题是否可以用平方差公式?四、布置作业P39知1问1补充运用平方差公式计算:(1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);(3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).2.运用平方差公式计算:板书设计:课后体会:6完全平方公式(1)教学目标:知识与技能:完全平方公式的推导及其应用过程与方法经历探索完全平方公式的过程,进一步发展符号感和推理能力情感态度与价值观:在灵活应用公式的过程中激发学生学习数学的兴趣,培养创新能力和探索精神教学重点:完全平方公式的推导过程、结构特点、几何解释,灵活应用教学难点:理解完全平方公式的结构特征并能灵活应用公式进行计算教学方法与手段:探究与讲练相结合一、准备活动:利用整式的乘法计算下列各题:(1)(m + n)2(2)(m - n)2 (3)(a + 2b)2(4)(a - 2b)2二、巩固引入:1、叙述平方差公式的内容,使用的条件,得出的结果。

北师大版七年级数学下全部知识点归纳

北师大版七年级数学下全部知识点归纳

北师大版七年级数学下册全部知识点归纳第一章:整式的运算 单项式: 。

整 式 多项式: 。

同底数幂的乘法:幂的乘方:积的乘方:幂的运算 同底数幂的除法: 零指数幂: 负指数幂: 整式的加减单项式与单项式相乘整式运算单项式与多项式相乘: 整式的乘法 多项式与多项式相乘:平方差公式: 完全平方公式:单项式除以单项式整式的除法 多项式除以单项式:完全平方公式的变形公式:(1)22222212()2()2[()()]a b a b ab a b ab a b a b +=+-=-+=++-(2)22()()4a b a b ab +=-+ (3)2214[()()]ab a b a b =+-- 第二章 平行线与相交线平行线: 。

对顶角的性质:垂线的性质:性质1:过一点有 。

性质2:连接直线外一点 。

平行线的性质:1、平行公里:过 性质2:平行于 平行。

整 式 的 运算余角:余角和补角 补角:邻补角:两线相交 对顶角:同位角三线八角 内错角同旁内角平行线的判定:平行线平行线的性质:尺规作图:第三章 变量之间的关系自变量变量的概念 因变量变量之间的关系 表格法关系式法变量的表达方法 图象法第四章 三角形三角形概念: 称为三角形。

三角形按内角的大小可分为三类:直角三角形的性质: ;直角三角形的两直角边为a 、b ,斜边为c ,斜边上的高为h,则h= 。

任意三角形都有三条角平分线,并且它们相交于三角形内一点。

这个点叫三角形的 任意三角形都有三条中线,它们相交于三角形内一点。

这个点叫三角形的 任意三角形都有三条高线,它们所在的直线相交于一点。

这个点叫三角形的平行线与相交线三角形都有三条高线:区 别相 同中 线 平分对边 三条中线交于三角形内部 (1)都是线段 (2)都从顶点画出 (3)所在直线相交于一点 角平分线 平分内角三条角平分线交于三角形内部高 线 垂直于对边(或其延长线)锐角三角形:三条高线交于直角三角形:三条高线交于钝角三角形:三条高线交于三角形三边关系:三角形 三角形内角和定理:角平分线三条重要线段 中线高线三角形 全等图形的概念: 全等三角形的性质:SSSSAS全等三角形 全等三角形的判定 ASAAASHL (适用于Rt Δ)全等三角形的应用 利用全等三角形测距离作三角形第五章 生活中的轴对称: 轴对称图形于轴对称: 轴对称图形轴对称区别是一个图形自身的对称特性 是两个图形之间的对称关系 对称轴可能不止一条对称轴只有一条共同点沿某条直线对折后都能够互相重合如果轴对称的两个图形看作一个整体,那么它就是一个轴对称图形;如果把轴对称图形分成两部分(两个图形),那么这两部分关于这条对称轴成轴对称。

北师大版数学七年级下册1.单项式乘以单项式课件

北师大版数学七年级下册1.单项式乘以单项式课件
x2 x3 x5 (ab)n anbn (an )m amn
mx
x
3x
4
mx
你能算出这两幅画的面积吗?
第一幅的面积是 xmx 第二幅的面积是 3 x mx
4
这是两个单项 式相乘
怎么样才能使表达更简单一些?
系数都是 +1 11 1 省略不写
xmx mxx mx2
乘法交换律
3
同底数的幂相乘
系数是
4
系数是+1
3 4
xmx
3 4
mxx
3 mx2 4
3 1 3 44
乘法交换律
试一试
(1) (2xy2 ) • (1 xy) 3
(2) (2a2b3 ) • (3a)
你能用语言归纳
归纳
上面过程吗?
注意符号
(1)系数相乘
(2)相同字母的幂相乘
(3)只在一个单项式中出
现的字母,则连同它的
指数一起作为积的一个
例1:计算 (1)(-5a2b)(-3a) (2)(2x)3·(-5xy2)
解:(1)(-5a2b)(-3a)
=〔(-5) ×(-3)〕(a2·a)b=15a3b.
(2)(2x)3·(-5xy2) =8x3(-5xy2)=〔8×(-5)〕(x3·x)y2
相信 你能 行
例题 (2) 科学记数法表示的数也是单项式 (4 105 ) (510 4 )
3x 4x 12x2
相信你的判断!
判断正误(如果不对应如何改正?) (1)4a3·2a2=8a6 ( 8a5 ) (× ) (2)2x4·3x4=5x8 ( 6x8 ) (× ) (3)-6x2·3xy=18x3y ( -18x3y ) (× ) (4)(-2ab2)(-3abc)=-6a2b3 (6a2b3c) (× )

北师大版七年级数学下册知识点归纳

北师大版七年级数学下册知识点归纳

数学七年级下册第一章:整式的运算单项式整式多项式同底数幂的乘法整幂的乘方积的乘方式幂运算同底数幂的除法的零指数幂运负指数幂整式的加减算单项式与单项式相乘单项式与多项式相乘整式的乘法多项式与多项式相乘整式运算平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式一、单项式1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是 1 或― 1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是 1 或― 1 时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

二、多项式1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。

3、几个整式相加减的一般步骤:( 2)按去括号法则去括号。

(3)合并同类项。

4、代数式求值的一般步骤:(1)代数式化简。

(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入”进行计算。

四、同底数幂的乘法1、 n 个相同因式(或因数) a 相乘,记作 a n,读作 a 的 n 次方(幂),其中 a 为底数, n 为指数, a n的结果叫做幂。

2、底数相同的幂叫做同底数幂。

数学七年级北师大版下册1.1同底数幂的乘法(教案)

数学七年级北师大版下册1.1同底数幂的乘法(教案)
其次,在新课讲授环节,我发现学生们对于同底数幂乘法的基本概念掌握得还不错。但在讲解难点部分,如含有未知数的同底数幂乘法运算,有些学生仍然存在困难。这可能是因为我在讲解过程中,对于这部分内容的阐述不够清晰。在今后的教学中,我需要更加注意这一点,针对难点进行更详细的讲解和示范。
在实践活动环节,学生们分组讨论和实验操作,积极参与,课堂氛围活跃。这让我意识到,让学生在实践中学习数学,既能巩固知识,又能提高他们的合作能力。不过,我也发现部分小组在讨论过程中,存在时间分配不均的问题。针对这一点,我需要在今后的教学活动中,加强引导,确保每个学生都能充分参与到实践活动中。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“同底数幂的乘法”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要将相同的数相乘多次的情况?”(例如:计算2×2×2×2)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索同底数幂乘法的奥秘。
-难点3:解决实际问题,如“小明有一块地,长为2a米,宽为3a米,求这块地的面积。”学生需要将长和宽表示为同底数幂(a^1 × a^1),然后运用同底数幂乘法法则计算面积,得出6a^2。
在教学过程中,教师应关注学生的理解情况,针对难点进行详细讲解和示范,确保学生能够透彻理解同底数幂乘法的核心知识。通过反复练习和实际应用,帮助学生突破教学难点,提高数学素养。
(3)将同底数幂乘法法则应用于实际问题,培养学生的数学应用能力。
举例:
-例如,计算2^3 × 2^4,学生需要掌握运用同底数幂乘法法则,将其简化为2^(3+4),得出结果2^7。
2.教学难点
(1)理解同底数幂乘法法则的原理:对于部分学生来说,理解指数相加的原理可能存在困难。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010—2011学年下学期期末水平质量检测
七年级数学试卷
(全卷满分:100分,考试时间:120分钟)
在很多人的印象中,数学是一门内容枯燥、难以理解的课程。

事实又是怎样的呢?一位哲人曾经说过:“生活中并不缺乏美,而是缺乏发现美的眼睛。

” 事物的数学背景,往往蕴藏在丰富多彩的生活现象中,这需要我们独到的眼光,细心的观察,大胆的想象,创造性思考,做个生活的有心人,才能获得“发现”。

同学们,经过一年的学习,你是否体会到数学就在我们的身 边?那么让我们用“发现”的眼光一同走进这次水平测试吧。

祝你成功!
一、细心填一填(每小题2分,共计20)
1. 计算:3
2x x ⋅ = ;2ab b 4a 2
÷= .
2.如果1kx x 2
++是一个完全平方式,那么k 的值是 .
3.如图,两直线a 、b 被第三条直线c 所截,若∠1=50°,
∠2=130°,则直线a 、b 的位置关系是 . 4. 温家宝总理在十届全国人大四次会议上谈到解决“三农”问题
时说,2006年中央财政用于“三农”的支出将达到33970000
万元,这个数据用科学记数法可表示为 万元.
5. 一只蝴蝶在空中飞行,然后随意落在如图所示的某一方格中(每个方格除颜色外完全相同),则蝴蝶停止在白色方格中的概率是 .
6. 等腰三角形一边长是10㎝,一边长是6㎝,则它的周长是 .
7. 如图,已知∠BAC=∠DAE=90°,AB=AD ,要使△ABC ≌△ADE ,还需要添加的条件是 .
8.现在规定两种新的运算“﹡”和“◎”:a ﹡b=2
2
b a +;a ◎(22+32)(2×2×3)=156,则[2﹡(-1)][2◎(-1)]= .
9.某物体运动的路程s (千米)与运动的时间t (小时)关系如图所示,则当t=3小时时,物体运动所经过的路程为 千米. 10.某公路急转弯处设立了一面大镜子,从镜子中看到汽车的车辆的号码如图 所示, 则该汽车的号码是 .
二、相信你的选择(每小题只有一个正确的选项,每小题3分,共计30分)
11.下列图形中不是..
正方体的展开图的是( )
A B C D 12. 下列运算正确..的是( ) A .1055a a a =+ B .2446a a a =⨯ C .a a a =÷-10 D .044a a a =- 13. 下列结论中,正确..
的是( ) A .若2
2
b a ,b a ≠≠则 B .若2
2
b a , b a >>则 C .若b a ,b a 2
2
±==则 D .若b
1a 1, b a >>则
14. 如图,在△ABC 中,D 、E 分别是AC 、BC 上的点,若
△ADB ≌△EDB ≌△EDC ,则∠C 的度数是( ) A .15° B .20° C .25° D .30° 15. 由四舍五入得到近似数3.00万( )
A .精确到万位,有1个有效数字
B . 精确到个位,有1个有效数字
C .精确到百分位,有3个有效数字
D . 精确到百位,有3个有效数字 16. 观察一串数:0,2,4,6,….第n 个数应为( )
A .2(n -1)
B .2n -1
C .2(n +1)
D .2n +1 17.下列关系式中,正确..
的是( ) A .()222
b a b a -=- B.()()22b a b a b a -=-+
C .()222
b a b a +=+ D.()2
22
b 2ab a b a +-=+
18. 如图表示某加工厂今年前5个月每月生产某种产品的产量c (件)与时间t (月)之间的关
系,则对这种产品来说,该厂( ) A .1月至3月每月产量逐月增加,4、5两月产量逐月 减小
B .1月至3月每月产量逐月增加,4、5两月产量与3月 持平
C .1月至3月每月产量逐月增加,4、5两月产量均停止 生产
D . 1月至3月每月产量不变,4、5两月均停止生产 19.下列图形中,不一定...是轴对称图形的是( ) A .等腰三角形 B .线段 C .钝角 D .直角三角形 20. 长度分别为3cm ,
第18题 1 2 3 4 5 t (月) O c (件) 第5题 3
2 1
c b a 第3题 E D C B A
第7题
t (小时) 2 O 30 S (千米) 第9题 第14题 E
D
C
B
A
七年级数学
试题卷 第1页(共6页) 七年级数学 第1页(共8页)
七年级数学 第1页(共8页)
A .1
B .2
C . 3
D .4
三、精心算一算(21题3分,22题5分,共计8分)
21.()()3
42
6y y 2-;
22.先化简()()()()1x 5x 13x 13x 12x 2
-+-+--,再选取一个你喜欢的数代替x ,并求原代数
式的值.
四、认真画一画(23题4分,24题4分,共计8分)
23.如图,某村庄计划把河中的水引到水池M 中,怎样开的渠最短,为什么?(保留作图痕迹,不写作法和证明)
理由是: .
五、请你做裁判(第25题小4分,第26小题4分,共计8分)
24 一个长方形的养鸡场的长边靠墙,墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际? 按照他的设计,鸡场的面积是多少?
25.某种产品的商标如图所示,O 是线段AC 、BD 的交点,并且AC =BD ,AB =CD .小明认为图中的两个三角形全等,他的思考过程是: 在△ABO
⎪⎩

⎨⎧
==∠=AB AOB AC
一、细心填一填(每题2分,共计20)
1. 5
x ;2a . 2.±2. 3.平行. 4.3.397×10
7
5.8
3
6.26或22㎝
7. AC=AE (或BC=DE ,∠E=∠C ,∠B=∠D ) 8.-20 9. 45 10.B6395
二、相信你的选择(每小题只有一个正确的选项,每小题3分,共计30分)
21.解:=1212
y 2y
- =12y ……3分
22.解:=5x 5x 19x 14x 4x 2
2
2
-++-+
-=29x +- …3分

x=0时,原式四、认真画一画(23题4分,24题423.解:
理由是: 垂线段最短 . ……2分 作图……2分
24.解
每作对一个给1分
五、请你做裁判!(第25题小4分,第26小题6分,共计10分)
25.解:不会同意. ……2分 因为转盘中有两个3,一个2,这说明小丽去的可能性是
3
1
62=,而小丽去的可能性是61,所
以游戏不公平.
……2分 26.解:根据小王的设计可以设宽为x 米,长为(x +5)米,
根据题意得2x +(x +5)=35
解得x=10.
因此小王设计的长为x +5=10+5=15(米),而墙的长度只有14米,小王的设计不符合实际的. ……2分 根据小赵的设计可以设宽为x 米,长为(x +2)米,
根据题意得2x +(x +2)=35 解得x=11.
因此小王设计的长为x +2=11+2=13(米),而墙的长度只有14米,显然小赵的设计符合要求,此时鸡场的面积为11×13=143(平方米). ……2分 六、生活中的数学(第27小题4分,第28小题5分,共计9分) 27.解:(1)2001年该养鸡场养了2万只鸡.(答案不唯一)
(2)2001年养了2万只;2002年养了3万只;2003年养了4万只;2004年养了3万只;2005年养了4万只;2006年养了6万只.
(3)近似数.
(4)比条形统计图更形象、生动.(能符合即可) ………(每小题1分) 28.解:小明的思考过程不正确. …1分
添加的条件为:∠B=∠C (或∠A=∠D 、或符合即可)…3分
在△ABO 和△DCO 中
DCO ABO CD AB DOC AOB C B ∆≅∆⇒⎪⎩

⎨⎧=∠=∠∠=∠ …… 5分(答案不唯一) 七、探究拓展与应用(第29小题4分,第30小题7分,共计11分)
29. (1)∠EAB=∠C ;同位角相等,两直线平行.(2)∠BAD=∠D ;内错角相等,两直线平行 (3)∠BAC +∠C=180°;同旁内角互补两直线平行.……对1个给1分,全对给4分. 30.(1)2
2
b a -.(2)()b a -,()b a + ,()()b a b a -+ . (3)()()b a b a -+=2
2
b a -.
(4): 评分标准:每空1分,(4)小题各1分八、信息阅读题(6分)
31.(1)解:由图象可以看出农民自带的零钱为5元;
(2)
()元5.0305
20=- (3)
()()千克,千克453015154
.020
26=+=-…各2分 答:农民自带的零钱为5元;降价前他每千克土豆出售的价格是0.5元;他一共带了45千克的土豆. …… 第(1)问和答各1分,(2)、(3)各2分.。

相关文档
最新文档