分式 中考考点梳理(全)
2024中考数学复习核心知识点精讲及训练—分式(含解析)
2024中考数学复习核心知识点精讲及训练—分式(含解析)1.了解分式、分式方程的概念,进一步发展符号感;2.熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算,发展学生的合情推理能力与代数恒等变形能力;3.能解决一些与分式有关的实际问题,具有一定的分析问题、解决问题的能力和应用意识;4.通过学习能获得学习代数知识的常用方法,能感受学习代数的价值。
考点1:分式的概念1.定义:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.2.最简分式:分子与分母没有公因式的分式;3.分式有意义的条件:B≠0;4.分式值为0的条件:分子=0且分母≠0考点2:分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M是不等于零的整式).考点3:分式的运算考点4:分式化简求值(1)有括号时先算括号内的;(2)分子/分母能因式分解的先进行因式分解;(3)进行乘除法运算(4)约分;(5)进行加减运算,如果是异分母分式,需线通分,变为同分母分式后,分母不变,分子合并同类项,最终化为最简分式;(6)带入相应的数或式子求代数式的值【题型1:分式的相关概念】【典例1】(2022•怀化)代数式x,,,x2﹣,,中,属于分式的有()A.2个B.3个C.4个D.5个【答案】B【解答】解:分式有:,,,整式有:x,,x2﹣,分式有3个,故选:B.【典例2】(2023•广西)若分式有意义,则x的取值范围是()A.x≠﹣1B.x≠0C.x≠1D.x≠2【答案】A【解答】解:∵分式有意义,∴x+1≠0,解得x≠﹣1.故选:A.1.(2022•凉山州)分式有意义的条件是()A.x=﹣3B.x≠﹣3C.x≠3D.x≠0【答案】B【解答】解:由题意得:3+x≠0,∴x≠﹣3,故选:B.2.(2023•凉山州)分式的值为0,则x的值是()A.0B.﹣1C.1D.0或1【答案】A【解答】解:∵分式的值为0,∴x2﹣x=0且x﹣1≠0,解得:x=0,故选:A.【题型2:分式的性质】【典例3】(2023•兰州)计算:=()A.a﹣5B.a+5C.5D.a 【答案】D【解答】解:==a,故选:D.1.(2020•河北)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=【答案】D【解答】解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D.2.(2023•自贡)化简:=x﹣1.【答案】x﹣1.【解答】解:原式==x﹣1.故答案为:x﹣1.【题型3:分式化简】【典例4】(2023•广东)计算的结果为()A.B.C.D.【答案】C【解答】解:==.故本题选:C.1.(2023•河南)化简的结果是()A.0B.1C.a D.a﹣2【答案】B【解答】解:原式==1.故选:B.2.(2023•赤峰)化简+x﹣2的结果是()A.1B.C.D.【答案】D【解答】解:原式=+==,故选:D.【题型4:分式的化简在求值】【典例5】(2023•深圳)先化简,再求值:(+1)÷,其中x=3.【答案】,.【解答】解:原式=•=•=,当x=3时,原式==.1.(2023•辽宁)先化简,再求值:(﹣1)÷,其中x=3.【答案】见试题解答内容【解答】解:原式=(﹣)•=•=x+2,当x=3时,原式=3+2=5.2.(2023•大庆)先化简,再求值:,其中x=1.【答案】见试题解答内容【解答】解:原式=﹣+====,当x=1时,原式==.3.(2023•西宁)先化简,再求值:,其中a,b是方程x2+x﹣6=0的两个根.【答案】,6.【解答】解:原式=[﹣]×a(a﹣b)=×a(a﹣b)﹣=﹣=;∵a,b是方程x2+x﹣6=0的两个根,∴a+b=﹣1ab=﹣6,∴原式=.1.(2023春•汝州市期末)下列分式中,是最简分式的是()A.B.C.D.【答案】C【解答】解:A、=,不是最简分式,不符合题意;B、==,不是最简分式,不符合题意;C、是最简分式,符合题意;D、==﹣1,不是最简分式,不符合题意;故选:C.2.(2023秋•岳阳楼区校级期中)如果把分式中的x和y都扩大2倍,那么分式的值()A.不变B.扩大2倍C.扩大4倍D.缩小2倍【答案】B【解答】解:∵==×2,∴如果把分式中的x和y都扩大2倍,那么分式的值扩大2倍,故选:B.3.(2023•河北)化简的结果是()A.xy6B.xy5C.x2y5D.x2y6【答案】A【解答】解:x3()2=x3•=xy6,故选:A.4.(2023秋•来宾期中)若分式的值为0,则x的值是()A.﹣2B.0C.2D.【答案】C【解答】解:由题意得:x﹣2=0且3x﹣1≠0,解得:x=2,故选:C.5.(2023秋•青龙县期中)分式的最简公分母是()A.3xy B.6x3y2C.6x6y6D.x3y3【答案】B【解答】解:分母分别是x2y、2x3、3xy2,故最简公分母是6x3y2;故选:B.6.(2023春•沙坪坝区期中)下列分式中是最简分式的是()A.B.C.D.【答案】A【解答】解;A、是最简二次根式,符合题意;B、=,不是最简二次根式,不符合题意;C、==,不是最简二次根式,不符合题意;D、=﹣1,不是最简二次根式,不符合题意;故选:A.7.(2023春•原阳县期中)化简(1+)÷的结果为()A.1+x B.C.D.1﹣x【答案】A【解答】解:原式=×=×=1+x.故选:A.8.(2023•门头沟区二模)如果代数式有意义,那么实数x的取值范围是()A.x≠2B.x>2C.x≥2D.x≤2【答案】A【解答】解:由题意得:x﹣2≠0,解得:x≠2,故选:A.9.(2023春•武清区校级期末)计算﹣的结果是()A.B.C.x﹣y D.1【答案】B【解答】解:﹣==.故答案为:B.10.(2023春•东海县期末)根据分式的基本性质,分式可变形为()A.B.C.D.【答案】C【解答】解:=﹣,故选:C.11.(2023秋•莱州市期中)计算的结果是﹣x.【答案】﹣x.【解答】解:÷=•(﹣)=﹣x,故答案为:﹣x.12.(2023秋•汉寿县期中)学校倡导全校师生开展“语文阅读”活动,小亮每天坚持读书.原计划用a天读完b页的书,如果要提前m天读完,那么平均每天比原计划要多读的页数为(用含a、b、m的最简分式表示).【答案】.【解答】解:由题意得:平均每天比原计划要多读的页数为:﹣=﹣=,故答案为:.13.(2023春•宿豫区期中)计算=1.【答案】1.【解答】解:===1,故答案为:1.14.(2023•广州)已知a>3,代数式:A=2a2﹣8,B=3a2+6a,C=a3﹣4a2+4a.(1)因式分解A;(2)在A,B,C中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.【答案】(1)2a2﹣8=2(a+2)(a﹣2);(2)..【解答】解:(1)2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2);(2)选A,B两个代数式,分别作为分子、分母,组成一个分式(答案不唯一),==.15.(2023秋•思明区校级期中)先化简,再求值:(),其中.【答案】,.【解答】解:原式=÷(﹣)=÷=•=,当x=﹣1时,原式==.16.(2023秋•长沙期中)先化简,再求值:,其中x=5.【答案】,.【解答】解:原式=(﹣)•=•=,当x=5时,原式==.17.(2023•盐城一模)先化简,再求值:,其中x=4.【答案】见试题解答内容【解答】解:原式=(+)•=•=•=x﹣1,当x=4时,原式=4﹣1=3.18.(2022秋•廉江市期末)先化简(﹣x)÷,再从﹣1,0,1中选择合适的x值代入求值.【答案】﹣,0.【解答】解:原式=(﹣)•=﹣•=﹣,∵(x+1)(x﹣1)≠0,∴x≠±1,当x=0时,原式=﹣=0.1.(2023秋•西城区校级期中)假设每个人做某项工作的工作效率相同,m个人共同做该项工作,d天可以完成若增加r个人,则完成该项工作需要()天.A.d+y B.d﹣r C.D.【答案】C【解答】解:工作总量=md,增加r个人后完成该项工作需要的天数=,故选:C.2.(2023秋•长安区期中)若a=2b,在如图的数轴上标注了四段,则表示的点落在()A.段①B.段②C.段③D.段④【答案】C【解答】解:∵a=2b,∴=====,∴表示的点落在段③,故选:C.3.(2023秋•东城区校级期中)若x2﹣x﹣1=0,则的值是()A.3B.2C.1D.4【答案】A【解答】解:∵x2﹣x﹣1=0,∴x2﹣1=x,∴x﹣=1,∴(x﹣)2=1,∴x2﹣2+=1,∴x2+=3,故选:A.4.(2023秋•鼓楼区校级期中)对于正数x,规定,例如,,则=()A.198B.199C.200D.【答案】B【解答】解:∵f(1)==1,f(1)+f(1)=2,f(2)==,f()==,f(2)+f()=2,f(3)==,f()==,f(3)+f()=2,…f(100)==,f()==,f(100)+f()=2,∴=2×100﹣1=199.故选:B.5.(2023秋•延庆区期中)当x分别取﹣2023,﹣2022,﹣2021,…,﹣2,﹣1,0,1,,,…,,,时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2023【答案】A【解答】解:当x=﹣a和时,==0,当x=0时,,则所求的和为0+0+0+⋯+0+(﹣1)=﹣1,故选:A.6.(2022秋•永川区期末)若分式,则分式的值等于()A.﹣B.C.﹣D.【答案】B【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故选:B.7.(2023春•铁西区月考)某块稻田a公顷,甲收割完这块稻田需b小时,乙比甲多用0.3小时就能收割完这块稻田,两人一起收割完这块稻田需要的时间是()A.B.C.D.【答案】B【解答】解:乙收割完这块麦田需要的时间是(b+0.3)小时,甲的工作效率是公顷/时,乙的工作效率是公顷/时.故两人一起收割完这块麦田需要的工作时间为=(小时).故选:B.8.(2023春•临汾月考)相机成像的原理公式为,其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片(像)到镜头的距离.下列用f,u表示v正确的是()A.B.C.D.【答案】D【解答】解:∵,去分母得:uv=fv+fu,∴uv﹣fv=fu,∴(u﹣f)v=fu,∵u≠f,∴u﹣f≠0,∴.故选:D.9.(2023•内江)对于正数x,规定,例如:f(2)=,f()=,f(3)=,f()=,计算:f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=()A.199B.200C.201D.202【答案】C【解答】解:∵f(1)==1,f(2)=,f()=,f(3)=,f()=,f(4)==,f()==,…,f(101)==,f()==,∴f(2)+f()=+=2,f(3)+f()=+=2,f(4)+f()=+=2,…,f(101)+f()=+=2,f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=2×100+1=201.故选:C.10.(2023春•灵丘县期中)观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A.B.C.D.【答案】A【解答】解:由上式可知+++…+=(1﹣)=.故选A.11.(2023秋•顺德区校级月考)先阅读并填空,再解答问题.我们知道,(1)仿写:=,=,=.(2)直接写出结果:=.利用上述式子中的规律计算:(3);(4).【答案】(1),;;(2);(3);(4).【解答】解:(1),=;=,故答案为:,;;(2)原式=1﹣+++...++=1﹣=;故答案为:;(3)==1﹣+﹣+﹣+⋯⋯+=1﹣=;(2)原式=×()+×()+×()+...+×()=()==.12.(2023秋•株洲期中)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数.如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;,这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:,;解决下列问题:(1)分式是真分式(填“真”或“假”);(2)将假分式化为带分式;(3)如果x为整数,分式的值为整数,求所有符合条件的x的值.【答案】(1)真;(2)x﹣2+;(3)﹣1或﹣3或11或﹣15.【解答】解:(1)分式是真分式;故答案为:真;(2);(3)原式=,∵分式的值为整数,∴x+2=±1或±13,∴x=﹣1或﹣3或11或﹣15.13.(2023秋•涟源市月考)已知,求的值.解:由已知可得x≠0,则,即x+.∵=(x+)2﹣2=32﹣2=7,∴.上面材料中的解法叫做“倒数法”.请你利用“倒数法”解下面的题目:(1)求,求的值;(2)已知,求的值;(3)已知,,,求的值.【答案】(1);(2)24;(3).【解答】解:(1)由,知x≠0,∴.∴,x•=1.∵=x2+=(x﹣)2+2=42+2=18.∴=.(2)由=,知x≠0,则=2.∴x﹣3+=2.∴x+=5,x•=1.∵=x2+1+=(x+)2﹣2+1=52﹣1=24.∴=.(3)由,,,知x≠0,y≠0,z≠0.则=,=,y+zyz=1,∴+=,+=,+=1.∴2(++)=++1=.∴++=.∵=++=,∴=.14.(2022秋•兴隆县期末)设.(1)化简M;(2)当a=3时,记M的值为f(3),当a=4时,记M的值为f(4).①求证:;②利用①的结论,求f(3)+f(4)+…+f(11)的值;③解分式方程.【答案】(1);(2)①见解析,②,③x=15.【解答】解:(1)=====;(2)①证明:;②f(3)+f(4)+⋅⋅⋅+f(11)====;③由②可知该方程为,方程两边同时乘(x+1)(x﹣1),得:,整理,得:,解得:x=15,经检验x=15是原方程的解,∴原分式方程的解为x=15.15.(2023春•蜀山区校级月考)【阅读理解】对一个较为复杂的分式,若分子次数比分母大,则该分式可以拆分成整式与分式和的形式,例如将拆分成整式与分式:方法一:原式===x+1+2﹣=x+3﹣;方法二:设x+1=t,则x=t﹣1,则原式==.根据上述方法,解决下列问题:(1)将分式拆分成一个整式与一个分式和的形式,得=;(2)任选上述一种方法,将拆分成整式与分式和的形式;(3)已知分式与x的值都是整数,求x的值.【答案】(1);(2);(3)﹣35或43或﹣9或17或1或7或3或5.【解答】解:(1)由题知,,故答案为:.(2)选择方法一:原式==.选择方法二:设x﹣1=t,则x=t+1,则原式=====.(3)由题知,原式====.又此分式与x的值都是整数,即x﹣4是39的因数,当x﹣4=±1,即x=3或5时,原分式的值为整数;当x﹣4=±3,即x=1或7时,原分式的值为整数;当x﹣4=±13,即x=﹣9或17时,原分式的值为整数;当x﹣4=±39,即x=﹣35或43时,原分式的值为整数;综上所述:x的值为:﹣35或43或﹣9或17或1或7或3或5时,原分式的值为整数.16.(2023春•兰州期末)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可以化为带分数,如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;再如:这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式),如:.解决下列问题:(1)分式是真分式(填“真分式”或“假分式”);(2)将假分式化为整式与真分式的和的形式:=2+.若假分式的值为正整数,则整数a的值为1,0,2,﹣1;(3)将假分式化为带分式(写出完整过程).【答案】(1)真分式;(2)2+;1,2,﹣1;(3)x﹣1﹣.【解答】解:(1)由题意得:分式是真分式,故答案为:真分式;(2)==2+,当2+的值为正整数时,2a﹣1=1或±3,∴a=1,2,﹣1;故答案为:2+;1,2,﹣1;(3)原式===x﹣1﹣.1.(2023•湖州)若分式的值为0,则x的值是()A.1B.0C.﹣1D.﹣3【答案】A【解答】解:∵分式的值为0,∴x﹣1=0,且3x+1≠0,解得:x=1,故选:A.2.(2023•天津)计算的结果等于()A.﹣1B.x﹣1C.D.【答案】C【解答】解:====,故选:C.3.(2023•镇江)使分式有意义的x的取值范围是x≠5.【答案】x≠5.【解答】解:当x﹣5≠0时,分式有意义,解得x≠5,故答案为:x≠5.4.(2023•上海)化简:﹣的结果为2.【答案】2.【解答】解:原式===2,故答案为:2.5.(2023•安徽)先化简,再求值:,其中x=.【答案】x+1,.【解答】解:原式==x+1,当x=﹣1时,原式=﹣1+1=.6.(2023•广安)先化简(﹣a+1)÷,再从不等式﹣2<a<3中选择一个适当的整数,代入求值.【答案】;﹣1.【解答】解:(﹣a+1)÷=•=.∵﹣2<a<3且a≠±1,∴a=0符合题意.当a=0时,原式==﹣1.7.(2023•淮安)先化简,再求值:÷(1+),其中a=+1.【答案】,.【解答】解:原式=÷(+)=÷=•=,当a=+1时,原式==.8.(2023•朝阳)先化简,再求值:(+)÷,其中x=3.【答案】,1.【解答】解:原式=[+]•=•=,当x=3时,原式==1.。
2025年中考数学考点分类专题归纳之分式
2025年中考数学考点分类专题归纳分 式要点一、分式的有关概念及性质1.分式一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子A B叫做分式,其中A 叫做分子,B 叫做分母. 2.分式的基本性质(M 为不等于0的整式).3.最简分式 分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.要点二、分式的运算1.约分利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.2.通分利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分. 3.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算 a b a b c c c±±= ;同分母的分式相加减,分母不变,把分子相加减. a c ad bc b d bd±±=;异分母的分式相加减,先通分,变为同分母的分式,再加减. (2)乘法运算:a c ac b d bd ⋅=,其中a 、b 、c 、d 是整式,bd ≠0.两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算:a c a d ad b d b c bc÷=⋅=,其中a 、b 、c 、d 是整式,bcd ≠0. 两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘.(4)乘方运算: nn n a a b b ⎛⎫= ⎪⎝⎭分式的乘方,把分子、分母分别乘方。
4.零指数5.负整数指数1p p a a -=(a ≠0,p 为正整数)6.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.1.(2024•武汉)若分式在实数范围内有意义,则实数x 的取值范围是( )A .x >﹣2B .x <﹣2C .x =﹣2D .x ≠﹣22.(2024•温州)若分式的值为0,则x 的值是( )A .2B .0C .﹣2D .﹣53.(2024•葫芦岛)若分式的值为0,则x 的值为( )A .0B .1C .﹣1D .±14.(2024•莱芜)若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是()A .B .C .D .5.(2024•株洲)下列运算正确的是( )A .2a+3b =5abB .(﹣ab )2=a 2bC .a 2•a 4=a 8D .6.(2024•曲靖)下列计算正确的是( )A.a2•a=a2B.a6÷a2=a3C.a2b﹣2ba2=﹣a2b D.()37.(2024•河北)老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁8.(2024•淄博)化简的结果为()A.B.a﹣1 C.a D.19.(2024•南充)已知3,则代数式的值是()A.B.C.D.10.(2024•内江)已知:,则的值是()A.B.C.3 D.﹣311.(2024•北京)如果a﹣b=2,那么代数式(b)•的值为()A.B.2C.3D.412.(2024•孝感)已知x+y=4,x﹣y,则式子(x﹣y)(x+y)的值是()A.48 B.12C.16 D.12 13.(2024•沙坪坝区)计算:(π﹣3)0﹣()﹣2=___ _.14.(2024•盐城)要使分式有意义,则x的取值范围是_____.15.(2024•湖州)当x=1时,分式的值是_ .16.(2024•沈阳)化简:.17.(2024•大庆)已知,则实数A=__ _.18.(2024•包头)化简:(1)=_ .19.(2024•昆明)若m3,则m2___.20.(2024•永州)化简:(1)_ _.21.(2024•福建)计算:()0﹣1=___.22.(2024•南通)计算:(1)(﹣2)2(﹣3)0﹣()﹣2;(2).23.(2024•湖北)化简:•.24.(2024•百色)已知a2=19,求的值.25.(2024•山西)计算:(1)(2)2﹣|﹣4|+3﹣1×6+20.(2)•.26.(2024•徐州)计算:(1)﹣12+20240﹣()﹣1;(2).27.(2024•益阳)化简:(x﹣y)•.28.(2024•陕西)化简:().29.(2024•十堰)化简:30.(2024•南京)计算(m+2).31.(2024•泸州)化简:(1).32.(2024•黑龙江)先化简,再求值:(a),其中a,b=1.33.(2024•重庆)计算:(1)(x+2y)2﹣(x+y)(x﹣y);(2)(a﹣1)34.(2024•万州区)计算(1)(x+2y)(x﹣2y)+4y(x+y)(2)(y﹣1).35.(2024•铁岭)先化简,再求值:(a+2),其中a.36.(2024•辽阳)先化简,再求值:(),其中a=2cos30°+()﹣1﹣(π﹣3)037.(2024•葫芦岛)先化简,再求值:(),其中a=3﹣1+2sin30°.38.(2024秋•沙坪坝区校级月考)先化简,再求值:(a+1),其中a=2(tan45°﹣cos30°)39.(2024•广元)先化简,再求值:(),其中a2.40.(2024•锦州)先化简,再求值:(2),其中x=3.41.(2024•青海)先化简,再求值:(1),其中m=2.42.(2024•毕节市)先化简,再求值:,其中a是方程a2+a﹣6=0的解.。
初中数学分式知识点总结(通用19篇)
初中数学分式知识点总结(通用19篇)初中数学分式知识点总结篇11.分式:形如A/B,A、B是整式,B中含有未知数且B不等于0的整式叫做分式(fraction)。
其中A叫做分式的分子,B叫做分式的分母。
2.分式有意义的条件:分母不等于0。
3.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分。
4.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。
分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。
用式子表示为:A/B=A*C/B*C A/B=A÷C/B÷C (A,B,C为整式,且C≠0)5.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式.6.分式的四则运算:1)同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a/c±b/c=a±b/c2)异分母分式加减法则:异分母的.分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a/b±c/d=ad±cb/bd3)分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a/b * c/d=ac/bd 4)分式的除法法则:(1)两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.a/b÷c/d=ad/bc(2)除以一个分式,等于乘以这个分式的倒数:a/b÷c/d=a/b*d/c7.分式方程的意义:分母中含有未知数的方程叫做分式方程.8.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根)。
分式知识点归纳
分式知识点归纳一、分式的定义如果 A、B 表示两个整式,并且 B 中含有字母,那么式子$\frac{A}{B}$就叫做分式。
其中 A 叫做分子,B 叫做分母。
需要注意的是,分式的分母不能为 0,因为除数不能为 0。
如果分母 B 的值为 0,那么分式$\frac{A}{B}$就没有意义。
例如,$\frac{x}{y}$是一个分式,其中 x 是分子,y 是分母;而$\frac{5}{3}$就不是分式,因为它的分母 3 是一个常数,不含字母。
二、分式有意义的条件分式有意义的条件是分母不为 0。
即对于分式$\frac{A}{B}$,当$B \neq 0$ 时,分式有意义。
例如,对于分式$\frac{x + 1}{x 2}$,要使其有意义,则$x2 \neq 0$,即$x \neq 2$。
三、分式值为 0 的条件分式值为 0 的条件是分子为 0 且分母不为 0。
即对于分式$\frac{A}{B}$,当$A = 0$ 且$B \neq 0$ 时,分式的值为 0。
例如,若分式$\frac{x^2 1}{x + 1}$的值为 0,则$x^2 1 =0$ 且$x + 1 \neq 0$。
由$x^2 1 = 0$ 可得$x =\pm 1$,又因为$x + 1 \neq 0$,所以$x \neq 1$,因此$x = 1$ 时,该分式的值为 0。
四、分式的基本性质分式的分子和分母同时乘以(或除以)同一个不为 0 的整式,分式的值不变。
用式子表示为:$\frac{A}{B} =\frac{A \times C}{B \times C}$,$\frac{A}{B} =\frac{A \div C}{B \div C}$($C \neq 0$)例如,$\frac{x}{y} =\frac{x \times 2}{y \times 2} =\frac{2x}{2y}$,$\frac{3a}{5b} =\frac{3a \div 3}{5b \div 3} =\frac{a}{\frac{5}{3}b}$五、约分把一个分式的分子和分母的公因式约去,叫做约分。
中考数学复习《分式》考点归纳PPT课件
②异分母的分式相加减法则:先通分,变为同分母的分 式,然后再加减.
用式子表示为: a c ad bc ad bc . b d bd bd bd
(2)分式的乘法
乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示为:
a c ac . b d bd
• (2)约分法则:把一个分式约分,如果分子和分母都是几个因式乘积的形式, 约去分子和分母中相同因式的最低次幂;分子与分母的系数,约去它们的最大 公约数.如果分式的分子、分母是多项式,先分解因式,然后约分.
• 【注】约分的根据是分式的基本性质.约分的关键是找出分子和分母的公因 式.
4、最简分式
• 分子、分母没有公因式的分式叫做最简分式. • 【注】约分一般是将一个分式化为最简分式,分式约分所得的结果有时可能 成为整式。
5、通分及通分法则
• (1)通分:根据分式的基本性质,把几个异分母的分式分别化为与原来的分式相等的同分母的 分式,这一过程称为分式的通分.
• (2)通分法则
• 把两个或者几个分式通分:
• ①先求各个分式的最简公分母(即各分母系数的最小公倍数、相同因式的最高次幂和所有不同因 式的积);
• ②再用分式的基本性质,用最简公分母除以原来各分母所得的商分别去乘原来分式的分子、分母, 使每个分式变为与原分式的值相等,而且以最简公分母为分母的分式;
中考数学复习《分式》考点归纳PPT课件
• 1、分式的定义
(1)一般地,整式 A 除以整式 B,可以表示成 A 的形式,如果除式 B 中含有字母,那么称 B
A 为分式. B
(2)分式 A 中,A 叫做分子,B 叫做分母. B
【注】①若 B≠0,则 A 有意义;②若 B=0,则 A 无意义;③若 A=0 且 B≠0,则 A =0.
分式知识点归纳总结
《分式》知识点回顾及考点透视一、知识总览本章主要学习分式的概念,分式的基本性质,分式的约分、通分,分式的运算(包括乘除、乘方、加减运算),分式方程等内容,分式是两个整式相除的结果,且除式中含有字母,它类似于小学学过的分数,分式的内容在初中数学中占有重要地位,特别是利用分式方程解决实际问题,是重要的应用数学模型,在中考中,有关分式的内容所占比例较大,应重视本章知识的学习.二、考点解读考点1:分式的意义例1.(1)(2006年南平市)当x 时,分式11+x 有意义. 分析:要使分式有意义,只要分母不为0即可当x ≠-1时,分式11+x 有意义. (2)(2006年浙江省义乌市)已知分式11+-x x 的值是零,那么x 的值是( ) A .-1 B .0 C .1 D . 1±分析:讨论分式的值为零需要同时考虑两点:(1)分子为零;(2)分母不为零,当x=1时,分子等于零,分母不为0,所以,当x=1时,原分式的值等于零,故应选C . 评注:在分式的定义中,各地中考主要考查分式A B在什么情况下有意义、无意义和值为0的问题。
当B ≠0时,分式A B 有意义;当B=0时,分式A B无意义;当A=0且B ≠0时,分式A B 的值为0 考点2:分式的变形例2.(2006年山西省)下列各式与x y x y-+相等的是( ) (A )()5()5x y x y -+++(B )22x y x y -+(C )222()()x y x y x y -≠-(D )2222x y x y-+ 解析:正确理解分式的基本性质是分式变形的前提,本例选项(C )为原分式的分子、分母都乘以同一个不等于0的整式(x-y )所得,故分式的值不变.考点3:分式的化简分式的约分与通分是进行分式化简的基础,特别是在化简过程中的运算顺序、符号、运算律的应用等也必须注意的一个重要方面例2.(2006年临安市)化简:x -1x ÷(x -1x). 分析:本题要先解决括号里面的,然后再进行计算解:原式x x x x 112-÷-=)1)(1(1-+⨯-=x x x x x 11+=x 评注:分式的乘除法运算,就是将除法转化为乘法再进行约分即可.考点4:分式的求值例4.(2006年常德市)先化简代数式:22121111x x x x x -⎛⎫+÷ ⎪+--⎝⎭,然后选取一个使原式有意义的x 的值代入求值.分析:本题先要将复杂的分式进行化简,然后再取一个你喜欢的值代入(但你取的值必须使分式有意义).解:化简得:21x +,取x=0时,原式=1;评注:本题化简的结果是一个整式,如果不注意的话,学生很容易选1或-1代入,这是不行的,因为它们不能使分式有意义.考点5:解分式方程例5.(2006年陕西省)解分式方程:22322=--+x x x 分析:解分式方程的关键是去分母转化为整式方程解:)4(2)2(3)2(22-=+--x x x x ,82634222-=---x x x x , 27-=-x 72=x ,经检验:72=x 是原方程的解,∴原方程的解为72=x 点评:解分式方程能考查学生的运算能力、合情推理等综合能力,解分式方程要注意检验,否则容易产生增根而致误!考点6:分式方程的应用例6.(2006年长春市)A 城市每立方米水的水费是B 城市的1.25倍,同样交水费20元,在B 城市比在A 城市可多用2立方米水,那么A 、B 两城市每立方米水的水费各是多少元?分析:本题只要抓住两城市的水相差2立方米的等量关系列方程即可解:设B 城市每立方米水的水费为x 元,则A 城市为1.25x 元,25.120220xx =- 解得x = 2经检验x = 2是原方程的解。
中考专题复习之分式
-1 +1
解:
,其中 a=4.
=
=
2-
2 -1
1
÷ +
-1 +1
2-
(+1)(-1)
1
+1
-1
·(a-1)+
-1
+1
.
1
当 a=4 时,原式= .
5
18.[2019·顺义一模]已知 x +3x-3=0,求代数式 12
3
-3 +6
÷
-
+3 +3
的值.
解:∵ x +3x-3=0,∴ x2+3x=3.
=⑦
(b≠0,n 为正整数)
同实数的运算顺序及运算律,注意结果应化为最简形式
基
础
知
识
巩
固
【温馨提示】分式化简中常见的几个易错点
(1)通分时错误:分式通分时,分母与分子同时乘以最简公分母;
(2)去括号时符号错误:括号前是“-”号时,去括号后,括号内各项要变号;
(3)不要把分式的化简与解分式方程相混淆,不要随意将分母去掉.
·(m+n)(m-n)=3(m+n),
∵ m+n=1,∴ 原式=3,故选 D.
基础知识来自巩固9.[2018·北京 6 题]如果 a-b=2 3,那么代数式
高
频
考
向
探
究
10.[2017·北京 7 题]如果 a2+2a-1=0,那么代数式
2 + 2
2
-b · 的值为
-
A. 3
)
B.2 3
中考数学专题训练第6讲分式(知识点梳理)
分式知识点梳理考点01 分式一、分式的概念1.概念:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子B A 叫作分式,A 叫作分子,B 叫作分母。
2.分式的三个要素:(1)形如BA 的式子. (2)A ,B 是整式.(3)分母B 中含有字母。
3.分式有意义的条件:分母不等于0。
4.分式无意义的条件:分母等于0.5.分式的值为0的条件:分子等于0,分母不等于0,二者缺一不可。
二、分式的基本性质1.分式的意义:分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变。
2.用式子表示:)0(,≠÷÷=••=C CB C A B A C B C A B A ,其中A ,B ,C 均为整式。
三、分式的约分、最简分式1.分式的约分:根据分式的基本性质,把一个分式的分子、分母的公因式约去,叫作分式的约分。
2.分式约分的依据:分式的基本性质。
3.约分的方法:(1)先确定分式的分子、分母的公因式,当分子、分母都是单项式时,分子、分母的公因式是分子、分母系数的最大公约数和相同字母的最低次幂的积.当分子、分母是多项式时,应先将多项式因式分解,再根据确定公因式的方法确定公因式.(2)根据分式基本性质,分子分母都除以它们的公因式.(3)最简分式:分子与分母没有公因式的分式,叫作最简分式。
4.分式的约分,一般要约去分子和分母所有的公因式,使所得结果成为最简分式或整式。
四、分式的通分、最简公分母1.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式叫作分式的通分。
2.通分的依据:分式的基本性质。
3.最简公分母:异分母的分式通分时,一般取各分母所有因式的最高次幂的积作为公分母,这样的公分母叫作最简公分母。
4.确定最简公分母的方法:(1)取各分母的系数的最小公倍数.(2)各分式的分母中所有字母(或因式)都要取到.(3)相同字母(或因式)的幂取指数最大的.(4)所得系数的最小公倍数与各字母(或因式)的最高次幂的积即为最简公分母。
中考数学知识点梳理第7讲分式方程
中考数学知识点梳理第7讲分式方程分式方程是指方程中含有分式表达式的方程。
分式方程在中考中占有一定的比重,是考查学生对分式的理解和运用的重要途径。
下面将梳理中考数学中与分式方程相关的知识点。
一、分式的定义和性质分式是指整数与整数之间用斜线分隔的写法,如a/b。
其中,a称为分子,b称为分母,a称为真分数,当a<b时。
分式的性质:1.当分子为0时,分式的值为0。
2.当分母为1时,分式的值等于分子。
3.分子和分母同时乘以一个非零数,分式的值不变。
4.分子和分母同时除以一个非零数,分式的值不变。
二、分式方程的解法1.消去分母法消去分母法是分式方程的基本解法。
其基本思路是通过两边同时乘以分母的公倍数,去除分母并化简方程。
2.交叉相乘法交叉相乘法适用于分式方程中含有两个分式的情况。
其基本思路是将两个分式相乘并等于0,然后将原分式方程化为两个整式方程,再求解。
3.增加分母法增加分母法适用于分式方程中含有分式的情况。
其基本思路是通过增加分母使得方程化为整式方程,再求解。
三、分式方程的典型题型1.分式方程的基本题型(1)形如a/b+c/d=e/f的方程,其中a、b、c、d、e、f都是已知的实数。
(2)形如(a/b)/(c/d)=(e/f)/(g/h)的方程,其中a、b、c、d、e、f、g、h都是已知的实数。
2.均分问题均分问题是指把一个数量等分成若干份的问题。
通常可以建立如下的分式方程:若等分成n份,则每份的数量为总数量除以n,即总数量/n。
3.速度问题速度问题是指涉及速度、时间和路程的问题。
通常可以建立如下的分式方程:速度=路程/时间。
四、分式方程的实际应用1.定理的运用在实际应用中,可以通过定理的运用将问题转化为分式方程,并求解。
2.误差的计算在实际测量中,经常需要进行误差的计算。
可以通过分式方程的运算将实际测量值与真实值进行对比。
3.比例的计算在实际应用中,经常涉及到比例的计算。
可以通过分式方程进行比例的计算。
分式知识点总结(详细)初中数学
分式的概念和性质要点一、分式的概念一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子B A 叫做分式.其中A 叫做分子,B 叫做分母.要点诠释:(1)分式的形式和分数类似,但它们是有区别的.分数是整式,不是分式, 分式是两个整式相除的商式.分式的分母中含有字母;分数的分子、分母中都不含字母.(2)分式与分数是相互联系的:由于分式中的字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况.(3)分母中的“字母”是表示不同数的“字母”,但π表示圆周率,是一个常数,不是字母,如πa 是整式而不能当作分式. (4)分母中含有字母是分式的一个重要标志,判断一个代数式是否是分式不能先化简,如xy x 2是分式,与xy 有区别,xy 是整式,即只看形式,不能看化简的结果. 要点二、分式有意义,无意义或等于零的条件1.分式有意义的条件:分母不等于零.2.分式无意义的条件:分母等于零.3.分式的值为零的条件:分子等于零且分母不等于零.要点诠释:(1)分式有无意义与分母有关但与分子无关,分式要明确其是否有意义,就 必须分析、讨论分母中所含字母不能取哪些值,以避免分母的值为零.(2)本章中如果没有特殊说明,所遇到的分式都是有意义的,也就是说分式中分母的 值不等于零.(3)必须在分式有意义的前提下,才能讨论分式的值.要点三、分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:MB M A B A M B M A B A ÷÷=⨯⨯=,(其中M 是不等于零的整式). 要点诠释:在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化.例如:xx x x x 1122-=+-,在变形后,字母x 的取值范围变大了.要点四、分式的变号法则对于分式中的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;改变其中任何一个或三个,分式成为原分式的相反数.要点诠释:根据分式的基本性质有ab a b a b a b -=-=--,. 根据有理数除法的符号法则有ab a b a b -=-=-. 分式a b 与a b -互为相反数.分式的符号法则在以后关于分式的运算中起着重要的作用. 要点五、分式的约分,最简分式与分数的约分类似,利用分式的基本性质,约去分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.如果一个分式的分子与分母没有相同的因式(1除外),那么这个分式叫做最简分式.要点诠释:(1)约分的实质是将一个分式化成最简分式,即约分后,分式的分子与分 母再没有公因式.(2)约分的关键是确定分式的分子与分母的公因式.分子、分母的公因式是分子、分母的系数的最大公约数与相同因式最低次幂的积;当分式的分子、分母中含有多项式时,要先将其分解因式,使之转化为分子与分母是不能再分解的因式积的形式,然后再进行约分.要点六、分式的通分与分数的通分类似,利用分式的基本性质,使分式的分子和分母同乘适当的整式,不改变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分.要点诠释:(1)通分的关键是确定各分式的最简公分母:一般取各分母所有因式的最高 次幂的积作为公分母.(2)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数与相同字母的 最高次幂的乘积;如果各分母都是多项式,就要先把它们分解因式,然后再找最简公分母.(3)约分和通分恰好是相反的两种变形,约分是对一个分式而言,而通分则是针对多个分式而言.要点一、分式的乘除法1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用字母表示为:bdac d c b a =⋅,其中a,b,c,d 是整式,bd ≠0. 2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用字母表示为:bcad c d b a d c b a =⋅=÷,其中a,b,c,d 是整式,bcd ≠0. 要点诠释:(1)分式的乘除法都能统一成乘法,然后约去公因式,化为最简分式或整式.(2)分式与分式相乘,若分子和分母是多项式,则先分解因式,看能否约分,然后再乘.(3)整式与分式相乘,可以直接把整式(整式可以看作分母是1的代数式)和分式的分子相乘作为分子,分母不变.当整式是多项式时,同样要先分解因式,便于约分.(4)分式的乘除法计算结果,要通过约分,化为最简分式或整式. 要点二、分式的乘方分式的乘方运算法则:分式的乘方是把分子、分母分别乘方,用字母表示为:n n nb a b a =⎪⎭⎫ ⎝⎛(n 为正整数). 要点诠释:(1)分式乘方时,一定要把分式加上括号.不要把n n n b a b a =⎪⎭⎫ ⎝⎛写成b a b a n n =⎪⎭⎫ ⎝⎛; (2)分式乘方时,要首先确定乘方结果的符号,负数的偶次方为正,负数的奇次方为负.(3)在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算乘除,有多项式时应先分解因式,再约分.(4)分式乘方时,应把分子、分母分别看作一个整体.如222222)(b b a b b a b b a -≠-=⎪⎭⎫ ⎝⎛-.要点一、同分母分式的加减同分母分式相加减,分母不变,把分子相加减;上述法则可用式子表为:cb ac b c a ±=±. 要点诠释:(1)“把分子相加减”是把各分式的分子的整体相加减,即各个分子都应用 括号,当分子是单项式时,括号可以省略;当分子是多项式时,特别是分子相减时,括 号不能省,不然,容易导致符号上的错误.(2)分式的加减法运算的结果必须化成最简分式或整式.要点二、异分母分式的加减异分母分式相加减,先通分,变为同分母的分式,再加减.上述法则可用式子表为:bdbc ad bd bc bd ad d c b a ±=±=±. 要点诠释:(1)异分母的分式相加减,先通分是关键.通分后,异分母的分式加减法变 成同分母分式的加减法.(2)异分母分式加减法的一般步骤:①通分,②进行同分母分式的加减运算,③把结果化成最简分式.分式的混合运算,整数指数幂要点一、分式的混合运算与分数的加、减、乘、除混合运算一样,分式的加、减、乘、除混合运算,也是先算乘、除,后算加、减;遇到括号,先算括号内的,按先小括号,再中括号,最后大括号的顺序计算. 分式运算结果必须达到最简,能约分的要约分,保证结果是最简分式或整式.要点诠释:(1)正确运用运算法则:分式的乘除(包括乘方)、加减、符号变化法则是 正确进行分式运算的基础,要牢牢掌握..(2)运算顺序:先算乘方,再算乘、除,最后算加、减,遇有括号,先算括号内的.(3)运算律:运算律包括加法和乘法的交换律、结合律,乘法对加法的分配律.能灵活运用运算律,将大大提高运算速度.要点二、零指数幂、同底数幂的除法任何不等于零的数的零次幂都等于1,即()010≠=a a . 同底数幂的除法法则可以推广到整数指数幂.即n m n m a a a -=÷(a≠0,m 、n 为整数)要点三、负整数指数幂任何不等于零的数的-n (n 为正整数)次幂,等于这个数的n 次幂的倒数, 即n n aa 1=-(a≠0,n 是正整数). 引进了零指数幂和负整数指数幂后,指数的范围已经扩大到了全体整数,以前所学的幂的运算性质仍然成立.要点四、科学记数法的一般形式(1)把一个绝对值大于10的数表示成na 10⨯的形式,其中n 是正整数,101≤≤a .(2)利用10的负整数次幂表示一些绝对值较小的数,即n a 10⨯的形式,其中n 是正整数,101≤≤a .用以上两种形式表示数的方法,叫做科学记数法.分式方程的解法及应用要点一、分式方程的概念分母中含有未知数的方程叫分式方程.要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未 知数.(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.(3)分式方程和整式方程的联系:分式方程可以转化为整式方程.要点二、分式方程的解法解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根.解分式方程的一般步骤:(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);(2)解这个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.要点三、解分式方程产生增根的原因方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根.产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根.要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方程不是同解方程,这时求得的根就是原方程的增根.(2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中没有错误的前提下进行的. 要点四、分式方程的应用分式方程的应用主要就是列方程解应用题.列分式方程解应用题按下列步骤进行:(1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系;(2)设未知数;(3)找出能够表示题中全部含义的相等关系,列出分式方程;(4)解这个分式方程;(5)验根,检验是否是增根;(6)写出答案.。
分式中考专题复习基础知识点
分式
1.定义:形式 A 的式子,其中B中有字母,B 0 B
①分子分母都是整式
分式的概念 ②分母中含有字母
③分母不能为零
2. A 有意义的条件:B 0 B A 无意义的条件:B=0 B
3. A =0的条件:A=0且B 0 B
4.分式的基本性质:
分式的分子与分母乘(或除以)同一个不等于0的整式, 分式的值不变.
5.分式约分: (1)把分子与分母分解因式 (2)找到分子与分母公因式 (3)约掉公因式 (4)结果最简分式或整式
6.分式通分: (1) 找到最简公分母 (2)各分式化成分母相同的分式
寻找最简公分母,方法:
(1)系数:把各分式分母系数的最小公倍数作为最简公 分母的系数;
(2)因式:凡出现过的字母(或因式分解后得到的因式) 都要取到;
(3)指数:相同因式取指数最高的。
通分
1
1 2a 2
b
与
a-b 3ab2c
最简公分母
6a 2 b2c
1 2a 2 b
1g3bc 2a 2 bg 3bc
3bc 6a 2 b2c
a-b 3ab2c
a-b g2a
3ab2cg 2a
2a2 2ab
6a 2 b2c
1、把下列各式通分: (P121随堂练习)
(1) x 1 , 2 , 3x2 ax
最简公分母 3ax2
a x 1
3x2
x 1g
3x2 g a
a x 1
3ax2
2 2g3x ax axg 3x
6x 3ax 2
1
a
x 1
3ax2
,
6x 3ax2
1、把下列各式通分: (P121随堂练习)
分式部分知识点总结
分式部分知识点总结
一、分式的基本概念
1. 分子与分母:
分式中的上半部分称为分子,下半部分称为分母。
2. 真分式与假分式:
当分子的绝对值小于分母的绝对值时,该分式为真分式;反之,该分式为假分式。
二、分式的化简
1. 化简方法:
(1)约分:将分式的分子与分母同时除以它们的公因式;
(2)乘除通分:通分后将分子与分母同时乘以同一个非零数。
2. 化简应用:
(1)分式的加减;
(2)解方程。
三、分式的性质
1. 分式的倒数:
分式a/b的倒数是b/a,其中a≠0.
2. 分式的乘法:
分式的乘法是将分子与分子相乘,分母与分母相乘。
3. 分式的除法:
分式的除法等于将被除数乘以除数的倒数。
4. 分式的加法和减法:
分式的加法和减法是先通分,再按照通分后的分子的运算规则进行加减。
四、分式方程
1. 基本步骤:
(1)去掉分母;
(2)解得方程的解;
(3)检验所得解是否符合原方程。
五、分式的应用
1. 分式在商业中的应用;
2. 分式在工程中的应用;
3. 分式在科学中的应用。
六、分式的计算
1. 分式的加减:将分母通分后再按照通分后的分子的运算规则进行加减;
2. 分式的乘法:将分子与分子相乘,分母与分母相乘;
3. 分式的除法:将被除数乘以除数的倒数。
数学中考《第五章 分式》知识点聚焦
第五章 分式知能图谱分式的有关概念⎩⎪⎨⎪⎧区分豆芽和分式:分母中是否含有字母分工有意义的条件:分母不为0分工的值为0的条件:分子为0,分母不为0最简公分母⎩⎪⎨⎪⎧系数:取各分母系数的最小公倍数字母因式:一是各分母中所有字母(或因式)都要取到;二是同底数幂取次数最高的依据:分式的基本性质A A MB B M ⋅=⋅,A A M B B M÷=÷(M 是不等于0的整式) 关键:确定最简公分母 依据:分式的基本性质方法:⎩⎨⎧⎭⎬⎫分子、分母是单项式的约分分子、分母是多项式的约分最简分式或整式 关键:确定分子与分母的公因式分式的加减⎩⎪⎨⎪⎧同分母分式相加减b c b ca a a±±=异分母分式相加减b d bc ada c ac±±=分式的乘除⎩⎪⎨⎪⎧分式的乘法()0,0b d bda c a c ac⋅=≠≠分式的除法()0,,0b d b c bca c d a c a d ad÷=⋅=≠≠≠分式的乘方nnn a a b b⎛⎫= ⎪⎝⎭(n 为正整数,0b ≠)分式的混合运算:结果化为最简分式或整式第11讲 分式及其性质知识能力解读知能解读 (一)分式的概念分式通分约分 分式的基本性质分式的运算一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子AB叫作分式.分式会AB中A 叫作分子,B 叫作分母. 注意:(1)判断一个式子是否为分式,关键是看分母中是否有字母.(2)分式与整式的根本区别:分式的分母中含有字母,如12,2x 是整式,而2x是分式. (3)分式有无意义的条件:①若0B ≠,则分式A B 有意义;②若0B =,则分式AB无意义.(4)分式的值为零的条件:若{0A B =≠,则分式A B的值为零,反之也成立. (二)分式的基本性质分式的基本性质:分式的分子与分母同乘(或除以)同一个不等于0的整式,分式的值不变.用式子表示是:A A MB B M ⋅=⋅,()0A A M M B B M÷=≠÷,其中A ,B ,M 是整式. 注意:(1)分式的基本性质可类比分数的基本性质去理解记忆.利用分式的基本性质,可以在不改变分式的值的条件下,对分式作一系列的变形.(2)当分式的分子(或分母)是多项式,运用分式的基本性质时,要先把分式的分子(或分母)用括号括上.再将分子与分母同乘(或除以)相同的整式. (三)约分、最简分式及通分的概念(1)约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫作分式的约分.说明:约分的关键是准确找出分子与分母的公因式,找公因式的方法:(1)当分子和分母都是单项式时,先找出它们系数的最大公约数,再确定相同字母的最低次幂,它们的乘积就是分子与分母的公因式.(2)当分子、分母是多项式时,先将分子、分母因式分解,把分子、分母化为几个因式的积后,再找出分子、分母的公因式.约分应注意一定要把公因式约尽,还应注意分子、分母的整体都要除以同一个公因式.当分子或分母是多项式时,要用分子、分母的公因式去除整个多项式,不能只除某一项,更不能减去某一项.例如2233a x ab x b+=+是错误的.(2)最简分式:分子与分母没有公因式的分式叫作最简分式.判断一个分式是否为最简分式,关键是确定其分子与分母是否有公因式(1除外).分式的约分,一般要约去分子和分母的所有公因式,使所得结果成为最简分式或整式. 注意:(1)最简分式与小学学过的最简分数类似.(2)最简分式是对一个独立的分式而言的,最大的特点是只有一条分数线.形如322x y++,233ax y ++的分式都不是最简分式. (3)通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫作分式的通分.通分的关键是确定几个分式的最简公分母.(4)最简公分母:各分母所有因式的最高次幂的积,叫作最简公分母. 注意:确定最简公分母的一般方法:(1)如果各分母都是单项式,确定最简公分母的方法是:①取各分母系数的最小公倍数;②凡单独出现的字母,连同它的指数作为最简公分母的一个因式;③同底数幂取次数最高的.这样得到的积就是最简公分母.(2)如果各分母都是多项式,就要把它们分解因式,再按照分母是单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去求.方法技巧归纳方法技巧 (一)应用分式概念解题的规律1.分式的判别方法根据定义判定式子AB是否为分式要注意两点:一是A ,B 都是整式,二是B 中含字母且0B ≠.判断一个代数式是否为分式,还应注意不能把原式变形(如约分等),而只能根据它的最初形式进行判断.如根据()()()()22222a b a b a b a b a b a b +---==++,判定()222a b a b -+不是分式,这是错误的.2.对分式有无意义或值为0的条件判断 (二)分式基本性质的应用分式的基本性质是分式恒等变形和分式运算的理论依据,正确理解和熟练掌握这一性质是学好分式的关键.利用分式的基本性质可将分式恒等变形,化简分式,简化计算等.1.约分 2.通分(三)分式值的特殊情况(拓展)1.分式的值为1或1-的讨论若分成()10AB B=≠,则A B =,反之也成立;若分式()10A B B =-≠,则A 与B 互为相反数,反之也成立.2.分式的值为正数的讨论 分式的值为正数时,分式的分子与分母同号,利用这一关系构造不等式组可求出待定字母的取值范围.3.分式的值为负数的讨论 分式的值为负数时,分式的分子与分母异号,利用这一关系构造不等式组可求出待定字母的取值范范围.4.分式的值为整数的讨论若分式的值为整数,则分母必为分子的约数,利用这一关系可对分母进行讨论.易混易错辨析易混易错知识1.误认为只要分子等于0,就能使分式的值为0.2.利用分式基本性质把分子、分母都乘(或除以)非零整式M 时,只乘(或除以)其中某些项,有漏乘(或漏除)的项.3.分式变号时极易出错,易误只将分子或分母的第一项改变符号. 易混易错 (一)分式基本性质的误用 (二)忽视分式值为0的前提条件 (三)约分时易出现符号错误 (四)确定最简公分母出错中考试题研究中考命题规律本讲考点是考查分式有无意义、分式的值为零条件的判断,以及用分式基本性质进行变形;以填空题、选择题及简单的解答题的形式出现. 中考试题 (一)对分式概念的理解 (二)分式基本性质的应用 (三)确定最简公分母第12讲 分式的运算知识能力解读知能解读 (一)分式的乘除法分式的乘除法与分数的乘除法类似,法则如下:(1)乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母,用式子表示是:a c a cb d b d⋅⋅=⋅.(2)除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,用式子表示是:a c a d a db d bc b c⋅÷=⋅=⋅.(3)分式的乘方:分式乘方要把分子、分母分别乘方,用式子表示是:n nna ab b⎛⎫=⎪⎝⎭(n是正整数).注意:(1)法则中的字母a,b,c,d所代表的可以是单项式,也可以是多项式.(2)运算的结果必须是最简分式或整式.(二)分式的加减法1.同分母分式加减法的法则与同分母的分数加减法类似,同分母分式相加减,分母不变,把分子相加减.用式子表示是:a b a bc c c±±=.注意:(1)“同分母分式相加减”是把各个分式的“分子的整体”相加减,即当分子是多项式时,应将各分子加括号,括号不能省略,(2)运算结果必须化为最简分式或整式.2.异分母分式加减法的法则与异分母的分数加减法类似,异分母分式相加减,先通分,变为同分母的分式,再加减.用式子表示是:a c ad bc ad bcb d bd bd bd±±=±=.(三)分式的混合运算分式的混合运算的顺序是:先乘方,再乘除,最后算加减;遇到括号,先算括号内的;在同级运算中,从左向右依次进行.注意:(1)实数的运算律对分式同样适用,注意灵活运用,提高解题的质量和速度.(2)结果必须化为最简分式或整式.(3)分子或分母的系数是负数时,要把“-”提到分数线的前边.(4)对于分式的乘除混合运算,应先将除法运算转化为乘法运算,分子、分母是多项式时,可先将分子、分母分解因式,再相乘.方法技巧归纳方法技巧(一)分式的乘除法及乘方运算的解题技巧1.分式的乘除法分式的乘除运算可以统一成乘法运算,分式的乘法一般情况下是先约分再相乘,这样做省时简单易行,又不易出错;当除式(或被除式)是整式时,可以看作分母是1的式子,然后再按分式的乘除法则计算.2.分式的乘方做分式乘方时,一是注意养成先确定结果的符号,再做其他运算的良好习惯;二是注意运算顺序,先乘方,再乘除,最后加减.(二)分式加减运算的解题技巧分式的加减法与分数的加减法的运算法则实质是相同的,分为同分母加减法和异分母加减法,所不同的是分式的加减运算比分数的加减运算要复杂得多,它是整式运算、因式分解和分式运算的综合运用.分式加减运算需要运用较多的基础知识,运算步骤增多,符号变换复杂,解题方法灵活多样.(三)分式化简、求值的解题技巧分式的化简、求值问题,一是化简要求值的分式,只要能化简就考虑化简;二是化简已知条件,化到最简后,再考虑代入求值.(四)分式混合运算的解题技巧分式的混合运算,除了掌握运算顺序外,在运算过程中,可灵活运用交换律、结合律、分配律使运算简化,值得提醒的是最后结果必须是最简分式或整式. (五)分式通分的解题技巧分式的加减运算,分同分母分式相加减和异分母分式相加减,对于异分母分式的加减法,有时直接通分会很繁琐,我们可以根据式子的特点,灵活的采用不同的方法通分,从而起到事半功倍的效果.1.分组通分 2.逐项通分3.公式()11111n n n n =-++的运用 易混易错辨析易混易错知识在分式的乘除运算或混合运算中,运算顺序易出错.在分式的混合运算中,若有括号,先算括号里面的,同级运算应按从左到右的顺序依次进行.易混易错 (一)运算顺序有误 (二)分子符号出错(三)运算结果不是最简分式 (四)错用运算律中考试题研究中考命题规律本讲考查的知识面广,综合性强.中考热点是分式的运算及分式的化简、求值,常与二次根式、三角函数等知识结合起来命题,题型以解答题为主,也出现填空题.近几年又出现了开放式的新题型,应给予关注. 中考试题 (一)分式的加减 (二)分式的乘除 (三)分式的混合运算 (四)分式的化简求值。
分式 中考考点梳理(全)
再算乘除,最后算加减,若有括号,先算括号里面的.
整体代入.
二、 知识清单梳理 知识点一:分式方程及其解法
第 7 讲 分式方程
关键点拨及对应举例
1.定义
分母中含有未知数的方程叫做分式方程.
例 : 在 下 列 方 程 中 , ① x2 1 0 ; ②
x y 4 ;③ 1 x ,其中是分式方程的 x 1
是③.
方程两边同乘以
最简公分母 基本思路:分式方程
整式方程
2.解分式方程
约去分母
解法步骤: (1)去分母,将分式方程化为整式方程; (2)解所得的整式方程; (3) 检验:把所求得的 x 的值代入最简公分母中,若最
简公分母为 0,则应舍去.
例:将方程 1 2 2 转化为整式方程可 x 1 1 x
(3)值为零的条件:当 A=0,B≠0 时,分式 A =0. B
关键点拨及对应举例
在判断某个式子是否为分式时,应注意:(1)判 断化简之间的式子;(2)π 是常数,不是字母. 例:下列分式:①;②; ③;④ 2x 2 ,其中是分
x2 1 式是②③④;最简分式 ③.
失分点警示:在解决分式的值为 0,求值 的问题时,一定要注意所求得的值满足分 母不为 0. 例: 当 x2 1 的值为 0 时,则 x=-1.
得:1-2=2(x-1).
3.增根
使分式方程中的分母为 0 的根即为增根.
例:若分式方程 1 0 有增根,则增根为 x 1
1.
知识点二 :分式方程的应用
4.列分式方 程 解应用题的 一般步骤
(1)审题;(2)设未知数;(3) 列分式方程;(4)解分式方 程;(5)检验: (6)作答.
在检验这一步中,既要检验所求未知数的值是 不是所列分式方程的解,又要检验所求未知数 的值是不是符合题目的实际意义.
中考数学分式知识点
中考数学分式知识点中考数学分式知识点分式:(1)分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子A/B叫做分式。
(2)分式是否有意义的条件:分式的分母是否等于0,有意义则分母不为0,无意义则分母为0。
(3)分式值为零的条件:分式A/B=0的条件是A=0,且B ≠0。
注意:求出使分子为0的字母的值,一定要注意检验这个字母的值是否使分母的值为0,一般当分母的值不为0时,就是所要求的字母的值。
(4)分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。
(5)分式的通分:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。
注意:通分的关键是确定几个式子的最简公分母。
几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的分母就叫做最简公分母。
求最简公分母时应注意以下几点:“各分母所有因式的最高次幂”是指凡出现的字母(或含字母的式子)为底数的幂选取指数最大的;如果各分母的系数都是整数时,取它们系数的最小公倍数作为最简公分母的系数;如果分母是多项式,一般应先分解因式。
值,这样的分式变形叫做分式的约分。
约分后分式的分子、分母中不再含有公因式,这样的分式叫最简公因式。
注意:约分的关键是找出分式中分子和分母的公因式(1)约分时注意分式的分子、分母都是乘积形式才能进行约分;分子、分母是多项式时,通常将分子、分母分解因式,然后再约分;(2)找公因式的方法:①当分子、分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式;②当分子、分母都是多项式时,先把多项式因式分解。
初二数学下册分式知识点(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
中考知识点分式
中考知识点 分式1、分式的定义一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子A B 叫做分式。
注:A 、B 都是整式,B 中含有字母,且B ≠0。
2、分式的基本性质分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变。
C B C A B A ⋅⋅=;A A C B B C÷=÷。
3、分式的约分和通分定义1:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
定义2:分子与分母没有公因式的分式,叫做最简分式。
定义3:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
定义4:各分母的所有因式的最高次幂的积叫做最简公分母。
4、分式的乘除①乘法法则:d b c a d c b a ⋅⋅=⋅。
分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
②除法法则:cb d acd b a d c b a ⋅⋅=⋅=÷。
分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
③分式的乘方:nn n a a b b ⎛⎫= ⎪⎝⎭。
分式乘方要把分子、分母分别乘方。
④整数负指数幂:1n na a -=。
5、分式的加减同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减。
①同分母分式的加减:a b a b c c c±±=; ②异分母分式的加法:a c ad bc ad bc b d bd bd bd ±±=±=。
注:不论是分式的哪种运算,都要先进行因式分解。
1、了解分式和最简分式的概念,能利用分式的基本性质进行约分和通分;2、能进行简单的分式加、减、乘、除运算;1、分式的概念、意义,如求分式中字母的取值范围、分式为0的条件及相应的综合运用。
2、运用分式的基本性质进行约分、通分。
3、运用分式的加、减、乘、除法则进行分式的化简、代入求值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、知识清单梳理
知识点一:分式的相关概念
关键点拨及对应举例
1.分式的概念
(1)分式:形如 (A,B是整式,且B中含有字母,B≠0)的式子.
(2)最简分式:分子和分母没有公因式的分式.
在判断某个式子是否为分式时,应注意:(1)判断化简之间的式子;(2)π是常数,不是字母.例:下列分式:①;②;③;④ ,其中是分式是②③④;最简分式③.
第7讲分式方程
二、知识清单梳理
知识点一:分式方程及其解法
关键点拨及对应举例
1.定义
分母中含有未知数的方程叫做分式方程.
例:在下列方程中,① ;② ;③ ,其中是分式方程的是③.
2.解分式方程
基本思路:分式方程整式方程
例:将方程 转化为整式方程可得:1-2=2(x-1).
解法步骤:
(1)去分母,将分式方程化为整式方程;
例: = ; =2y;
= .
7.分式的混合运算
(1)仅含有乘除运算:首先观察分子、分母能否分解因式,若能,就要先分解后约分.
(2)含有括号的运算:注意运算顺序和运算律的合理应用.一般先算乘方,再算乘除,最后算加减,若有括号,先算括号里面的.
失分点警示:分式化简求值问题,要先将分式化简到最简分式或整式的形式,再代入求值.代入数值时注意要使原分式有意义.有时也需运用到整体代入.
(2)由基本性质可推理出变号法则为:
; .
由分式的基本性质可将分式进行化简:
例:化简: = .
知பைடு நூலகம்点三:分式的运算
4.分式的约分和通分
(1)约分(可化简分式):把分式的分子和分母中的公因式约去,
即 ;
(2)通分(可化为同分母):根据分式的基本性质,把异分母的分式化为同分母的分式,即
分式通分的关键步骤是找出分式的最
在检验这一步中,既要检验所求未知数的值是不是所列分式方程的解,又要检验所求未知数的值是不是符合题目的实际意义.
(2)解所得的整式方程;
(3)检验:把所求得的x的值代入最简公分母中,若最简公分母为0,则应舍去.
3.增根
使分式方程中的分母为0的根即为增根.
例:若分式方程 有增根,则增根为1.
知识点二:分式方程的应用
4.列分式方程解应用题的一般步骤
(1)审题;(2)设未知数;(3)列分式方程;(4)解分式方程;(5)检验:(6)作答.
简公分母,然后根据分式的性质通分.
例:分式 和 的最简公分母为 .
5.分式的加减法
(1)同分母:分母不变,分子相加减.即 ± = ;
(2)异分母:先通分,变为同分母的分式,再加减.即 ± = .
例: =-1.
6.分式的乘除法
(1)乘法: · = ;(2)除法: = ;
(3)乘方: = (n为正整数).
2.分式的意义
(1)无意义的条件:当B=0时,分式 无意义;
(2)有意义的条件:当B≠0时,分式 有意义;
(3)值为零的条件:当A=0,B≠0时,分式 =0.
失分点警示:在解决分式的值为0,求值的问题时,一定要注意所求得的值满足分母不为0.
例:当 的值为0时,则x=-1.
3.基本性质
( 1 )基本性质: (C≠0).