集合函数导数

合集下载

函数的导数性质与计算方法

函数的导数性质与计算方法

函数的导数性质与计算方法函数的导数是微积分中重要的概念之一,它不仅具有一系列重要的性质,还有多种计算方法。

本文将探讨函数的导数性质以及几种常见的计算方法。

一、导数的定义与性质函数的导数定义为函数在某一点处的变化率,表示函数曲线在该点的切线斜率。

导数的定义如下:如果函数f(x)在点x处的导数存在,则称函数f(x)在点x处可导。

导数用f'(x)或者dy/dx来表示。

对于可导函数,它具有以下性质:1. 导数的唯一性:一个函数在某一点处的导数只有一个值。

2. 运算性质:如果函数f(x)和g(x)都在某一点x处可导,那么它们的和、差、乘积和商的导数分别为:(f + g)'(x) = f'(x) + g'(x)(f - g)'(x) = f'(x) - g'(x)(f * g)'(x) = f'(x) * g(x) + f(x) * g'(x)(f / g)'(x) = (f'(x) * g(x) - f(x) * g'(x)) / (g^2(x))这些运算性质可通过导数的定义和极限运算进行推导。

3. 反函数与复合函数的导数:如果函数f(x)在某一点x处可导,且其反函数f^(-1)(x)也在相应点处可导,那么反函数的导数可以表示为: (f^(-1))'(x) = 1 / f'(f^(-1)(x))对于复合函数,如(f(g(x))), 它的导数可以表示为:(f(g(x)))' = f'(g(x)) * g'(x)这些性质提供了计算导数的基础。

二、常见的导数计算方法1. 基本导数公式:对于常见的基本函数,存在一些常用的导数公式,如:- 常数函数的导数为0:(k)' = 0- 幂函数的导数为幂乘以原函数的幂减一:(x^n)' = n * x^(n-1)- 指数函数的导数等于指数乘以常数:(a^x)' = a^x * ln(a)- 对数函数的导数等于1除以自变量:(ln(x))' = 1 / x- 三角函数的导数与函数本身有关:(sin(x))' = cos(x), (cos(x))' = -sin(x), (tan(x))' = sec^2(x)这些公式可以通过导数的定义以及对基本函数的求导规律导出。

基本初等函数的导数公式及导数的运算法则

基本初等函数的导数公式及导数的运算法则
合" 得到的,即y可以通过中间变量u表示为自变量x
的函数.
如果把y与u的关系记作y fu,u和x的关系记作 u gx,那么这个"复合"过程可表示为 y fu fgx lnx 2.
我们遇到的许多函数都可以看成是由两个函数经过
"复合"得到的,例如,函数y 2x 32由y u2和u
解 因为y' x3 2x 3 ' x3 ' 2x' 3'
3x2 2.
所以,函数 y x3 2x 3的导数是 y' 3x2 2.
例3 日常生活中的饮用水 通常是经过净化的.随着水 纯净度的提高, 所需净化费 用不断增加.已知将1吨水净 化到纯净度为x%时所需费
0.05eu 0.05e0.0 . 5x1
3函数y sinπx φ可以看作函数y sinu和
u πx φ的复合函数.
由复合函数求导法则有
y'x

y
' u
u'x
sinu' πx φ'
π cosu π cosπx φ.
明,水的纯净度越高,需要的净化费用就越多,
而且净化费用增加的速度也越快.
思考 如何求函数y lnx 2的导数呢?
我们无法用现有的方法求函数y lnx 2的导数.
下面,我们先分析这个函数的结构特点.
若设u x 2x 2,则y lnu.从而y lnx 2 可以看成是由y lnu和u x 2x 2经过"复
1321,
所以,纯净度为98%时,费用的瞬时变化率

导数的定义及计算

导数的定义及计算

导数的定义及计算导数是微积分中的重要概念之一,用于描述函数在某一点的变化率或斜率。

在本文中,我们将介绍导数的定义及计算方法,并通过一些具体的例子来加深理解。

一、导数的定义在数学中,函数f(x)在x点处的导数可以用以下极限定义表示:f'(x) = lim(h->0) [f(x+h) - f(x)] / h其中,lim表示极限操作,h表示自变量x的变化量,也可以解释为一个无限小的增量。

根据这个定义,我们可以得出导数的几何意义是函数在该点处的切线的斜率。

二、导数的计算方法1. 基本导数公式导数有一些基本的计算公式,这些公式可以帮助我们计算各种类型函数的导数。

下面是一些常用的基本导数公式:- 常数函数导数:常数函数的导数为0。

- 幂函数导数:幂函数f(x) = x^n 的导数为 f'(x) = n*x^(n-1)。

- 指数函数导数:指数函数f(x) = a^x(其中a>0且a≠1)的导数为f'(x) = ln(a) * a^x。

- 对数函数导数:对数函数f(x) = ln(x)(其中x>0)的导数为 f'(x) = 1/x。

- 正弦函数导数:正弦函数f(x) = sin(x)的导数为 f'(x) = cos(x)。

- 余弦函数导数:余弦函数f(x) = cos(x)的导数为 f'(x) = -sin(x)。

通过运用这些基本导数公式,我们可以计算更复杂函数的导数。

2. 导数的运算法则导数还具有一些运算法则,这些法则可以简化导数的计算过程。

下面是导数的运算法则:- 和差法则:若f(x)和g(x)是可导函数,则(f(x)±g(x))' = f'(x)±g'(x)。

- 积法则:若f(x)和g(x)是可导函数,则(f(x)·g(x))' = f'(x)·g(x) +f(x)·g'(x)。

集合函数导数综合测试卷

集合函数导数综合测试卷

集合函数导数综合测试卷集合函数可以理解为一种将一些集合中的元素映射到一个新集合中的函数。

在高等数学中,研究集合函数的导数是非常重要的。

下面我为你准备了一个综合测试卷,涵盖了集合函数导数的相关知识点。

题一:求下列集合函数的导数。

1. $f(x) = \{ x^2 , x \in [0, 2] \}$2. $g(x) = \{ x^2 - x + 1 , x \in [0, 3] \}$3. $h(x) = \{ \frac{1}{x} , x \in (0, 1] \}$题二:求下列函数的临界点。

1. $f(x) = \{ x^3 - 3x^2 , x \in \mathbb{R} \}$2. $g(x) = \{ x^3 - 3x^2 + 3x - 1 , x \in \mathbb{R} \}$题三:求下列函数的最值。

1. $f(x) = \{ x^2 + 2x - 1 , x \in [-2, 2] \}$2. $g(x) = \{ -x^2 + 4x - 3 , x \in [1, 3] \}$题四:求下列函数的单调区间。

1. $f(x) = \{ x^2 - 2x + 1 , x \in \mathbb{R} \}$2. $g(x) = \{ x^3 - 6x^2 + 9x , x \in \mathbb{R} \}$题五:求下列函数的凸凹区间。

1. $f(x) = \{ x^3 - 3x^2 + 3x - 1 , x \in \mathbb{R} \}$2. $g(x) = \{ \frac{1}{x^2} , x \in (-\infty, 0) \}$题六:证明下列函数具有极值点。

1. $f(x) = \{ x^3 - 3x^2 , x \in \mathbb{R} \}$2. $g(x) = \{ \sin(x) + \cos(x) , x \in \mathbb{R} \}$题七:对下列函数进行分类讨论,并画出图像。

ln的导函数公式

ln的导函数公式

ln的导函数公式自然对数函数(ln)是一种常见的数学函数,其导函数公式在微积分中具有重要的应用。

本文将介绍ln函数的导函数公式及其推导过程。

ln函数的定义ln函数是以常数e为底的对数函数,通常表示为ln(x),其中x为函数的自变量。

ln函数的定义域为正实数集合,即x>0。

ln函数的导数ln函数的导数表示为ln’(x),即ln函数的对x的导数。

根据导数的定义,ln’(x)可以通过极限的方式进行推导。

定义ln函数为y=ln(x),则可得到ln函数的导数如下:$$ ln'(x) = \\lim_{h \\to 0} \\frac{ln(x+h) - ln(x)}{h} $$利用ln函数的性质和极限的定义,可以进一步推导ln函数的导数公式。

ln函数的导函数公式根据导数的定义和ln函数的特性,可以得到ln函数的导函数公式如下:$$ ln'(x) = \\frac{1}{x} $$这就是ln函数的导函数公式。

其含义是:ln函数在任意点x处的导数等于1除以x。

推导过程为了更好地理解ln函数的导数公式,可以通过一定的推导过程来验证导函数的正确性。

这里给出ln’(x) = 1/x 的推导过程:1.定义ln函数为y=ln(x)。

2.计算ln(x+h) 和 ln(x) 的差值:$$ ln(x+h) - ln(x) = ln(\\frac{x+h}{x}) = ln(1+\\frac{h}{x}) $$3.根据ln函数的特性,可以展开ln(1+h)为其泰勒级数展开式:$$ ln(1+h) = h - \\frac{h^2}{2} + \\frac{h^3}{3} -\\frac{h^4}{4} + \\ldots $$4.将展开式中的h替换为h/x,并应用极限的定义,得到ln’(x)的计算公式:$$ ln'(x) = \\lim_{h \\to 0} \\frac{ln(x+h) - ln(x)}{h} =\\lim_{h \\to 0} \\frac{ln(1+\\frac{h}{x})}{h} = \\frac{1}{x} $$5.故得到ln函数的导函数公式为ln’(x) = 1/x。

专题01 集合的含义及运算-名师揭秘2020年高考数学(文)一轮总复习之集合函数导数 Word版含解析

专题01 集合的含义及运算-名师揭秘2020年高考数学(文)一轮总复习之集合函数导数 Word版含解析

专题01 集合的含义及运算一、本专题要特别小心:1.元素与集合,集合与集合关系混淆陷阱;2.造成集合中元素重复陷阱;3.隐含条件陷阱;4.代表元变化陷阱;5.分类讨论陷阱;6.子集中忽视空集陷阱;7.新定义问题;8.任意、存在问题中的最值陷阱.二、【学习目标】1.了解集合的含义、元素与集合的“属于”关系,能用自然语言、图形语言、集合语言(列举法或描述法)来描述不同的具体问题,理解集合中元素的互异性;2.理解集合之间包含和相等的含义,能识别给定集合的子集,了解在具体情境中全集与空集的含义;3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集,理解在给定集合中一个子集的补集的含义,会求给定子集的补集;4.能使用韦恩(V enn)图表达集合间的关系与运算.三、【知识要点】1.集合的含义与表示(1)一般地,我们把研究对象统称为元素,把一些元素组成的总体叫集合,简称集.(2)集合中的元素的三个特征:确定性、互异性、无序性.(3)集合的表示方法有:描述法、列举法、区间法、图示法.(4)集合中元素与集合的关系分为属于与不属于两种,分别用“∈”或“∉”来表示.(5)常用的数集:自然数集N;正整数集N*(或N+);整数集Z;有理数集Q;实数集R.2.集合之间的关系(1)一般地,对于两个集合A,B.如果集合A的任何一个元素都是集合B的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作A⊆B;若A⊆B,且A≠B,,我们就说A是B的真子集.(2)不含任何元素的集合叫做空集,记作φ,它是任何一个集合的子集,是任何一个非空集合的真子集。

3.集合的基本运算(1)并集:A∪B={x|x∈A或x∈B};(2)交集:A∩B={x|x∈A且x∈B};(3)补集:∁U A=.4.集合的运算性质(1)A∩B=A⇔A⊆B,A∩A=A,A∩∅=∅;(2)A∪B=A⇔A⊇B,A∪A=A,A∪∅=A;(3)A⊆B,B⊆C,则A⊆C;(4)∁U(A∩B)=∁U A∪∁U B,∁U(A∪B)=∁U A∩∁U B,A∩∁U A=∅,A∪∁U A=U,∁U(∁U A)=A;(5)A⊆B,B⊆A,则A=B.四.题型方法规律总结(一)集合的含义与表示例1.已知集合,则中元素的个数为A.9 B.8 C.5 D.4【答案】A【解析】,当时,;当时,;当时,;所以共有9个,选A.练习1.给出下列四个关系式:(1);(2);(3);(4),其中正确的个数是()A.1 B.2 C.3 D.4【答案】B【解析】(1)R为实数集,为实数,所以正确;(2)Z、Q分别为两个集合,集合间不能用属于符号,所以错误;(3)空集中没有任何元素,所以错误;(4)空集为任何集合的子集,所以正确.故选B.练习2.若A={1,2},B={(x,y)|x∈A,y∈A},则集合B中元素的个数为()A.1 B.2 C.3 D.4【答案】D【解析】由题意得集合,所以集合B中共有4个元素.故选D.(二)集合中代表元易错点揭秘例2.已知集合A满足条件:若a∈A,则∈A,那么集合A中所有元素的乘积为() A.-1 B.1 C.0 D.±1【答案】B【解析】由题意,当时,,令代入,则,则,则,即,所以,故选B.练习1.若集合A={x|mx2+2x+m=0,m∈R}中有且只有一个元素,则m的取值集合是A.{1}B.{}C.{0,1}D.{,0,1}【答案】D【解析】时,,满足题意;时,,.综上的取值集合是.练习2.用列举法表示集合=________.【答案】{-11,-6,-3,-2,0,1,4,9}.【解析】,为的因数则则答案为练习3.集合{|y y ∈N =用列举法可表示为__________.【答案】{}1,2,4,8 【解析】∵,1x x ∈≠N ,∴当0x =时, 8y =-,不符合题意, 当2x =时, 8y =,符合题意, 当3x =时, 4y =,符合题意, 当4x =时, 83y =,不符合题意, 当5x =时, 2y =,符合题意,当6x =时, 85y =,不符合题意, 当7x =时, 86y =,不符合题意,当8x =时, 87y =,不符合题意,当9x =时, 1y =,符合题意,则y =,不符合题意.∴用列举法可表示为{}1,2,4,8. (三)集合的基本关系 例3.已知集合,,若,则实数的取值集合为( )A .B .C .D .【答案】D【解析】∵集合M={x|x 2=1}={﹣1,1},N={x|ax=1},N ⊆M ,∴当a=0时,N=∅,成立; 当a≠0时,N={}, ∵N ⊆M ,∴或=1.解得a=﹣1或a=1,综上,实数a 的取值集合为{1,﹣1,0}.故选:D.练习1.已知集合,,则的真子集的个数为()A.3 B.4 C.7 D.8【答案】C【解析】由题意得,,∴,∴的真子集的个数为个.故选C.练习2.若函数在区间内没有最值,则的取值范围是()A.B.C.D.【答案】B【解析】函数的单调区间为,由,得.∵函数在区间内没有最值,∴函数在区间内单调,∴,∴,解得.由,得.当时,得;当时,得,又,故.综上得的取值范围是.故选B.练习3.已知集合,,若,则实数的取值范围是( ) A.B.C.D.【答案】A【解析】由已知得,由,则,又,所以.故选A.(四)子集中常见错误例4. 已知集合,,若,则实数的取值范围是( )A.B.C.D.【答案】C【解析】当集合时,,解得,此时满足;当,即时,应有:,据此可得:,则,综上可得:实数的取值范围是.本题选择C选项.练习1.Z(M)表示集合M的子集个数,设集合A=,B=,则= A.3 B.4 C.5 D.7【答案】B【解析】;B=∴;集合的子集有:∴Z(A∩B)=4.故选:B练习2.设集合,不等式的解集为B.(Ⅰ)当时,求集合A,B;(Ⅱ)当,求实数的取值范围.【答案】(Ⅰ),;(Ⅱ)或.【解析】(Ⅰ)当时,,.(Ⅱ)①若,即时,可得, 满足,故符合题意.②当时,由,可得,且等号不能同时成立, 解得. 综上可得或.∴实数的取值范围是.练习3.设全集U=R ,集合A={x|1≤x <4},B={x|2a≤x <3-a}.(1)若a=-2,求B∩A ,B∩(∁U A);(2)若A ∪B=A ,求实数a 的取值范围. 【答案】(1)B ∩A =[1,4),B ∩(∁U A )= [-4,1)∪[4,5);(2) .【解析】(1)∵A ={x |1≤x <4},∴∁U A ={x |x <1或x ≥4},∵B ={x |2a ≤x <3-a },∴a =-2时,B ={-4≤x <5},所以B ∩A =[1,4), B ∩(∁U A )={x |-4≤x <1或4≤x <5}=[-4,1)∪[4,5). (2)A ∪B =A ⇔B ⊆A , ①B =∅时,则有2a ≥3-a ,∴a ≥1, ②B ≠∅时,则有,∴,综上所述,所求a 的取值范围为.(五)集合的基本运算 例5.已知,,则()R AB ð中的元素个数为( )A .1B .2C .6D .8【答案】B【解析】解:{1x x =<,或3}x ≥,,,的元素个数为2个.故选:B .练习1.已知集合,,若A B A ⋂=,则实数a 的取值范围是( )A .(],3-∞-B .(),3-∞-C .(],0-∞D .[)3,+∞ 【答案】A【解析】由已知得[]3,3A =-,由A B A ⋂=,则A B ⊆,又[),B a =+∞,所以3a ≤-.故选A.练习2.集合,,若,则的取值范围是( )A .B .C .D .【答案】B 【解析】根据题意,可得,,要使,则,故选B.练习3.设全集是实数集,,则图中阴影部分所表示的集合是________.【答案】【解析】∵,∴, ∴.(六)集合的应用例6.学校先举办了一次田径运动会,某班共有8名同学参赛,又举办了一次球类运动会,这个班有12名同学参赛,两次运动会都参赛的有3人.两次运动会中,这个班总共的参赛人数为( ) A .20 B .17C .14D .23【答案】B【解析】因为参加田径运动会的有8名同学,参加球类运动会的有12名同学,两次运动会都参加的有3人,所以两次运动会中,这个班总共的参赛人数为.故选B练习1.已知集合.给定一个函数,定义集合若对任意的成立,则称该函数具有性质“”(I)具有性质“”的一个一次函数的解析式可以是_____;(Ⅱ)给出下列函数:①;②;③,其中具有性质“”的函数的序号是____.(写出所有正确答案的序号)【答案】(答案不唯一)①②【解析】(I)对于解析式:,因为,,…符合。

导数与微积分

导数与微积分

导数与微积分导函数导函数的概念涉及:的对于区间 , 上任意点处都可导,则在各点的导数也随x的变化而变化,因而也是自变量x的函数,该函数被称为的导函数,记作 ;一、基本函数的导函数C'=0C为常数x^n'=nx^n-1 n∈Qsinx'=cosxcosx'=-sinxe^x'=e^xa^x'=a^xlnaloga,x' = 1/xlnalnx'= 1/x二、和差积商函数的导函数fx + gx' = f'x + g'xfx - gx' = f'x - g'xfxgx' = f'xgx + fxg'xfx/gx' = f'xgx - fxg'x / gx^2三、复合函数的导函数设 y=ut ,t=vx,则 y'x = u'tv'x = u'vx v'x例:y = t^2 ,t = sinx ,则y'x = 2t cosx = 2sinxcosx = sin2x一般定义设函数在点的某个邻域内有定义,当自变量在处取得增量Δ点仍在该邻域内时,相应地函数取得增量Δ;如果Δ与Δ之比当Δ时的极限存在,则称函数在点处可导,并称这个极限为函数在点处的导数,记为,即,也可记作,或;邻域数学分析的定义以a为中心的任何开区间称为点a的邻域,记作Ua设δ是任一正数,则在开区间a-δ,a+δ就是点a的一个邻域,这个邻域称为点a的δ邻域,记作Ua,δ,即Ua,δ={x|a-δ<x<a+δ};点a称为这邻域的中心,δ称为这邻域的半径;a的δ邻域去掉中心a后,称为点a的去心δ邻域,有时把开区间a-δ,a称为a的左δ邻域,把开区间a,a+δ称为a的右δ邻域;拓扑学的定义设A是拓扑空间X,τ的一个子集,点x∈A;如果存在集合U,满足①U是开集,即U∈τ,②点x∈U,③U是A的子集,则称点x是A的一个内点,并称A是点x的一个邻域;若A是开闭集,则称为开闭邻域;可导设y=fx是一个单变量函数, 如果y在x=x0处存在导数y'=f'x,则称y在x=x0处可导;如果一个函数在x0处可导,那么它一定在x0处是连续函数若将一点扩展成函数fx在其定义域包含的某开区间I内每一个点,那么函数fx在开区间内可导,这时对于内每一个确定的值,都对应着fx的一个确定的导数,如此一来每一个导数就构成了一个新的函数,这个函数称作原函数fx的导函数,记作:y'、或者;原函数已知函数fx是一个定义在某区间的函数,如果存在函数Fx,使得在该区间内的任一点都有dFx=fxdx,则在该区间内就称函数Fx为函数fx的原函数;例:sinx是cosx的原函数;关于原函数的问题函数fx满足什么条件是,才保证其原函数一定存在呢这个问题我们以后来解决;若其存在原函数,那么原函数一共有多少个呢我们可以明显的看出来:若函数Fx为函数fx的原函数,即:F'x=fx,则函数族Fx+CC为任一个常数中的任一个函数一定是fx的原函数,故:若函数fx有原函数,那末其原函数为无穷多个.如果定义在a,b上的函数Fx和fx满足条件:对每一x∈a,b,F′x=fx则称Fx为fx的一个原函数;例如,x3是3x2的一个原函数,易知,x3+1和x3+2也都是3x2的原函数;因此,一个函数如果有一个原函数,就有许许多多原函数,原函数概念是为解决求导和微分的逆运算而提出来的,例如:已知作直线运动的物体在任一时刻t的速度为v=vt,要求它的运动规律 ,就是求v=vt的原函数;原函数的存在问题是微积分学的基本理论问题,当fx为连续函数时,其原函数一定存在;几何意义和力学意义设fx在a,b上连续,则由曲线y=fx,x轴及直线x=a,x=x围成的曲边梯形的面积函数指代数和——x轴上方取正号,下方取负号是fx的一个原函数.若x为时间变量,fx为直线运动的物体的速度函数,则fx的原函数就是路程函数.导函数的定义表达式为:值得注意的是,导数是一个数,是指函数fx在点x0处导函数的函数值;但通常也可以说导函数为导数,其区别仅在于一个点还是连续的点;几何意义如右图所示,设P0为曲线上的一个定点,P为曲线上的一个动点;当P沿曲线逐渐趋向于点P0时,并且割线PP0的极限位置P0T存在,则称P0T为曲线在P0处的切线;若曲线为一函数y = fx的图像,那么割线PP0的斜率为:当P0处的切线P0T,即PP0的极限位置存在时,此时,,则P0T的斜率tanα为:上式与一般定义中的导数定义是完全相同,则f'x0 = tanα,故导数的几何意义即曲线y = fx在点P0x0,fx0处切线的斜率;函数可导的条件如果一个函数的定义域为全体实数,即函数在上都有定义,那么该函数是不是在定义域上处处可导呢答案是否定的;函数在定义域中一点可导需要一定的条件是:函数在该点的左右两侧导数都存在且相等;这实际上是按照极限存在的一个充要条件极限存在,它的左右极限存在且相等推导而来:上式中,后两个式子可以定义为函数在x0处的左右导数:极值extremum∶数学函数的一种稳定值,即一个极大值或一个极小值,极值点只能在函数不可导的点或导数为零的点中取得;extreme value∶在给定的时期内,或该时期的一定月份或季节内观测到的气候要素的最高值或最低值;如果这个时期是整个有观测资料的时期,这个极值就是绝对极值极限在高等数学中,极限是一个重要的概念;极限可分为数列极限和函数极限,分别定义如下;首先介绍刘徽的"割圆术",设有一半径为1的圆,在只知道直边形的面积计算方法的情况下,要计算其面积;为此,他先作圆的内接正六边形,其面积记为A1,再作内接正十二边形,其面积记为A2,内接二十四边形的面积记为A3,如此将边数加倍,当n无限增大时,An无限接近于圆面积,他计算到3072=62的9次方边形,利用不等式An+1<A<An+2An+1-Ann=1,2,3....得到圆周率=3927/1250约等于数列极限:定义:设|Xn|为一数列,如果存在常数a对于任意给定的正数ε不论它多么小,总存在正整数N,使得当n>N时,不等式|Xn - a|<ε都成立,那么就称常数a是数列|Xn|的极限,或称数列|Xn|收敛于a;记为lim Xn = a 或Xn→an→∞数列极限的性质:1.唯一性:若数列的极限存在,则极限值是唯一的;2.有界性:如果一个数列收敛有极限,那么这个数列有界;但是,如果一个数列有界,这个数列未必收敛;3.保号性:如果一个数列{xn}收敛于a,且a>0或a<0,那么存在正整数N,当n>N时,都有xn>0或xn<0;4.改变数列的有限项,不改变数列的极限;几个常用数列的极限:an=c 常数列极限为can=1/n 极限为0an=x^n 绝对值x小于1 极限为0函数极限的专业定义:设函数fx在点x;的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε无论它多么小,总存在正数δ ,使得当x满足不等式0<|x-x;|<δ时,对应的函数值fx都满足不等式:|fx-A|<ε那么常数A就叫做函数fx当x→x;时的极限;函数极限的通俗定义:1、设函数y=fx在a,+∞内有定义,如果当x→+∞时,函数fx无限接近一个确定的常数A,则称A为当x趋于+∞时函数fx的极限;记作lim fx=A ,x→+∞;2、设函数y=fx在点a左右近旁都有定义,当x无限趋近a时记作x→a,函数值无限接近一个确定的常数A,则称A为当x无限趋近a时函数fx的极限;记作lim fx=A ,x→a;函数的左右极限:1:如果当x从点x=x0的左侧即x〈x0无限趋近于x0时,函数fx无限趋近于常数a,就说a是函数fx在点x0处的左极限,记作x→x0-limfx=a.2:如果当x从点x=x0右侧即x>x0无限趋近于点x0时,函数fx无限趋近于常数a,就说a是函数fx在点x0处的右极限,记作x→x0+limfx=a.注:若一个函数在x0上的左右极限不同则此函数在x0上不存在极限注:一个函数是否在x0处存在极限,与它在x=x0处是否有定义无关,只要求y=fx在x0近旁有定义即可;函数极限的性质:极限的运算法则或称有关公式:limfx+gx=limfx+limgxlimfx-gx=limfx-limgxlimfxgx=limfxlimgxlimfx/gx=limfx/limgx limgx不等于0limfx^n=limfx^n以上limfx limgx都存在时才成立lim1+1/x^x =ex→∞无穷大与无穷小:一个数列极限无限趋近于0,它就是一个无穷小数列极限;无穷大数列和无穷小数列成倒数;两个重要极限:1、lim sinx/x =1 ,x→02、lim 1 + 1/x^x =e ,x→∞ e≈...,无理数====================================================================== ==举两个例子说明一下一、……=1以下一段不作证明,只助理解——原因:小数的加法的第一步就是对齐数位,即要知道具体哪一位加哪一位才可操作,下文中……的加法使用小数点与小数点对齐并不可以保证以上标准,所以对于无限小数并不能做加法;既然不可做加法,就无乘法可言了;谁都知道1/3=……,而两边同时乘以3就得到1=……,可就是看着别扭,因为左边是一个“有限”的数,右边是“无限”的数;10×……—1×……=9=9×……∴……=1二、“无理数”算是什么数我们知道,形如根号2这样的数是不可能表示为两个整数比值的样子的,它的每一位都只有在不停计算之后才能确定,且无穷无尽,这种没完没了的数,大大违背人们的思维习惯;结合上面的一些困难,人们迫切需要一种思想方法,来界定和研究这种“没完没了”的数,这就产生了数列极限的思想;类似的根源还在物理中实际上,从科学发展的历程来看,哲学才是真正的发展动力,但物理起到了无比推动作用,比如瞬时速度的问题;我们知道速度可以用位移差与时间差的比值表示,若时间差趋于零,则此比值就是某时刻的瞬时速度,这就产生了一个问题:趋于无限小的时间差与位移差求比值,就是0÷0,这有意义吗这个意义是指“分析”意义,因为几何意义颇为直观,就是该点切线斜率这也迫使人们去为此开发出合乎理性的解释,极限的思想呼之欲出;真正现代意义上的极限定义,一般认为是由魏尔斯特拉斯给出的,他当时是一位中学数学教师,这对我们今天中学教师界而言,不能不说是意味深长的;几个常用数列的极限an=c 常数列极限为can=1/n 极限为0an=x^n 绝对值x小于1 极限为0定积分定积分的几何意义众所周知,微积分的两大部分是微分与积分;微分实际上是求一个已知函数的导数,而积分是已知一个函数的导数,求原函数;所以,微分与积分互为逆运算;积分的分类实际上,积分还可以分为两部分;第一种,不定积分,也就是已知导数求原函数,而若Fx的导数是fx,那么Fx+CC是常数的导数也是fx,也就是说,把fx积分,不一定能得到Fx,因为Fx+C的导数也是fx,C是任意常数,所以fx积分的结果有无数个,是不确定的,我们一律用Fx+C代替,这就称为不定积分;这也就是说它是一组函数,而不是有限个;第二种,定积分定积分就是求函数FX在区间A,B中图线下包围的面积;即 y=0 x=a x=b y=FX所包围的面积;这个图形称为曲边梯形,特例是曲边梯形;定积分的定义:设一元函数y=fx ,在区间a,b内有定义;将区间a,b分成n个小区间 a,x0 x0,x1x1,x2 .....xi,b ;设△xi=xi-xi-1,取区间△xi中曲线上任意一点记做fξi,做和式:和式若记λ为这些小区间中的最长者;当λ→ 0时,若此和式的极限存在,则称这个和式是函数fx 在区间a,b上的定积分;记做:∫ _a^b fxdxa在∫下方,b在∫上方其中称a为积分下限,b为积分上限, fx 为被积函数,fxdx 为被积式,∫为积分号;之所以称其为定积分,是因为它积分后得出的值是确定的,是一个数, 而不是一个函数;微分一元微分定义:设函数y = fx在x.的邻域内有定义,x0及x0 + Δx在此区间内;如果函数的增量Δy = fx0 + Δx fx0可表示为Δy = AΔx + oΔx其中A是不依赖于Δx 的常数,而oΔx0是比Δx高阶的无穷小,那么称函数fx在点x0是可微的,且AΔx 称作函数在点x0相应于自变量增量Δx的微分,记作dy,即dy = AΔx;通常把自变量x的增量Δx称为自变量的微分,记作dx,即dx = Δx;于是函数y = fx的微分又可记作dy = f'xdx;函数的微分与自变量的微分之商等于该函数的导数;因此,导数也叫做微商;当自变量X改变为X+△X时,相应地函数值由fX改变为fX+△X,如果存在一个与△X无关的常数A,使fX+△X-fX和A△X之差关于△X→0是高阶无穷小量,则称A△X是fX在X的微分,记为dy,并称fX在X可微;可导不一定可微,可微一定可导,这时A=f′X;再记A△X=dy,则dy=f′XdX;例如:dsinX=cosXdX;几何意义:设Δx是曲线y = fx上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量;当|Δx|很小时,|Δy-dy|比|Δy|要小得多高阶无穷小,因此在点M附近,我们可以用切线段来近似代替曲线段;多元微分同理,当自变量为多个时,可得出多元微分得定义;运算法则:dy=f'xdxdu+v=du+dvdu-v=du-dvduv=duv+dvudu/v=duv-dvu/v^2黎曼积分定积分的正式名称是黎曼积分,详见黎曼积分;用自己的话来说,就是把直角坐标系上的函数的图象用平行于y轴的直线把其分割成无数个矩形,然后把某个区间a,b上的矩形累加起来,所得到的就是这个函数的图象在区间a,b的面积;实际上,定积分的上下限就是区间的两个端点a、b;黎曼积分如果函数fX在闭区间a,b上定义,而P,ζ是这个闭区间的一个带点分割,则和σf;p,ζ:=Σ fζiΔXi叫做函数f在区间a,b上对应于带点分割P,ζ的积分和,其中ΔXi=Xi-Xi-1 存在这样一个实数I,如果对于任何ε>0可以找到一个δ>0,使对区间a,b的任何带点分割P,ζ,只要分化P的参数λP<δ,就有|I-σf;p,ζ|<ε,则称函数fX在闭区间a,b上黎曼可积,而I就成为函数fX在闭区间a,b上的黎曼积分;我们可以看到,定积分的本质是把图象无限细分,再累加起来,而积分的本质是求一个函数的原函数;它们看起来没有任何的联系,那么为什么定积分写成积分的形式呢微积分基本定理定积分与积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系;把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分;这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的内容是:若F'x=fx那么∫ _a^bfx dx = Fa-Fb牛顿-莱布尼兹公式用文字表述,就是说一个定积分式的值,就是上限在原函数的值与下限在原函数的值的差;正因为这个理论,揭示了积分与黎曼积分本质的联系,可见其在微积分学以至更高等的数学上的重要地位,因此,牛顿-莱布尼兹公式也被称作微积分基本定理;牛顿-莱布尼茨公式,又称为微积分基本定理,其意义就在于把不定积分与定积分联系了起来,也让定积分的运算有了一个完善、令人满意的方法;从几何上看,它在切线和面积两个看似很不相关的概念之间建立起了联系;下面就是该公式的证明全过程:我们知道,对黎曼Riemann可积函数fx于区间a,b上的定积分表达为:b上限∫a下限fxdx现在我们把积分区间的上限作为一个变量,这样我们就定义了一个新的函数:Φx= x上限∫a下限fxdx但是这里x出现了两种意义,一是表示积分上限,二是表示被积函数的自变量,但定积分中被积函数的自变量取一个定值是没意义的;虽然这种写法是可以的,但习惯上常把被积函数的自变量改成别的字母如t,这样意义就非常清楚了:Φx= x上限∫a下限ftdt接下来我们就来研究这个函数Φx的性质:1.定义函数Φx= x上限∫a下限ftdt,则Φx连续;当fx连续时,有Φ’x=fx;证明:让函数Φx获得增量Δx,则对应的函数增量ΔΦ=Φx+Δx-Φx=x+Δx上限∫a下限ftdt-x上限∫a下限ftdt,利用区间可加性,x+Δx上限∫a下限ftdt-x上限∫a下限ftdt=x+Δx上限∫x下限ftdt若m和M分别是fx在区间a,b上的最小值和最大值,利用定积分第一中值定理,存在m,M中的实数η,使得ΔΦ=x+Δx上限∫x下限ftdt=ηΔx;进一步,当fx连续时存在x与x+Δx之间的常数ξ,使得η=fξ;于是当Δx趋向于0时,ΔΦ趋向于0,即Φx连续;若fx连续,那么当Δx趋向于0时,ξ趋向于x,fξ趋向于fx,故有lim Δx→0 ΔΦ/Δx=fx,从而得出Φ’x=fx;2. 若fx在a,b上连续,且Fx是fx在a,b上的一个原函数,那么b上限∫a 下限fxdx=Fb-Fa;证明:我们已证得Φ’x=fx,故Φx+C=Fx;注意到Φa=0积分区间变为a,a,故面积为0,所以Fa=C,于是有Φx=Fx-Fa,当x=b时,Φb=Fb-Fa,这就得到了牛顿-莱布尼茨公式;。

2020年高考数学一轮总复习集合函数导数专题18含参数导数题型规律总结(2)文(含解析)

2020年高考数学一轮总复习集合函数导数专题18含参数导数题型规律总结(2)文(含解析)

专题18含参数导数题型规律总结(2)一、本专题要特别小心:1.图形考虑不周陷阱;2.思维定式陷阱(与等式有关的构造函数);3. 已知条件中含有导函数值而无从下手;4.恒成立中的最值陷阱5. 含有导函数的式子中的和差构造陷阱6.与三角函数有关的构造函数7.忽视分母造成解集不完备8.与指数函数对数函数有关的构造二.【知识点】1.函数的极值(1)若可导函数f(x)在x=x0处导数值为0,且在x=x0处的左边f′(x0)>0,在x=x0处的右边f′(x0)<0,则f(x)在x=x0处有极大值.(2)若可导函数f(x)在x=x0处导数值为0,且在x=x0处的左边f′(x0)<0,在x=x0处的右边f′(x0)>0,则f(x)在x=x0处有极小值.(3)可导函数的极值点导数为零,但导数为零的点不一定是极值点,如y=x3在x=0处导数值为零,但x=0不是极值点.2.函数的最值(1)连续函数f(x)在闭区间[a,b]上必有最大值与最小值.(2)最值的求法:先求f(x)在(a,b)上的极值,再将各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.3.极值与最值的区别和联系(1)函数的极值表示函数在一点附近的情况,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的整体情况,是函数在整个区间上的函数值的比较.(2)函数的极值不一定是最值,须与端点函数值作比较方可确定是否为最值.(3)如果连续函数在区间(a,b)内只有一个极值(单峰函数),则极大值即是[a,b]上的最大值,极小值即是[a,b]上的最小值.三.【题型方法总结】(一)多次求导例1. 设f″(x)是的导数.某同学经过探究发现,任意一个三次函数()都有对称中心,其中满足.已知,则_________.【答案】4036.【解析】根据题意,对于函数,有f ′(x )=x 2﹣x +3,f ″(x )=2x ﹣1.由f ″(x )=0,即2x ﹣1=0,即x =,又由f ()=2, 即函数的对称中心为(,2),则有f (x )+f (1﹣x )=4, 则==4×1009=4036; 故答案为:4036.练习1. 已知函数.(Ⅰ)若1是函数()f x 的一个极值点,求()f x 的单调递减区间; (Ⅱ)在(Ⅰ)的条件下证明:.【答案】(Ⅰ)()0,1;(Ⅱ)证明见解析. 【解析】(Ⅰ)由题意,函数,则,由1是函数()f x 的一个极值点,所以,解得0a =,则,令()0f x '<,得(0,1)x ∈所以()f x 的单调递减区间为(0,1) . (Ⅱ)在(Ⅰ)的条件下要证,即证,令,则,令,则,故函数()h x 在(0,)+∞为单调递增, 又,所以01(,)2x e ∃∈,使得0()0h x =,即001x x e=,则()g x 在0(0,)x 递减,在0(,)x +∞上递增, 故,故.练习2. 已知函数(1)讨论函数在上的单调性; (2)若,不等式对恒成立,求取值范围.【答案】(1)的单调递减区间为,单调递增区间为 (2)【解析】(1)的定义域为,,若,因为,所以,所以,所以在上单调递减,若,令,得,当时,; 当时,,所以的单调递减区间为,单调递增区间为(2),即对恒成立, 令,则,令,得,当时,; 当时,,所以的最小值为, 令,则,令,得,当时,在上单调递增;当时,在上单调递减,所以当时,的最小值为;当时,的最小值为故的取值范围是(二)由导函数构造原函数例2. 设是定义在上的函数,其导函数为,若,则不等式(其中为自然对数的底数)的解集为__________.【答案】.【分析】由,构造新函数,求导,利用已知的不等式,可以判断出函数的单调性,从而利用单调性求出不等式的解集.【解析】,构造新函数,且,不等式变为,,由已知,所以是上的减函数,因为,所以,因此不等式(其中为自然对数的底数)的解集为.练习1.已知定义在上的函数满足,其中是函数的导函数,若,则实数的取值范围为___________.【答案】【解析】令,则,∵,∴,函数在递减,∴,∴,,∴,即,故,解得:,∴.故答案为:练习2. 已知定义在R上的可导函数f (x)的导函数为,满足<f (x),且f (x+2)为偶函数,f (4)=1,则不等式f (x)<e x的解集为________.【答案】【解析】令,则,∵f′(x)<f(x),∴g′(x)<0.∴g(x)在R上单调递减.∵函数f(x+2)是偶函数,∴函数f(﹣x+2)=f(x+2),∴函数关于x=2对称,∴f(0)=f(4)=1,原不等式等价为g(x)<1,∵g(0)1.∴g(x)<1⇔g(x)<g(0),∵g(x)在R上单调递减,∴x>0.∴不等式f(x)<e x的解集为(0,+∞).故答案为:(0,+∞).练习3.已知定义在的函数的导函数,且满足,,则的解集为__________。

导数与函数性质

导数与函数性质

导数与函数性质导数是微积分中的重要概念,用来描述函数在某一点处的变化率。

它有着许多重要的性质,本文将会逐一介绍这些性质,并给出相应的数学证明。

首先,我们来介绍导数的定义。

给定一个函数f(x),在x点处的导数定义为:f'(x) = lim(h->0) [f(x+h) - f(x)] / h这个定义表明,函数在某点处的导数等于其在该点的切线斜率。

根据导数定义,我们可以引出导数的性质:1. 导数存在性:只有在某点附近函数光滑并且足够连续时,函数的导数才存在。

2. 导数的唯一性:同一个函数在某一点处的导数是唯一的,即使函数在其他点处取不同的值。

3. 常数函数的导数性质:对于常数函数f(x) = c,其中c为常数,其导数f'(x) = 0。

4. 幂函数的导数性质:对于幂函数f(x) = x^n,其中n为整数,其导数f'(x) = nx^(n-1)。

5. 和差法则:对于函数f(x)和g(x)的和f(x) ± g(x),其导数等于两个函数的导数之和,即(f±g)'(x) = f'(x) ± g'(x)。

6. 乘法法则:对于函数f(x)和g(x)的乘积f(x) * g(x),其导数等于第一函数的导数乘以第二函数再加上第一函数乘以第二函数的导数,即(fg)'(x) = f'(x)g(x) + f(x)g'(x)。

7. 商法则:对于函数f(x)和g(x)的商f(x) / g(x),其导数等于第一函数的导数乘以第二函数再减去第一函数乘以第二函数的导数再除以第二函数的平方,即(f/g)'(x) = (f'(x)g(x) - f(x)g'(x)) / [g(x)]^2。

以上性质是导数的基本性质,我们可以通过数学证明来辅助理解这些性质。

下面,我们以乘法法则为例进行证明。

证明:对于函数f(x)和g(x)的乘积f(x) * g(x),我们需要证明(fg)'(x) = f'(x)g(x) + f(x)g'(x)。

函数的导数公式的推导过程

函数的导数公式的推导过程

函数的导数公式的推导过程1.函数的导数定义:设函数y=f(x),当自变量x在其中一点a处有一个增量Δx时,对应的函数值的增量Δy=f(a+Δx)-f(a)。

如果Δx趋近于0,那么当Δx 足够小时,Δy与Δx之比的极限存在,称为函数f(x)在x=a处的导数,记作f'(a)或dy/dx,_(x=a)。

即:f'(a) = lim(Δx->0) [f(a+Δx)-f(a)]/Δx2.使用函数的导数定义,可以推导出几个基本的导数公式:(1)若y=c(常数),则f'(x)=0,即常数的导数为0;(2) 若y=x^n(n为正整数),则f'(x)=nx^(n-1),即幂函数导数公式;(3)若y=e^x(自然对数e的x次幂),则f'(x)=e^x,即指数函数导数公式;(4) 若y=ln(x)(以自然对数为底的对数函数),则f'(x)=1/x,即对数函数导数公式;(5) 若y=sin(x),则f'(x)=cos(x),即正弦函数导数公式;(6) 若y=cos(x),则f'(x)=-sin(x),即余弦函数导数公式;(7) 若y=tan(x),则f'(x)=sec^2(x),即正切函数导数公式。

3.求和、差、积、商的导数公式:(1)幂函数求和差的导数公式:若y=u+v,则f'(x)=u'(x)+v'(x);若y=u-v,则f'(x)=u'(x)-v'(x)。

(2)幂函数乘积的导数公式:若y=u*v,则f'(x)=u'(x)*v(x)+u(x)*v'(x)。

(3)幂函数商的导数公式:若y=u/v,则f'(x)=[u'(x)*v(x)-u(x)*v'(x)]/v^2(x)。

4.一则实例:对二次函数进行导数。

设函数y=ax^2+bx+c(a、b、c为常数),使用函数的导数定义,有:f'(x) = lim(Δx->0) [(a(x+Δx)^2+b(x+Δx)+c-(ax^2+bx+c))/Δx] = lim(Δx->0) [(2axΔx+a(Δx)^2+bΔx)/Δx]= lim(Δx->0) [2ax+b+aΔx]= 2ax+b因此,二次函数的导数为2ax+b。

全导数知识点总结高中

全导数知识点总结高中

全导数知识点总结高中一、基本概念全导数是微积分中的一个重要概念,它是一种特殊的导数的概念。

全导数是指一个函数对于其自变量的所有可能的变化而言,所得到的导数的集合。

全导数可以描述函数在各个方向上的变化情况,对于研究函数的极值、变化率等问题具有重要的意义。

二、偏导数1. 定义偏导数是多元函数的导数的一种特殊形式,它是指多元函数对其中一个自变量的导数。

如果函数z=f(x,y)对自变量x求导,得到的导数就是偏导数。

偏导数通常用∂表示,例如∂f/∂x表示对x的偏导数。

2. 计算方法对于二元函数,偏导数的计算方法是将除了要求导的变量外的其他自变量看作常数,然后按照一元函数的求导方法进行求导。

例如,对于函数z=f(x,y),对x的偏导数可以通过将y看作常数,然后对x进行求导得到。

3. 几何意义偏导数的几何意义是函数在某一方向上的变化率,也可以理解为函数在某一坐标轴上的斜率。

偏导数可以描述函数在某一方向上的变化趋势,对于研究函数的极值、方向导数等问题具有重要的作用。

三、全微分1. 定义全微分是多元函数的微分的一种特殊形式,它是指一个函数对于所有自变量的微分的集合。

全微分可以描述函数在各个方向上的变化情况,对于研究函数的极值、变化率等问题具有重要的意义。

2. 计算方法对于多元函数z=f(x,y),它的全微分可以表示为dz=∂f/∂x*dx+∂f/∂y*dy。

在计算全微分时,需要先对各个自变量分别求偏导数,然后将各个偏导数与相应的自变量进行相乘,并相加得到全微分。

3. 几何意义全微分的几何意义是函数在某一点的切线方程。

通过全微分可以得到函数在某一点的切线的斜率,从而可以描绘函数在该点的变化趋势。

四、全导数1. 定义全导数是一个函数对于其自变量的所有可能的变化而言,所得到的导数的集合。

全导数可以描述函数在各个方向上的变化情况,对于研究函数的极值、变化率等问题具有重要的意义。

2. 计算方法对于多元函数z=f(x,y),它的全导数可以表示为Df=∂f/∂x*dx+∂f/∂y*dy。

《集合、函数与导数》专题1,2(答案详解)

《集合、函数与导数》专题1,2(答案详解)

高二数学假期作业一.选择题(共16小题)1.若集合A={y|y=2x+2},B={x|﹣x2+x+2≥0},则()A.A⊆B B.A∪B=R C.A∩B={2}D.A∩B=∅2.已知集合A={x|0<x<2},B={x|x2<1},则A∪B=()A.(0,1) B.(﹣1,2)C.(﹣1,1)D.(﹣∞,﹣1]∪[2,+∞)3.已知集合M={x|3x﹣x2>0},N={x|x2﹣4x+3>0},则M∩N=()A.(0,1) B.(1,3) C.(0,3) D.(3,+∞)4.已知集合A={x|x2﹣x﹣12<0},B={x|y=log2(x+4)},则A∩B=()A.(﹣3,3)B.(﹣3,4)C.(0,3) D.(0,4)5.已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B=()A.{8,10} B.{8,12} C.{8,14} D.{8,10,14}6.已知集合,则A∩B=()A.[﹣1,3]B.(﹣1,3]C.(0,1]D.(0,3]7.已知全集为R,集合M={﹣1,1,2,4},N={x|x2﹣2x>3},则M∩(∁R N)=()A.{﹣1,1,2}B.{1,2}C.{4}D.{x|﹣1≤x≤2}8.已知集合M={(x,y)|y=f(x)},若对于任意实数对(x1,y1)∈M,存在(x2,y2)∈M,使x1x2+y1y2=0成立,则称集合M是“垂直对点集”,给出下列四个集合:①M={(x,y)|y=};②M={(x,y)|y=sinx+1};③={(x,y)|y=2x﹣2};④M={(x,y)|y=log2x}其中是“垂直对点集”的序号是()A.②③④B.①②④C.①③④D.①②③9.已知二次函数f(x)=ax2+bx(a,b∈R),满足f(1﹣x)=f(1+x),且在区间[﹣1,0]上的最大值为3,若函数g(x)=|f(x)|﹣mx有唯一零点,则实数m的取值范围是()A.[﹣2,0]B.[﹣2,0)∪[2,+∞)C.[﹣2,0)D.(﹣∞,0)∪[2,+∞)10.定义在R上的函数g(x)=e x+e﹣x+|x|,则满足g(2x﹣1)<g(3)的x的取值范围是()A.(﹣∞,2)B.(﹣2,2)C.(﹣1,2)D.(2,+∞)11.函数f(x)定义在实数集R上,f(2﹣x)=f(x),且当x≥1时f(x)=log2x,则有()A.f()<f(2)<f()B.f()<f(2)<f()C.f()<f()<f(2)D.f(2)<f()<f(12.已知函数f(x)=,则f(x)的值域是()A.[1,+∞)B.[0,+∞)C.(1,+∞)D.[0,1)∪(1,+∞)13.若函数y=f(x)的图象如图所示,则函数y=f(1﹣x)的图象大致为()A.B.C.D.14.函数y=的值域为()A.(﹣∞,﹣2]∪[﹣1,+∞)B.(﹣∞,﹣2)∪(﹣1,+∞)C.{y|y≠﹣1,y∈R}D.{y|y≠﹣2,y∈R}15.已知函数f(x)=设m>n≥﹣1,且f(m)=f(n),则m•f(m)的最小值为()A.4 B.2 C.D.216.若函数f(x)=(x2+x﹣2)(x2+ax+b)是偶函数,则f(x)的最小值为()A.B.C.﹣ D.﹣二.填空题(共8小题)17.已知集合A={0,1,2,3,4},B={m|m=2n,n∈A},M={x∈R|x>2},则集合B ∩∁R M=.18.设集合A={x|x2﹣x﹣6<0},B={x|﹣3≤x≤1},则A∪B=.19.设M是一个非空集合,#是它的一种运算,如果满足以下条件:(Ⅰ)对M中任意元素a,b,c都有(a#b)#c=a#(b#c);(Ⅱ)对M中任意两个元素a,b,满足a#b∈M.则称M对运算#封闭.下列集合对加法运算和乘法运算都封闭的为.①{﹣2,﹣1,1,2}②{1,﹣1,0}③Z④Q.20.设[x]表示不超过实数x的最大整数,例如:[4.3]=4,[﹣2.6]=﹣3,则点集{(x,y)|[x]2+[y]2=25}所覆盖的面积为.21.函数f(x)=﹣log2为奇函数,则实数a=.22.已知g(x)=mx+2,f(x)=x2﹣2x,若对∀x1∈[﹣1,2].∃x0∈[﹣1,2],有g(x1)=f(x0)成立,则m的取值范围是.23.已知f(x)是定义在R上的偶函数,且f(x+2)=f(x)对x∈R恒成立,当x∈[0,1]时,f(x)=2x,则f(﹣log224)=.24.函数f(x)=ax2+(b﹣2a)x﹣2b为偶函数,且在(0,+∞)单调递减,则f(x)>0的解集为.三.解答题(共6小题)25.记函数f(x)=lg(x2﹣x﹣2)的定义域为集合A,函数g(x)=的定义域为集合B.(1)求①A∩B;②(∁R A)∪B;(2)若C={x|(x﹣m+1)(x﹣2m﹣1)<0},C⊆B,求实数m的取值范围.26.已知集合A={y|y=,x∈R},B={x|y=lg(1﹣2x)}(1)求出集合A,集合B;(2)求(∁U B)∩A.27.已知集合A={x∈R|ax2﹣3x+2=0,a∈R}.(1)若A是空集,求a的取值范围;(2)若A中只有一个元素,求a的值,并把这个元素写出来.28.已知函数f(x)=9x﹣2a•3x+3:(1)若a=1,x∈[0,1]时,求f(x)的值域;(2)当x∈[﹣1,1]时,求f(x)的最小值h(a);(3)是否存在实数m、n,同时满足下列条件:①n>m>3;②当h(a)的定义域为[m,n]时,其值域为[m2,n2],若存在,求出m、n的值,若不存在,请说明理由.29.已知函数f(x)=4x﹣2x,实数s,t满足f(s)+f(t)=0,a=2s+2t,b=2s+t.(1)当函数f(x)的定义域为[﹣1,1]时,求f(x)的值域;(2)求函数关系式b=g(a),并求函数g(a)的定义域D;(3)在(2)的结论中,对任意x1∈D,都存在x2∈[﹣1,1],使得g(x1)=f(x2)+m成立,求实数m的取值范围.30.已知函数f(x)=.(1)判断函数f(x)的奇偶性,并证明;(2)若不等式f(x)>log9(2c﹣1)有解,求c的取值范围.参考答案与试题解析一.选择题(共16小题)1.(2017•楚雄州一模)若集合A={y|y=2x+2},B={x|﹣x2+x+2≥0},则()A.A⊆B B.A∪B=R C.A∩B={2}D.A∩B=∅【分析】y=2x+2>2,可得集合A=(2,+∞).由﹣x2+x+2≥0,化为x2﹣x﹣2≤0,解出可得B=[﹣1,2].再利用集合的运算性质即可得出.【解答】解:y=2x+2>2,∴集合A={y|y=2x+2}=(2,+∞).由﹣x2+x+2≥0,化为x2﹣x﹣2≤0,解得﹣1≤x≤2.∴B={x|﹣x2+x+2≥0}=[﹣1,2].∴A∩B=∅,故选:D.【点评】本题考查了集合的运算性质、不等式的解法、函数的性质,考查了推理能力与计算能力,属于中档题.2.(2017•唐山三模)已知集合A={x|0<x<2},B={x|x2<1},则A∪B=()A.(0,1) B.(﹣1,2)C.(﹣1,1)D.(﹣∞,﹣1]∪[2,+∞)【分析】根据题意,解x2<1可得集合B,由集合并集的定义计算可得答案.【解答】解:根据题意,集合A={x|0<x<2},B={x|x2<1}={x|﹣1<x<1},则A∪B={x|﹣1<x<2}=(﹣1,2);故选:B.【点评】本题考查集合的并集计算,关键是理解集合并集的定义.3.(2017•甘肃二模)已知集合M={x|3x﹣x2>0},N={x|x2﹣4x+3>0},则M∩N=()A.(0,1) B.(1,3) C.(0,3) D.(3,+∞)【分析】分别求出M与N中不等式的解集确定出M与N,找出两集合的交集即可.【解答】解:由M中不等式变形得:x(x﹣3)<0,解得:0<x<3,即M=(0,3),由N中不等式变形得:(x﹣1)(x﹣3)>0,解得:x<1或x>3,即N=(﹣∞,1)∪(3,+∞),则M∩N=(0,1),故选:A.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.4.(2017•龙门县校级模拟)已知集合A={x|x2﹣x﹣12<0},B={x|y=log2(x+4)},则A∩B=()A.(﹣3,3)B.(﹣3,4)C.(0,3) D.(0,4)【分析】求出A中不等式的解集确定出A,求出B中x的范围确定出B,找出A与B的交集即可.【解答】解:由A中不等式变形得:(x﹣4)(x+3)<0,解得:﹣3<x<4,即A=(﹣3,4),由B中y=log2(x+4),得到x+4>0,解得:x>﹣4,即B=(﹣4,+∞),则A∩B=(﹣3,4),故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.5.(2017•宜宾模拟)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B=()A.{8,10} B.{8,12} C.{8,14} D.{8,10,14}【分析】用列举法写出集合A,根据交集的定义写出A∩B.【解答】解:集合A={x|x=3n+2,n∈N}={2,5,8,11,14,…},B={6,8,10,12,14},则集合A∩B={8,14}.故选:C.【点评】本题考查了交集的定义与应用问题,是基础题.6.(2017•黔东南州一模)已知集合,则A∩B=()A.[﹣1,3]B.(﹣1,3]C.(0,1]D.(0,3]【分析】求出A与B中不等式的解集分别确定出A与B,找出两集合的交集即可.【解答】解:由A中不等式变形得:(x+1)(x﹣3)≤0,且x+1≠0,解得:﹣1<x≤3,即A=(﹣1,3],由B中不等式变形得:lgx≤1=lg10,解得:0<x≤10,即B=(0,10],则A∩B=(0,3],故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.7.(2017•咸阳二模)已知全集为R,集合M={﹣1,1,2,4},N={x|x2﹣2x>3},则M∩(∁R N)=()A.{﹣1,1,2}B.{1,2}C.{4}D.{x|﹣1≤x≤2}【分析】求出N中不等式的解集确定出N,根据全集R,求出N的补集,找出M与N 补集的交集即可.【解答】解:由N中不等式变形得:(x﹣3)(x+1)>0,解得:x<﹣1或x>3,即N=(﹣∞,﹣1)∪(3,+∞),∵全集为R,∴∁R N=[﹣1,3],∵M={﹣1,1,2,4},∴M∩(∁R N)={﹣1,1,2},故选:A.【点评】此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键.8.(2017•晋中二模)已知集合M={(x,y)|y=f(x)},若对于任意实数对(x1,y1)∈M,存在(x2,y2)∈M,使x1x2+y1y2=0成立,则称集合M是“垂直对点集”,给出下列四个集合:①M={(x,y)|y=};②M={(x,y)|y=sinx+1};③={(x,y)|y=2x﹣2};④M={(x,y)|y=log2x}其中是“垂直对点集”的序号是()A.②③④B.①②④C.①③④D.①②③【分析】利用数形结合的方法解决,根据题意,若集合M={(x,y)|y=f(x)}是“垂直对点集”,就是在函数图象上任取一点A,得直线OA,过原点与OA垂直的直线OB,若OB总与函数图象相交即可.【解答】解:由题意,若集合M={(x,y)|y=f(x)}满足:对于任意A(x1,y1)∈M,存在B(x2,y2)∈M,使得x1x2+y1y2=0成立,因此.所以,若M是“垂直对点集”,那么在M图象上任取一点A,过原点与直线OA垂直的直线OB总与函数图象相交于点B.对于①:M={(x,y)|y=},其图象是过一、二象限,且关于y轴对称,所以对于图象上的点A,在图象上存在点B,使得OB⊥OA,所以①符合题意;对于②:M={(x,y)|y=sinx+1},画出函数图象,在图象上任取一点A,连OA,过原点作直线OA的垂线OB,因为y=sinx+1的图象沿x轴向左向右无限延展,且与x轴相切,因此直线OB总会与y=sinx+1的图象相交.所以M={(x,y)|y=sinx+1}是“垂直对点集”,故②符合题意;对于③:M={(x,y)|y=2x﹣2},其图象过点(0,﹣1),且向右向上无限延展,向左向下无限延展,所以,据图可知,在图象上任取一点A,连OA,过原点作OA的垂线OB必与y=2x﹣2的图象相交,即一定存在点B,使得OB⊥OA成立,故M={(x,y)|y=2x﹣2}是“垂直对点集”.故③符合题意;对于④:M={x,y)|y=log2x},对于函数y=log2x,取点(1,0),与y轴垂直,所以没有对应点,切点T明显在x轴下方有对应点所以对切点T,不存在点M,使得OM⊥OT,所以M={(x,y)|y=log2x}不是“垂直对点集”;故④不符合题意.故选:D.【点评】本题考查“垂直对点集”的判断,是中档题,解题时要认真审题,注意函数性质的合理运用.9.(2017•天津学业考试)已知二次函数f(x)=ax2+bx(a,b∈R),满足f(1﹣x)=f (1+x),且在区间[﹣1,0]上的最大值为3,若函数g(x)=|f(x)|﹣mx有唯一零点,则实数m的取值范围是()A.[﹣2,0]B.[﹣2,0)∪[2,+∞)C.[﹣2,0)D.(﹣∞,0)∪[2,+∞)【分析】由题意可得直线x=1为函数f(x)的对称轴,即有﹣=1①,讨论a>0,a <0,得到f(x)在区间[﹣1,0]的单调性,可得最大值,a﹣b=3②,解方程组可得a,b的值.作出函数f(x)=|x2﹣2x|的图象和直线y=mx,再分类讨论,结合图象即可得到结论.【解答】解:二次函数f(x)=ax2+bx(a,b∈R),满足f(1﹣x)=f(1+x),可得直线x=1为函数f(x)的对称轴,即有﹣=1①由f(x)在区间[﹣1,0]上的最大值为3,若a>0时,则f(x)在[﹣1,0]递减,f(﹣1)取得最大值,且为a﹣b=3②若a<0时,f(x)在[﹣1,0]递增,f(0)取得最大值,且为0,不成立.由①②解得a=1,b=﹣2.则f(x)=x2﹣2x,若函数g(x)=|f(x)|﹣mx有唯一零点,即为方程|f(x)|=mx有唯一实根,作出y=|f(x)|的图象和直线y=mx的图象,当m=0,有y=0与y=|f(x)|有两个交点;当m>0时,由mx=2x﹣x2,即有x2+(m﹣2)x=0,由判别式(m﹣2)2﹣4×0=0,解得m=2.由图象可得m≥2时,y=|f(x)|的图象和直线y=mx的图象有两个交点;当0<m<2,y=|f(x)|的图象和直线y=mx的图象有,三个交点;当m<0时,且y=mx为曲线y=|f(x)|的切线时,只有一个交点,即为原点为切点,y=|f(x)|=x2﹣2x(x<0),可得mx=x2﹣2x即x2﹣(2+m)x=0只有相等的两实根,可得判别式(2+m)2﹣4×0=0,解得m=﹣2.由图象可得﹣2≤m<0时,y=|f(x)|的图象和直线y=mx的图象只有一个交点,即为原点.综上可得,所求m的范围为[﹣2,0).故选:C.【点评】本题考查二次函数的解析式的求法,注意运用函数的对称性和单调性,考查函数的零点,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题.10.(2017•成都四模)定义在R上的函数g(x)=e x+e﹣x+|x|,则满足g(2x﹣1)<g (3)的x的取值范围是()A.(﹣∞,2)B.(﹣2,2)C.(﹣1,2)D.(2,+∞)【分析】根据f(﹣x)=e x+e﹣x+|x|=f(x)得该函数是偶函数,再由函数的单调性以及对称性求出不等式的解集.【解答】解::∵函数f(﹣x)=e x+e﹣x+|x|=f(x),∴函数f(x)是偶函数,故函数f(x)的图象关于y轴对称.∵f(2x﹣1)<f(3),且函数在(0,+∞)上是增函数,故函数在(﹣∞,0)上是减函数,∴|2x﹣1|<3,解得﹣1<x<2,故选:C.【点评】本题考查了函数奇偶性和单调性的应用,利用奇(偶)函数图象的对称性,将函数值的大小对应的不等式进行转化,体现了转化思想,属于中档题.11.(2017•贵州模拟)函数f(x)定义在实数集R上,f(2﹣x)=f(x),且当x≥1时f(x)=log2x,则有()A.f()<f(2)<f()B.f()<f(2)<f()C.f()<f()<f(2)D.f(2)<f()<f(【分析】易判断f(x)在[1,+∞)上的单调性,根据f(2﹣x)=f(x)可把f(),f ()转化到区间[1,+∞)上,借助函数单调性可作出大小判断.【解答】解:∵x≥1时f(x)=log2x,∴f(x)在[1,+∞)上单调递增,∵f(2﹣x)=f(x),∴f()=f(2﹣)=f(),f()=f(2﹣)=f(),又1<<2,∴f()<f()<f(2),即f()<f()<f(2),故选C.【点评】本题考查函数的单调性及其应用,解决本题的关键是利用所给条件把问题转化到已知区间上利用函数性质解决问题.12.(2017•孝义市模拟)已知函数f(x)=,则f(x)的值域是()A.[1,+∞)B.[0,+∞)C.(1,+∞)D.[0,1)∪(1,+∞)【分析】求出x≤1时二次函数的值域,再由基本不等式求出x>1时函数的值域,取并集得答案.【解答】解:由f(x)=,知当x≤1时,x2≥0;当x>1时,x+﹣3≥2﹣3=4﹣3=1,当且仅当x=,即x=2时取“=”,取并集得:f(x)的值域是[0,+∞).故选:B.【点评】本题考查分段函数值域的求法,分段函数的值域分段求,然后取并集即可,是中档题.13.(2014•湖南二模)若函数y=f(x)的图象如图所示,则函数y=f(1﹣x)的图象大致为()A.B.C.D.【分析】先找到从函数y=f(x)到函数y=f(1﹣x)的平移变换规律是:先关于y轴对称得到y=f(﹣x),再整体向右平移1个单位;再画出对应的图象,即可求出结果.【解答】解:因为从函数y=f(x)到函数y=f(1﹣x)的平移变换规律是:先关于y轴对称得到y=f(﹣x),再整体向右平移1个单位即可得到.即图象变换规律是:①→②.故选:A.【点评】本题考查了函数的图象与图象的变换,培养学生画图的能力,属于基础题,但也是易错题.易错点在于左右平移,平移的是自变量本身,与系数无关.14.(2017春•龙泉驿区校级月考)函数y=的值域为()A.(﹣∞,﹣2]∪[﹣1,+∞)B.(﹣∞,﹣2)∪(﹣1,+∞)C.{y|y≠﹣1,y ∈R}D.{y|y≠﹣2,y∈R}【分析】由题意可得x=log2,即>0,解得即可.【解答】解:y==﹣1+,则y+1=,则2x﹣1=,则2x=1+,则x=log2,∴>0,解的y>﹣1或y<﹣2,故选:B.【点评】本题考查了函数的定义和解析式以及定义域和值域相关问题,属于中档题.15.(2017•钦州二模)已知函数f(x)=设m>n≥﹣1,且f(m)=f(n),则m•f(m)的最小值为()A.4 B.2 C.D.2【分析】做出f(x)的图象,根据图象判断m的范围,利用基本不等式得出最小值.【解答】解:做出f(x)的函数图象如图所示:∵f(m)=f(n),m>n≥﹣1,∴1≤m<4,∴mf(m)=m(1+)=m+≥2.当且仅当m=时取等号.故选:D.【点评】本题考查了分段函数的图象,基本不等式的应用,属于中档题.16.(2017•天津二模)若函数f(x)=(x2+x﹣2)(x2+ax+b)是偶函数,则f(x)的最小值为()A.B.C.﹣ D.﹣【分析】根据题意,由于函数f(x)为偶函数,则可得f(﹣x)=f(x),即(x2﹣x﹣2)(x2﹣ax+b)=(x2+x﹣2)(x2+ax+b),分析可得a、b的值,即可得函数f(x)的解析式,对其求导,分析可得当x=±时,f(x)取得最小值;计算即可的答案.【解答】解:根据题意,函数f(x)=(x2+x﹣2)(x2+ax+b)是偶函数,则有f(﹣x)=f(x),即(x2﹣x﹣2)(x2﹣ax+b)=(x2+x﹣2)(x2+ax+b)分析可得:﹣2(1﹣a+b)=0,4(4+2a+b)=0,解可得:a=﹣1,b=﹣2,则f(x)=(x﹣1)(x+2)(x2﹣x﹣2)=x4﹣5x2+4,f′(x)=4x3﹣10x=x(4x2﹣10),令f′(x)=0,可得当x=±时,f(x)取得最小值;又由函数为偶函数,则f(x)min=()4﹣5()2+4=﹣;故选:C【点评】本题考查函数的最值计算,关键是利用函数的奇偶性求出a、b的值,确定函数的解析式,属于中档题二.填空题(共8小题)17.(2017•天津二模)已知集合A={0,1,2,3,4},B={m|m=2n,n∈A},M={x∈R|x>2},则集合B∩∁R M={0,2} .【分析】根据题意,分析可得集合B,由补集的定义可得∁R M,进而由交集的定义计算可得答案.【解答】解:根据题意,集合A={0,1,2,3,4},则B={m|m=2n,n∈A}={0,2,4,6,8},而M={x∈R|x>2},则∁R M={x|x≤2},故B∩∁R M={0,2};故答案为:{0,2}.【点评】本题考查集合的交、补集的运算,关键是求出集合B.18.(2017•天津二模)设集合A={x|x2﹣x﹣6<0},B={x|﹣3≤x≤1},则A∪B=[﹣3,3).【分析】根据题意,解x2﹣x﹣6<0可得集合A,进而有集合并集的定义计算可得答案.【解答】解:根据题意,x2﹣x﹣6<0⇒﹣2<x<3,则A={x|x2﹣x﹣6<0}={x|﹣2<x<3}=(﹣2,3),而B={x|﹣3≤x≤1}=[﹣3,1],则A∪B=[﹣3,3);故答案为:[﹣3,3).【点评】本题考查集合并集的运算,涉及一元二次不等式的解法,关键是求出集合A.19.(2016•潍坊模拟)设M是一个非空集合,#是它的一种运算,如果满足以下条件:(Ⅰ)对M中任意元素a,b,c都有(a#b)#c=a#(b#c);(Ⅱ)对M中任意两个元素a,b,满足a#b∈M.则称M对运算#封闭.下列集合对加法运算和乘法运算都封闭的为②③④.①{﹣2,﹣1,1,2}②{1,﹣1,0}③Z④Q.【分析】根据已知中“M对运算#封闭”的定义,逐一分析给定的四个集合是否满足“M对运算#封闭”的定义,可得答案.【解答】解:①中,当a=﹣1,b=1时,a+b=0∉{﹣2,﹣1,1,2},当a=﹣2,b=2时,a×b=﹣4∉{﹣2,﹣1,1,2},故①中集合对加法和乘法都不封闭,②中集合M={1,﹣1,0}满足:(Ⅰ)对M中任意元素a,b,c都有(a+b)+c=a+(b+c);(Ⅱ)对M中任意两个元素a,b,满足a+b∈M.故②中集合对加法运算和乘法运算都封闭;③中集合M=Z满足:(Ⅰ)对M中任意元素a,b,c都有(a+b)+c=a+(b+c);(Ⅱ)对M中任意两个元素a,b,满足a+b∈M.故③中集合对加法运算和乘法运算都封闭;④中集合M=Q满足:(Ⅰ)对M中任意元素a,b,c都有(a+b)+c=a+(b+c);(Ⅱ)对M中任意两个元素a,b,满足a+b∈M.故④中集合对加法运算和乘法运算都封闭;故答案为:②③④【点评】本题考查的知识点是元素与集合关系的判断,正确理解“M对运算#封闭”的定义,是解答的关键.20.(2017•临川区校级模拟)设[x]表示不超过实数x的最大整数,例如:[4.3]=4,[﹣2.6]=﹣3,则点集{(x,y)|[x]2+[y]2=25}所覆盖的面积为12.【分析】根据方程,对于x,y≥0时,求出x,yd的整数解,分别对|[x]|=5、4、3、0时确定x的范围,对应的y的范围,求出面积,再求其和.【解答】解:方程:[x]2+[y]2=25x,y≥0时,[x],[y]的整解有两组,(3,4),(0,5)显然x的最大值是5|[x]|=5时,5≤x<6,或者﹣5≤x<﹣4,|[y]|=0,0≤y<1,围成的区域是2个单位正方形|[x]|=4时,4≤x<5,或者﹣4≤x<﹣3,|[y]|=3,﹣3≤y<﹣2,或者3<y≤4,围成的区域是4个单位正方形|[x]|=3时,3≤x<4,或者﹣3≤x<﹣2,|[y]|=4,﹣4≤y<﹣3,或者4<y≤5,围成的区域是4个单位正方形|[x]|=0时,0≤x<1,|[y]|=5,5≤y<6 或者﹣5≤y<﹣4,围成的区域是2个单位正方形总面积是:12故答案为:12.【点评】本题考查探究性问题,是创新题,考查分类讨论思想,是中档题.21.(2017•佛山一模)函数f(x)=﹣log2为奇函数,则实数a=1.【分析】由题意,f(﹣x)=﹣f(x),可得﹣﹣log2=﹣+log2,即可求出a 的值.【解答】解:由题意,f(﹣x)=﹣f(x),可得﹣﹣log2=﹣+log2∴a=±1,a=﹣1,函数定义域不关于原点对称,舍去.故答案为1.【点评】本题考查奇函数的定义,考查学生的计算能力,属于中档题.22.(2017•新疆一模)已知g(x)=mx+2,f(x)=x2﹣2x,若对∀x1∈[﹣1,2].∃x0∈[﹣1,2],有g(x1)=f(x0)成立,则m的取值范围是[﹣1,] .【分析】由已知中f(x)=x2﹣2x,g(x)=mx+2,对∀x1∈[﹣1,2],∃x0∈[﹣1,2],使g(x1)=f(x0),可得函数g(x)=mx+2在区间[﹣1,2]上的值域是函数f(x)=x2﹣2x在区间[﹣1,2]上的值域的子集,由此可以构造关于m的不等式,解不等式即可求出m的取值范围.【解答】解:∵f(x)=x2﹣2x,∴x0∈[﹣1,2],∵f(x0)∈[﹣1,3]又∵∀x1∈[﹣1,2],∃x0∈[﹣1,2],使g(x1)=f(x0),若m>0,则g(﹣1)≥﹣1,g(2)≤3解得﹣≤m≤,即0<m≤,若m=0,则g(x)=2恒成立,满足条件;若m<0,则g(﹣1)≤3,g(2)≥﹣1解各m≥﹣1即﹣1≤m<0综上满足条件的m的取值范围是﹣1≤m≤故m的取值范围是[﹣1,]故答案为:[﹣1,].【点评】本题考查的知识点是函数的值域,函数的定义域及其求法,二次函数的性质,其中根据已知条件对m进行分类讨论,是解答本题的关键.23.(2017•沙坪坝区校级模拟)已知f(x)是定义在R上的偶函数,且f(x+2)=f(x)对x∈R恒成立,当x∈[0,1]时,f(x)=2x,则f(﹣log224)=.【分析】根据题意,分析可得f(﹣log224)=f(log224)=f(4+log2)=f(log2),结合函数的解析式可得f(log2)的值,综合即可得答案.【解答】解:根据题意,由于f(x)是定义在R上的偶函数,且f(x+2)=f(x),则f(﹣log224)=f(log224)=f(4+log2)=f(log2),0<log2<1,又由当x∈[0,1]时,f(x)=2x,则f(log2)==,即f(﹣log224)=;故答案为:.【点评】本题函数的值的计算,涉及函数的奇偶性、周期性的性质,关键是充分利用函数的周期性.24.(2017•日照一模)函数f(x)=ax2+(b﹣2a)x﹣2b为偶函数,且在(0,+∞)单调递减,则f(x)>0的解集为{x|﹣2<x<2} .【分析】根据题意,由于函数f(x)=ax2+(b﹣2a)x﹣2b为偶函数,可得该二次函数的对称轴为y轴,分析可得b=2a,结合函数的单调性可得a>0;综合可得f(x)>0,即ax2﹣4a>0,解可得x的取值范围,即可得答案、【解答】解:根据题意,函数f(x)=ax2+(b﹣2a)x﹣2b为二次函数,若其为偶函数,则该二次函数的对称轴为y轴,必有,即b=2a,故f(x)=ax2﹣4a.再根据函数在(0,+∞)单调递减,可得a<0.若f(x)>0,即ax2﹣4a>0,解可得﹣2<x<2,故解集为{x|﹣2<x<2}.【点评】本题考查二次函数的性质,涉及函数的奇偶性、单调性的应用,注意结合二次函数的性质进行分析.三.解答题(共6小题)25.(2017春•启东市校级期中)记函数f(x)=lg(x2﹣x﹣2)的定义域为集合A,函数g(x)=的定义域为集合B.(1)求①A∩B;②(∁R A)∪B;(2)若C={x|(x﹣m+1)(x﹣2m﹣1)<0},C⊆B,求实数m的取值范围.【分析】对于(1)先将函数的定义域A和B求出来,再根据集合的运算法则运算即可;对于(2)要考虑C=∅时,C≠∅时要讨论m﹣1和2m+1的大小.【解答】解:(1)依题意,得A={x|x2﹣x﹣2>0}=(﹣∞,﹣1)∪(2,+∞)B={x||3﹣x|x|≥0}=[﹣3,3],①A∩B=[﹣3,﹣1)∪(2,3]②(∁R A)∪B=[﹣3,3],(2)∵(x﹣m+1)(x﹣2m﹣1)<0,∴[x﹣(m﹣1)][x﹣(2m+1)]<0①当m﹣1=2m+1,即m=﹣2时,C=∅,满足C⊆B②当m﹣1<2m+1,即m>﹣2时,C=(m﹣1,2m+1),要使C⊆B,只要得﹣2<m≤1③当2m+1<m﹣1,即m<﹣2时,C=(2m+1,m﹣1),要使C⊆B,只要得m∈∅综上,m 的取值范围是[﹣2,1]【点评】本题考查不等式的解法和集合的运算,分类讨论的思想方法,属于基础题.26.(2017春•湖北期中)已知集合A={y|y=,x∈R},B={x|y=lg(1﹣2x)}(1)求出集合A,集合B;(2)求(∁U B)∩A.【分析】(1)分别求出函数的定义域和值域即可得到集合A,集合B,(2)根据集合交集、补集的运算法则,代入计算可得答案.【解答】解:(1)集合A={y|y=,x∈R},∵e x>0,∴﹣e x<0,∴4﹣e x<4,∴A=(﹣∞,2)∵B={x|y=lg(1﹣2x)},∴1﹣2x>0,解得x<,故B=(﹣∞,),(2)由B=(﹣∞,),∴∁U B=[,+∞),∴(∁U B)∩A=[,e).【点评】本题考查的知识点是交,并,补的混合运算,熟练掌握集合的运算规则是解答的关键.27.(2017春•淄川区校级月考)已知集合A={x∈R|ax2﹣3x+2=0,a∈R}.(1)若A是空集,求a的取值范围;(2)若A中只有一个元素,求a的值,并把这个元素写出来.【分析】(1)若A是空集,则方程ax2﹣3x+2=0无解,故△=9﹣8a<0,由此解得a的取值范围.(2)若A中只有一个元素,则a=0 或△=9﹣8a=0,求出a的值,再把a的值代入方程ax2﹣3x+2=0,解得x的值,即为所求【解答】解:(1)若A是空集,则方程ax2﹣3x+2=0无解,故△=9﹣8a<0,解得a>,故a的取值范围为(,+∞).(2)若A中只有一个元素,则a=0 或△=9﹣8a=0,解得a=0 或a=.当a=0时,解ax2﹣3x+2=0 可得x=.当a=时,解ax2﹣3x+2=0 可得x=.故A中的元素为和.【点评】本题主要考查集合中参数的取值问题,体现了分类讨论的数学思想,属于中档题.28.(2017•上海一模)已知函数f(x)=9x﹣2a•3x+3:(1)若a=1,x∈[0,1]时,求f(x)的值域;(2)当x∈[﹣1,1]时,求f(x)的最小值h(a);(3)是否存在实数m、n,同时满足下列条件:①n>m>3;②当h(a)的定义域为[m,n]时,其值域为[m2,n2],若存在,求出m、n的值,若不存在,请说明理由.【分析】(1)设t=3x,则φ(t)=t2﹣2at+3=(t﹣a)2+3﹣a2,φ(t)的对称轴为t=a,当a=1时,即可求出f(x)的值域;(2)由函数φ(t)的对称轴为t=a,分类讨论当a<时,当≤a≤3时,当a>3时,求出最小值,则h(a)的表达式可求;(3)假设满足题意的m,n存在,函数h(a)在(3,+∞)上是减函数,求出h(a)的定义域,值域,然后列出不等式组,求解与已知矛盾,即可得到结论.【解答】解:(1)∵函数f(x)=9x﹣2a•3x+3,设t=3x,t∈[1,3],则φ(t)=t2﹣2at+3=(t﹣a)2+3﹣a2,对称轴为t=a.当a=1时,φ(t)=(t﹣1)2+2在[1,3]递增,∴φ(t)∈[φ(1),φ(3)],∴函数f(x)的值域是:[2,6];(Ⅱ)∵函数φ(t)的对称轴为t=a,当x∈[﹣1,1]时,t∈[,3],当a<时,y min=h(a)=φ()=﹣;当≤a≤3时,y min=h(a)=φ(a)=3﹣a2;当a>3时,y min=h(a)=φ(3)=12﹣6a.故h(a)=;(Ⅲ)假设满足题意的m,n存在,∵n>m>3,∴h(a)=12﹣6a,∴函数h(a)在(3,+∞)上是减函数.又∵h(a)的定义域为[m,n],值域为[m2,n2],则,两式相减得6(n﹣m)=(n﹣m)•(m+n),又∵n>m>3,∴m﹣n≠0,∴m+n=6,与n>m>3矛盾.∴满足题意的m,n不存在.【点评】本题主要考查二次函数的值域问题,二次函数在特定区间上的值域问题一般结合图象和单调性处理,是中档题.29.(2017•上海模拟)已知函数f(x)=4x﹣2x,实数s,t满足f(s)+f(t)=0,a=2s+2t,b=2s+t.(1)当函数f(x)的定义域为[﹣1,1]时,求f(x)的值域;(2)求函数关系式b=g(a),并求函数g(a)的定义域D;(3)在(2)的结论中,对任意x1∈D,都存在x2∈[﹣1,1],使得g(x1)=f(x2)+m 成立,求实数m的取值范围.【分析】(1)换元根据t=2x∈[,2],g(t)=t2﹣t单调递增,即可求f(x)的值域;(2)配方得出:(2s+2t)2﹣2•2s+t﹣(2s+2t)=0,a2﹣2b﹣a=0,a≥2,a≥2,a>0,求解即可得出b=,1<a≤2;(3)g(x)=(x2﹣x)∈(0,1],f(x)∈[﹣,2],对任意x1∈D,都存在x2∈[﹣1,1],使得g(x1)=f(x2)+m成立,即可求实数m的取值范围.【解答】解:(1)∵函数f(x)=4x﹣2x,f(x)的定义域为[﹣1,1]时,∴t=2x∈[,2],g(t)=t2﹣t单调递增,∵g()=﹣,g(2)=2,∴f(x)的值域为:[﹣,2].(2)∵f(s)+f(t)=0,∴4s﹣2s+4t﹣2t=0,化简得出:(2s+2t)2﹣2•2s+t﹣(2s+2t)=0,∵a=2s+2t,b=2s+t.2s+2t≥2.a≥2∴a2﹣2b﹣a=0,a≥2,a≥2,a>0即b=,1<a≤2,D=(1,2];(3)g(x)=(x2﹣x)∈(0,1],f(x)∈[﹣,2].∵对任意x1∈D,都存在x2∈[﹣1,1],使得g(x1)=f(x2)+m成立,∴(0,1]⊆[﹣+m,2+m].∴﹣1≤m≤.【点评】本题综合考查了函数的性质,配方求解,考查换元法,考查学生分析解决问题的能力,属于综合题.30.(2017•杨浦区二模)已知函数f(x)=.(1)判断函数f(x)的奇偶性,并证明;(2)若不等式f(x)>log9(2c﹣1)有解,求c的取值范围.【分析】(1)利用奇函数的定义,即可得出结论;(2)f(x)===﹣+∈(﹣,),不等式f(x)>log9(2c﹣1)有解,可得>log9(2c﹣1),即可求c的取值范围.【解答】解:(1)函数的定义域为R,f(x)==,f(﹣x)==﹣f(x),∴函数f(x)是奇函数;(2)f(x)===﹣+∈(﹣,)∵不等式f(x)>log9(2c﹣1)有解,∴>log9(2c﹣1),∴0<2c﹣1<3,∴.【点评】本题考查奇函数的定义,考查函数的值域,考查学生分析解决问题的能力,属于中档题.。

高中数学知识框架思维导图(整理版)

高中数学知识框架思维导图(整理版)
2 : 2 + 2 + 2 = 0.
点斜式:y-y0=k(x-x0)
注意:截距可正、
可负,也可为 0.
2 −1
注意各种形式的转化和运用范围.
x y
截距式: + =1
a b
两直线的交点
距离
一般式:Ax+By+C=0
两点间的距离公式|1 2 | = √(1 − 2 )2 + (1 − 2 )2 .
2.
3.
分组求和法
2
=
1

−1)(2+1 −1)
2 −1
+1
1 1
1
= (
2 (+2)2
(−1) ∙4
4 2
(2−1)(2+1)
1ቤተ መጻሕፍቲ ባይዱ
2+1 −1
− (+2)2 )
= (−1) (
1
2−1
+
错位相加法: = ( + )−1 → = ( + ) −
复合函数
函数与方程
2
二次函数、基本不等式、双勾函数、三角函
数有界性、数形结合、单调性、导数.
基本初等函数
分段函数
, )
零点
求根法、二分法、图象法、二次及三次方程根的分布
建立函数模型
平移变换: = () → = ( ± ), = () → = () ± ,, > 0
与 的关系
1 ,
= 1,
= {
− −1 , ≥ 2.
构造等差数列
an+1 p an
= · +1 转为③
qn q qn-1
⑤an + 1=pan+qn

高考数学一本策略复习专题一集合、常用逻辑用语、不等式、函数与导数第一讲集合、常用逻辑用语教案文

高考数学一本策略复习专题一集合、常用逻辑用语、不等式、函数与导数第一讲集合、常用逻辑用语教案文

第一讲集合、常用逻辑用语年份卷别考查角度及命题位置命题分析2018Ⅰ卷集合交集运算·T1本部分作为高考必考内容,多年来命题较稳定,多以选择题形式在第1、2题的位置进行考查,难度较低.命题的热点依然会集中在集合的运算上.对常用逻辑用语考查的频率不高,且命题点分散,多为几个知识点综合考查,难度中等,其中充分必要条件的判断近几年全国卷虽未考查,但为防高考“爆冷”考查,在二轮复习时不可偏颇.该考点多结合函数、向量、三角、不等式、数列等内容命题.Ⅱ卷集合交集运算·T2Ⅲ卷集合交集运算·T12017Ⅰ卷集合的交、并运算·T1Ⅱ卷集合的并集运算·T1Ⅲ卷求集合交集中元素个数·T12016Ⅰ卷集合的交集运算·T1Ⅱ卷集合的交集运算、一元二次不等式的解法·T1Ⅲ卷集合的补集运算·T1集合的概念及运算授课提示:对应学生用书第3页[悟通——方法结论]1.集合的运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A.(2)A∩A=A,A∩∅=∅,A∩B=B∩A.(3)A∩(∁U A)=∅,A∪(∁U A)=U.(4)A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.2.集合运算中的常用方法(1)若已知的集合是不等式的解集,用数轴求解.(2)若已知的集合是点集,用数形结合法求解.(3)若已知的集合是抽象集合,用Venn图求解.(1)(2018·南宁模拟)设集合M={x|x<4},集合N={x|x2-2x<0},则下列关系中正确的是( )A .M ∪N =MB .M ∪∁R N =MC .N ∪∁R M =RD .M ∩N =M解析:∵M ={x |x <4},N ={x |0<x <2},∴M ∪N ={x |x <4}=M ,故选项A 正确;M ∪∁R N =R ≠M ,故选项B 错误;N ∪∁R M ={x |0<x <2}∪{x |x ≥4}≠R ,故选项C 错误;M ∩N ={x |0<x <2}=N ,故选项D 错误.故选A.答案:A(2)(2018·宜昌模拟)已知两个集合A ={x ∈R |y =1-x 2},B ={x |x +11-x≥0},则A ∩B=( )A .{x |-1≤x ≤1}B .{x |-1≤x <1}C .{-1,1}D .∅解析:∵A ={x |-1≤x ≤1},B ={x |-1≤x <1},∴A ∩B ={x |-1≤x <1}. 答案:B 【类题通法】破解集合运算需掌握2招第1招,化简各个集合,即明确集合中元素的性质,化简集合;第2招,借形解题,即与不等式有关的无限集之间的运算常借助数轴,有限集之间的运算常用Venn 图(或直接计算),与函数的图象有关的点集之间的运算常借助坐标轴等,再根据集合的交集、并集、补集的定义进行基本运算.[练通——即学即用]1.(2018·高考全国卷Ⅱ)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( )A .9B .8C .5D .4解析:将满足x 2+y 2≤3的整数x ,y 全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A. 答案:A2.(2018·德州模拟)设全集U =R ,集合A ={x ∈Z |y =4x -x 2},B ={y |y =2x,x >1},则A ∩(∁U B )=( )A .{2}B .{1,2}C .{-1,0,1,2}D .{0,1,2}解析:由题意知,A ={x ∈Z |4x -x 2≥0}={x ∈Z |0≤x ≤4}={0,1,2,3,4},B ={y |y >2},则∁U B={y|y≤2},则A∩(∁U B)={0,1,2},故选D.答案:D3.(2018·枣庄模拟)已知集合A={|m|,0},B={-2,0,2},若A⊆B,则∁B A=( ) A.{-2,0,2} B.{-2,0}C.{-2} D.{-2,2}解析:由A⊆B得|m|=2,所以A={0,2}.故∁B A={-2}.答案:C命题及真假判断授课提示:对应学生用书第4页[悟通——方法结论]1.全称命题和特称命题的否定归纳∀x∈M,p(x) ∃x0∈M,綈p(x0).简记:改量词,否结论.2.“或”“且”联结词的否定形式“p或q”的否定形式是“非p且非q”,“p且q”的否定形式是“非p或非q”.3.命题的“否定”与“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论.[全练——快速解答]1.(2018·西安质检)已知命题p:∃x0∈R,log2(3x0+1)≤0,则( )A.p是假命题;綈p:∀x∈R,log2(3x+1)≤0B.p是假命题;綈p:∀x∈R,log2(3x+1)>0C.p是真命题;綈p:∀x∈R,log2(3x+1)≤0D.p是真命题;綈p:∀x∈R,log2(3x+1)>0解析:∵3x>0,∴3x+1>1,则log2(3x+1)>0,∴p是假命题;綈p:∀x∈R,log2(3x +1)>0.答案:B2.给出下列3个命题:p1:函数y=a x+x(a>0,且a≠1)在R上为增函数;p2:∃a0,b0∈R,a20-a0b0+b20<0;p3:cos α=cos β成立的一个充分不必要条件是α=2kπ+β(k ∈Z).则下列命题中的真命题为( ) A .p 1∨p 2 B .p 2∨(綈p 3) C .p 1∨(綈p 3)D .(綈p 2)∧p 3解析:对于p 1,令f (x )=a x+x (a >0,且a ≠1),当a =12时,f (0)=⎝ ⎛⎭⎪⎫120+0=1,f (-1)=⎝ ⎛⎭⎪⎫12-1-1=1,所以p 1为假命题;对于p 2,因为a 2-ab +b 2=⎝ ⎛⎭⎪⎫a -12b 2+34b 2≥0,所以p 2为假命题;对于p 3,因为cos α=cos β⇔α=2k π±β(k ∈Z ),所以p 3为真命题,所以(綈p 2)∧p 3为真命题,故选D.答案:D3.命题“若xy =1,则x ,y 互为倒数”的否命题为________;命题的否定为________. 答案:若xy ≠1,则x ,y 不互为倒数 若xy =1,则x ,y 不互为倒数 【类题通法】判断含有逻辑联结词命题真假的方法方法一(直接法):(1)确定这个命题的结构及组成这个命题的每个简单命题;(2)判断每个简单命题的真假;(3)根据真值表判断原命题的真假.方法二(间接法):根据原命题与逆否命题的等价性,判断原命题的逆否命题的真假性.此法适用于原命题的真假性不易判断的情况.充分、必要条件的判断授课提示:对应学生用书第4页[悟通——方法结论]充分、必要条件的判断:考查形式多与其他知识交汇命题.常见的交汇知识点有:函数性质、不等式、三角函数、向量、数列、解析几何等,有一定的综合性.(1)“a =-2”是“直线l 1:ax -y +3=0与l 2:2x -(a +1)y +4=0互相平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当a =-2时,直线l 1:2x +y -3=0,l 2:2x +y +4=0,所以直线l 1∥l 2;若l 1∥l 2,则-a (a +1)+2=0,解得a =-2或a =1.所以“a =-2”是“直线l 1:ax -y +3=0与l 2:2x -(a +1)y +4=0互相平行”的充分不必要条件.答案:A(2)(2018·南昌模拟)已知m ,n 为两个非零向量,则“m 与n 共线”是“m·n =|m·n |”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当m 与n 反向时,m·n<0,而|m·n|>0,故充分性不成立.若m·n =|m·n|,则m·n =|m|·|n|·cos〈m ,n 〉=|m |·|n |·|cos 〈m ,n 〉|,则cos 〈m ,n 〉=|cos 〈m ,n 〉|,故cos 〈m ,n 〉≥0,即0°≤〈m ,n 〉≤90°,此时m 与n 不一定共线,即必要性不成立.故“m 与n 共线”是“m·n =|m·n|”的既不充分也不必要条件,故选D.答案:D 【类题通法】1.(2018·胶州模拟)设x ,y 是两个实数,命题“x ,y 中至少有一个数大于1”成立的充分不必要条件是( )A .x +y =2B .x +y >2C .x 2+y 2>2D .xy >1解析:当⎩⎪⎨⎪⎧x ≤1y ≤1时,有x +y ≤2,但反之不成立,例如当x =3,y =-10时,满足x+y ≤2,但不满足⎩⎪⎨⎪⎧x ≤1y ≤1,所以⎩⎪⎨⎪⎧x ≤1y ≤1是x +y ≤2的充分不必要条件.所以“x +y >2”是“x ,y 中至少有一个数大于1”的充分不必要条件.答案:B2.(2018·合肥模拟)祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:根据祖暅原理,“A ,B 在等高处的截面积恒相等”是“A ,B 的体积相等”的充分不必要条件,即綈q 是綈p 的充分不必要条件,即命题“若綈q, 则綈p ”为真,逆命题为假,故逆否命题“若p ,则q ”为真,否命题“若q ,则p ”为假,即p 是q 的充分不必要条件,选A.答案:A授课提示:对应学生用书第107页一、选择题1.(2018·高考全国卷Ⅰ)已知集合A ={0,2},B ={-2,-1,0,1,2},则A ∩B =( ) A .{0,2} B .{1,2}C .{0}D .{-2,-1,0,1,2}解析:A ∩B ={0,2}∩{-2,-1,0,1,2}={0,2}. 故选A. 答案:A2.(2017·高考山东卷)设函数y =4-x 2的定义域为A ,函数 y =ln(1-x )的定义域为B ,则A ∩B =( )A .(1,2)B .(1,2]C .(-2,1)D .[-2,1)解析:由题意可知A ={x |-2≤x ≤2},B ={x |x <1},故A ∩B ={x |-2≤x <1}. 答案:D3.设A ={x |x 2-4x +3≤0},B ={x |ln(3-2x )<0},则图中阴影部分表示的集合为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <32B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <32C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1≤x <32 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪32<x ≤3 解析:A ={x |x 2-4x +3≤0}={x |1≤x ≤3},B ={x |ln(3-2x )<0}={x |0<3-2x <1}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <32,结合Venn 图知,图中阴影部分表示的集合为A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <32. 答案:B4.(2018·高考全国卷Ⅲ)已知集合A ={x |x -1≥0},B ={0,1,2},则A ∩B =( ) A .{0} B .{1} C .{1,2}D .{0,1,2}解析:∵A ={x |x -1≥0}={x |x ≥1},∴A ∩B ={1,2}.故选C. 答案:C5.(2018·合肥模拟)已知命题q :∀x ∈R ,x 2>0,则( ) A .命题綈q :∀x ∈R ,x 2≤0为假命题 B .命题綈q :∀x ∈R ,x 2≤0为真命题 C .命题綈q :∃x 0∈R ,x 20≤0为假命题 D .命题綈q :∃x 0∈R ,x 20≤0为真命题解析:全称命题的否定是将“∀”改为“∃”,然后再否定结论.又当x =0时,x 2≤0成立,所以綈q 为真命题.答案:D6.(2018·郑州四校联考)命题“若a >b ,则a +c >b +c ”的否命题是( ) A .若a ≤b ,则a +c ≤b +c B .若a +c ≤b +c ,则a ≤b C .若a +c >b +c ,则a >b D .若a >b ,则a +c ≤b +c解析:命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a ≤b ,则a +c ≤b +c ”,故选A.答案:A7.(2018·石家庄模拟)“x >1”是“x 2+2x >0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:由x 2+2x >0,得x >0或x <-2,所以“x >1”是“x 2+2x >0”的充分不必要条件. 答案:A8.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是( )A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,所以m≥2或m≤-2.答案:D9.(2018·石家庄模拟)已知a,b∈R,下列四个条件中,使“a>b”成立的必要不充分条件是( )A.a>b-1 B.a>b+1C.|a|>|b| D.2a>2b解析:由a>b-1不一定能推出a>b,反之由a>b可以推出a>b-1,所以“a>b-1”是“a>b”的必要不充分条件.故选A.答案:A10.已知命题p:“x=0”是“x2=0”的充要条件,命题q:“x=1”是“x2=1”的充要条件,则下列命题为真命题的是( )A.p∧q B.(綈p)∨qC.p∧(綈q) D.(綈p)∧q解析:易知命题p为真命题,q为假命题,根据复合命题的真值表可知p∧(綈q)为真命题.答案:C11.(2018·济宁模拟)已知命题p:“x<0”是“x+1<0”的充分不必要条件,命题q:若随机变量X~N(1,σ2)(σ>0),且P(0<X<1)=0.4,则P(0<X<2)=0.8,则下列命题是真命题的是( )A.p∨(綈q) B.p∧qC.p∨q D.(綈p)∧(綈q)解析:因为“x<0”是“x+1<0”的必要不充分条件,所以p为假命题,因为P(0<X<1)=P(1<X<2)=0.4,所以P(0<X<2)=0.8,q为真命题,所以p∨q为真命题.答案:C12.下列命题是假命题的是( )A.命题“若x2+x-6=0,则x=2”的逆否命题为“若x≠2,则x2+x-6≠0”B.若命题p:∃x0∈R,x20+x0+1=0,则綈p:∀x∈R,x2+x+1≠0C.若p∨q为真命题,则p、q均为真命题D.“x>2”是“x2-3x+2>0”的充分不必要条件解析:由复合命题的真假性知,p、q中至少有一个为真命题,则p∨q为真,故选项C 错误.答案:C 二、填空题13.设命题p :∀a >0,a ≠1,函数f (x )=a x-x -a 有零点,则綈p :________. 解析:全称命题的否定为特称(存在性)命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x0-x -a 0没有零点.答案:∃a 0>0,a 0≠1,函数f (x )=a x0-x -a 0没有零点14.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M =⎩⎨⎧x ,y ⎪⎪⎪⎭⎬⎫y -3x -2=1,P ={(x ,y )|y ≠x+1},则∁U (M ∪P )=________.解析:集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3},所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3},则∁U (M ∪P )={(2,3)}.答案:{(2,3)}15.已知A ={x |x 2-3x +2<0},B ={x |1<x <a },若A ⊆B ,则实数a 的取值范围是________. 解析:因为A ={x |x 2-3x +2<0}={x |1<x <2}⊆B ,所以a ≥2. 答案:[2,+∞)16.若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值范围是________.解析:由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m-2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)。

导数的基本公式14个

导数的基本公式14个

导数的基本公式14个目录1、f'(x)=lim(h->0)[(f(x+h)-f(x))/h]2、f(x)=a的导数, f'(x)=0, a为常数3、f(x)=x^n的导数, f'(x)=nx^(n-1), n为正整数4、f(x)=x^a的导数, f'(x)=ax^(a-1), a为实数5、f(x)=a^x的导数, f'(x)=a^xlna, a>0且a不等于16、f(x)=e^x的导数, f'(x)=e^x7、f(x)=log_a x的导数, f'(x)=1/(xlna), a>0且a不等于18、f(x)=lnx的导数, f'(x)=1/x9、(sinx)'=cosx10、(cosx)'=-sinx11、(tanx)'=(secx)^212、(cotx)'=-(cscx)^213、(secx)'=secxtanx14、(cscx)'=-cscxcotx15、(arcsinx)'=1/根号(1-x^2)16、(arccosx)'=-1/根号(1-x^2)17、(arctanx)'=1/(1+x^2)18、(arccotx)'=-1/(1+x^2)19、(f+g)'=f'+g'20、(f-g)'=f'-g'21、(fg)'=f'g+fg'22、(f/g)'=(f'g-fg')/g^223、(1/f)'=-f'/f^224、(f^(-1)(x))'=1/f'(y)常见导数公式4个基本求导公式可以分成三类。

第一类是导数的定义公式,即差商的极限. 再用这个公式推出17个基本初等函数的求导公式,这就是第二类。

最后一类是导数的四则运算法则和复合函数的导数法则以及反函数的导数法则,利用这些公式就可以推出所有可导的初等函数的导数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
③对称变换
y f (x) 0AA1,1伸,缩 y Af (x)
1.3.4 函数的图像
(2)识图 对于给定函数的图象,要能从图 象的左右、上下分别范围、变化 趋势、对称性等方面研究函数的 定义域、值域、单调性、奇偶性, 注意图象与函数解析式中参数的 关系. (3)用图
函数图象形象地显示了函数的 性质,为研究数量关系问题提供 了“形”的直观性,它是探求解 题途径,获得问题结果的重要工 具.要重视数形结合解题的思想 方法.
(������1 − ������2) ������(������1) − ������(������2) < 0

f (x1) f (x2 ) 0 f (x)在a,b
x1 x2
上是减函数
②在公共定义域内,两个增函数 的和是增函数,两个减函数的和 是减函数,增函数减去一个减函 数为增函数,减函数减去一个增 函数为减函数.
y f (x) x轴 y f (x) y f (x) y轴 y f (x) y f (x) 原点 y f (x) y f (x) 直线yx y f 1(x)
y f (x) 保留y轴右边图去象掉,y轴并左作边其图 关象于y轴对称图象 y f (| x |)
(1) A (ðU A)
A (ðU A) U
2 痧U ( A B) ( U A) (?U B)
痧U ( A B) ( U A) (?U B)
1.1.3 集合的基本运算
示意图
A
B
A
B
原命题 若p,则q
互否
否命题 若非p,则非q
互逆 互逆
逆命题 若q,则p
1.1.4 四种命题间相互关系
第二章 基本初等函数(Ⅰ) 〖2.1〗指数函数
1.指数幂的概念 根指数n
奇数
被开方数a
根式x
xn= a
偶数 正分数
无意义
负分数
所以负数当然是有指数幂的,但是负数的幂不像正数的幂,正数的幂,指数可以是任意 实数。但是负数的幂能确定有意义的只有指数为整数,指数为分母是奇数的分数的情况; 确定无意义的是指数为分母是偶数的最简分数的情况,除此之外,如果指数的无理数这 样,我们无法判断负数的无理数次幂到底是有意义还是无意义。所以不对负数为底数的 指数函数进行研究,而是对负数为底数的幂,判断其有意义后,转化为正数为底数的指
1.2.1 函数的概念
1.2.2 函数的表示法
〖1.3〗函数的基本性质
(1)函数的单调性 ①定义及判定方法
1.3.1 函数的单调性
函数的 性质
函数的 单调性
定义
图象
如果对于属于定义域 I 内
某个区间上的任意两个 y y=f(X)
自变量的值 x1、x2,当 x.1.<.
f(x2)
x.2.时,都有 f.(.x.1.).<.f.(.x.2.).,
关于原点对称) (2)利用图象(图 象关于原点对称)
(1)利用定义(要
域内任意一个 x,都有
先判断定义域是否
.f(.-.x..)=.f.(.x.)., 那 么 函 数 f(x)叫做偶.函.数.. 可.以.表.示.为..f.(x..)=.f.(.|.x.|.).
关于原点对称) (2)利用图象(图 象关于 y 轴对称)
(4)集合的表示法 ①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x具有的性质},其中x为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合.
(5)集合的分类 ①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何

1 x ln
a
(ln x)' 1
x
(x n )' nxn1
(sin x)' cos x
(cos x)' sin x
1.3.4 函数的导数
2.可导函数四则运算的求导法则:
[Cf (x)] Cf (x)
(uv)' u'v uv'
(u v)' u' v'
第一章 集合与函数概念 〖1.1〗集合与常用逻辑语
1.1.1集合的含义与表示
(1)集合的概念 集合中的元素的三个特性:确定性、互异性和无序性.
(2)常用数集及其记法 N表示自然数集,N*或N+表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集
(3)集合与元素间的关系
对象a与集合 M的关系:a M 或者 a M ,两者必居其一.
某个
某些
都是 不都
是 …

9.全称量词和存在量词
(3)含有一个量词命题的否定
命题
命题的否定
〖1.2〗函数及其表示
1.2.1 函数的概念
(2)区间的概念及表示法 ①设a, b是两个实数,且a<b ,满足a≤x ≤b的实数x 的集合叫做闭区间,记做[a,b] ;满足 a<x <b的实 数x的集合叫做开区间,记做(a,b) ;满足 a≤x <b ,或 a<x ≤b的实数 的集合叫做半开半闭区间,分别 记做 [a,b),(a,b] ;满足 的实数 的集合分别记做 . 注意:对于集合 {x| a<x <b}与区间(a,b) ,前者 a可以大于或等于b ,而后者必须a<b(前者可以不成 立,为空集;而后者必须成立).
(4)若 A B 且 B A ,则 A B
真子 集
AB
(或 B A)
A B ,且 B 中
至少有一元素不 属于 A
(1) A (A 为非空子集)
(2)若 A B 且 B C ,则 AC



集合 相等
A B
A 中的任一元素
都属于 B,B 中的 (1)A B 任一元素都属于 (2)B A
(2)两个命题互为逆命题或互为否命 题时,他们的真假性没有关系。
7.充分必要条件的两种表示方法
条件
p是q的充分条件 q是p的必要条件 p是q的充要条件 p是q的充分不必要条件 p是q的必要不充分条件
p是q的既不充分也不必要条件
定义法
且 ,但 ,但 且
1.1.5 常用逻辑用语 集合法 (A={x|p(x)}, B={x|q(x)})
y f (x) 将x轴保下留方x轴图上象方翻图折象上去 y | f (x) |
1.3.4 函数的导数
二.导数的运算 1.基本初等函数的导数公式:
指数函数
对数函数 幂函数 三角函数
C ' =0
(a x )' a x ln a
(e x )' e x
(log a
x)'
y f (x) hh00,右,左移移|h h个|个单单位位 y f (x h) ②伸缩变换
y f (x) kk00,下,上移移|k k个|个单单位位 y f (x) k
y f (x) 01,1缩, 伸 y f (x)
2.1.1 指数与指数幂的运算
(4)指数函数
定义
图象
函数 y ax (a 0 且 a 1) 叫做指数函数
a 1
0 a 1
定义域 值域
R (指数函数自变量为指数,因变量为幂
对数函数自变量为幂,因变量为指数)
(0, )
过定点 奇偶性 单调性
函数值的 变化情况
a 对 图象影响
图象过定点 (0,1) ,即当 x 0 时, y 1.
1.3.2 函数的奇偶性
1.3.3 函数的周期性
(1)作图
(i)利用描点法作图:
①确定函数的定义域;
②化解函数解析式;
③讨论函数的性质(奇偶性、单调性); ④画出函数的图象.
(ii)利用基本函数图象的变换作图: 要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、 三角函数等各种基本初等函数的图象. ①平移变换
元素的集合叫做空集( ).
(6)子集、真子集、集合相等
其实就 是子集 去除集 合自身 后
名称
记号
意义性质(1)源自 A子集A B (或 B A)
(2) A(空集是任何集合的子集,
A 中的任一元素 是任何非空集合的真子集)
都属于 B
(3)集合的传递性:
若 A B 且 B C ,则 A C
A
1.1.2 集合间的基本关系
示意图
A(B)
BA

BA
A(B)
(7)已知集合A有n(n≥1)个元素,则它有2n个子集,它有2n -1个真子集,它有2n -1个非空子集,
它有2n -2非空真子集. 若集合B中有m个元素,若A C B,则C的个数为2m-n个。
(8)交集、并集、补集
名称 记号
意义
性质
原命题 若p,则q
互否
否命题 若非p,则非q
互逆 互逆
1.1.4 四种命题的真假关系
逆命题 若q,则p
逆否命题 若非q,则非p
6、四种命题的真假性:
原命题 逆命题 否命题












逆否命题 真 真 假 假
(1)两个命题互为逆否命题,他们具 有相同的真假性。
等价性:若正面难判断真假,可 从逆否命题入手
A=B
8.含逻辑联结词的命题的真假判断 复合命题
p
q








口诀



相关文档
最新文档