天津大学管理运筹学第二章图论PPT课件

合集下载

天津大学管理运筹学课件第二章_图论

天津大学管理运筹学课件第二章_图论

3
4
[5, v2]
5
[6, v2]
v6
2.5
1
v4
[4, v1]
2019/11/21
3
v7
2
v9 [8.5, v6]
[7, v4/ v6] 2
4
管理运筹学
v8
[9, v7]
[课堂练习] 无向图情形
求网络中v1至v7的最短路。
v2
2
2
7
v1
5
v3
5
v6 5
v7
3
13
1
7
v4
5
v5
2019/11/21
成如图所示。为使5处居民点都有
3.5 4
道路相连,问至少要铺几条路?
5.5
3
v5
2
v3 7.5 v4
解: 该问题实为求图 的支撑树问题,
共需铺4条路。 v2
v1 v5
2019/11/21
v3
v4
管理运筹学
v1
三、最小支撑树问题
5பைடு நூலகம்
v2
3.5 4
问题:求网络的支撑树,使其权和最小。
5.5
3
v5
2
算法1(避圈法):把边按权从小到大依次 添入图中,若出现圈,则删去其中最大边, 直至填满n-1条边为止(n为结点数) 。
2019/11/21
管理运筹学
二、图的支撑树
若一个图 G =(V , E)的支撑子图 T=(V , E´) 构成树,则称 T 为
G的支撑树,又称生成树、部分树。

(G)
2019/11/21
(G1)
(G2)
管理运(筹G学3)

管理运筹学课件第2章 线性规划

管理运筹学课件第2章 线性规划

x1 x2 ≤ 8
产量非负 x 1 , x 2 ≥ 0
决策变量
(decision variable)
总利润表三达要式素
目标函数 (objective function)
约束条件 生产能力,不 (subject to) 允许超过 当目标函数与约束条件均为决策变
量的线性函数,且变量取连续值时,
当xk的值由0增加到θ时,原来的基变 量xl取值首先变成零,选择其为出基变 量。称θ的表达式为最小比值原则。
如果所有aik ≤0, xk的值可以由0增加到 无穷,表示可行域是不封闭的,且目 标函数值随进基变量的增加可以无限 增加,此时不存在有限最优解。
下面对以上讨论进行总结.
2019/8/31
课件
15
称为线性规划LP;变量取整称为整
数线性规划ILP;变量取二进制为
0-1规划BLP。
2019/8/31
课件
5
2.1.2 线性规划的数学模型
【例2.1】(合理配料问题)由下表建立一个LP模型求解满足动物成长 需要又使成本最低的饲料配方。
饲料 营养甲(g/kg) 营养乙(g/kg) 营养丙(g/kg) 成本(g/kg)
x1+x2=8

x1
2019/8/31
课件
11
2.2.3 线性规划几何解的讨论
线性规划几何解存在四种情况:唯一最优解、无穷 多最优解、无界解、无可行解。 可行域为封闭有界区域时,可能存在唯一最优解, 无穷多最优解两种情况; 可行域为非封闭无界区域时,可能存在唯一最优解, 无穷多最优解,无界解三种情况; 可行域为空集时,没有可行解,原问题没有最优解。
1
0.5
0.1
0.08

《运筹学第二章》课件

《运筹学第二章》课件
《运筹学第二章》PPT课 件
介绍《运筹学第二章》PPT课件内容和目标,运筹学的定义和特点。探索运 筹学的重要性和应用领域,以及运筹学的特点和原则。
线性规划
概念和模型
探索线性规划的定义和基本模型,展示线性规划在 决策和优化中的重要性。
解法和实例
介绍线性规划的常见解法和实际应用案例,展示线 性规划在生产和资源优化中的应用。
例,展示二维规划在资源分配和市场策
略中的应用。
3
优化技巧
分享二维规划的优化技巧和最佳实践, 帮助读者更好地应用二维规划解决问题。
网络流问题
概念和应用 解法和实例 问题扩展
阐述网络流问题的概念和常见应用领域,如流量 规划和运输优化。
介绍网络流问题的解法和实际应用案例,展示网 络流问题在供应链和通信网络中的应用。
2 求解方法
介绍排队论的常见求解方法和实际应用案例,帮助读者理解和解决实际排队问题。
3 模型分析
分享排队论中的模型分析技巧和最佳实践,帮助读者优化排队系统和提高服务质量。
进化算法
概念和原理
解释进化算法的概念和基本原理,如遗传算法和粒 子群优化。
应用领域
介绍进化算法在不同领域中的应用,如机器学习和 智能优化。
整数规划
概念和模型
阐述整数规划的概念和基本模型,展示整数规 划在离散决策中的重要性。
解法和实际应用
介绍整数规划的常见解法和实际应用,展示整 数规划在项目管理和物流优化中的应用。
二维规划
1
概念和模型
解释二维规划的定义和基本模型,展示
解法和实例
2
二维规划在多目标决策中的应用。
介绍二维规划的常见解法和实际应用案
探讨网络流问题态规划

管理运筹学 第2章 线性规划的图解法

管理运筹学  第2章  线性规划的图解法

3.右端项有负值的问题:
在标准形式中,要求右端项必须每一个分量非
负。当某一个右端项系数为负时,如 bi<0,则把该 等式约束两端同时乘以-1,得到:-ai1 x1-ai2 x2… -ain xn = -bi。
管理运筹学
21
§3 图解法的灵敏度分析
例:将以下线性规划问题转化为标准形式
min f = 2 x1 -3x2 + 4 x3
线性规划的组成:
•目标函数 max f 或 min f
•约束条件 s.t. (subject to) 满足于
•决策变量 用符号来表示可控制的因素
管理运筹学
2
§1 问题的提出
例1. 某工厂在计划期内要安排Ⅰ、Ⅱ两种产品的生产,已知生产单位产品 所需的设备台时及A、B两种原材料的消耗、资源的限制,如下表:
在标准形式中,必须每一个变量均有非负约束。当某一个变量xj没 有非负约束时,可以令 xj = xj’- xj”
其中 xj’≥0,xj”≥0
取决即于用xj’两和个xj”非的负大变小量。之差来表示一个无符号限制的变量,当然xj的符号
管理运筹学
23
§3 图解法的灵敏度分析
灵敏度分析:建立数学模型和求得最优解后,研究线性规
束条件成为
ai1 x1+ai2 x2+ … +ain xn-s = bi
管理运筹学
20
§3 图解法的灵敏度分析
为了使约束由不等式成为等式而引进的变量s, 当不等式为“小于等于”时称为“松弛变量”;当不等 式为“大于等于”时称为“剩余变量”。如果原问题中 有若干个非等式约束,则将其转化为标准形式时,必 须对各个约束引进不同的松弛变量或剩余变量。

运筹学第2章课件

运筹学第2章课件

目标函数是要求最大或最小的线性函数,形式为(z = c^T x + z_0),其中(c)是常数向量,(x)是决策变 量向量,(z_0)是常数。
决策变量是问题中需要求解的未知数,通常为非 负实数。
线性规划的几何解释
线性规划问题可以用几何图形直观地 表示。在二维空间中,目标函数和约 束条件可以表示为直线或线段,决策 变量则表示为平面上的点。
分配问题的应用非常广泛,如 资源分配、任务调度等。这些 案例展示了线性规划在优化资 源配置和提高总体效益方面的 巨大潜力。
04
线性规划的扩展
整数规划
01
整数规划问题
整数规划是一类特殊的线性规划问题,要求决策变量取整数值。整数规
划在现实生活中有广泛的应用,如生产计划、物流调度等。
02
求解方法
整数规划的求解方法包括穷举法、割平面法、分支定界法等。这些方法
第2章总结
• 线性规划的求解方法,包括图解 法、单纯形法和内点法等,以及 各种方法的适用范围和优缺点。
第2章总结
01 内容亮点
02
通过案例分析,使抽象的数学模型更加生动具体,易
于理解。
03
详细介绍了线性规划的求解方法,有助于学生掌握实
际操作技能。
第2章总结
练习与思考 结合实际案例,尝试建立线性规划模型并求解。 分析不同求解方法的适用场景,比较其优劣。
大规模优化问题
大规模优化问题是指决策变量数量庞大,导致计算复杂度极高的优化问题。这类问题在现实生活中很常见,如物流网 络优化、生产调度等。
近似算法
为了解决大规模优化问题,研究者们提出了许多近似算法。这些算法通过牺牲最优解的精度来换取更快的计算速度, 从而在实际应用中得到广泛应用。常见的近似算法包括贪心算法、遗传算法、模拟退火算法等。

天津大学运筹学课件

天津大学运筹学课件

⎛ 0 0⎞ ⎛ 2 0⎞ H− f ( X ) = ⎜ ⎟ ≥ 0, H− g1 ( X ) = ⎜ ⎟>0 ⎝ 0 0⎠ ⎝ 0 2⎠ ⎛ 0 0⎞ H− g2 ( X ) = H− g3 ( X ) = ⎜ ⎟≥0 ⎝ 0 0⎠
计算
说明 − f ( X )是凸函数, g1 ( X )、 g 2 ( X )、 g 3 ( X )是凹函数

X1 X0 X2
P 0 P 1
X3
P2
第一章 非线性规划
2.基本步骤
(1)
选取初始点X 0,令k := 0, 确定精度ε > 0;
得到近似最优解X k,否则转(3);
(2) 对于点X k,计算∇f ( X k ), 若 ∇f ( X k ) < ε , 则停止, (3) 从X k出发,确定搜索方向P ; k (4)
2
的高阶无穷小。

第一章 非线性规划
2 例:写出 f ( X ) = 3x1 + sin x2在 X 0 = [0,0] 点的二阶泰勒展开 式。 T
解: ∇f ( X ) = [6x1 cos x2 ] , ∇f ( X 0 ) = [0 1]
T
T
0 ⎞ ⎛6 ⎛6 H(X ) = ⎜ ⎟ , H ( X0 ) = ⎜ ⎝0 ⎝ 0 − sin x2 ⎠ ⎡ x1 ⎤ 1 ⎛6 f ( X ) = 0 + [0 1] ⎢ ⎥ + [ x1 x2 ]⎜ ⎝0 ⎣ x2 ⎦ 2
X 0 ∈ D ,使得在 X 0的邻 ★局部最优解:如果对于 0 0 域 B( X , ε ) = {X | X − X < ε } 中的任意 X ∈ D
f 都有 ( X 0 ) ≤ f ( X ) ,则称 X 0 为(NLP)的局部最

运筹学--图论 ppt课件

运筹学--图论  ppt课件

4
5
4 9 8
v1
v3
2
v6
[8,v2]
v8
5 33
1
[2,v1]
v4
v7
[10,v4]
33
Dijkstra算法示例1
3)迭代计算(c)—更新与永久标号节点v2相连的节 (d2+w25=3+7=)10< ∞ (=d5) 点的临时标号。
[3,v1]
v2
[0,-]
7
v5
[10,v2]
2 [+∞,v1] 6
v4
v7
[+∞,v1]
22
Dijkstra算法示例1
2)迭代计算(a)—从临时标号中找到距离上界dk最 小的节点v4,d4=min{dk},将其变换为永久编号。
[3,v1] [+∞,v1]
v2
[0,-]
7
v5
2 [+∞,v1] 6 1 2 [+∞,v1]
3
5 2 [5,v1]
4
5
4 9 8
v1
v3

最小树问题不一定有唯一解。
10
10
最小支撑树问题的解法

破圈法 算法


初始化 将图G的边按权值从大到小的次序排列,从 原图开始迭代; 迭代


第1步(删边) 从排列中顺序选择一条与图中剩余边构成圈 的边,则将此边从图中删除,进入第2步(结束判断); 第2步(结束判断) 若图中剩下n-1条边,则已经得到最小支 撑树;否则,进入下一轮迭代,返回第1步(加边);

柯尼斯堡七桥问题

柯尼斯堡市区横跨普雷格尔河两岸,在河中心有两 个小岛。小岛的两岸共有七座桥将岛与岛、岛与河 岸连接起来。一个人怎样才能一次走遍七座桥,每 座桥只走过一次,并最后回到出发点?

运筹学课件第二节图解法.ppt

运筹学课件第二节图解法.ppt

运筹学教程
基:设A 为约束方程组的m×n阶系数矩阵 (n>m),R(A)=m,B是矩阵A中的一个m×m阶满秩子 矩阵,称B是线性规划问题的一个基,设 P1 P2…Pj…Pm
列向量Pj(j=1,2,…m) 为基向量,Pj 所对应的变量xj 基变量,其余变量为非基变量. 秩:设在矩阵A中存在一个不等于零的r阶子式D,且所有的r+1阶
0
1〡 2〡 3A 4〡 5〡 6〡 7〡 8〡 9〡C
(1/3) x1 +(1/3)x2 =1
两个约束条件 及非负条件x1,x2 0所代表的公共部分 --图中阴影区,就是满足所有约束条件和非 负条件的点的集合,即可行域。在这个区域中 的每一个点都对应着一个可行的生产方案。
运筹学教程
令 Z=2x1+3x2=c,其中c为任选的一个常数,在图中画出直线 2x1+3x2=c, 这条直线上的点即对应着一个可行的生产方案,即使两种产品的总利润达 到c。 这样的直线有无数条,而且相互平行,称这样的直线为目标函数等值线。 只要画出两条目标函数等值线,比如令c=0和c=6,就能看出 目标函数值递增的方向, 用箭头标出这个方向。 图中两条虚线 l1和l2就 分别代表 目标函数等值线
a11 . B . am1
. . a1m . . . ( P , P ,......,P ) 1 2 m . . . . . amm
子式全等于零,那么D为A的最高阶非零子式,数r称为A的秩.
运筹学教程
基解:在约束方程组中,令所有的非基变量 xm1 xm2 ...... xn 0 ,有因为有 B 0 根据克莱姆法则,有m个约束方程可解出m 个变量的唯一解, X B ( x1, x2 ,......,xm )T 将此解加上非基变量取0的值有

第2章 运筹学课件图解法

第2章 运筹学课件图解法

4x2 12
x2
A
可行域
B
max z 2 x1 3x2 s.t x1 2 x2 8 x1 16 4 x 12 2 x , x 0 1 2
最优解(4,2)
x1
x1 16
x1 2x2 8
结论: 可行域一定是凸集 若最优解存在,则最优解一定 在凸集的顶点达到
上例中求得 问题的解是唯一的, 但对一般线性规划问题,求解结果还 可能出现以下几种情况: 1、无穷多最优解(多重解)
若将上例中的目标函数 max z 2x1 4x2 改为则表示目标函数中以参数的等值线 与约束条件的边界平行,当值由小变大 时,将与此边界重合,线段AB上的所有 点都是最优解。
向量Pj 对应的决策变量是x j
T
用矩阵表述:
max z CX ( LP4 ) s.t AX b X 0
其中
A (aij )mn ( p1, p2 pn )
0 (0,0,0)
T
max z CX s.t AX b X 0
自从1947年G. B. Dantzig 提出求解线
性规划的单纯形方法以来,线性规划在理论
上趋向成熟,在实用中日益广泛与深入。特 别是在计算机能处理成千上万个约束条件和 决策变量的线性规划问题之后,线性规划的 适用领域更为广泛了,已成为现代管理中经 常采用的基本方法之一。
§2.1 问题的提出 §2.2 线性规划的图解法 §2.3 图解法的灵敏度分析
2. 存在一定的约束条件,这些约束都可 以用一组线性等式或线性不等式表示。
3. 都有一个要达到的目标,它可以用决 策变量的线性函数来表示。按问题的 不同要求,目标函数实现最大化或最

《管理运筹学》演示(图论)

《管理运筹学》演示(图论)

v3 (v2 ,1)
检查 vs 相邻点 v1 和 v2 。 v2点,fs2 = cs2 =3,不满足标号条件;v1点,fs1 < cs1 , v1点标号为( vs , l(v1) ), l(v1) =min[ l(vs) ,( cs1 - fs1 )]= min[+ , 5-1] = 4; 检查 v1 相邻点 v3 和 v2 。 v3点,f13 = c13 =2,不满足标号条件; v2点,f21=1> 0 , v2点标号为( -v1 , l(v2) ), l(v2) =min[ l(v1) , f21]= min[4 , 1] = 1; 检查 v2 相邻点 v3 和 v4 。v3点,f32=1> 0 , v3点标号为( -v2 , l(v3) ), l(v3) =min[ l(v2) , f32]= min[1 , 1]=1 ; v4点,f24 < c24 =1,v4点标号为( v2 , 1 ) ;
,
最大流量 v(f ) = 5
最小费用最大流问题
例:求下列网络最小费用最大流。弧旁数字为( bij , cij ) 步骤:
v1
(1,7)
vt
取 f ( 0 ) =0为初始可行流; 构造赋权有向图w( f ( 0 )),
vs
解:
v1
0 0
v2
0
0
v3
vt
0
bij wij bij wij
v8
步 骤:
给 vs点以 P 标号,P(vs) = 0,其余各点给 T 标号,
T(vs) = + ;
若 vs点为刚得到 P 标号的点,考虑这样的点 vj:
( vi , vj )属于A(或[vi , vj ] 属于E ),且vj 为 T 标号。对 vj 的T 标号进行如下的更改:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有向图:
路 点弧交错的序列 回路 起点=终点的路
v5
v5
v1
v4
v1
v4
v 31.07.20202
v3
管理运筹学
v2
v3
6
4、连通图
任何两点之间至少存在一条链的图称为连通图, 否则称为不连通图。
例 : G1为不连通图, G2为连通图
G1
31.07.2020
管理运筹学
G2
7
5、支撑子图
图G=(V,E)和G'=(V ' ,E '),若V =V ' 且
至图中不存在圈。
v1
5
v2
3.5 4
5.5
3
v5
2
v3 7.5 v4
31.07.2020
管理运筹学
15
算法2(破圈法):
在图中找圈,并删除其中最大边。如此进行下去,直
至图中不存在圈。
v1
5
v2
3.5 4
5.5
3
v5
2
v3
v4
31.07.2020
管理运筹学
16
算法2(破圈法):
在图中找圈,并删除其中最大边。如此进行下去,直
E
I
A 3.5
2
C
2
4
G
5
1S
2
3
3K
B2
2 F 2 26 J
D
H
31.07.2020
管理运筹学
22
[例]今有煤气站A,将给一居民区供应煤气,居民区各 用户所在位置如图所示,铺设各用户点的煤气管道所需 的费用(单位:万元)如图边上的数字所示。要求设计 一个最经济的煤气管道路线,并求所需的总费用。
A
A
C
D
C
D
B
B
问题:一个散步者能否从任一块陆地出发,走过七 座桥,且每座桥只走过一次,最后回到出发点?
结论:每个结点关联的边数均为偶数。
31.07.2020
管理运筹学
3
§1 图的基本概念
1. 图
由点和边组成,记作G=(V,E),其中 V={v1,v2,……,vn}为结点的集合, E={e1,e2,……,em} 为边的集合。 点表示研究对象 边表示表示研究对象之间的特定关系
E 'E ,则称G' 为G的支撑子图。
例 :G2为G1的支撑子图
v5
v5
v1
v4
v1
v4
v2
31.07.2020
v3
G1
v2
v3
管理运筹学
G2
8
6、赋权图(网络)
图的每条边都有一个表示一定实际含义的 权数,称为赋权图。记作.5 4 5.5
3
v5
2
v3 3.5 v4
2
4
G
5
1S
25
4
5
3
3K
B2
2 F 2 26 J
31.07.2020
D
H
管理运筹学
10
一、树的概念与性质
树 无圈连通图
例 判断下面图形哪个是树:
(A)
(B)
(C)
树的性质:
1、树中任两点中有且仅有一条链;
2、树任删去一边则不连通,故树是使图保持连通且具有最少边数 的一种图形。
3、边数 = 顶点数 – 1。
31.07.2020
管理运筹学
4
2、图的分类
无向图,记作G=(V,E)
图 有向图,记作D=(V,A)
有向图的边 称为弧。
例1:哥尼斯堡桥问题的图为一个无向图。
例2:五个球队的比赛情况,v1
v2 表示v1胜v2。
v5
v1
v4
31.07.2020
v 管理运筹学2
v3
5
3、链与路、圈与回路
无向图:

点边交错的序列 圈 起点=终点的链
31.07.2020
管理运筹学
9
§2 最小支撑树问题
本节主要内容:

支撑树
最小支撑树
[例]今有煤气站A,将给一居民区供应煤气,居民区各 用户所在位置如图所示,铺设各用户点的煤气管道所需 的费用(单位:万元)如图边上的数字所示。要求设计 一个最经济的煤气管道路线,并求所需的总费用。
E
I
A 3.5
2
C
E
I
A 3.5
2
C
2
4
G
5
1S
2
4
5
3
3K
B2
2 F 2 26 J
D
H
31.07.2020
管理运筹学
20
[例]今有煤气站A,将给一居民区供应煤气,居民区各 用户所在位置如图所示,铺设各用户点的煤气管道所需 的费用(单位:万元)如图边上的数字所示。要求设计 一个最经济的煤气管道路线,并求所需的总费用。
至图中不存在圈。
v1
5
3
v2
3.5 4
v5
2
v3
v4
31.07.2020
管理运筹学
17
算法2(破圈法):
在图中找圈,并删除其中最大边。如此进行下去,直
至图中不存在圈。
v1
5
v2
3.5
3
v5
2
v3
v4
31.07.2020
管理运筹学
18
[例]今有煤气站A,将给一居民区供应煤气,居民区各 用户所在位置如图所示,铺设各用户点的煤气管道所需 的费用(单位:万元)如图边上的数字所示。要求设计 一个最经济的煤气管道路线,并求所需的总费用。
3
v5
2
算法1(避圈法):把边按权从小到大依次 添入图中,若出现圈,则删去其中最大边, 直至填满n-1条边为止(n为结点数) 。
v3 7.5 v4
[例] 求上例中的最小支撑树
解:
v1
5
3
v2 3.5 4 v5
2
31.07.2020
v3
v 管理运4筹学
14
算法2(破圈法):
在图中找圈,并删除其中最大边。如此进行下去,直
31.07.2020
管理运筹学
11
二、图的支撑树
若一个图 G =(V , E)的支撑子图 T=(V , E´) 构成树,则称 T 为
G的支撑树,又称生成树、部分树。

(G)
31.07.2020
(G1)
(G2)
管理运(筹G学3)
(G4) 12
图的支撑树的应用举例
v1
[例] 某地新建5处居民点,拟修
E
I
A 3.5
2
C
2
4
G
5
1S
2
5
3
3K
B2
2 F 2 26 J
D
H
31.07.2020
管理运筹学
21
[例]今有煤气站A,将给一居民区供应煤气,居民区各 用户所在位置如图所示,铺设各用户点的煤气管道所需 的费用(单位:万元)如图边上的数字所示。要求设计 一个最经济的煤气管道路线,并求所需的总费用。
E
I
A 3.5
2
C
2
4
G
5
1S
25
4
5
3
3K
B2
2 F 2 26 J
D
H
31.07.2020
管理运筹学
19
[例]今有煤气站A,将给一居民区供应煤气,居民区各 用户所在位置如图所示,铺设各用户点的煤气管道所需 的费用(单位:万元)如图边上的数字所示。要求设计 一个最经济的煤气管道路线,并求所需的总费用。
5
道路连接5处,经勘测其道路可铺 v2
成如图所示。为使5处居民点都有
3.5 4
道路相连,问至少要铺几条路?
5.5
3
v5
2
v3 7.5 v4
解: 该问题实为求图 的支撑树问题,
共需铺4条路。 v2
v1 v5
31.07.2020
v3
管理运筹学
v4
13
v1
三、最小支撑树问题
5
v2
3.5 4
问题:求网络的支撑树,使其权和最小。 5.5
第二章 图论与网络分析
➢ 图的基本概念 ➢最小支撑树问题
➢ 最短路径问题
网络分析
➢网络最大流问题
➢网络计划问题
31.07.2020
管理运筹学
1
标题添加
点击此处输入相 关文本内容
标题添加
点击此处输入相 关文本内容
总体概述
点击此处输入 相关文本内容
点击此处输入 相关文本内容
2
图论起源——哥尼斯堡七桥问题
相关文档
最新文档