一元二次方程的知识点梳理教学提纲
一元二次方程的解法公式法教学提纲
Q b24ac(2 3) 24130
x(-2 3)
02
3
3
21
2
即 : x1 x2 3
x b b2 4ac 2a
例 3 解方程:x213x6
解:去括号,化简为一般式:
3x27x80
这里 a3 、 b =-7 、 c =8
Qb24ac( 7) 2438 4996-470
方程没有实数解。
用公式法解一元二次方程的一般步骤: 1、把方程化成一般形式,并写出 a、b、c 的值。
2、求出 b2 4ac 的值,
特别注意:当 b24ac0时无实数根
3、代入求根公式 : xb b2 4ac 2a
4、写出方程的解:
x
、
1
x
2
练一练
1用公式法解下列方程
(1)x2-3x-4=0
(2)2x2+x-1=0
a
2
>0
b 式子 2 4ac的值有以下三种情况
(1)b24a c0,这b 时 24 a42ac 0
即
b
b2 4ac
x
2a
2a
此时,方程有两个不等的实数根
b
x1
b
x2
b 2 4 ac
ห้องสมุดไป่ตู้2a
b 2 4 ac
2a
即
x
b 2 2a
b2 4ac 4a2
因为a≠0,所以4
a
2
>0
b 式子 2 4ac的值有以下三种情况
(3)x2-2x=3
(4)x(x-6)=6
(5)4x2+4x-1=-10-8x (6)2x2-7x+7=0
思考题
初中数学九年级上册《一元二次方程》知识点
九上数学第21章《一元二次方程》知识点1.一元二次方程的定义及一般形式:(1)等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数式2(二次)的方程,叫做一元二次方程。
(2)一元二次方程的一般形式:20(0)ax bx c a ++=≠。
其中a 为二次项系数,b 为一次项系数,c 为常数项。
注意:三个要点,①只含有一个未知数;②所含未知数的最高次数是2;③是整式方程。
2.一元二次方程的解法(1)直接开平方法:形如2()(0)x a b b +=≥的方程可以用直接开平方法解,两边直接开平方得x a +=或者x a +=,∴x a =-。
注意:若b<0,方程无解(2)因式分解法:一般步骤如下:①将方程右边得各项移到方程左边,使方程右边为0;②将方程左边分解为两个一次因式相乘的形式;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,他们的解就是原方程的解。
(3)配方法:用配方法解一元二次方程20(0)ax bx c a ++=≠的一般步骤:①二次项系数化为1:方程两边都除以二次项系数;②移项:使方程左边为二次项与一次项,右边为常数项;③配方:方程两边都加上一次项系数一般的平方,把方程化为2()(0)x m n n +=≥的形式;④用直接开平方法解变形后的方程。
注意:当0n <时,方程无解(4)公式法:一元二次方程20(0)ax bx c a ++=≠根的判别式:24b ac∆=-0∆>⇔方程有两个不相等的实根:2b x a-±=(240b ac -≥)0∆=⇔方程有两个相等的实根0∆<⇔方程无实根3.韦达定理(根与系数关系)我们将一元二次方程化成一般式ax 2+bx+c =0之后,设它的两个根是1x 和2x ,则1x 和2x 与方程的系数a ,b ,c 之间有如下关系:1x +2x =b a -;1x ∙2x =c a4.一元二次方程的应用列一元二次方程解应用题,其步骤和二元一次方程组解应用题类似①“审”,弄清楚已知量,未知量以及他们之间的等量关系;②“设”指设元,即设未知数,可分为直接设元和间接设元;③“列”指列方程,找出题目中的等量关系,再根据这个关系列出含有未知数的等式,即方程。
一元二次方程复习提纲
一元二次方程复习一、知识系统:概念——解法——实际应用——根的判别式、根系关系——二次函数1、概念:)0(02≠=++a c bx ax 叫一元二次方程。
理解:⎩⎨⎧≠=02a x 的最高次数 21) 2) 配方法:02=++c bx ax (适用所有方程,但方程易化成022=++C kx x 的形式)|3) 公式法:02=++c bx ax 有根的前提△≥0,a ac b b x 2422,1-±-= 4) 因式分解法:能用公式法(完全平方公式、平方差公式)、十字相乘法对左边c bx ax ++2分解成:()()21x x x x a --3、实际应用(与二次函数最值联系):面积、增长率、销售等%4、根的判别式、根系关系:)0(02≠=++a c bx ax¥根系关系:ab a b b a b a b x x -=∆--∆+-=∆--+∆+-=+22221,()a c aac b b a b a b a b x x =--=∆--=∆--⋅∆+-=⋅22222221444)()(22 5、二次函数c bx ax y ++=2,令y=0变为一元二次方程02=++c bx ax ,抛物线与x 轴的两交点横坐标21,x x 则为方程02=++c bx ax 的两根。
二、例题:1、若032)1(12=+--+x x m m是关于x 的一元二次方程,求这个方程的根。
%2、用适当方法解下列方程:①61232=+x x ②x x 210)5(32-=- ③0222=--x x\3、已知关于x 的方程:0362=++x x ,不解方程求下列式子的值:①21x x + ②21x x ⋅ ③2221x x + ④1221x x x x + ⑤3231x x + ⑥222316122x x x ++-$ 4、已知关于x 的方程:04)2(22=---m x m x ,①求证:无论m 取什么实数,方程总有两个不同的实数根。
初中数学重点梳理:一元二次方程
一元二次方程知识定位一元二次方程是数学竞赛中经常出现的一些特殊形式的方程中的一种。
要熟练掌握一元二次方程的定义及定理以及解法和根的判别。
同时一元二次方程的实际应用题,本节我们通过一些实例的求解,旨在介绍数学竞赛中一元二次方程相关问题的常见题型及其求解方法。
本讲将通过例题来说明这些方法的运用。
知识梳理1、一元二次方程的一般式:20 (0)ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项。
2、一元二次方程的解法(1)直接开平方法 (也可以使用因式分解法)①2(0)x a a =≥ 解为:x a =②2()(0)x a b b +=≥ 解为:x a b +=③2()(0)ax b c c +=≥ 解为:ax b c +=±④22()()()ax b cx d a c +=+≠ 解为:()ax b cx d +=±+ (2)因式分解法:提公因式分,平方公式,平方差,十字相乘法如:20(,0)()0ax bx a b x ax b +=≠⇔+=此类方程适合用提供因此,而且其中一个根为0290(3)(3)0x x x -=⇔+-= 230(3)0x x x x -=⇔-= 3(21)5(21)0(35)(21)0x x x x x ---=⇔--=22694(3)4x x x -+=⇔-= 2241290(23)0x x x -+=⇔-=24120(6)(2)0x x x x --=⇔-+= 225120(23)(4)0x x x x +-=⇔-+=(3)配方法①二次项的系数为“1”的时候:直接将一次项的系数除于2进行配方,如下所示:2220()()022P P x Px q x q ++=⇔+-+= 示例:22233310()()1022x x x -+=⇔--+=②二次项的系数不为“1”的时候:先提取二次项的系数,之后的方法同上:22220 (0)()0 ()()022b b bax bx c a a x x c a x a c a a a++=≠++=⇒-⇒++= 222224()()2424b b b b aca x c x a a a a -⇒+=-⇒+=示例:22221111210(4)10(2)2102222x x x x x --=⇔--=⇔--⨯-= (4)公式法:一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b acx a a -+=①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:21,24b b acx -±-=② 当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a=- ③ 当240b ac ∆=-<时,右端是负数.因此,方程没有实根。
九年级上册数学第21章《一元二次方程》知识点梳理完整版
【学习目标】1.了解一元二次方程及有关概念;九年级数学上册第21 章《一元二次方程》知识点梳理2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程;3.掌握依据实际问题建立一元二次方程的数学模型的方法.【知识网络】【要点梳理】要点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2.一元二次方程的一般式:3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.要点诠释:1 2 判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为 0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为 2.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为 0.要点二、一元二次方程的解法1. 基本思想一元二次方程 −降−次−→ 一元一次方程 2. 基本解法 直接开平方法、配方法、公式法、因式分解法.要点诠释:解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解法,再考虑用公式法.要点三、一元二次方程根的判别式及根与系数的关系1. 一元二次方程根的判别式一元二次方程 ax 2 + bx + c = 0(a ≠ 0) 中, b 2 - 4ac 叫做一元二次方程 ax 2 + bx + c = 0(a ≠ 0) 的根的判别式, 通常用“ ∆ ”来表示,即∆ = b 2 - 4ac(1) 当△>0 时,一元二次方程有 2 个不相等的实数根;(2) 当△=0 时,一元二次方程有 2 个相等的实数根;(3) 当△<0 时,一元二次方程没有实数根.2. 一元二次方程的根与系数的关系如果一元二次方程 ax 2 + bx + c = 0(a ≠ 0) 的两个实数根是 x ,x ,那么 x + x = - b, x x = c . 1 2 a 1 2 a注意它的使用条件为 a≠0, Δ≥0.要点诠释:1. 一元二次方程的根的判别式正反都成立.利用其可以解决以下问题:(1) 不解方程判定方程根的情况;(2)根据参系数的性质确定根的范围;(3)解与根有关的证明题.2. 一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.要点四、列一元二次方程解应用题1.列方程解实际问题的三个重要环节:一是整体地、系统地审题;二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.2.利用方程解决实际问题的关键是寻找等量关系.3.解决应用题的一般步骤:审 (审题目,分清已知量、未知量、等量关系等);设 (设未知数,有时会用未知数表示相关的量);列 (根据题目中的等量关系,列出方程);解 (解方程,注意分式方程需检验,将所求量表示清晰);验 (检验方程的解能否保证实际问题有意义);答 (写出答案,切忌答非所问).4.常见应用题型数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题等.要点诠释:列方程解应用题就是先把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.【典型例题】类型一、一元二次方程的有关概念1.(2016•诏安县校级模拟)关于x 的一元二次方程(a﹣1)x2+x+a2﹣1=0 的一个根是0,则a 的值为()A.1 B.﹣1 C.1 或﹣1D.【思路点拨】根据方程的解的定义,把 x=0 代入方程,即可得到关于 a 的方程,再根据一元二次方程的定义即可求解.【答案】B;【解析】解:根据题意得:a2﹣1=0 且a﹣1≠0,解得:a=﹣1.故选 B.【总结升华】本题主要考查了一元二次方程的解的定义,特别需要注意的条件是二次项系数不等于0.举一反三:【变式】关于 x 的方程(a2−2a −8) x2+ (a + 2) x −1 = 0 ,当a 时为一元一次方程;当a 时为一元二次方程.【答案】a =4;a ≠4且a ≠-2.类型二、一元二次方程的解法2.用适当的方法解一元二次方程(1) 0.5x2- =0; (2) (x+a)2= ;(3) 2x2-4x-1=0;(4) (1- )x2=(1+ )x.【答案与解析】(1)原方程可化为 0.5x2=∴x2=用直接开平方法,得方程的根为∴x1= ,x2=- .(2)原方程可化为 x2+2ax+a2=4x2+2ax+∴x2= a2用直接开平方法,得原方程的根为∴x1= a,x2=-a.(3) a=2,b=-4,c=-1b2-4ac=(-4)2-4×2×(-1)=24>0x=∴x1= ,x2= .(4)将方程整理,得(1- )x2-(1+ )x=0用因式分解法,得x[(1- )x-(1+ )]=0∴x1=0,x2=-3-2 .【总结升华】在以上归纳的几种解法中,因式分解法是最简便、最迅捷的方法,但只有一部分方程可以运用这种方法,所以要善于及时观察标准的二次三项式在有理数范围内是否能直接因式分解,凡能直接因式分解的,应首先采取这种方法.公式法是可以解任何类型的一元二次方程,但是计算过程较繁琐,所以只有选择其他解法不顺利时,才考虑用这种解法.虽然先配方,再开平方的方法也适用于任何类型的一元二次方程,但是对系数复杂的一元二次方程,配方的过程比运用公式更繁琐,所以,配方法适用于系数简单的一元二次方程的求解.举一反三:【变式】解方程. (1)(3x-2)2+(2-3x)=0; (2)2(t-1)2+t=1.【答案】(1)原方程可化为:(3x-2)2-(3x-2)=0,∴(3x-2)(3x-2-1)=0.∴3x-2=0 或 3x-3=0,∴x=2,x= 1.1 3 2(2)原方程可化为:2(t-1)2+(t-1)=0.∴(t-1)[2(t-1)+1]=0.∴(t-1)(2t-1)=0,∴t-1=0 或2t-1=0.∴t= 1,t=1 .1 2 2类型三、一元二次方程根的判别式的应用1 23.(2015•荆门)若关于 x 的一元二次方程 x 2﹣4x+5﹣a=0 有实数根,则 a 的取值范围是() A .a≥1B . a >1C . a≤1D . a <1【答案】A ;【解析】∵关于 x 的一元二次方程 x 2﹣4x+5﹣a=0 有实数根,∴△=(﹣4)2﹣4(5﹣a )≥0,∴a≥1.故选 A .【总结升华】本题考查的是一元二次方程根的判别式,根据方程有两个实数根,得到判别式大于等于零,求出 a 的取值范围.类型四、一元二次方程的根与系数的关系4.已知 x 1、x 2 是关于 x 的方程 x 2- 2x + t + 2 = 0 的两个不相等的实数根, (1)求 t 的取值范围; (2)设 s = x 2+ x 2 ,求 s 关于 t 的函数关系式.【答案与解析】(1) 因为一元二次方程有两个不相等的实数根.所以△=(-2)2-4(t+2)>0,即 t <-1. (2)由一元二次方程根与系数的关系知: x 1 + x 2 = 2 , x 1x 2 = t + 2 , 从而 s = x 2 + x 2 = (x + x )2 - 2x x = 22 - 2(t + 2) = -2t ,即 s = -2t (t < -1) .1 2 1 2 1 2【总结升华】利用根与系数关系求函数解析式综合题.举一反三:【变式】已知关于 x 的一元二次方程 x 2 = 2(1- m )x - m 2 的两实数根为 x , x .1 2(1) 求 m 的取值范围;(2) 设 y = x 1 + x 2 ,当 y 取得最小值时,求相应 m 的值,并求出最小值.【答案】(1)将原方程整理为 x 2 + 2(m -1)x + m 2 = 0 .∵ 原方程有两个实数根.∴ △= [2(m -1)]2 - 4m 2 = -8m + 4 ≥ 0 ,∴ m ≤ 1. 2(2) y = x + x = -2m + 2 ,且 m ≤ 1 . 1 2 2因为 y 随 m 的增大而减小,故当m 1时,取得最小值 1.2类型五、一元二次方程的应用5.如图所示,在长为 10cm,宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的 80%,求所截去的小正方形的边长.【答案与解析】设小正方形的边长为 xcm,由题意得 4x2=10×8×(1-80%).解得 x1=2,x2=-2.经检验,x1=2 符合题意,x2=-2 不符合题意舍去.∴x=2.答:截去的小正方形的边长为 2cm.【总结升华】设小正方形的边长为 x cm,因为图中阴影部分面积是原矩形面积的 80%,所以 4 个小正方形面积是原矩形面积的 20%.举一反三:【变式】(2015 春•启东市月考)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙 MN 最长可利用 25m),现在欲砌 50m 长的墙,砌成一个面积 300m2的矩形花园,则 BC 的长为多少 m?【答案】解:设 AB=x 米,则 BC=(50﹣2x)米.根据题意可得,x(50﹣2x)=300,解得:x1=10,x2=15,当x=10,BC=50﹣10﹣10=30>25,故x1=10(不合题意舍去), 50﹣2x=50﹣30=20.答:BC 的长为 20m.6.某旅行社有 100 张床位,每床每晚收费 10 元,空床可全部租出;若每床每晚提高 2 元,则减少 10 张床位租出;若每床每晚收费再提高 2 元,则再减少 10 张床位租出.以每次提高 2 元的这种方法变化下去,为了每晚获得 1120 元的利润,每床每晚应提高多少元?【答案与解析】设每床每晚提高 x 个2 元,则每床每晚收费为(10+2x)元,每晚出租出去的床位为(100-10x)张,根据题意,得(10+2x)(100-10x)=1120.整理,得 x2-5x+6=0.解得,x1=2,x2=3.∴ 当 x=2 时,2x=4;当 x=3 时,2x=6.答:每床每晚提高 4 元或6 元均可.【总结升华】这是商品经营问题,总利润=每张床费×床数.可设每床每晚提高 x 个2 元,则床费为(10+2x)元,由于每晚每床提高 2 元,出租出去的床位减少 10 张,则出租出去的总床位为(100-10x)张,据此可列方程.一元二次方程及其解法(一)直接开平方法【学习目标】1.理解一元二次方程的概念和一元二次方程根的意义,会把一元二次方程化为一般形式;2.掌握直接开平方法解方程,会应用此判定方法解决有关问题;3.理解解法中的降次思想,直接开平方法中的分类讨论与换元思想.【要点梳理】要点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.要点诠释:识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是 2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可.2.一元二次方程的一般形式:一般地,任何一个关于 x 的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.要点诠释:(1)只有当时,方程才是一元二次方程;(2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号.3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.4.一元二次方程根的重要结论(1)若a+b+c=0,则一元二次方程必有一根x=1;反之也成立,即若x=1 是一元二次方程的一个根,则a+b+c=0.(2)若a-b+c=0,则一元二次方程必有一根x=-1;反之也成立,即若x=-1 是一元二次方程的一个根,则a-b+c=0.(3)若一元二次方程有一个根x=0,则c=0;反之也成立,若c=0,则一元二次方程必有一根为 0.要点二、一元二次方程的解法1.直接开方法解一元二次方程:(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:①形如关于 x 的一元二次方程,可直接开平方求解.若,则;表示为,有两个不等实数根;若,则 x=O;表示为,有两个相等的实数根;若,则方程无实数根.②形如关于 x 的一元二次方程,可直接开平方求解,两根是.要点诠释:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.【典型例题】类型一、关于一元二次方程的判定1.判定下列方程是不是一元二次方程:(1) ;(2) .【思路点拨】识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是 2.【答案】(1)是;(2)不是.【解析】(1)整理原方程,得,所以.其中,二次项的系数,所以原方程是一元二次方程.(2)整理原方程,得,所以.其中,二次项的系数为,所以原方程不是一元二次方程.【总结升华】不满足(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是 2.的方程都不是一元二次方程,缺一不可.举一反三:关联的位置名称(播放点名称):一元二次方程的概念-例 1】【变式】判断下列各式哪些是一元二次方程.①x2 +x +1 ;②9x2 - 6x = 0 ;③1y2= 0 ;④5x2-1+ 4 = 0 ;2 2x⑤x2+xy - 3y2= 0 ;⑥3y2= 2 ;⑦(x +1)(x -1) =x2.【答案】②③⑥.【解析】①x2 +x +1不是方程;④5x2-12x+4 = 0 不是整式方程;⑤ x2+xy - 3y2= 0 含有 2 个未知数,不是一元方程;⑦(x + 1)(x -1) =x2化简后没有二次项,不是 2 次方程. ②③⑥符合一元二次方程的定义.类型二、一元二次方程的一般形式、各项系数的确定2.把下列方程中的各项系数化为整数,二次项系数化为正数,并求出各项的系数:(1)-3x2-4x+2=0; (2) .【答案与解析】(1)两边都乘-1,就得到方程3x2+4x-2=0.各项的系数分别是: a=3,b=4,c=-2.(2)两边同乘-12,得到整数系数方程6x2-20x+9=0.各项的系数分别是:.【总结升华】一般地,常根据等式的性质把二次项的系数是负数的一元二次方程调整为二次项系数是正数的一元二次方程;把分数系数的一元二次方程调整为整数系数的一元二次方程.值得注意的是,确定各项的系数时,不应忘记系数的符号,如(1)题中 c=-2 不能写为 c=2,(2)题中不能写为.举一反三:关联的位置名称(播放点名称):一元二次方程的形式-例 3】【变式】将下列方程化为一元二次方程一般形式,并指出二次项系数、一次项系数和常数项:(1)3x2 = 5x - 2 ;(2)a(x +1)(x -1) = 2 -x .【答案】(1)3x2 - 5x+2=0 ,二次项系数是 3、一次项系数是-5、常数项是 2.(2)a(x +1)(x -1) = 2 -x 化为ax2 +x -a - 2 = 0, 二次项系数是 a、一次项系数是 1、常数项是-a-2.⎩ ⎩类型三、一元二次方程的解(根)3. 如果关于 x 的一元二次方程 x 2+px+q =0 的两根分别为 x 1=2,x 2=1,那么 p ,q 的值分别是( ) A .-3,2 B .3,-2 C .2,-3 D .2,3【答案】A ;【解析】∵ x =2 是方程 x 2+px+q =0 的根,∴ 22+2p+q =0,即 2p+q =-4 ①同理,12+p+q =0,即 p+q =-1 ②⎧2 p + q = -4, ⎧ p = -3,联立①,②得⎨ p + q = -1, 解之得: ⎨q = 2.【总结升华】由方程根的定义得到关于系数的方程(组),从而求出系数的方法称为待定系数法,是常用的数学解题方法.即分别用 2,1 代替方程中未知数 x 的值,得到两个关于 p 、q 的方程,解方程组可求 p 、q 的值.类型四、用直接开平方法解一元二次方程4. (2016 春•仙游县月考)求下列 x 的值 (1)x 2﹣25=0 (2)(x+5)2=16.【思路点拨】(1)移项后利用直接开方法即可解决.(2)利用直接开方法解决.【答案与解析】解:(1)∵x 2﹣25=0, ∴x 2=25, ∴x=±5.(2)∵(x+5)2=16, ∴x+5=±4,∴x=﹣1 或﹣9.【总结升华】应当注意,形如 =k 或(nx+m )2=k(k≥0)的方程是最简单的一元二次方程,“开平方”是解这种方程最直接的方法.“开平方”也是解一般的一元二次方程的基本思路之一.举一反三:【变式 1】用直接开平方法求下列各方程的根:(1)x 2=361;(2)2y 2-72=0;(3)5a 2-1=0;(4)-8m 2+36=0.【答案】(1)∵ x2=361,∴ x=19 或 x=-19.(2)∵2y2-72=0,2y2=72,y2=36,∴ y=6 或y=-6.(3)∵5a2-1=0,5a2=1,a2= ,∴a=或 a=- .(4)∵-8m2+36=0,-8m2=-36,m2= ,∴m=或m=- .【变式 2】解下列方程:(1) (2015 •东西湖区校级模拟)(2x+3)2-25=0;(2)(2014 秋•滨州校级期末)(1﹣2x)2=x2﹣6x+9. 【答案】解:(1)∵ (2x+3)2=25,∴ 2x+3=5 或 2x+3=-5.∴x1=1,x2=-4.(2)∵(1﹣2x)2=x2﹣6x+9,∴(1﹣2x)2=(x﹣3)2,∴1﹣2x=±(x﹣3),∴1﹣2x=x﹣3 或1﹣2x=﹣(x﹣3),4∴x1=,x2=﹣2.3一元二次方程的解法(二)配方法【学习目标】1.了解配方法的概念,会用配方法解一元二次方程;2.掌握运用配方法解一元二次方程的基本步骤;3.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能力.【要点梳理】知识点一、一元二次方程的解法---配方法1.配方法解一元二次方程:(1)配方法解一元二次方程:将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤:①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为 1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式a2± 2ab +b2= (a ±b)2.知识点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为 0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.要点诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.【典型例题】类型一、用配方法解一元二次方程1. (2016•淄博)解方程:x2+4x﹣1=0.【思路点拨】首先进行移项,得到 x2+4x=1,方程左右两边同时加上 4,则方程左边就是完全平方式,右边是常数的形式,再利用直接开平方法即可求解.【答案与解析】解:∵x2+4x﹣1=0∴x2+4x=1∴x2+4x+4=1+4∴(x+2)2=5∴x=﹣2±∴x1=﹣2+ ,x2=﹣2﹣.【总结升华】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为 1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为 1,一次项的系数是 2 的倍数.举一反三:【变式】用配方法解方程.(1)x2-4x-2=0;(2)x2+6x+8=0.【答案】(1)方程变形为 x2-4x=2.两边都加 4,得 x2-4x+4=2+4.利用完全平方公式,就得到形如(x+m)2=n 的方程,即有(x-2)2=6.解这个方程,得x-2= 或 x-2=- .于是,原方程的根为x=2+ 或x=2- .(2)将常数项移到方程右边 x2+6x=-8.两边都加“一次项系数一半的平方”=32,得x2+6x+32=-8+32,∴ (x+3)2=1.用直接开平方法,得x+3=±1,∴ x=-2 或 x=-4.类型二、配方法在代数中的应用2.若代数式M = 10a2 +b2 - 7a + 8 ,N =a2 +b2 + 5a +1 ,则M -N 的值()A.一定是负数B.一定是正数C.一定不是负数D.一定不是正数【答案】B;【解析】(作差法)M -N = 10a2+b2- 7a + 8 - (a2+b2+ 5a +1)=10a2 +b2 - 7a + 8 -a2 -b2 - 5a -1= 9a2 -12a + 7 = 9a2 -12a + 4 + 3 = (3a - 2)2+ 3 > 0 .故选B.【总结升华】本例是“配方法”在比较大小中的应用,通过作差法最后拆项、配成完全平方,使此差大于零而比较出大小.3.(2014•甘肃模拟)用配方法证明:二次三项式﹣8x2+12x﹣5 的值一定小于 0.【答案与解析】解:﹣8x2+12x﹣5=﹣8(x2﹣x)﹣5=﹣8[x2﹣x+()2]﹣5+8×()2=﹣8(x﹣)2﹣,∵(x﹣)2≥0,∴﹣8(x﹣)2≤0,∴﹣8(x ﹣)2﹣ <0, 即﹣8x 2+12﹣5 的值一定小于 0.【总结升华】利用配方法将代数式配成完全平方式后,再分析代数式值的符号. 注意在变形的过程中不要改变式子的值.举一反三:【变式】求代数式 x 2+8x+17 的最小值【答案】x 2+8x+17= x 2+8x+42-42+17=(x+4)2+1∵(x+4)2≥0,∴当(x+4)2=0 时,代数式 x 2+8x+17 的最小值是 1.4.已知 a2- 3a + b 2 - b + 37= 0 ,求 a - 4 2 16的值.【思路点拨】解此题关键是把 37拆成 9+ 1,可配成两个完全平方式.16 4 16【答案与解析】将原式进行配方,得⎛ a 2- 3a + 9 ⎫ + ⎛ b 2 - b +1 ⎫ = 0 ,4 ⎪ 2 16 ⎪ ⎝ ⎭ ⎝ ⎭⎛ 3 ⎫2 ⎛ 1 ⎫2即 a - 2 ⎪ + b - 4 ⎪ = 0 , ⎝ ⎭ ⎝ ⎭∴ a - 3 = 0 且b - 1= 0 ,24∴ a = 3,b = 1. 2∴ a - 4 4= 3 - 2= 3 - 2 = - 1 . 2 2【总结升华】本题可将原式用配方法转化成平方和等于 0 的形式,进而求出 a .b 的值.b b1 4【学习目标】一元二次方程的解法(三)--公式法,因式分解法1.理解一元二次方程求根公式的推导过程,了解公式法的概念,能熟练应用公式法解一元二次方程;2.正确理解因式分解法的实质,熟练运用因式分解法解一元二次方程;3.通过求根公式的推导,培养学生数学推理的严密性及严谨性,渗透分类的思想.【要点梳理】要点一、公式法解一元二次方程1.一元二次方程的求根公式一元二次方程,当时,.2.一元二次方程根的判别式一元二次方程根的判别式:.①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式;②确定 a、b、c 的值(要注意符号);③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选择.(2)一元二次方程ax2+bx +c = 0 (a ≠ 0) ,用配方法将其变形为:(x + b)22a=b2- 4ac4a2.①当∆=b2-4ac > 0 时,右端是正数.因此,方程有两个不相等的实根:x1,2 =2a .②当∆=b2 - 4ac = 0 时,右端是零.因此,方程有两个相等的实根:x =-b1,2 2a .③ 当∆=b2 - 4ac < 0 时,右端是负数.因此,方程没有实根.要点二、因式分解法解一元二次方程1.用因式分解法解一元二次方程的步骤(1)将方程右边化为 0;(2)将方程左边分解为两个一次式的积;(3)令这两个一次式分别为0,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解.2.常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是 0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为 0;②方程两边不能同时除以含有未知数的代数式.【典型例题】类型一、公式法解一元二次方程1.用公式法解下列方程.(1) x2+3x+1=0; (2) 2x2 = 4x -1 ;(3) 2x2+3x-1=0.【答案与解析】(1) a=1,b=3,c=1∴x==.∴x1= ,x2= .(2)原方程化为一般形式,得2x2 - 4x +1 = 0 .-b ±∵a = 2 ,b =-4 ,c =1 ,∴b2- 4ac = (-4)2- 4 ⨯ 2 ⨯1 = 8 > 0 .∴ x =4 ± 2 2= 1±2,即x =1+2,x= 1-2.2 ⨯ 2 2 1 2 2 2(3) ∵a=2,b=3,c=﹣1∴b2﹣4ac=17>0∴x=∴x1= ,x2= .【总结升华】用公式法解一元二次方程的关键是对 a、b、c 的确定.用这种方法解一元二次方程的步骤是:(1)把方程化为一元二次方程的一般形式;(2)确定 a,b,c 的值并计算b2 - 4ac 的值;(3)若b2 - 4ac 是非负数,用公式法求解.举一反三:【变式】用公式法解方程:(2014•武汉模拟)x2﹣3x﹣2=0.【答案】解:∵a=1,b=﹣3,c=﹣2;∴b2﹣4ac=(﹣3)2﹣4×1×(﹣2)=9+8=17;∴x==,∴x1=,x2= .2.用公式法解下列方程:(1) (2014•武汉模拟)2x2+x=2; (2) (2014 秋•开县期末)3x2﹣6x﹣2=0 ;(3)(2015•黄陂区校级模拟)x2﹣3x﹣7=0.【思路点拨】针对具体的试题具体分析,不是一般式的先化成一般式,再写出a,b,c的值,代入求值即可.【答案与解析】解:(1)∵2x2+x﹣2=0,∴a=2,b=1,c=﹣2,∴x== = ,-1± 3 -1- 3 -1+ 3 ∴x 1=,x 2=.(2) ∵a=3,b=﹣6,c=﹣2,∴b 2﹣4ac=36+24=60>0,∴x=, ∴x 1= ,x 2= (3)∵a=1,b=﹣3,b=﹣7.∴b 2﹣4ac=9+28=37.x== ,解得 x 1=,x 2= .【总结升华】首先把每个方程化成一般形式,确定出 a 、b 、c 的值,在b 2- 4ac ≥ 0 的前提下,代入求根公式可求出方程的根.举一反三:【变式】用公式法解下列方程: 2x 2+ 2x = 1;【答案】解:移项,得2x 2 + 2x -1 = 0 .∵ a = 2 ,b = 2 ,c = -1 , b 2 - 4ac = 22 - 4 ⨯ 2 ⨯(-1) = 12 > 0 ,∴ x =-2 ± 12 = , 2 ⨯ 2 2∴ x 1 =2 , x 2 = 2 .类型二、因式分解法解一元二次方程3.(2016•沈阳)一元二次方程 x 2﹣4x=12 的根是() A .x 1=2,x 2=﹣6 B .x 1=﹣2,x 2=6 C .x 1=﹣2,x 2=﹣6D .x 1=2,x 2=6【思路点拨】方程整理后,利用因式分解法求出解即可.【答案】B【解析】解:方程整理得:x 2﹣4x ﹣12=0, 分解因式得:(x+2)(x ﹣6)=0,解得:x1=﹣2,x2=6,故选 B【总结升华】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.4.解下列一元二次方程:(1)(2x+1)2+4(2x+1)+4=0; (2) (3x -1)(x -1) = (4x +1)(x -1) .【答案与解析】(1)(2x+1)2+4(2x+1)+4=0,(2x+1+2)2=0.即(2x + 3)2= 0 ,∴x =x =-3 .1 2 2(2) 移项,得(3x-1)(x-1)-(4x+1)(x-1)=0,即(x-1)(x+2)=0,所以x1=1 ,x2=-2 .【总结升华】解一元二次方程时,一定要先从整体上分析,选择适当的解法.如 (1)可以用完全平方公式.用含未知数的整式去除方程两边时,很可能导致方程丢根,(2)容易丢掉 x=1 这个根.举一反三:【变式】(1)(x+8)2-5(x+8)+6=0 (2)3 x(2 x+1) =4 x+2【答案】(1)(x+8-2)(x+8-3)=0(x+6)(x+5)=0X1=-6,x2=-5.(2)3x(2x+1)-2(2x+1)=0(2x+1)(3x-2)=0x =-1, x =2.1 2 2 35.探究下表中的奥秘,并完成填空:一元二次方程两个根二次三项式因式分解x2﹣2x+1=0x1=1,x2=1 x2﹣2x+1=(x﹣1)(x﹣1)x2﹣3x+2=0x1=1,x2=2 x2﹣3x+2=(x﹣1)(x﹣2)x1= ,x 2=﹣13x2+x﹣2=3(x﹣)(x+1)2x2+5x+2=2(x+)(x+2)x1=﹣,x2=﹣2将你发现的结论一般化,并写出来.【思路点拨】利用因式分解法,分别求出表中方程的解,总结规律,得出结论.【答案与解析】填空:﹣,﹣3;4x2+13x+3=4(x+)(x+3).发现的一般结论为:若一元二次方程 ax2+bx+c=0 的两个根为 x1、x2,则ax2+bx+c=a(x﹣x1)(x﹣x2).【总结升华】考查学生综合分析能力,要根据求解的过程,得出一般的结论,解一元二次方程——因式分解法.一元二次方程根的判别式及根与系数的关系【学习目标】1.会用一元二次方程根的判别式判别方程根的情况,由方程根的情况能确定方程中待定系数的取值范围;2.掌握一元二次方程的根与系数的关系以及在各类问题中的运用.【要点梳理】知识点一、一元二次方程根的判别式1.一元二次方程根的判别式一元二次方程ax 2+bx +c = 0(a ≠ 0) 中,b 2- 4ac 叫做一元二次方程ax 2+bx +c = 0(a ≠ 0) 的根的判别式,通常用“ ∆”来表示,即∆=b 2- 4ac(1)当△>0时,一元二次方程有 2 个不相等的实数根;(2)当△=0时,一元二次方程有 2 个相等的实数根;(3)当△<0时,一元二次方程没有实数根.要点诠释:利用根的判别式判定一元二次方程根的情况的步骤:①把一元二次方程化为一般形式;②确定a,b.c的值;③计1 2 算b 2 - 4ac 的值;④根据b 2 - 4ac 的符号判定方程根的情况.2. 一元二次方程根的判别式的逆用在方程 ax 2 + bx + c = 0(a ≠ 0) 中,(1) 方程有两个不相等的实数根⇒b 2 - 4ac ﹥0; (2) 方程有两个相等的实数根⇒b 2 - 4ac =0; (3) 方程没有实数根⇒b 2 - 4ac ﹤0.要点诠释:(1) 逆用一元二次方程根的判别式求未知数的值或取值范围,但不能忽略二次项系数不为 0 这一条件;(2) 若一元二次方程有两个实数根则 b 2 - 4ac ≥0.知识点二、一元二次方程的根与系数的关系1. 一元二次方程的根与系数的关系如果一元二次方程 ax 2 + bx + c = 0(a ≠ 0) 的两个实数根是 x ,x ,那么 x + x = - b , x x = c . 1 2 a 1 2 a注意它的使用条件为 a≠0, Δ≥0.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.2. 一元二次方程的根与系数的关系的应用(1)验根.不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两个根;(2)已知方程的一个根,求方程的另一根及未知系数;(3)不解方程,可以利用根与系数的关系求关于 x 1、x 2 的对称式的值.此时,常常涉及代数式的一些重要变形;如:① x 2 + x 2 = (x + x )2 - 2x x ; 1 2 1 2 1 2② 1 +1 x 1 x 2= x 1 + x 2 ; x 1 • x 2 ③ x x 2 + x 2 x = x x (x + x ) ; 1 2 1 2 1 2 1 2。
一元二次方程复习提纲
一元二次方程复习提纲考点一:概念(1)定义:含有 个未知数,并且未知数的最高次数是 的 方程叫做一元二次方程。
(2)一般形式:ax 2+bx+c=0(a ≠0),其中二次项系数是 ,一次项系数是 ,常数项是 。
(3)判断一元二次方程的依据:①只含有一个未知数。
② 是整式方程。
③ 二次项系数不为“0”。
④ 未知数最高次数是“2”。
典型例题:1、下列是关于x 的一元二次方程的是( )2、方程2269x x -=的二次项系数、一次项系数、常数项分别为( ).A 、629,,B 、269-,,C 、269--,,D 、 269-,, 3若方程2210mx x -+=是关于x 的一元二次方程,则m .4、当m 时,方程mx 2-3x =2x 2-mx +2 是一元二次方程考点二:一元二次方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。
⑵应用:利用根的概念求代数式的值典型例题:关于x 的一元二次方程01)1(22=-++-a x x a 的一个根是0,则a 的值为( ).(A) 1 (B) 1- (C) 1或1- (D)21. 考点三:一元二次方程的解法1、直接开平方法适用方程特征:()()02≥=+n n m x 的解是m n x -±= 典型例题:(1) x 2 = 5 (2)(y+2)2=3 (3)2(3a-1)2-1=022221 320 B 2x +y-1=0 C x 00 D x xA x -+==、、、、适用方程特征:方程左边可以化为两个因式的乘积,右边是0,即形如 (x+a)(x+b)=0的方程都可以用因式分解法。
用因式分解法解一元二次方程的一般步骤:(1)将方程的右边化为0;(2)将方程左边分解成两个一次因式的乘积。
(3)令每个因式分别为0,得两个一元一次方程。
(4)解这两个一元一次方程,它们的解就是原方程的解。
典型例题:解方程(1)3x 2 = 2x (2) 0)1(3)1(2=-+-x x x(3) 22)12()3(+=-x x (4)y 2 =3y +43、配方法即通过配方将方程化为(x+a )2=b(b ≥0)的形式,再用直接开平方法求解。
一元二次方程提纲
一元二次方程总复习考点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方程.一般形式:ax2+bx+c=0(a≠0)。
注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。
考点2:一元二次方程的解法 1.直接开平方法:对形如(x+a)2=b(b≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。
X+a=b 1x=-a+b 2x=-a-b 2.配方法:用配方法解一元二次方程:ax2+bx+c=0(k≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a)2=b的形式;⑤如果b≥0就可以用两边开平方来求出方程的解;如果b≤0,则原方程无解. 3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是a acbbx242(b2-4ac≥0)。
步骤:①把方程转化为一般形式;②确定a,b,c的值;③求出b2-4ac的值,当b2-4ac≥0时代入求根公式。
4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则a=0或b=0。
步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。
5.一元二次方程的注意事项:⑴在一元二次方程的一般形式中要注意,强调a≠0.因当a=0时,不含有二次项,即不是一元二次方程.⑵应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a,b,c的值;②若b2 -4ac<0,则方程无解.⑶利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x+4)2 =3(x+4)中,不能随便约去x +4。
一元二次方程复习提纲
一元二次方程复习提纲数学是初中学习中的一个重要科目,是三大主科之一,但是有许多同学的数学成果并不志向,以下是我给大家整理的一元二次方程复习提纲,盼望对大家有所协助,欢送阅读!一元二次方程复习提纲一、目标与要求1.了解一元二次方程及有关概念,一般式ax2+bx+c=0(a≠0)及其派生的概念,应用一元二次方程概念解决一些简洁题目。
2.驾驭通过配方法、公式法、因式分解法降次──解一元二次方程,驾驭依据实际问题建立一元二次方程的数学模型的方法,应用娴熟驾驭以上学问解决问题。
二、重点1.一元二次方程及其它有关的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题。
2.判定一个数是否是方程的根;3.用配方法、公式法、因式分解法降次──解一元二次方程。
4.运用开平方法解形如(x+m)2=n(n≥0)的方程,领悟降次──转化的数学思想。
5.利用实际问题建立一元二次方程的数学模型,并解决这个问题.三、难点1.一元二次方程配方法解题。
2.通过提出问题,建立一元二次方程的数学模型, 再由一元一次方程的概念迁移到一元二次方程的概念。
3.用公式法解一元二次方程时的探讨。
4.通过依据平方根的意义解形如x2=n,学问迁移到依据平方根的意义解形如(x+m)2=n(n≥0)的方程。
5.建立一元二次方程实际问题的数学模型,方程解与实际问题解的区分。
6.由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根。
7.学问框架四、学问点、概念总结1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的次数是2(二次)的方程,叫做一元二次方程。
2.一元二次方程有四个特点:(1)含有一个未知数;(2)且未知数次数次数是2;(3)是整式方程。
要判定一个方程是否为一元二次方程,先看它是否为整式方程,假设是,再对它进展整理。
假如能整理为ax2+bx+c=0(a≠0)的形式,那么这个方程就为一元二次方程。
一元二次方程知识点归纳和重难点精析
一元二次方程知识点归纳和重难点精析一、知识点归纳1.一元二次方程的基本概念一元二次方程是指只含有一个未知数,且未知数的最高次数为2的整式方程。
其一般形式为ax²+bx+c=0(a≠0)。
2.一元二次方程的解法公式一元二次方程的解法公式为x=[-b ±sqrt(b²-4ac)] / (2a)。
其中,sqrt表示求平方根,x为未知数,a、b、c为方程的系数。
二、重难点精析九年级数学一元二次方程的重难点1.高次项:一元二次方程中,二次项的系数a不能为0.且最高次数为2.这是在解一元二次方程时需要特别注意的难点。
2.整体化简:在求解一元二次方程时,需要将方程进行整体化简,从而得到未知数的值。
这需要学生具备一定的化简和运算能力。
针对重难点的解决方法及相关思考题1.高次项注意事项:在一元二次方程中,要确保二次项的系数不为0.且最高次数不超过2.如有其他高次项,可将其合并或转化为二次项。
2.整体化简技巧:为了更好地求解一元二次方程,学生需要掌握整体化简的方法。
可以通过移项、合并同类项等方式,将方程化简为更易于求解的形式。
思考题:求解一元二次方程x²-6x+9=0时,有哪些方法可以解题?哪种方法更适合处理此类方程?三、扩展知识一元二次方程的历史背景及应用领域一元二次方程作为九年级数学的重要知识点,在实际生活和后续学习中有着广泛的应用。
例如,在解决实际问题时,一元二次方程可用于解决诸如最大化、最小化、平均值等优化问题。
此外,在物理、化学、生物等科学领域中,一元二次方程也常常用于描述现象和解决问题。
相关知识点补充在求解一元二次方程的过程中,可能会涉及到其他数学知识点,如三角函数、平移和缩放等。
这些知识点对于理解一元二次方程的解法和实际应用都有一定的帮助。
例如,三角函数可以用于求解一元二次方程的近似解;平移和缩放可以用于将复杂的一元二次方程转化为简单的形式,从而更容易求解。
因此,学生在学习的过程中需要注意知识点的联系与运用。
2024九年级数学上册“第二十一章一元二次方程“必背知识点
2024九年级数学上册“第二十一章一元二次方程”必背知识点一、一元二次方程的定义定义:等号两边都是整式,只含有一个未知数 (一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
一般形式:ax² + bx + c = 0(a ≠ 0)。
其中,ax²是二次项,a是二次项系数;bx是一次项,b是一次项系数;c 是常数项。
方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根。
二、一元二次方程的解法1. 配方法步骤:一移 (把常数项移到等号的右边)、二除 (方程两边都除以二次项系数)、三配 (方程两边都加上一次项系数一半的平方,把左边配成完全平方式)、四开 (若等号右边为非负数,直接开平方求出方程的解)。
2. 公式法求根公式:对于一元二次方程ax² + bx + c = 0(a ≠。
0),如果b²-4ac ≥ 0,则方程的两个根为x1,2=−b±√b2−4ac2a 根的判别式:Δ = b² - 4ac。
当Δ > 0时,方程有两个不相等的实数根。
当Δ = 0时,方程有两个相等的实数根。
当Δ < 0时,方程无实数根。
3. 直接开平方法适用条件:如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。
步骤:移项、使二次项系数或含有未知数的式子的平方项的系数为1、两边直接开平方。
4. 因式分解法方法:把一元二次方程的一边化为0,而另一边分解成两个一次因式的积,进而转化为求两个一元一次方程的解。
三、一元二次方程的根与系数的关系对于一元二次方程ax² + bx + c = 0(a ≠ 0),若其两个根为x₁和x₂,则有:x₁ + x₂ = -b/ax₁x₂ = c/a四、一元二次方程的实际应用列一元二次方程解应用题的一般步骤:审:读懂题目,弄清题意,明确哪些是已知量,哪些是未知量以及它们之间的等量关系。
一元二次方程教案讲解与知识梳理
一元一次方程以及圆的知识点归纳以及复习授课时间:学科:数学年级:九年级课题:一元一次方程以及圆的知识点归纳以及复习。
学生姓名:教师姓名:教学目标1、熟练掌握一元二次方程的各种解题技巧以及应用题的解读。
2、圆章节知识点的归纳以及总结。
教学过程一元二次方程知识点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2.一元二次方程的一般形式:3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.知识点二、一元二次方程的解法1.直接开方法;2.配方法;用配方法解一元二次方程的一般步骤:①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方;求出方程的解;如果右边是一个负数,则判定此方程无实数解.3.公式法;(1)一元二次方程求根公式:一元二次方程,当时,.(2)一元二次方程根的判别式.①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.(3)用公式法解关于x的一元二次方程的步骤:①把一元二次方程化为一般形式;②确定a、b、c的值;③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.4.因式分解法;(1)用因式分解法解一元二次方程的步骤:①将方程右边化为0;②将方程左边分解为两个一次式的积;③令这两个一次式分别为0,得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.(2)常用因式分解法:提取公因式法,平方差公式、完全平方公式.知识点三、列一元二次方程解应用题1.列方程解实际问题的三个重要环节:一是整体地、系统地审题;二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.2.利用方程解决实际问题的关键是寻找等量关系.3.解决应用题的一般步骤:审(审题目,分清已知量、未知量、等量关系等);设(设未知数,有时会用未知数表示相关的量);列(根据题目中的等量关系,或将一个量表示两遍,由此得到方程);解(解方程,注意分式方程需检验,将所求量表示清晰);答(切忌答非所问).4.常见应用题型数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题.知识点四、一元二次方程根与系数的关系如果一元二次方程ax2+bx+c=0的两个实根是x1,x2,那么.注意它的使用条件为a≠0,Δ≥0.类型一、一元二次方程及根的定义1.已知关于的方程的一个根为2,求另一个根及的值.思路点拨:从一元二次方程的解的概念入手,将根代入原方程解的值,再代回原方程,解方程求出另一个根即可.解:将代入原方程,得即解方程,得当时,原方程都可化为解方程,得.所以方程的另一个根为4,或-1.总结升华:以方程的根为载点.综合考查解方程的问题是一个常考问题,解这类问题关键是要抓住“根”的概念,并以此为突破口.举一反三:【变式1】已知一元二次方程的一个根是,求代数式的值.思路点拨:抓住为方程的一个根这一关键,运用根的概念解题.解:因为是方程的一个根,所以,故,,所以..总结升华:“方程”即是一个“等式”,在“等式”中,根据题目的需要,合理地变形,是一种对代数运算综合要求较高的能力,在这一方面注意丰富自己的经验.类型二、一元二次方程的解法2.用直接开平方法解下列方程:(1)3-27x2=0;(2)4(1-x)2-9=0.解:(1)27x2=3.(2)4(1-x)2=93.用配方法解下列方程:(1);(2).解:(1)由,得,,,所以,故.(2)由,得,,,所以故4.用公式法解下列方程:(1);(2);(3). 解:(1)这里并且所以,所以,.(2)将原方程变形为,则,所以,所以.(3)将原方程展开并整理得,这里,并且,所以.所以.总结升华:公式法解一元二次方程是解一元二次方程的一个重点,要求熟练掌握,它对我们的运算能力有较高要求,也是提高我们运算能力训练的好素材.5.用因式分解法解下列方程:(1);(2);(3).解:(1)将原方程变形为,提取公因式,得,因为,所以所以或,故(2)直接提取公因式,得所以或,(即故.(3)直接用平方差公式因式分解得即所以或故.举一反三:【变式1】用适当方法解下列方程.(1)2(x+3)2=x(x+3);(2)x2-2x+2=0;(3)x2-8x=0;(4)x2+12x+32=0.解:(1)2(x+3)2=x(x+3)2(x+3)2-x(x+3)=0(x+3)[2(x+3)-x]=0(x+3)(x+6)=0x1=-3,x2=-6.(2)x2-2x+2=0这里a=1,b=-2,c=2b2-4ac=(-2)2-4×1×2=12>0x==x1=+,x2=-(3)x(x-8)=0x1=0,x2=8.(4)配方,得x2+12x+32+4=0+4(x+6)2=4x+6=2或x+6=-2x2=-4,x2=-8.点评:要根据方程的特点灵活选用方法解方程.6.若,求的值.思路点拨:观察,把握关键:换元,即把看成一个“整体”.解:由,得,,,所以,故或(舍去),所以.总结升华:把某一“式子”看成一个“整体”,用换元的思想转化为方程求解,这种转化与化归的意识要建立起来.类型三、一元二次方程根的判别式的应用7.(武汉)一元二次方程4x2+3x-2=0的根的情况是( )A.有两个相等的实数根;B.有两个不相等的实数根C.只有一个实数根;D.没有实数根解析:因为△=32-4×4×(-2)>0,所以该方程有两个不相等的实数根.答案:B.8.(重庆)若关于x的一元二次方程x2+x-3m=0有两个不相等的实数根,则m的取值范围是( )A.m>B.m<C.m>-D.m<-思路点拨:因为该方程有两个不相等的实数根,所以应满足.解:由题意,得△=12-4×1×(-3m)>0,解得m>-.答案:C.举一反三:【变式1】当m为什么值时,关于x的方程有实根.思路点拨:题设中的方程未指明是一元二次方程,还是一元一次方程,所以应分和两种情形讨论.解:当即时,,方程为一元一次方程,总有实根;当即时,方程有根的条件是:,解得∴当且时,方程有实根.综上所述:当时,方程有实根.【变式2】若关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数解,求ax+3>0的解集(用含a的式子表示).思路点拨:要求ax+3>0的解集,就是求ax>-3的解集,那么就转化为要判定a的值是正、负或0.因为一元二次方程(a-2)x2-2ax+a+1=0没有实数根,即(-2a)2-4(a-2)(a+1)<0就可求出a的取值范围.解:∵关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数根.∴(-2a)2-4(a-2)(a+1)=4a2-4a2+4a+8<0∴满足∵ax+3>0即ax>-3∴所求不等式的解集为.类型四、根据与系数的关系,求与方程的根有关的代数式的值9.(河北)若x1,x2是一元二次方程2x2-3x+1=0的两个根,则x12+x22的值是( )A. B. C. D.7思路点拨:本题解法不唯一,可先解方程求出两根,然后代入x12+x22,求得其值.但一般不解方程,只要将所求代数式转化成含有x1+x2和x1x2的代数式,再整体代入.解:由根与系数关系可得x1+x2=,x1·x2=,x12+x22=(x1+x2)2-2x1·x2=()2-2×=.答案:A.总结升华:公式之间的恒等变换要熟练掌握.类型五、一元二次方程的应用考点讲解:1.构建一元二次方程数学模型:一元二次方程也是刻画现实问题的有效数学模型,通过审题弄清具体问题中的数量关系,是构建数学模型,解决实际问题的关键.2.注重解法的选择与验根:在具体问题中要注意恰当的选择解法,以保证解题过程简洁流畅,特别要对方程的解注意检验,根据实际做出正确取舍,以保证结论的准确性.10.(陕西)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图.如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是( )A.x2+130x-1400=0B.x2+65x-350=0C.x2-130x-1400=0D.x2-64x-1350=0解析:在矩形挂图的四周镶一条宽为xcm的金边,那么挂图的长为(80+2x)cm,•宽为(50+2x)cm,由题意,可得(80+2x)(50+2x)=5400,整理得x2+65x-350=0.答案:B.11.(海口)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?解:设每千克水果应涨价x元,依题意,得(500-20x)(10+x)=6000.整理,得x2-15x+50=0.解这个方程,x1=5,x2=10.要使顾客得到实惠,应取x=5.答:每千克应涨价5元.总结升华:应抓住“要使顾客得到实惠”这句话来取舍根的情况.12.(深圳南山区)课外植物小组准备利用学校仓库旁的一块空地,开辟一个面积为130平方米的花圃(如图),打算一面利用长为15米的仓库墙面,三面利用长为33米的旧围栏,求花圃的长和宽.解:设与墙垂直的两边长都为米,则另一边长为米,依题意得又∵ 当时,当时,∴不合题意,舍去.∴.答:花圃的长为13米,宽为10米.考点1:圆的有关概念和性质一、考点讲解:1.圆的圆的有关概念:(1)圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中,定点为圆心,定长为半径.(2)圆心角:顶点在圆心的角叫做圆心角.(3)圆周角:顶点在圆上,两边分别与圆还有另一个交点的角叫做圆周角.(4)弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.(5)弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.2.圆的有关性质:(1)圆是轴对称图形;其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.(3)弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;90”的圆周角所对的弦是直径.3.三角形的内心和外心(1)确定圆的条件:不在同一直线上的三个点确定一个圆.(2)三角形的外心:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的外心.(3)三角形的内心:和三角形的三边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心二、经典考题剖析:(1)如图,在⊙O 中,弦ACBD ,OEAB ,垂足为E ,求证:OE=12CD(2)如图,AC ,BD 是⊙O 的两条弦,且ACBD ,⊙O 的半径为12,求AB 2+CD 2的值。
第21章一元二次方程重难点总结(教案)
在今天的一元二次方程教学中,我尝试了多种方法来帮助学生理解和掌握这个数学工具。首先,通过日常生活中的例子导入新课,我希望能够激发学生的兴趣,让他们意识到数学与现实生活的紧密联系。这种方法似乎很有效,我看到学生们在听到问题时都显得很兴奋,这为后续的学习打下了一个良好的基础。
在理论介绍环节,我发现有些学生对一元二次方程的基本概念接受得很快,但也有一些学生显得有些困惑。我意识到,对于这样的抽象概念,仅仅通过语言描述是不够的,还需要结合图形和具体例题来加深理解。因此,我及时调整了教学方法,通过图解和动画来展示方程的解和抛物线的关系,这帮助学生更好地理解了方程的根的性质。
-对于因式分解法的应用,学生容易在分解过程中出现错误,需引导学生理解并掌握因式分解的技巧。
(3)图解法的应用:利用抛物线图像分析一元二次方程的根;
-图解法对于学生的几何直观能力要求较高,需要通过具体实例和绘图练习来提高学生的图解能力。
(4)一元二次方程根的判别式Δ的应用;
-判别式Δ的意义及其与根的关系是学生理解的难点,需要通过具体例题和练习,让学生明确判别式Δ对根的影响。
3.重点难点解析:在讲授过程中,我会特别强调一元二次方程的解法(公式法、配方法、因式分解法)和根的性质这两个重点。对于难点部分,我会通过具体例题和图解来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元二次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示一元二次方程在实际问题中的应用。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元二次方程的基本概念。一元二次方程是形如ax^2 + bx + c = 0(a≠0)的方程。它在数学和物理学等多个领域有着广泛的应用,是解决平方关系问题的有力工具。
一元二次方程知识点框架
一元二次方程知识点框架
一元二次方程知识点框架如下:
一、定义:一元二次方程是只含有一个未知数,且未知数的最高次数为2的方程。
二、一般形式:ax^2 + bx + c = 0,其中a ≠0。
三、解法:
1. 直接开平方法:对于形如x^2 = b(b≥0)的方程,可以直接开平方求得解。
2. 因式分解法:通过因式分解将方程化为两个一次因式的乘积等于0,然后分别令每个因式等于0,解出x的值。
3. 公式法:使用求根公式ax^2 + bx + c = 0的解为x = [-b ±sqrt(b^2 - 4ac)] / (2a)。
当判别式Δ=b^2 - 4ac≥0时,方程有两个实根;当Δ<0时,方程无实根。
4. 配方法:先将方程化为一般形式,然后配方得到(x + p)^2 = q的形式,再根据q的正负性求得方程的解。
四、根的判别式:判别式Δ=b^2 - 4ac。
当Δ>0时,方程有两个不相等的实根;当Δ=0时,方程有两个相等的实根;当Δ<0时,方程无实根。
五、根与系数的关系:若方程的两个实根为x1和x2,则x1 + x2 = -b/a,x1 * x2 = c/a。
六、应用:一元二次方程在实际问题中有着广泛的应用,如几何、三角、代数等问题中都需要用到一元二次方程的知识点。
一元二次方程知识点提纲(二)
一元二次方程知识点提纲(二)第二节解一元二次方程前言导入:1.明确一元二次方程是以降次为目的,以配方法、开平方法、公式法、因式分解法等方法为手段,从而把一元二次方程转化为一元一次方程求解;2.根据方程系数的特点,熟练地选用配方法、开平方法、公式法、因式分解法等方法解一元二次方程;3.体会不同解法的相互的联系;知识点一:开平方法▲对于形如x2=n或(ax+b)2=n(a≠0)的一元二次方程,即一元二次方程的一边是含有未知数的一次式的平方,而另一边是一个非负数,可用开平方法求解。
形如x2=n的方程的解法:例题1、x2-4=0 例题2、x2-14=0知识点二:配方法▲通过配方的方法把一元二次方程转化为(x+m)2=n的方程,再运用开平方法求解。
配方法的一般步骤:①移项:把一元二次方程中含有未知数的项移到方程的左边,常数项移到方程的右边;②“系数化1”:根据等式的性质把二次项的系数化为1;③配方:将方程两边分别加上一次项系数一半的平方,把方程变形为(x+m)2=n 的形式;④求解:例题1、用配方法解下列各式13x 2--x =0 0282=-+x x 05622=--x x1242=-x x 0108632=-+x x 2)72(+-=+x x x知识点三:公式法▲一元二次方程)0(02≠=++a c bx ax 的求根公式:例题1、用公式法求解下列方程x x 2122-=3)72(-=+x x x 021072=++x x知识点四:因式分解法▲因式分解法解一元二次方程的依据:如果两个因式的积等于0,那么这两个因式至少有一个为0,即:若ab=0,那么a=0或b=0。
因式分解法的一般步骤:①若方程的右边不是零,则先移项,使方程的右边为零;②把方程的左边分解因式;③令每一个因式都为零,得到两个一元一次方程;④解出这两个一元一次方程的解可得到原方程的两个解。
例题1、用因式分解法解下列方程0)23)(12(=-+x x 0322=-x x 02422=--x x06582=--y y 056)32()32(2=-+-+x x☀十字相乘法(1) a2-7a+6=0(2)8x2+6x-35=0(3)18x2-21x+5=0 (4) 20-9y-20y2=0(5)2x2+3x+1=0(6)2y2+y-6=0 (7)6x2-13x+6=0(8)3a2-7a-6=0(9)6x2-11x+3=0第二节练习题1、用合适的方法解下列方程4m2+8m+3=010x2-21x+2=08m2-22m+15=0x2=16 2x2=32 (2x+1)2=0(2x -1)2=10132=-+x x 22360x x +-=x 2+5x -1=0 2x 2-4x -1=02430x x -+=4x 2+4x -1=0242=0x -2635=0x x +-。
九年级数学上册《一元二次方程的知识结构》教案、教学设计
5.个体差异:学生之间存在一定的个体差异,教师在教学过程中要关注每个学生的成长需求,因材施教,使他们在原有基础上得到提高。
三、教学重难点和教学设想
例题:
(1)一辆汽车行驶的速度与时间的关系为v = at,其中v表示速度,a表示加速度,t表示时间。已知该汽车从静止开始加速,加速度为2m/s^2,行驶了5秒后的速度是多少?
(2)某同学在体育测试中,跳远的成绩与助跑速度有关。假设他起跳时的速度为v,助跑时的加速度为a,已知起跳时的速度为6m/s,助跑时的加速度为2m/s^2,求该同学助跑时的速度。
D. x + y = 1
(2)一元二次方程x^2 - 5x + 6 = 0的标准形式是()。
A. (x - 2)(x - 3) = 0
B. (x - 3)(x - 2) = 0
C. (x + 2)(x - 3) = 0
D. (x + 3)(x - 2) = 0
2.实际问题应用题:设计一些与生活密切相关的问题,要求学生运用一元二次方程的知识建立模型并求解。旨在培养学生将数学知识应用于解决实际问题的能力。
4.开展小组讨论和交流,培养学生团队协作能力,学会倾听、表达和沟通。
(三)情感态度与价值观
1.培养学生对一元二次方程的兴趣,激发学习数学的热情,树立正确的学习态度。
2.通过对一元二次方程的学习,使学生体会数学的严谨性和逻辑性,培养科学精神。
3.鼓励学生勇于面对困难和挑战,培养克服困难、解决问题的信心和毅力。
(2)讲解一元二次方程的四种解法:直接开平方法、因式分解法、配方法、求根公式法;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、知识结构:一元二次方程⎪⎩⎪⎨⎧*⇒韦达定理根的判别解与解法 二、考点精析 考点一、概念 (1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程....就是一元二次方程。
(2)一般表达式:)0(02≠=++a c bx ax⑶难点:如何理解 “未知数的最高次数是2”:①该项系数不为“0”;②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
典型例题:例1、下列方程中是关于x 的一元二次方程的是( )A ()()12132+=+x xB 02112=-+x xC 02=++c bx axD 1222+=+x x x变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。
例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。
针对练习:1、方程782=x 的一次项系数是 ,常数项是 。
2、若方程()021=--m x m 是关于x 的一元一次方程,⑴求m 的值;⑵写出关于x 的一元一次方程。
3、若方程()112=∙+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。
4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( )A.m=n=2B.m=2,n=1C.n=2,m=1D.m=n=1考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。
⑵应用:利用根的概念求代数式的值; 典型例题:例1、已知322-+y y 的值为2,则1242++y y 的值为 。
例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程 必有一根为 。
例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根, 则m 的值为 。
针对练习:1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。
2、已知关于x 的方程022=-+kx x 的一个解与方程311=-+x x 的解相同。
⑴求k 的值; ⑵方程的另一个解。
3、已知m 是方程012=--x x 的一个根,则代数式=-m m 2 。
4、已知a 是0132=+-x x 的根,则=-a a 622 。
5、方程()()02=-+-+-a c x c b x b a 的一个根为( )A 1-B 1C c b -D a - 6、若=∙=-+y x 则y x 324,0352 。
考点三、解法 ⑴方法:①直接开方法;②因式分解法;③配方法;④公式法 ⑵关键点:降次 类型一、直接开方法:()m x m m x ±=⇒≥=,02对于()m a x =+2,()()22n bx m ax +=+等形式均适用直接开方法 典型例题:例1、解方程:();08212=-x ()216252x -=0; ()();09132=--x例2、若()()2221619+=-x x ,则x 的值为 。
针对练习:下列方程无解的是( )A.12322-=+x xB.()022=-x C.x x -=+132 D.092=+x 类型二、因式分解法:()()021=--x x x x 21,x x x x ==⇒或方程特点:左边可以分解为两个一次因式的积,右边为“0”, 方程形式:如()()22n bx m ax +=+,()()()()c x a x b x a x ++=++ , 0222=++a ax x典型例题:例1、()()3532-=-x x x 的根为( )A 25=xB 3=xC 3,2521==x x D 52=x 例2、若()()044342=-+++y x y x ,则4x+y 的值为 。
变式1:()()=+=-+-+2222222,06b 则a b a b a 。
变式2:若()()032=+--+y x y x ,则x+y 的值为 。
变式3:若142=++y xy x ,282=++x xy y ,则x+y 的值为 。
例3、方程062=-+x x 的解为( )A.2321=-=,x xB.2321-==,x xC.3321-==,x xD.2221-==,x x针对练习:1、下列说法中:①方程02=++q px x 的二根为1x ,2x ,则))((212x x x x q px x --=++② )4)(2(862--=-+-x x x x .③)3)(2(6522--=+-a a b ab a④ ))()((22y x y x y x y x -++=-⑤方程07)13(2=-+x 可变形为0)713)(713(=-+++x x正确的有( )A.1个B.2个C.3个D.4个2、以71+与71-为根的一元二次方程是()A .0622=--x xB .0622=+-x xC .0622=-+y yD .0622=++y y3、⑴写出一个一元二次方程,要求二次项系数不为1,且两根互为倒数: ⑵写出一个一元二次方程,要求二次项系数不为1,且两根互为相反数:4、若实数x 、y 满足()()023=++-+y x y x ,则x+y 的值为( )A 、-1或-2B 、-1或2C 、1或-2D 、1或25、方程:2122=+xx 的解是 。
类型三、配方法()002≠=++a c bx ax 222442a ac b a b x -=⎪⎭⎫ ⎝⎛+⇒ 在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。
典型例题:例1、 试用配方法说明322+-x x 的值恒大于0。
例2、 已知x 、y 为实数,求代数式74222+-++y x y x 的最小值。
例3、 已知,x、y y x y x 0136422=+-++为实数,求y x 的值。
针对练习:1、试用配方法说明47102-+-x x 的值恒小于0。
2、已知041122=---+x x xx ,则=+x x 1 . 3、若912322-+--=x x t ,则t 的最大值为 ,最小值为 。
类型四、公式法 ⑴条件:()04,02≥-≠ac b a 且 ⑵公式: aac b b x 242-±-=,()04,02≥-≠ac b a 且 典型例题:例1、选择适当方法解下列方程:⑴().6132=+x ⑵()().863-=++x x ⑶0142=+-x x⑷01432=--x x ⑸()()()()5211313+-=+-x x x x例2、在实数范围内分解因式:(1)3222--x x ; (2)1842-+-x x . ⑶22542y xy x --说明:①对于二次三项式c bx ax ++2的因式分解,如果在有理数范围内不能分解, 一般情况要用求根公式,这种方法首先令c bx ax ++2=0,求出两根,再写成c bx ax ++2=))((21x x x x a --.②分解结果是否把二次项系数乘进括号内,取决于能否把括号内的分母化去. 类型五、 “降次思想”的应用⑴求代数式的值; ⑵解二元二次方程组。
典型例题:例1、 已知0232=+-x x ,求代数式()11123-+--x x x 的值。
例2、已知a 是一元二次方程0132=+-x x 的一根,求1152223++--a a a a 的值。
例3、用两种不同的方法解方程组⎩⎨⎧=+-=-)2(.065)1(,6222y xy x y x说明:解二元二次方程组的具体思维方法有两种:①先消元,再降次;②先降次,再 消元。
但都体现了一种共同的数学思想——化归思想,即把新问题转化归结为我们已 知的问题.考点四、根的判别式ac b 42-根的判别式的作用:①定根的个数; ②求待定系数的值;③应用于其它。
典型例题:例1、若关于x 的方程0122=-+x k x 有两个不相等的实数根,则k 的取值范围是 。
例2、关于x 的方程()0212=++-m mx x m 有实数根,则m 的取值范围是( )A.10≠≥且m mB.0≥mC.1≠mD.1>m例3、已知关于x 的方程()0222=++-k x k x(1)求证:无论k 取何值时,方程总有实数根;(2)若等腰∆ABC 的一边长为1,另两边长恰好是方程的两个根,求∆ABC 的周长。
例4、已知二次三项式2)6(92-++-m x m x 是一个完全平方式,试求m 的值.例5、m 为何值时,方程组⎩⎨⎧=+=+.3,6222y mx y x 有两个不同的实数解?有两个相同的实数解?针对练习:1、当k 时,关于x 的二次三项式92++kx x 是完全平方式。
2、当k 取何值时,多项式k x x 2432+-是一个完全平方式?这个完全平方式是什么?3、已知方程022=+-mx mx 有两个不相等的实数根,则m 的值是 .4、k 为何值时,方程组⎩⎨⎧=+--+=.0124,22y x y kx y (1)有两组相等的实数解,并求此解;(2)有两组不相等的实数解;(3)没有实数解.5、当k 取何值时,方程04234422=+-++-k m m x mx x 的根与m 均为有理数?考点五、方程类问题中的“分类讨论” 典型例题:例1、关于x 的方程()03212=-++mx x m⑴有两个实数根,则m 为 ,⑵只有一个根,则m 为 。
例2、 不解方程,判断关于x 的方程()3222-=+--k k x x 根的情况。
考点六、根与系数的关系 ⑴前提:对于02=++c bx ax 而言,当满足①0≠a 、②0≥∆时,才能用韦达定理。
⑵主要内容:ac x x a b x x =-=+2121, ⑶应用:整体代入求值。
典型例题:例1、已知一个直角三角形的两直角边长恰是方程07822=+-x x 的两根,则这个直角三 角形的斜边是( )A.3B.3C.6D.6例2、已知关于x 的方程()011222=+-+x k x k 有两个不相等的实数根21,x x ,(1)求k 的取值范围;(2)是否存在实数k ,使方程的两实数根互为相反数?若存在,求出k 的值;若不 存在,请说明理由。
例3、小明和小红一起做作业,在解一道一元二次方程(二次项系数为1)时,小明因看错常数项,而得到解为8和2,小红因看错了一次项系数,而得到解为-9和-1。
你知道 原来的方程是什么吗?其正确解应该是多少?例4、已知b a ≠,0122=--a a ,0122=--b b ,求=+b a 变式:若0122=--a a ,0122=--b b ,则ab b a +的值为 。