五年级奥数第一次速算与巧算试卷
五年级下册数学讲义奥数专题训练:一 速算与巧算人教版
一、速算与巧算数的加、减、乘、除运算,有时可利用运算定律、性质以及和、差、积、商的变化规律以及公式等,把常规计算转化为较简便、迅速的计算,有时也可根据数的本身的特点,采用一些技巧,将一些计算最大、较复杂的问题,转化为简单易算的问题。
例I:计算:99 +198 +297 +396 +495 +594 +693 +792 +891 +990分析:本题数据有这样的特点,从首项开始分别是99的1倍、2倍、3倍……10倍。
我们可把每项都改写成99乘以几的形式,然后利用乘法分配律进行简算。
解:原式::::99 X 1 +99 X 2 +99 X 3 +99 X 4 +…+99 X 10:::: 99 X (1 +2 + 3 +4+.. ·+ 10)==99 x55::::5445例2:计算:(2000 -1) + (1999 -2) + (1998 -3) +…+ (1002 -999) + (1001 -1000) 分析:通过整理题中数据不难发现,题中共有1000个差从1999开始逐个减少2,形成了一个首项为1999,末项为1'项数为1000,公差为2的等差数列。
这样,便可运用等差数列求和公式进行计算,因为题中从1到1999正好是1000个连续的奇数,所以可直接用1000X 1000求得。
解:原式==1999 +1997 +1995 +…+3 +1:::: 1000 X 1000== 1000000例3:计算:1998 X 19991999 -1999 X 19981998分析:仔细观察每一个数,寻找它们的特点,如19991999可分解成1999X 10001, 而19981998也可分解成1998X 10001。
解:原式::::1998 X 1999 X 10001 -1998 X 1999 X 10001::::0例4:计算:1 +2-3 +4+5 -6 +7+8 -9 +10 +11 -12 +…+97 +98 -99分析:根据这99个连续自然数的结构规律,从左往右看,以每三个数为一组,可分为99豆3::::33 (组),且每组数经过加、减后、其结果都是3的倍数,然后按等差数列求和公式进行计算。
小学数学《速算与巧算》练习题(含答案)
小学数学《速算与巧算》练习题(含答案)【复习1】(我爱数学夏令营)计算:6.11+9.22+8.33+7.44+5.55+4.56+3.67+2.78+1.89分析:原式=(6.11+1.89)+(9.22+2.78)+(8.33+3.67)+(7.44+4.56)+5.55=8+12+12+12+5.55=49.55【复习2】(06香港圣公会小学奥林匹克)计算:3.72-2.73+4.6+5.28-0.27+6.4分析:原式=(3.72+5.28)+(4.6+6.4)-(2.73+0.27)=9+11-3=17 .【复习3】(华罗庚学校五年级入学考试试题)8×(3.1-2.85)×12.5×(1.62+2.38)-3.27分析:初看这道题好像不能用简便方法进行计算.但是里面有特殊数8、12.5,所以可以先算一步,再用简便方法进行计算.原式=8×0.25×12.5×4-3.27=(8×12.5)×(0.25×4)-3.27=100-3.27=96.73【复习4】(04陈省身杯数学邀请赛)(56789+67895+78956+89567+95678)÷7分析:原式=(5+6+7+8+9)×11111÷7=5×11111=55555 . 观察可知5、6、7、8、9在万、千、百、十、个位各出现过一次 .【复习5】计算:l-2+3-4+5-6+…+2005-2006+2007分析:原式= l+3-2+5-4+7-6+…+2005+2007-2006=1+1×1003=1004 ,分组求和的思路.在速算的过程中,如果加入运算律的应用,会有意想不到的效果!我们一起先来看看常用的一些运算律和结论吧!在计算过程中,最常用的技巧之一是灵活熟练地运用运算律.运算律有:(1)加法交换律:a+b=b+a(2)加法结合律:(a+b)+c=a+(b+c)(3)乘法交换律:ab=ba(4)乘法结合律:(ab)c=a(bc)(5)分配律: a(b+c)=ab+ac (反过来就是提取公因数)(6)减法(括号)的性质:a-b-c=a-(b+c)(7)除法的性质:a÷(b×c)=a÷b÷c(a+b) ÷c=a÷c+b÷c(a-b) ÷c=a÷c-b÷c和不变的规律:如果一个加数增加另一个加数减少同一个数,它们的和不变.积不变的规律:如果一个因数扩大几倍,另一个因数缩小相同的倍数,积不变.商不变的规律:如果除数和被除数同时扩大或缩小相同的倍数,商不变.【例1】(04陈省身杯数学邀请赛)计算:3.1415×252-3.1415×152分析:(法1):题中的三项都有因数34.5,容易想到把34.5作为公因数提取出来(把乘法分配律反过来用),从而使计算简便.原式=34.5×(8.23+2.77—1)=34.5×10=345.(法2):原式=3.1415×(252-152)=3.1415×(25+15)×(25-15)=3.1415×40×10=1256.6 应用下面的平方差公式【回忆巩固】a、b代表任意数字,(a+b)×(a-b)=a×a-b×b,这个公式在数学上称为平方差公式。
五年级奥数尖子生特训班速算与巧算简便运算
速算与巧算 简便运算
我们学过的运算定律有:
加法交换律:a+b=b+a 加法结合律:(a+b) +c=a+ (b+c) 乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(运算性质有:
减法的性质:a-b-c=a-(b+c)
(3)125×(10+8)
(3)125×(16×8)(4)(20-4)×25
例6 巧算下列各题: (1)17× 21 (2)1111×9999 (3)132476×111
巧解乘法须牢记: 只含乘法运算(两步运算)时,交换、结合用于 此;一步乘法或乘加乘减算式要巧算,有了分配 就好办!
例7 巧算:75×45+17×25
运用乘法分配须记牢: 乘法分配先找c,正反都能来应用;没有c来要 变c,常用分拆或扩缩。
小练兵
1巧算下列各题
(2)9898+203 (4)995+996+997+998+999 (5)38×101 (6)1234×111 (8)25×32+75×48(10)9999×2222+3333×3334
除法的性质:a÷b÷c=a÷(b×c)
例1 巧算下列各题。
(1)219 +648+ 51- 138 -548 -62
(2)100+99-98-97+96+95-94-93+…+8+7-6-5+4+3-2-1
解答此类题技巧:
只含加减运算时,可以任意交换数字的位 置,但必 须带着符号“搬家”!交换的原则 是 能凑整!
例2 巧算:348-179 例3 巧算:2356-(256+159) 例4 巧算:599996+49997+3998+407+89
北师大版最新小学奥数五年级巧算图文百度文库
北师大版最新小学奥数五年级巧算图文百度文库一、拓展提优试题1.(12分)甲、乙两人从A地步行去B地.乙早上6:00出发,匀速步行前往;甲早上8:00才出发,也是匀速步行.甲的速度是乙的速度的2.5倍,但甲每行进半小时都需要休息半小时.甲出发后经过分钟才能追上乙.2.如图,从A到B,有条不同的路线.(不能重复经过同一个点)3.如图,甲、乙两人按箭头方向从A点同时出发,沿正方形ABCD的边行走,正方形ABCD的边长是100米,甲的速度是乙的速度的1.5倍,两人在E 点第一次相遇,则三角形ADE的面积比三角形BCE的面积大1000平方米.4.商店对某饮料推出“第二杯半价”的促销办法.那么,若购买两杯这种饮料,相当于在原价的基础上打折.5.请从1、2、3、…、9、10中选出若干个数,使得1、2、3、…、19、20这20个数中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.那么,至少需要选出个数.6.甲、乙两人进行射击比赛,约定每中一发得20分,脱靶一发扣12分,两人各打10分,共得208分,最后甲比乙多得64分,乙打中发.7.一艘船从甲港到乙港,逆水每小时行24千米,到乙港后又顺水返回甲港,已知顺水航行比逆水航行少用5小时,水流速度为每小时3千米,甲、乙两港相距千米.8.用0、1、2、3、4这五个数字可以组成个不同的三位数.9.(1)数一数图1中有个三角形.(2)数一数图2中有个正方形.10.两个数的最大公约数和最小公倍数分别是3和135,求这两个数的差最小是.11.解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需分钟.12.四位数的所有因数中,有3个是质数,其它39个不是质数.那么,四位数有个因数.13.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.14.用一根34米长的绳子围成一个矩形,且矩形边长都是整数米,共有种不同的围法(边长相同的矩形算同一种围法).15.如图,在△ABC中,D、E分别是AB、AC的中点,且图中两个阴影部分=.(甲和乙)的面积差是5.04,则S△ABC【参考答案】一、拓展提优试题1.解:法一:假设甲一小时走5米,乙一小时走2米,列表如下:时间甲(米)乙(米)时间甲(米)乙(米)0小时043小时7.5100.5小时 2.55 3.5小时10111小时 2.564小时10121.5小时57 4.5小时12.5132小时585小时12.5142.5小时7.59 5.5小时1515观察得5.5小时恰好追上(如果这时间超过了乙,就要用具体追及公式计算追及时间)法二:也可以设甲的速度为每小时10a(甲要休息,实际每小时走5a),乙的速度为每小时4a,因此要追8a.半小时内最多追3a,可以先从要追的8a中扣除3a,因为在此之前不可能追上(之前的距离差不止3a).之后再开始按每半小时列出,若不够半小时的话,用追及公式算.前面追的5a,相当于每小时追a,可以用5a÷(5a﹣4a)=5(小时)计算.之后,甲半小时再走2a,乙再走5a,加上还差的3a,正好追上.因此,要追5.5小时,即330分钟.故答案为:330.2.解:如图,因为,从A到B有5条直连线路,每条直连线路均有5种不同的路线可以到达B点,所以,共有不同线路:5×5=25(条),答:从A到B,有25条不同的路线,故答案为:25.3.解:由于甲的速度是乙的速度的1.5倍所以两人速度比为:1.5:1=3:2,所以两人在E点相遇时,甲行了:(100×4)×=240(米);乙行了:400﹣240=160(米);则EC=240﹣100×2=40(米),DE=160﹣100=60(米);三角形ADE的面积比三角形BCE的面积大:60×100÷2﹣40×100÷2=3000﹣2000,=1000(平方米).故答案为:1000.4.解:设这种饮料每杯10,两杯售价是20元,实际用了:10+10×,=10+5,=15(元),15÷20=0.75=75%,所以是打七五折;故答案为:七五.5.解:列举如下:1=1;2=2;3=1+2;4=2+2;5=5;6=1+5;7=2+5;8=8;9=9;10=10;11=1+10;12=2+10;13=5+8;14=7+7;15=5+10;16=8+8;17=8+9;18=8+10;19=9+10;通过观察,可看出从1、2、3、…、9、10中选出若干个数分别为{1,2,5,8,9,10};就能使得1、2、3、…、19、20这20个数中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.故至少需要选出6个数.故答案为6.6.解:假设全打中,乙得了:(208﹣64)÷2=72(分),乙脱靶:(20×10﹣72)÷(20+12),=128÷32,=4(发);打中:10﹣4=6(发);答:乙打中6发.故答案为:6.7.解:顺水速度为:24+3+3=30(千米/小时);甲、乙两港相距:5÷(+),=5÷,=(千米);答:甲、乙两港相距千米.故答案为:.8.解:4×4×3,=16×3,=48(种);答:这五个数字可以组成 48个不同的三位数.故答案为:48.9.解:(1)三角形有:8+4+4=16(个);(2)正方形有:20+10+4+1=35(个),故答案为:16,35.10.解:因为135÷3=45,45分解成两个互质的数有两种情况即1和45、9与5,所以差最小的是:9和5,所以这两个数分别是:9×3=275×3=1527﹣15=12答:这两个数的差最小是12.故答案为:12.11.解:假设每人每分钟修大坝1份洪水冲毁大坝速度:(10×45﹣20×20)÷(45﹣20)=(450﹣400)÷25=50÷25=2(份)大坝原有的份数45×10﹣2×45=450﹣90=360(份)14人修好大坝需要的时间360÷(14﹣2)=360÷12=30(分钟)答:14人修好大坝需30分钟.故答案为:30.12.解:首先根据奇偶位数和相等一定是11的倍数.因数一共的个数是3+39=42(个),将42分解成3个数字相乘42=2×3×7.=a×b2×c6.如果是11×52×26=17600(不是四位数不满足条件).再看一下如果这个数字最小是=11×32×26=6336.=3663=11×37×32.因数的个数共2×2×3=12(个).故答案为:12个.13.解:依题意可知:2个偶数中间间隔是2个奇数.发现只有数字10,11,9,12是符合条件的数字.乘积为10×12=120.故答案为:12014.解:设矩形的长为am,宽为bm,且a≥b,根据题意,a+b=17,由于a,b均为整数,因此(a,b)的取值有以下8种:(16,1),(15,2),(14,3),(13,4),(12,5),(11,6),(10,7),(9,8),故答案为8.15.解:根据分析,S△BDC=S△EBC⇒S△DOB=S△EOC,∴S甲﹣S乙=(S甲+S△DOB)﹣(S乙+S△EOC)=5.04,又∵S△BDC :S△DEC=BC:DE=2:1即:S△BDC=2S△DEC∴S四边形DECB =3S△DEC;S△ADE=S△DEC∴S△ABC =S四边形DECB+S△ADE=4S△DEC,设S△DEC =X,则S△BDC=2X,故有2X﹣X=5.04,∴X=5.04,S△ABC =4S△DEC=4X=4×5.04=20.16故答案是:20.16。
小学数学《速算与巧算(一)》练习题(含答案)
小学数学《速算与巧算(一)》练习题(含答案)我们在进行加法的巧算时,经常运用以下两个运算律:(1)加法交换律:两个数相加,交换加数的位置,他们的和不变.即a+b=b+a其中a,b各表示任意一数.例如,7+8=8+7=15.将此运算律推广,多个数相加,任意交换相加的次序,其和不变.(2)加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,他们的和不变.即a+b+c=(a+b)+c=a+(b+c)其中a,b,c各表示任意一数.例如,5+6+8=(5+6)+8=5+(6+8).将此运算律推广,多个数相加,也可以把其中的任意两个数或者多个数相加,其和不变.我们在进行减法运算时,经常运用以下性质:(3)在连减或者加减混合运算中,如果算式中没有括号,那么计算时要带数字前面的运算符号“搬家”.例如:a-b-c=a-c-b,a-b+c=a+c-b,其中a,b,c各表示一个数.(4)在加减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”.如:a+(b-c)=a+b-ca-(b+c)=a-b-ca-(b-c)=a-b+c(5)在加、减法混合运算中,添括号时:如果添加的括号前面是“+”,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”.如:a+b-c=a+(b-c)a-b+c=a-(b-c),a-b-c=a-(b+c)(一)分组凑整法【例1】(★★奥数网原创题)计算:(1)17+29+33+71+28+12(2)168+253+32(3)(1350+49+68)+(51+32+1650)(4)358+127+142+73分析:在这个例题中,主要让学生掌握加法分组凑整的方法.具体分析如下:(1)原式=(17+33)+(29+71)+(28+12)=50+100+40=190(2)原式=(168+32)+253=200+253=453(3)原式=1350+49+68+51+32+1650=(1350+1650)+(49+51)+(68+32)=3000+100+100=3200(4)原式=(358+142)+(127+73)=500+200=700【例2】(★★★奥数网原创题)计算:(1)265-68-32(2)756-248-352(3)268-56-82-44-18(4)894-89-11-95-5-94分析:在这个例题中,主要让学生掌握减法分组凑整的方法.一个数连续减去两个数,可以先把后两个数相加凑整,再用这个数减去后两个数的和.具体分析如下:(1)原式=265-(68+32)=265-100=165(2)原式=756-(248+352)=756-600=156(3)原式=268-(56+44)-(82+18)=268-100-100=68(4)原式=(894-94)-(89+11)-(95+5)=800-100-100=600【例3】(★★★奥数网原创题)计算:(1)98-53+102+63(2)163-154+245+137+55-146(3)1348-234-76+2234-48-24(4)1847-1936+536-154-46分析:在这个例题中,主要让学生掌握加减法混合运算分组凑整的方法,在凑整的过程中,要注意运算符号的变化或者带着符号搬家.具体分析如下:(1)原式=(98+102)+(63-53)=200+10=210(2)原式=(163+137)-(154+146)+(245+55)=300-300+300=300(3)原式=(1348-48)+(2234-234)-(76+24)=1300+2000-100=3200(4)原式=1847-(1936-536)-(154+46)=1847-1400-200=247[巩固] :(1)968-561-168-139,(2)456-(256+165),分析:(1)原式=(968-168)-(561+139)=800-700=100(2)原式=456-256-165=200-165=35[拓展1](2005全国小学数学奥林匹克)计算:2005+2004-2003-2002+2001+2000-1999-1998+1997+1996-……-7-6+5+4-3-2+1分析:将后四项每四项分为一组,每组的计算结果都是0,后2004项的计算结果都是0,剩下第一项,结果是2005.[拓展2](北大数学邀请赛)计算:1989+1988+1987-1986-1985-1984+1983+1982+1981-1980-1979-1978+……+9+8+7-6-5-4+3+2+1分析:从1989开始,每6个数一组,1989+1988+1987-1986-1985-1984=9,以后每一组6个数加、减后都等于9.1989÷6=331……3.最后剩下三个数3,2,1,3+2+1=6.因此,原式=331×9+6=2985.[拓展3] 计算 6472-(4476-2480)+5319-(3323-1327)+9354-(7358-5362)+6839-(4843-2847)分析:原式=(6472+5318+1)+(9354+6836+3)-(4480-2480-4)-(3327-1327-4)-(7362-5362-4)-(4847-2847-4)=11790+16190-2000-2000-2000-2000+20=27980-8000+20=20000(二)加补凑整法【例4】(★★★奥数网原创题)计算:(1)165+199(2)198+96+297+10(3)298+396+495+691+799+21(4)195+196+197+198+199+15分析:在这个例题中,主要让学生掌握加法运算加补凑整的方法.具体分析如下:(1)(法1)原式=165+200-1 (法2)原式=164+1+199=365-1 =164+200=364 =364(2)(法1)原式=(198+2)+(96+4)+(297+3)+1=200+100+300+1=601(法2)原式=(200-2)+(100-4)+(300-3)+10=200+100+300-2-4-3+10=601(3)(法1)原式=298+396+495+691+799+2+4+5+9+1=(298+2)+(396+4)+(495+5)+(691+9)+(799+1)=300+400+500+700+800=2700(法2)原式=(300-3)+(400-4)+(500-5)+(700-9)+(800-1)+21=300+400+500+700+800-3-4-5-9-1+21=2700(4)(法1)原式=(195+5)+(196+4)+(197+3)+(198+2)+(199+1)=200+200+200+200+200=1000(法2)原式=(200-5)+(200-4)+(200-3)+(200-2)+(200-1)+15=200+200+200+200+200=1000[前铺] 计算:(1)65+99 (2) 36+102 (3) 258-98 (4) 351-103分析:(1)原式=65+100-1=165-1=164;(2)原式=36+100+2=136+2=138;(3)原式=258-100+2=158+2=160;(4)原式=351-100-3=251-3=248;通过以上题目的运算,我们发现一个快捷运算的规律:在(1)中,在加100时多加了1,所以要减去,这样保证结果不变,所以“多加的要减去”;(2)中,少加了2,在后面要加上,所以“少加的要加上”;(3)中,多减了2,所以要加上,所以“多减的要加上”;(4)中,少减了3,后面要再减去3,所以“少减的要再减”.这几种基本的加补凑整计算的方法,老师要引导学生理解,并加深巩固.【例5】(★★★奥数网改编题)计算:(1)895-504-97(2)98-96-97-105+102+101(3)399+403+297-501(4)196+198-102-97分析:在这个例题中,主要让学生掌握加减法混合运算中加补凑整的方法.具体分析如下:(1)原式=(900-5)-(500+4)-(100-3)=900-500-100-5-4+3=294(2)原式=(100-2)-(100-4)-(100-3)-(100+5)+(100+2)+(100+1)=100-100-100-100+100+100-2+4+3-5+2+1=3(3)原式=(400-1)+(400+3)+(300-3)-(500+1)=400-1+400+3+300-3-500-1=598(4)原式=(200-4)+(200-2)-(100+2)-(100-3)=200+200-100-100-4-2-2+3=195[巩固] :(1)198-205-308+509,(2)501+502+503-398-397-396.分析:(1)原式=(200-2)-(200+5)-(300+8)+(500+9)=200-200-300+500-2-5-8+9=194(2)原式=(500+1)+(500+2)+(500+3)-(400-2)-(400-3)-(400-4)=315.[拓展1] (07年7月仁华入学测试题)83+86+95-85+86-94+95+94+86+92+87+80+93+100-89+83+96+98分析:原式=83+86+95-83-2+86-94+95+94+86+92+87+80+93+100-87-2+83+96+98 =90×12-4+5-2-4+5-4+2-10+3+10-2-7+6+8=1080+6=1086[拓展2](2006香港圣公会小学数学奥林匹克)89+899+8999+89999+899999分析:原式=(90-1)+(900-1)+(9000-1)+(90000-1)+(900000-1)=90+900+9000+90000+900000-5=999990-5=999985[拓展3](华罗庚金杯少年数学邀请赛)计算 11+192+1993+19994+199995所得和数的数字之和是多少?分析:原式=(20-9)+(200-8)+(2000-7)+(20000-6)+(200000-5)=(20+200+2000+20000+200000)-(9+8+7+6+5)=222220-35=222185故所得数字之和等于2+2+2+1+8+5=20.[拓展4]计算19999191991999...199...99++++123个分析:原式={1999222...2019991⨯个-={1996222...20221个(三)其他常见类型巧算【例6】 (★★★ 仁华试题)计算100-101+102-103+104-105+106-107+108分析:原式=100+(102-101)+(104-103)+(106-105)+(108-107)=100+1+1+1+1=104【例7】 (★★★ 仁华试题)计算 1234+3142+4321+2413分析:原式=(1000+200+30+4)+(3000+100+40+2)+(4000+300+20+1)+(2000+400+10+3)=(1000+2000+3000+4000)+(100+200+300+400)+(10+20+30+40)+(1+2+3+4)=10000+1000+100+10=11110[拓展] 在右图的36个格子中各有一个数,最上面一横行和最左面一竖列中的数已经填好,其余每个格子中的数等于每个格子同一横行最左面数与同一竖列最上面数之和(例如:a =14+17=31),问这36个数的总和是多少?分析:第二横行的空格应该填的数字分别是11+12,13+12,15+12,17+12,19+12,同理,下面每一横行都是用竖列的一个数与横行的每一个数相加.我们最后要求这36个格子中的所有数字之和,第一横行的和为:10+11+13+15+17+19=(10+15)+(11+19)+(13+17)=85,第二横行的和为:12+11+12+13+12+15+12+17+12+19+12=12×6+(11+13+15+17+19)=147,同理,第三横行的和为:14+11+14+13+14+15+14+17+14+19+14=14×6+(11+13+15+17+19)=159,第四横行的和为16×6+75=171,第五横行的和为:18×6+75=183,第六横行的和为:20×6+75=195.所以36个格子的和为85+147+159+171+183+195=940.。
五年级下册数学试题-竞赛专题:第1讲-速算巧算(含答案)人教版
知识概述一、运用运算律简化运算:(1)乘法交换律:a b b a⨯⨯=(2)乘法结合律:()()a b c a b c a b c⨯⨯⨯⨯⨯⨯==(3)乘法分配律:()a b c a c b c+⨯=⨯+⨯,()a b c a c b c-⨯=⨯⨯-(4)除法分配性质:()a b c a c b c+÷=÷+÷,()-a b c a c b c-÷=÷÷二、计算中变换的规律:(1)和不变的规律:如果一个加数增加,另一个加数减少同一个数,它们的和不变。
(2)差不变的规律:如果减数和被减数同时增加或减少相同的数,差不变。
(3)积不变的规律:如果一个因数扩大几倍,另一个因数缩小相同的倍数,积不变。
(4)商不变的规律:如果除数和被除数同时扩大或缩小相同的倍数,商不变。
三、常用的技巧和方法:拆分、凑整和分组。
四、在小数计算中,可利用小数点位置的变化简化运算。
速算巧算历届杯赛考试中,对学生的计算能力的考察是必不可少的。
这部分的题目难度不大,但是方法很巧妙,目的是考察大家的基本运算和巧算的能力。
要做好这些题目,就需要同学们在掌握好最基本的计算知识和方法的基础上多做题,从而锻炼自己的运算能力。
在计算的过程中也有许多技巧方法可以帮助我们加快计算速度、提高正确率。
名师点题计算:(1)67×200+254×33+54×67(2)9999×8+1111×28【解析】(1)67×200+254×33+54×67 (2)9999×8+1111×28=(67×200+54×67)+254×33 =1111×72+1111×28=67×(200+54)+254×33 =1111×(72+28)=67×254+254×33 =1111×100=254×(67+33)=111100=25400计算:(1)37÷36+105÷36+146÷36(2)11÷17+17÷19+20÷17+40÷19+37÷17【解析】(1)37÷36+105÷36+146÷36 (2)11÷17+17÷19+20÷17+40÷19+37÷17 =(37+105+146)÷36 =(11÷17+20÷17+37÷17)+(17÷19+40÷19)=288÷36 =(11+20+37)÷17+(17+40)÷19=8 =7计算:2008×20022002-2002×20082008【解析】2008×20022002-2002×20082008=2008×2002×10001-2002×2008×10001=0【巩固拓展】计算:(1)9999×2222+3333×3334(2)1994×19931993-1992×19941994例3例2例1【解析】(1)9999×2222+3333×3334 (2)1994×19931993-1992×19941994 =3333×6666+3333×3334 =1994×1993×10001-1992×1994×10001=3333×(6666+3334)=1994×10001×(1993-1992)=3333×10000 =1994×10001=33330000 =19941994(3)42×39+296÷37+83÷37+37×39-9÷37+39×21=(42×39+37×39+39×21)+(296÷37+83÷37-9÷37)=(42+37+21)×39+(296+83-9)÷37=100×39+370÷37=3910(第十届“中环杯”五年级决赛试题)计算:11×91+125×999+250【解析】()1191125999125210011259992100112510011261001126126=⨯+⨯+⨯=+⨯+=+⨯=⨯=原式【巩固拓展】计算:99×22+88×33+77×44+66×55【解析】()992288337744665511111811112411112811113011111824283012110012100=⨯+⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯+⨯⨯=⨯⨯+++=⨯=原式例1计算:1.83320183 6.718.3⨯+⨯+【解析】()18.33218.36718.3118.33267118.31001830=⨯+⨯+⨯=⨯++=⨯=原式【巩固拓展】计算:1.2567.8751250.675 1.2524.625⨯+⨯+⨯【解析】()1.2567.875 1.2567.5 1.2524.6251.2567.87567.524.6251.251601.258201020200=⨯+⨯+⨯=⨯++=⨯=⨯⨯=⨯=原式计算:296297-298295⨯⨯【解析】()()()296297-298295296298-1-298295296298-296-298295296298-298295-296298296-295-296298-2962=⨯⨯=⨯⨯=⨯⨯=⨯⨯=⨯==原式【巩固拓展】计算:1234234512332346⨯-⨯例3例2【解析】()()()123423451233234612342346-1-1233234612342346-1234-1233234612342346-12332346-123423461234-1233-12342346-12341112=⨯-⨯=⨯⨯=⨯⨯=⨯⨯=⨯==原式计算:200420052006-200320052007⨯⨯⨯⨯【解析】()()[][][]()[]2005200532005200420062003200720052004200712003200720052004200720042003200720052004200720042003200720042003200720046015==⨯⨯⨯⨯-⨯=⨯⨯--⨯=⨯⨯--⨯=⨯⨯--⨯-⨯-==原式【巩固拓展】(第十一届“中环杯”五年级决赛试题)计算:201120111949195019502009⨯⨯-【解析】()()()[]2011100011949-19501000120091000120111949-200919501000120111950-2011-200919501000119502011-2009-201110001188918891889=⨯⨯⨯⨯=⨯⨯⨯=⨯⨯⨯=⨯⨯=⨯=原式计算:0.10.30.50.70.9 1.1 1.3 1.5 1.7 1.9 +++++++++例5例4【解析】()0.1 1.9102210210=+⨯÷=⨯÷=原式【巩固拓展】计算:0.10.20.30.90.100.110.120.980.99 ++++++++++【解析】()() ()()0.10.20.30.90.100.110.120.980.990.10.9920.100.999024.549.0553.55=++++++++++=+⨯÷++⨯÷=+=原式(第八届“中环杯”五年级初赛试题)计算:1000999998997996995994993104103102101+--++--+++--【解析】()()() ()[]100099999899799699599499310410310210141000-1011449004900=+--++--+++--=⨯+÷=⨯÷=原式【巩固拓展】计算:20062005-200420032002-200154-321++++++++【解析】()()()()()()[]()20062005-200420032002-200154-32120072004200163200732007-3312200736692672345=++++++++=+++++=+⨯÷+÷=+⨯÷=原式例6计算:(1)37.5×3×0.112+35.5×12.5×0.224(第十届“中环杯”五年级初赛试题) (2)3.6×42.3×3.75 – 12.5×0.423×28(第十一届“中环杯”五年级初赛试题)【解析】 (1)()()12.50.112971 12.59710.112 10000.112 112=⨯⨯+=⨯+⨯=⨯=原式 (2)()()()()3.642.3 3.75 1.2542.3 2.842.3 3.6 3.75 1.25 2.8 42.3 3.63 1.25 1.25 2.8 42.310.8 1.25 1.25 2.8 42.310.8 2.8 1.25 423=⨯⨯-⨯⨯=⨯⨯-⨯=⨯⨯⨯-⨯=⨯⨯-⨯=⨯-⨯=原式计算:(1)41.2×8.1+53.7×19+1.1×12.5(2)31.3×7.7+11×8.85+0.368×230(第十三届“中环杯”五年级初赛试题)【解析】 (1)()()()41.28.141.212.5 1.9 1.112.5 41.28.141.2 1.912.5 1.9 1.112.541.28.1 1.912.5 1.9 1.1 41237.5 449.5=⨯++⨯+⨯=⨯+⨯+⨯+⨯=⨯++⨯+=+=原式(2)()()()3.137755 1.77 3.68233.13770.55177 3.130.55233.1377230.5517723 313110 423=⨯+⨯+⨯=⨯+⨯++⨯=⨯++⨯+=+=原式例3例2例1计算:(1)6.1+6.3+6.5+…+9.9-6.2-6.4-6.6 -…-9.8 (第九届“中环杯”五年级初赛试题) (2)(第十届“小机灵杯”五年级复赛试题)0.1-(0.1+0.3)+(0.1+0.3+0.5)-(0.1+0.3+0.5+0.7)+…-(0.1+0.3+…+9.5)+(0.1+0.3+0.5+…+9.7)【解析】 (1)()()()() 6.10.1 6.10.1 86.1 6.3 6.2 6.5 6.49.99.89.9 6.30.2119==+⨯=+⨯=+-+-++--÷+⎡⎤⎣⎦原式(2)()()[]()()[]()()[]()()[]0.1+0.10.30.50.10.30.10.30.50.7+0.90.10.30.50.7 0.10.30.59.70.10.39.5 0.10.50.99.70.19.79.70.10.412 9.8252 122.5=++-+++++-+++++++++-+++=++++=+⨯-÷+÷=⨯÷=原式(第二届“走美杯”五年级试题) 计算:100×101-99×100+98×99-97×98+96×97-95×96+…+2×3-1×2【解析】()()()()()() 10098962 10098962 100101991009899979896979596231210199999797953122221002100221225100==⨯+⨯+⨯++⨯=⨯+⨯+⨯++⨯=⨯-⨯+⨯-⨯+⨯-⨯++⨯-⨯----+⨯-÷+÷⨯⎡⎤⎣⎦=原式观察:()()()()234-1234-123345-2345-234456-3456-345567-4567-456⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯=⨯⨯计算:122334989999100⨯+⨯+⨯++⨯+⨯【解析】 观察发现:()()()()23234-123334345-234345456-345356567-4563⨯=⨯⨯⨯⨯÷⨯=⨯⨯⨯⨯÷⨯=⨯⨯⨯⨯÷⨯=⨯⨯⨯⨯÷()()()()()()[]()12233498999910012234-1233345-234399100101-9899100312234-123345-23499100101-98991003299100101-12332991001013-12339910010139931⨯+⨯+⨯++⨯+⨯=⨯+⨯⨯⨯⨯÷+⨯⨯⨯⨯÷++⨯⨯⨯⨯÷=⨯+⨯⨯⨯⨯+⨯⨯⨯⨯++⨯⨯⨯⨯÷=+⨯⨯⨯⨯÷=+⨯⨯÷⨯⨯÷=⨯⨯÷=÷⨯01100333300⨯=【练习1】 计算:(1)()()1351989-2461988++++++++(2)()()()()()2-24246-2468-24962498+++++++++++++++【解析】 (1)()()()1989-19881987-19863-21119902995=++++=⨯÷=原式(2)()()()()()()[]2246-24246810-24682498-2496 261098(298)(98-2)412100252 1250++++++++++++++++=++++=+⨯÷+÷=⨯÷==⎡⎤⎡⎤⎣⎦⎣⎦⎡⎤⎣⎦++++原式【练习2】 计算:(1)200720082008200820072007⨯-⨯ (2)200320022001200120022003⨯-⨯(3)2011201020122013201120112012201210002⨯⨯+-【解析】 (1)2007200810001-2008200710001 0=⨯⨯⨯⨯=原式(2)()()()()200320022003-2-200120022003 200320022003-20032-200120022003200320022003-200120022003-20032 2003-200120022003-20032 20022003-20032 40040000=⨯⨯=⨯⨯⨯=⨯⨯⨯=⨯⨯=⨯=原式(3)()() 20112011-2012201310002 20112011-2012201310002 020112011-12012201320112011201220121000220122013-20122012==⨯+=+=⨯⨯+原式-【练习3】 计算:(1)4.820.590.411.590.323 5.9⨯⨯⨯+-(2)7.816 1.45 3.14 2.184 1.697.816⨯+⨯+⨯(3)3.47 6.9 6.53 3.1 3.06 1.9⨯+⨯+⨯【解析】 (1)()()4.820.59-3.230.590.41 1.594.82 3.230.590.41 1.591.590.590.41 1.59=⨯⨯+⨯=⨯+⨯=⨯+=原式-(2)()()()7.816 1.45 1.697.816 3.14 2.1841.45 1.697.816 3.142.1843.147.816 2.184 31.4=⨯+⨯+⨯=+⨯+⨯=⨯+=原式(3)()()()()()3.47 6.9 3.47 3.06 3.1 3.06 1.9 3.47 6.9 3.47 3.1 3.06 3.1 3.06 1.93.47 6.9 3.47 3.1 3.06 3.1 3.06 1.9 3.47 6.9 3.1 3.06 3.1 1.9 3.4710 3.0656.945 3.0=⨯+⨯+⨯=⨯+⨯+⨯+⨯=⨯+⨯+⨯+⨯=⨯++⨯+=⨯+⨯=⨯+原式+6510550⨯=⨯=【练习4】 计算:0.10.30.50.70.90.110.130.150.970.99++++++++++【解析】 ()()()[]0.10.9520.110.990.990.110.02122.5 1.1452 27.25=+⨯÷++⨯-÷+÷=+⨯÷=原式【练习5】 如果6267*=+,53567*=++,4545678*=++++,…,那么556575105_____*+*+*++*=【解析】 ()()()()()()5565751055678967891078910111011121314758595125789125712625285*+*+*++*=++++++++++++++++++++=⨯+⨯+⨯++⨯=++++⨯=+⨯÷⨯=。
2022-2023学年小学五年级奥数(全国通用)测评卷01《速算和巧算》(解析版)
【五年级奥数举一反三—全国通用】测评卷01《速算和巧算》试卷满分:100分考试时间:100分钟姓名:_________班级:_________得分:_________一.选择题(共7小题,满分21分,每小题3分)1.(2015•创新杯)计算:2.3÷0.08÷1.25=()A.230 B.23 C.2.3 D.0.23【分析】根据除法的性质简算即可.【解答】解:2.3÷0.08÷1.25=2.3÷(0.08×1.25)=2.3÷0.1=23故选:B.2.(2009•华罗庚金杯)下面有四个算式:①0.6+=②0.625=③+===④3×4=14其中正确的算式是()A.①和②B.②和④C.②和③D.①和④【分析】①循环小数加、减要根据“四舍五入”取其近似值再计算,0.6中的6不能与中的循环节中的1相加,答案不正确.②把分数化成小数,用分子除以分母5÷8=0.625;或把小数0.625化成分数并化简是,答案正确.③根据分数加、减法的计算法则,把异分数分母化成同分数分数再加、减,分子不变,只把分子相加、减,答案不正确.④把两个带分数化成假分数再相乘,结果再化成带分数,正确.【解答】解:①0.6+=不正确;②0.625=正确;③+===不正确;④3×4=14正确.故选:B.3.(2003•创新杯)2003+2002﹣2001﹣2000+1999+1998﹣1997﹣1996+…+7+6﹣5﹣4+3+2﹣1的计算结果是()A.2002 B.2003 C.2004 D.4005【分析】四个数一组相互抵消,2000是被4整除的,也就是说2000以后的数都可以相互抵消,因为2002÷2=1001,不是偶数组,即有一组不能被抵消,最后剩下2003+2002﹣2001=2004.【解答】解:2003+2002﹣2001﹣2000+1999+1998﹣1997﹣1996+…+7+6﹣5﹣4+3+2﹣1=2003+(2002﹣2001)+(﹣2000+1999)+(1998﹣1997)+…+(6﹣5)+(﹣4+3)+(2﹣1)=2003+1﹣1+1+…+1﹣1+1=2003+1=2004故选:C.4.0.65×201=0.65×(200+1)=0.65×200+0.65运用了乘法的()A.交换律B.结合律C.分配律【分析】本题考查的是乘法运算律的运用.【解答】解:乘法分配律:(a+b)×c=a×c+b×c所以0.65×201=0.65×(200+1)=0.65×200+0.65运用了乘法的分配律.故选:C.5.与0.456×2.1的结果相同的算式是()A.4.56×21 B.21×0.0456 C.45.6×0.21 D.456×0.021【分析】根据积不变的规律,其中一个因数的小数点向右(左)移动多少位,另一个因数的小数点就要向左(右)移动多少位,据此分析解答即可.【解答】解:0.456×2.1=4.56×0.21=0.0456×21=45.6×0.021=456×0.0021故选:B.6.与61.2÷3.4计算结果相同的是()A.6.12÷0.34 B.612÷0.34C.0.612×0.034 D.612÷34【分析】根据商不变的性质,被除数和除数同时乘以或除以一个数(0除外),商不变,据此分析解答即可.【解答】解:61.2÷3.4=612÷34故选:D.7.105×18=100×18+5×18运用了()A.乘法交换律B.乘法结合律C.乘法分配律【分析】本题考查的是乘法运算律的运用.【解答】解:105×18=(100+5)×18=100×18+5×18运用了乘法分配律.故选:C.二.填空题(共10小题,满分30分,每小题3分)8.(2018•其他模拟)计算:3﹣5+7﹣9+11﹣13+…+1995﹣1997+1999=1001.【分析】本题可以从后往前算.【解答】解:3﹣5+7﹣9+11﹣13+……+1995﹣1997+1999=1999﹣1997+1995﹣1993+……+11﹣9+7﹣5+3=(1999﹣1997)+(1995﹣1993)+……+(11﹣9)+(7﹣5)+3=2+2+2+……+2+3=2×499+3=10019.(2018•其他模拟)a=4,b=25,则a+b=,a×b=,a÷b=.【分析】根据题意可知我们运用加法的分配律、乘法的交换律和结合律即可解答.【解答】解:a+b=[(a+b)×]÷=(40+25)÷=a×b=[(a×)×(b×)]÷(×)=(40×25)÷=a÷b=(a×)÷(b×)=40÷25=故:答案见上面的计算结果.10.(2017•育苗杯)计算39.07﹣22.78÷3.4=32.37.【分析】这题有减法,有除法,要先算除法,再算减法.【解答】解:39.07﹣22.78÷3.4=39.07﹣6.7=32.3711.(2018•迎春杯)算式(20.17﹣12.02÷6)×6的计算结果是109.【分析】根据乘法的分配律简算即可.【解答】解:(20.17﹣12.02÷6)×6=20.17×6﹣12.02÷6×6=121.02﹣12.02=109故答案为:109.12.(2017•其他杯赛)计算:(2017﹣1)+(2016﹣2)+…+(2011﹣7)=14070.【分析】应用加法交换律、加法结合律和减法的性质,求出算式的值是多少即可.【解答】解:(2017﹣1)+(2016﹣2)+…+(2011﹣7)=2016+2014+2012+2010+2008+2006+2004=2010×7=14070故答案为:14070.13.(2016•其他杯赛)计算:91.5+19.8+80.2=191.5.【分析】应用加法结合律,求出算式的值是多少即可.【解答】解:91.5+19.8+80.2=91.5+(19.8+80.2)=91.5+100=191.5故答案为:191.5.14.(2016•其他杯赛)计算:(102.4+89.6﹣38×5)×(2016﹣126×16)=0.【分析】首先根据126×16=2016,求出2016﹣126×16的值是0;然后根据:0和任何数相乘都得0,可得:算式的值是0.【解答】解:(102.4+89.6﹣38×5)×(2016﹣126×16)=(102.4+89.6﹣38×5)×(2016﹣2016)=(102.4+89.6﹣38×5)×0=0故答案为:0.15.(2018•陈省身杯)计算200﹣(16+17+18+…+23+24)=20.【分析】凑整计算,通过移多补少将16~24求和,变为9个20求和,据此解答即可.【解答】解:200﹣(16+17+18+…+23+24)=200﹣9×20=200﹣180=2016.(2018•其他模拟)计算:53.3÷0.23÷0.91×16.1÷0.82=5000.【分析】通过分析式中数据可知,53.3能被0.82除尽,16.1能被0.23除尽,由此根据交换律及结合律进行巧算即可.【解答】解:53.3÷0.23÷0.91×16.1÷0.82=(53.3÷0.82)×(16.1÷0.23)÷0.91=65×70÷0.91=13×5×10×7÷0.7÷1.3=10×5×10×10=5000故答案为:5000.17.(2007•迎春杯)计算:379×0.00038+159×0.00621+3.79×0.121= 1.59.【分析】先把算式变形为379×0.00038+379×0.00121+159×0.00621,再运用乘法的分配律进行简算即可.【解答】解:379×0.00038+159×0.00621+3.79×0.121=379×0.00038+379×0.00121+159×0.00621=379×(0.00038+0.00121)+159×0.00621=379×0.00159+159×0.00621=0.00379×159+159×0.00621=(0.00379+0.00621)×159=0.01×159=1.59;故答案为:1.59.三.计算题(共6小题,满分18分,每小题3分)18.(2016•中环杯)计算:(20.15+40.3)×33+20.15.【分析】先把403变形为20.15×2,再根据乘法的分配律简算即可.【解答】解:(20.15+40.3)×33+20.15=(20.15+20.15×2)×33+20.15=20.15×3×33+20.15=20.15×(3×33+1)=20.15×100=201519.计算(1)24×2×125×25(2)125×32×25×2013【分析】根据乘法的交换律与结合律简算即可.【解答】解:(1)24×2×125×25=3×(8×125)×(2×25)=3×1000×50=150000(2)125×32×25×2013=(125×8)×(4×25)×2013=1000×100×2013=20130000020.(2018•学而思杯)2.8×27+28×2.9+2.8×44【分析】首先把28×2.9化成2.8×29,然后应用乘法分配律,求出算式的值是多少即可.【解答】解:2.8×27+28×2.9+2.8×44=2.8×27+2.8×29+2.8×44=2.8×(27+29+44)=2.8×100=28021.(2017•春蕾杯)计算①0.8÷9+0.1÷9=0.1;②201.7×4.5+2017×0.35+20.17×20=2017;③(0.1+0.2+0.3+0.4)×(1+0.1+0.2+0.3)﹣(1+0.1+0.2+0.3+0.4)×(0.1+0.2+0.3)=0.4.【分析】①根据除法的性质简算即可.②首先把2017×0.35、20.17×20分别化成201.7×3.5+201.7×2,然后根据乘法分配律计算即可.③首先计算小括号里面的算式,然后计算乘法和减法即可.【解答】解:①0.8÷9+0.1÷9=(0.8+0.1)÷9=0.9÷9=0.1②201.7×4.5+2017×0.35+20.17×20=201.7×4.5+201.7×3.5+201.7×2=201.7×(4.5+3.5+2)=201.7×10=2017③(0.1+0.2+0.3+0.4)×(1+0.1+0.2+0.3)﹣(1+0.1+0.2+0.3+0.4)×(0.1+0.2+0.3)=1×1.6﹣2×0.6=1.6﹣1.2=0.422.计算:2015+201.5+20.15+985+98.5+9.85.【分析】应用加法结合律、乘法分配律,求出算式的值是多少即可.【解答】解:2015+201.5+20.15+985+98.5+9.85=(2015+201.5+20.15)+(985+98.5+9.85)=(20.15×100+20.15×10+20.15)+(9.85×100+9.85×10+9.85)=20.15×(100+10+1)+9.85×(100+10+1)=20.15×111+9.85×111=(20.15+9.85)×111=30×111=333023.(2003•创新杯)计算:0.79×0.46+7.9×0.24+11.4×0.079.【分析】先把算式变形为0.79×0.46+0.79×2.4+1.14×0.79,再根据乘法的分配律简算即可.【解答】解:0.79×0.46+7.9×0.24+11.4×0.079=0.79×0.46+0.79×2.4+1.14×0.79=0.79×(0.46+1.14+2.4)=0.79×4=(0.8﹣0.01)×4=0.8×4﹣0.01×4=3.2﹣0.04=3.16四.解答题(共6小题,满分31分)24.(5分)(2015•奥林匹克)计算:(12×21×45×10.2)÷(15×4×0.7×51)【分析】运用除法性质及乘法交换律、结合律简算.【解答】解:(12×21×45×10.2)÷(15×4×0.7×51)=(12÷4)×(21÷0.7)×(45÷15)×(10.2÷51)=3×30×3×0.2=5425.(5分)(2018•学而思杯)903+899+902+897+904+898【分析】方法一:应用加法交换律和加法结合律,求出算式的值是多少即可.方法二:首先把每个加数都化成900与某个数的和(或差)的形式;然后应用加法交换律和加法结合律,求出算式的值是多少即可.【解答】解:方法一:903+899+902+897+904+898=(903+897)+(902+898)+(899+904)=1800+1800+1803=5403方法二:903+899+902+897+904+898=(900+3)+(900﹣1)+(900+2)+(900﹣3)+(900+4)+(900﹣2)=(900+900+900+900+900+900)+(3﹣1+2﹣3+4﹣2)=5400+3=540326.(5分)(1996•其他杯赛)376+385+391+380+377+389+383+374+366+378=3799.【分析】将给出的数字写成以380为标准的数,再相加减即可求解.【解答】解:376+385+391+380+377+389+383+374+366+378=380×10﹣(4+3+6+14+2)+(5+11+9+3)=3800+28﹣29=3799.故答案为:3799.27.(5分)(1995•其他杯赛)0.×0.=.【分析】通过0.101×0.19=0.01919,0.0101×0.019=0.0001919,0.00101×0.0019=0.000001919,可以发现小数与小数相乘,积的0的个数等于每个因数零的个数(零的个数是指到第一不为零的之前所有的0,包含小数点前的那一个零)之和,所以该题继而解决.【解答】解:0.×0.=故答案为:.28.(5分)(2015•春蕾杯)(1)10.44÷1.2×0.3= 2.61;(2)[0.5×(6+0.6)﹣0.5]÷2.5= 1.12.【分析】(1)根据除法的性质计算即可.(2)根据乘法运算定律和除法的性质计算即可.【解答】解:(1)10.44÷1.2×0.3=10.44÷(1.2÷0.3)=10.44÷4=2.61(2)[0.5×(6+0.6)﹣0.5]÷2.5=[0.5×(6+0.6﹣1)]÷2.5=0.5×5.6÷2.5=0.5÷2.5×5.6=0.2×5.6=1.12故答案为:2.61、1.12.29.(6分)(2017•学而思杯)(1)解方程:3(15﹣2x)+12=85﹣10x (2)计算:4.02×16+33×4.02﹣4.9×20.2.【分析】(1)根据等式的性质解方程即可;(2)根据乘法的分配律简算即可.【解答】解:(1)3(15﹣2x)+12=85﹣10x45﹣6x+12=85﹣10x10x﹣6x=85﹣574x=28x=7(2)4.02×16+33×4.02﹣4.9×20.2=4.02×(16+33)﹣49×2.02=4.02×49﹣49×2.02=49×(4.02﹣2.02)=49×2=98。
小学五年级奥数题——速算与巧算
17:1÷(2÷3)÷(3÷4)÷(4÷5)÷……÷(99÷100)18:(44331-443.31)÷(88662-886.62)
19:(112233-112.233)÷(224466-224.466)20 : (40404+404.04)÷(20202+202.02)21: 7.84×55+78.4×4.5
⑧、(824-8.24)÷(412-4.12)
计算:39×1.09+1.3×67.3
计算:①9999×0.7+1111×2.7
②88.88×16669+44.44×66662
计算,1÷(2÷3)(3÷4)÷(4÷5)÷(5÷6)
【练一练】
1÷(2÷3)÷(3÷4)÷(4÷5)÷……÷(99÷100)
计算:(44331-443.31)÷(88662-886.62)
【练一练】
计算:①(112233-112.233)÷(224466-224.466)
②(40404+404.04)÷(20202+202.02)
下面各题,怎样算简便就怎样计算:
①、2.5×3.2
②、85.6×0.32+0.68×85.6+14.4
在日常生活和解答数学问题时经常要进行计算在数学课里我们学习了一些简便计算的方法但如果善于观察勤于思考计算中还能找到更多的巧妙的计算方法不仅使你能算得好算得快还可以让你变得聪明和机敏
小学五年级奥数题——速算与巧算
小学五年级奥数题——速算与巧算
在日常生活和解答数学问题时,经常要进行计算,在数学课里我们学习了一些简便计算的方法,但如果善于观察、勤于思考,计算中还能找到更多的巧妙的计算方法,不仅使你能算得好、算得快,还可以让你变得聪明和机敏。
五年级奥数- 巧算与速算
速算与巧算一、考点、热点回顾:1、掌握小学数学中常用的速算方法,并根据数字特点选择恰当方法计算。
二、典型例题:例1计算72.19+6.48+27.81-1.38-5.48-0.62。
解:观察发现,有些加数可以凑整;有的加数和减数尾数相同,可以抵消。
于是:72.19+6.48+27.81-1.38-5.48-0.62=(72.19+27.81)+(6.48-5.48)-(1.38+0.62)=100+1-2=99例2用简便方法计算 1.25×67.875+125×6.7875+1250×0.053375。
解:观察发现:相加的三个乘积中分别有1.25、125、250,因此想到利用积不变的性质,使三个积有相同的因数。
于是:1.25×67.875+125×6.7875+1250×0.053375=1.25×67.875+1.25×678.75+1.25×53.375=1.25×(67.875+678.75+53.375)=1.25×800=1000例3计算1999+199.9+19.99+1.999。
解法一:观察发现,构成这四个加数的数字和排列顺序完全相同,因此可以把它们都看作1999与某个数的积,于是:1999+199.9+19.99+1.999=1999×(1+0.1+0.01+0.001)=1999×1.111=(2000-1)×1.111=2222-1.111=2220.889解法二:观察发现这四个加数分别接近2000、200、20、2,于是1999+199.9+19.99+1.999=2000+200+20+2-1.111=2220.889例4计算(1+0.33+0.44)×(0.33+0.44+0.55)-(1+0.33+0.44+0.55)×(0.33+0.44)。
2022-2023学年小学五年级奥数(全国通用)测评卷01《速算和巧算》(含详解与答题卡)
【五年级奥数举一反三一全国通用】测评卷01《速算和巧算》试卷满分:100分考试时间:100分钟姓名:.班级:.得分:一.选择题(共7小题,满分21分,每小题3分)1.(2015•创新杯)计算:2.34-0.084-1.25=()2.A.230 B.23 C. 2.3 D.0.23(2009-华罗庚金杯)下面有四个算式:®0.6+n1n;2揭0.625=旦@>且+旦旦X41=142 U.[况U.3-814214+2162■755其中正确的算式是()A.①和②B.②和④ D.①和④3.(2003•创新杯)2003+2002-2001-2000+1999+1998-1997-1996+・・・+7+6-5-4+3+2-1的计算结果是A.2002B.2003C.2004D.40054.0.65X201=0.65X(200+1)=0.65X200+0.65运用了乘法的()5. 6.A.交换律 B.结合律 C.分配律与0.456X2.1的结果相同的算式是()A. 4.56X21B.21X0.0456C.45.6X0.21D.456X0.021与61.2H-3.4II-算结果相同的是()A. 6.124-0.34B.61290.34C.0.612X0.034D.6124-347.105X18=100X18+5X18运用了()A.乘法交换律B.乘法结合律C.乘法分配律二.填空题(共10小题,满分30分,每小题3分)8.(2018*其他模拟)计算:3-5+7-9+11-13+-+I995-1997+1999=9.(2018*其他模拟)。
=1997个。
4,5=1997个025,则a+h=,aXb=,a7b=10.(2017-育苗杯)计算39.07-22.78+3.4=11.(2018*迎春杯)算式(20.17-12.024-6)X6的计算结果是.12.(2017-其他杯赛)计算:(2017-1)+(2016-2)+…+(2011-7)13.(2016・其他杯赛)计算:91.5+19.8+80.2=.14.(2016-其他杯赛)计算:(102.4+89.6・38X5)X(2016-126X16)=.15.(2018-陈省身杯)计算200・(16+17+18+・・・+23+24)=.16.(2018-其他模拟)计算:53.34-0.234-0.91X16.14-0.82=.17.(2007•迎春杯)计算:379X0.00038+159X0.00621+3.79X0.121=.三.计算题(共6小题,满分18分,每小题3分)18.(2016-中环杯)计算:(20.15+40.3)X33+20.15.19.计算(1)24X2X125X25(2)125X32X25X201320.(2018・学而思杯)2.8X27+28X2.9+2.8X4421.(2017-春蕾杯)计算©0.8:9+0.1:9=;②201.7X4.5+2017X0.35+20.17X20=;③]0.1+0.2+0.3+0.4)X(1+0.1+0.2+0.3)-(1+0.1+0.2+03+0.4)X(0.1+0.2+0.3)=22.计算:2015+201.5+20.15+985+98.5+9.85.23.(2003•创新杯)计算:0.79X0.46+7.9X0.24+11.4X0.079.四.解答题(共6小题,满分31分)24.(5分)(2015・奥林匹克)计算:(12X21X45X10.2)4-(15X4X0.7X51)25.(5分)(2018・学而思杯)903+899+902+897+904+89826.(5分)(1996*其他杯赛)376+385+391+380+377+389+383+374+366+378=27.(5分)(1995*其他杯赛)0.873个0X01122个0=28.(5分)(2015・春蕾杯)(1)10.444-1.2X0.3=(2)[0.5X(6+0.6)-0.5]4-2.5=.29.(6分)(2017・学而思杯)(1)解方程:3(15-2x)+12=85-10v(2)计算:4.02X16+33X4.02-4.9X20.2.测评卷01《速算和巧算》试卷满分:100分考试时间:100分钟姓名:班级:得分:一.选择题(共7小题,满分21分,每小题3分)(请将答案填写在各试题的答题区内)1234567二.填空题(共10小题,满分30分,每小题3分)(请在各试题的答题区内作答)8._____________________________________9._____________________________________10.______________________________________11.______________________________________12.______________________________________13.______________________________________14.______________________________________15.______________________________________16.______________________________________17.______________________________________计算题(共6小题,满分18分,每小题3分)(请在各试题的答题区内作答)三.18.答:20.答:21.答:22.答:四.解答题(共6小题,满分31分)(请在各试题的答题区内作答)24.答:25.答:26.答:28.答:29.答:【五年级奥数举一反三一全国通用】测评卷01《速算和巧算》试卷满分:100分考试时间:100分钟姓名:班级:得分:一.选择题(共7小题,满分21分,每小题3分)1.(2015・创新杯)计算:2.340.08:1.25=()A.230B.23C. 2.3D.0.23【分析】根据除法的性质简算即可.【解答】解:2.34-0.084-1.25=2.3:(0.08X1.25)=2.34-0.1=23故选:B.2.(2009-华罗庚金杯)下面有四个算式:®0.6+n120=n;々赢.625=§(§)§+旦旦X4_l=142u・u.58「14214+2162755其中正确的算式是()A.①和②B.②和④C.②和③D.①和④【分析】①循环小数加、减要根据“四舍五入”取其近似值再计算,0.6中的6不能与o.中的循环节中的1相加,答案不正确.②把分数&化成小数,用分子除以分母5^8=0.625:或把小数0.625化成分数并化简是答案正确.88③根据分数加、减法的计算法则,把异分数分母化成同分数分数再加、减,分子不变,只把分子相加、减,答案不正确.④把两个带分数化成假分数再相乘,结果再化成带分数,正确.【解答】解:®0-6+Q e133=0.733*正确;②0.625=旦正确;8③且+旦=鱼臣-=旦=>1不正确:14214+2162④3旦X4—=14—正确.755故选:B.3.(2003・创新杯)2003+2002-2001-2000+1999+1998-1997・1996+・・・+7+6-5-4+3+2-1的计算结果是()A.2002B.2003C.2004D.4005【分析】四个数一组相互抵消,2000是被4整除的,也就是说2000以后的数都可以相互抵消,因为2002:2=1001,不是偶数组,即有一组不能被抵消,最后剩下2003+2002-2001=2004.【解答】解:2003+2002-2001-2000+1999+1998-1997・1996+•••+7+6-5-4+3+2-1=2003+(2002-2001)+(-2(X)0+1999)+(1998-1997)+…+(6-5)+(-4+3)+(2-1)=2003+1-1+1+-+1-1+1=2003+1=2004故选:C.4.0.65X201=0.65X(200+1)=0.65X200+0.65运用了乘法的()A.交换律B.结合律C.分配律【分析】本题考查的是乘法运算律的运用.【解答】解:乘法分配律:(q+0)Xc=aXc+bXc所以0.65X201=0.65X(200+1)=0.65X200+0.65运用了乘法的分配律.故选:C.5.与0.456X2.1的结果相同的算式是()A. 4.56X21B.21X0.0456C.45.6X0.21D.456X0.021【分析】根据积不变的规律,其中一个因数的小数点向右(左)移动多少位,另一个因数的小数点就要向左(右)移动多少位,据此分析解答即可.【解答】解:0.456X2.1=4.56X0.21=0.0456X21=45.6X0.021=456X0.0021故选:B.6.与61.24-3.4计算结果相同的是()A. 6.12H-0.34B.612:0.34C.0.612X0.034D.612934【分析】根据商不变的性质,被除数和除数同时乘以或除以一个数(0除外),商不变,据此分析解答即可.【解答】解:61.24-3.4=6124-34故选:D.7.105X18=100X18+5X18运用了()A.乘法交换律B.乘法结合律C.乘法分配律【分析】本题考查的是乘法运算律的运用.【解答】解:105X18=(100+5)X18=100X18+5X18运用了乘法分配律.故选:C.二.填空题(共10小题,满分30分,每小题3分)8.(2018*其他模拟)计算:3-5+7-9+11-13+-+1995-1997+1999=1001.【分析】本题可以从后往前算.【解答】解:3-5+7-9+11-13+.......+1995-1997+1999=1999-1997+1995-1993+......+11-9+7-5+3=(1999-1997)+(1995-1993)+.......+(II-9)+(7-5)+3=2+2+2+......+2+3=2X499+3=10019.(2018*其他模拟)。
小学数学《速算与巧算》练习题(含答案)
小学数学《速算与巧算》练习题(含答案)【复习1】计算4.75-9.64-(1.36-8.25)分析:原式=4.75+8.25-9.64-1.36=(4.75+8.25)-(9.64+1.36)=13-11=2 .【复习2】(华罗庚学校五年级入学考试试题)8×(3.1-2.85)×12.5×(1.62+2.38)-3.27分析:初看这道题好像不能用简便方法进行计算.但是里面有特殊数8、12.5,所以可以先算一步,再用简便方法进行计算.原式=8×0.25×12.5×4-3.27=(8×12.5)×(0.25×4)-3.27=100-3.27=96.73【复习3】(全国小学奥林匹克)计算:19971997+9971997+971997+71997+1997+997+97+7分析:原式=10 000 000+9 000 000×2+900 000×3+70 000×4+1000×5+900×6+90×7+7×8=30991086【复习4】计算:1234390391... 777777777777777777 -+-+-+分析:采用分组求和的思路. 原式=19628777111=.(最后结果要以最简形式出现)巧用运算律在速算的过程中,如果加入运算律的应用,会有意想不到的效果!我们一起先来看看常用的一些运算律和结论吧!在计算过程中,最常用的技巧之一是灵活熟练地运用运算律.运算律有:(1)加法交换律:a+b=b+a(2)加法结合律:(a+b)+c=a+(b+c)(3)乘法交换律:ab=ba(4)乘法结合律:(ab)c=a(bc)(5)分配律: a(b+c)=ab+ac (反过来就是提取公因数)(6)减法(括号)的性质:a-b-c=a-(b+c)(7)除法的性质:a÷(b×c)=a÷b÷c(a+b) ÷c=a÷c+b÷c(a-b) ÷c=a÷c-b÷c和不变的规律:如果一个加数增加另一个加数减少同一个数,它们的和不变.积不变的规律:如果一个因数扩大几倍,另一个因数缩小相同的倍数,积不变.商不变的规律:如果除数和被除数同时扩大或缩小相同的倍数,商不变.【例1】(我爱数学夏令营)计算:6.25×8.27×16+3.75×0.827×8分析:原式=6.25×16×8.27+3.75×0.8×8.27=8.27×(6.25×16+3.75×0.8)=8.27×(100+3)=8.27×100+8.27×3=851.81 .根据“一个因数扩大若干倍,另一个因数缩小相同的倍数,积不变”的道理,进行适当变换,提取公因式,进而凑整求和.【巩固】计算 6.25 × 0.16+264×0.0625+5.2×6.25+0.625×20分析:原式=6.25×0.16+2.64×6.25+5.2×6.25+6.25×2=6.25×(O.16+2.64+5.2+2)=62.5【巩固】(06香港圣公会小学奥林匹克)计算:8.88×0.15+265×0.0888+5.2×8.88+0.888×20分析:原式=8.88×0.15+8.88×2.65+8.88×5.2+8.88×2=8.88×(0.15+2.65+5.2+2)=8.88×10=88.8【例2】(04全国小学奥林匹克)1.23452+0.76552+2.469×0.7655分析:原式=1.23452+0.7655×(1.235+2)=1.2345×(1.2345+0.7655)+0.7655×2=2×2=4【巩固】(希望杯数学邀请赛初赛)计算7.816×1.45+3.14×2.184+1.69×7.816分析:不难看出式子是7.816出现过两次,联想提取公因数.原式=7.816×(1.45+1.69)+3.14×2.184=7.816×3.14 +3.14×2.184=3.14×10=31.4【例3】(05我爱数学夏令营)计算:147.75×8.4+4.792+409×2.1+0.9521×479分析:原式=(147.75×4+409)×2.1+(0.0479+0.9521)×479=1000×2.1+479=2579【巩固】计算11.8×43—860×0.09分析:观察题中的每一个数,我们发现:860=43×20,可把20与O.09结合.原式=11.8×43—43×20×0.09=11.8× 43—43×1.8=43×(11.8—1.8)=43×10=430【例4】41.2×8.1+11×8.75+537×0.19分析:(法1)原式=41.2×8.1+11×8.75+53.7×1.9=41.2×8.1+11×8.75+(41.2+12.5)×1.9=41.2×(8.1+1.9)+11×8.75+12.5×1.9=412+11×8.75+12.5×1.9=412+1.1×87.5+12.5×1.9=412+1.1×12.5×7+12.5×1.9=412+12.5×8×1.2=532(法2):原式=41.2×8.1+11×8.75+(41.2+12.5)×1.9=41.2×(8.1+1.9)+11×8.75+19×1.25=412+11×8.75+(11+8)×1.25=412+11×(1.25+8.75)+8×1.25=412+110+10=532【巩固】计算31.4×36+64×43.9分析:首先拿31.4×36+64×31.4讲解,要求学生要观察主要要把36和64凑在一起,这样前面有31.4,后面没有,所以思路分析很明显。
小学五年级奥数题速算巧算20171020答案
小学五年级奥数题——速算与巧算姓名:日期:2017年10月20日例1:计算:9.996+29.98+169.9+3999.5解:算式中的加法看来无法用数学课中学过的简算方法计算,但是,这几个数每个数只要增加一点,就成为某个整十、整百或整千数,把这几个数“凑整”以后,就容易计算了。
当然要记住,“凑整”时增加了多少要减回去。
9.996+29.98+169.9+3999.5=10+30+170+4000-(0.004+0.02+0.1+0.5)=4210-0.624=4209.376例2:计算:1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01解:式子的数是从1开始,依次减少0.01,直到最后一个数是0.01,因此,式中共有100个数而式子中的运算都是两个数相加接着减两个数,再加两个数,再减两个数……这样的顺序排列的。
由于数的排列、运算的排列都很有规律,按照规律可以考虑每4个数为一组添上括号,每组数的运算结果是否也有一定的规律?可以看到把每组数中第1个数减第3个数,第2个数减第4个数,各得0.02,合起来是0.04,那么,每组数(即每个括号)运算的结果都是0.04,整个算式100个数正好分成25组,它的结果就是25个0.04的和。
1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01=(1+0.99-0.98-0.97)+(0.96+0.95-0.94-0.93)+…+(0.04+0.03-0.02-0.01)=0.04×25=1如果能够灵活地运用数的交换的规律,也可以按下面的方法分组添上括号计算:1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01=1+(0.99-0.98-0.97+0.96)+(0.95-0.94-0.93+0.92)+…+(0.03-0.02-0.01)=1 例3:计算:0.1+0.2+0.3+…+0.8+0.9+0.10+0.11+0.12+…+0.19+0.20 解:这个算式的数的排列像一个等差数列,但仔细观察,它实际上由两个等差数列组成,0.1+0.2+0.3+…+0.8+0.9是第一个等差数列,后面每一个数都比前一个数多0.1,而0.10+0.11+0.12+…+0.19+0.20是第二个等差数列,后面每一个数都比前一个数多0.01,所以,应分为两段按等差数列求和的方法来计算。