流体力学流体性质讲解
流体力学 第1章(下) 流体的主要物理性质
连续介质假设
连续介质假设是将流体区域看成由流体质点连续组成,占满空 间而没有间隙,其物理特性和运动要素在空间是连续分布的。
为什么要做这样的假设呢?
对流体物质结构的简化,使我们在分析问题时得到两大方便: 第一,它使我们不考虑复杂的微观分子运动,只考虑在外 力作用下的宏观机械运动; 第二,能运用数学分析的连续函数工具。因此,本课程分 析时均采用“连续介质”这个模型。
和流层问距离dy成反比;
2.与流层的接触面积A的大小成正比;
3.与流体的种类有关;
4.与流体的压力大小无关。
动力粘滞系数μ
表征单位速度梯度作用下的切应力,
Байду номын сангаас
所以它反映了粘滞性的动力性质,因此 也称为动力粘滞系数。
单位是N/m2·s或Pa·s。
运动粘滞系数ν
理解为单位速度梯度作用下的切应力对单位体
2、流体质点和连续介质模型
流体质点的概念 流体质点也称流体微团,是指尺度大小同一 切流动空间相比微不足道又含有大量分子,具有 一定质量的流体微元。 如何理解呢?
宏观上看(流体力学处理问题的集合尺度):流体质 点足够小,只占据一个空间几何点,体积趋于零。
微观上看(分子集合体的尺度):流体质点是一个足 够大的分子团,包含了足够多的流体分子,以至于对 这些分子行为的统计平均值将是稳定的,作为表征流 体物理特性的运动要素的物理量定义在流体质点上。
实例应用:以密度为例来说明物理量如何在流体质点上定义的。 假设流体微团的质量为Δm ,体积为ΔV ,则流体质点的密度 m 为Δm/ΔV lim
v 0
V
其中,ΔV的含义可以理解为流体微团趋于流体质点。
连续介质假设为建立流场的概念奠定了基础:设 在t时刻,有某个流体质点占据了空间点(x,y,z), 将此流体质点所具有的某种物理量定义在该时刻和空 间点上,根据连续介质假设,就可形成定义在连续时 间和空间域上的数量或矢量场。
流体力学知识点范文
流体力学知识点范文流体力学是研究流体静力学和流体动力学的一个学科,涉及到流体的运动、力学性质以及相关实验和数值模拟方法。
流体力学的应用广泛,包括气象学、海洋学、土木工程、航空航天工程等领域。
以下是流体力学的一些重要知识点。
1.流体的性质流体是一种能够自由流动的物质,包括气体和液体。
与固体不同,流体具有可塑性、可挤压性和物质变形后恢复自然形状的性质。
流体的密度、压力、体积、温度和粘度是流体性质的基本参数。
2.流体的运动描述流体的运动包括膨胀、收缩、旋转和流动等。
为了描述流体的运动,需要引入一些描述流体运动的物理量,如速度、流速、加速度和流量。
流体的速度矢量表示流体粒子的运动方向和速度大小。
3.流体静力学流体静力学研究的是在静压力的作用下,流体内各点之间的静力平衡关系。
流体的静力压力与深度成正比,由于流体的可塑性,静压力会均匀传输到容器中的各个部分。
流体静力学应用于液压系统、液态储存设备和液压机械等领域。
4.流体动力学流体动力学研究的是流体在外力作用下的运动行为。
流体动力学分为流体动力学和流体动量守恒两个方面。
流体动力学研究的是流体的速度和加速度,以及流体流动的力学性质。
流体动量守恒研究的是流体在内外力作用下动量的转移和守恒。
流体动力学应用于气象学、水力学、航空航天工程等领域。
5.流体的流动方程流体力学的基本方程是质量守恒方程、动量守恒方程和能量守恒方程。
质量守恒方程描述了流体的质量守恒原理,即质量在流体中是守恒的。
动量守恒方程描述了流体的动量守恒原理,即外力对流体的动量变化率等于流体的加速度乘以单位质量的流体体积。
能量守恒方程描述了流体的能量守恒原理,即流体在流动过程中能量的转化和传输。
6.流体力学问题的数值模拟由于流体力学问题具有复杂性和非线性性,很多问题难以通过解析方法得到解析解。
因此,数值模拟成为解决流体力学问题的一种重要方法。
数值模拟方法包括有限元法、有限差分法和有限体积法等。
这些方法通过将流体力学问题离散化为一组代数方程来进行数值求解。
流体力学知识点大全
流体力学知识点大全流体力学是研究流体运动规律的一门学科,涉及流体的力学性质、流体力学方程、流体的温度、压力、速度分布等等。
以下是流体力学的一些主要知识点:1.流体的性质和分类:流体包括液体和气体两种状态,液体具有固定体积,气体具有可压缩性。
液体和气体都具有易于流动的特点。
2.流体力学基本方程:流体力学基本方程包括质量守恒方程、动量守恒方程和能量守恒方程。
质量守恒方程描述了流体质量的守恒,动量守恒方程描述了流体动量的守恒,能量守恒方程描述了流体能量的守恒。
3.流体的运动描述:流体的运动可以通过速度场描述,速度场是空间中每一点上的速度矢量的函数。
速度矢量的大小和方向决定了流体中每一点的速度和运动方向。
4. 流体静力学:流体静力学研究的是处于静止状态的流体,通过压力分布可以确定流体的力学性质。
压力是流体作用在单位面积上的力,根据Pascal定律,压力在流体中均匀传播。
5.流体动力学:流体动力学研究的是流体的运动,通过速度场和压力分布可以确定流体的速度和运动方向。
流体动力学包括流体的运动方程、速度场描述和流动量的计算等。
6.流体的定常流和非定常流:流体的定常流指的是流体的运动状态随时间不变,速度场和压力分布在任意时刻均保持不变。
而非定常流则是指流体的运动状态随时间变化,速度场和压力分布在不同的时刻会有所改变。
7.流体的层流和湍流:流体的层流是指在流体中存在着明确的层次结构,流体颗粒沿着规则的路径流动。
而湍流则是指流体中存在着随机不规则的流动,流体颗粒方向和速度难以预测。
8.流体的黏性:流体的黏性是指流体内部存在摩擦力,影响流体的流动性质。
流体的黏度越大,流体粘性越大,流动越缓慢。
黏性对于流体的层流和湍流特性有重要影响。
9.流体的雷诺数:雷诺数是用于描述流体运动是否属于层流还是湍流的参数。
当雷诺数小于临界值时,流体运动属于层流;当雷诺数大于临界值时,流体运动为湍流。
10.流体的边界层:边界层是指在流体靠近固体表面的地方,速度和压力的变化比较大的区域。
流体的力学性质
r r r r pn n x px n y p y n z pz
z
p y
D
p x
r r r r p x ip xx jp xy kp xz r r r r p y ip yx jp yy kp yz r r r r p z ip zx jp zy kp zz
1.1
流体的易变形性和粘性
二、流体的粘性:
粘性:处于连续变形过程中的流体(处于运动状态) 具有抵抗剪切变形的能力,这种性质称为粘性。 我们感兴趣的是流体在运动过程中所受到的力,以 及这个力与流体变形之间的关系 — 粘性力。
粘性力 粘性摩擦力 物体的力作用在流体上, 使流体变形;流体对物体表现出粘性摩擦力
=(p,T)=(T)
气体和液体的粘性系数随温度的变化规律并不一样:
当温度升高时,液体粘性系数下降
气体粘性系数升高
气体和液体的粘性随温度的变化:
• 引起气体粘性的主要因素是分子之间的动量交换, 温度升高,交换增强,粘性升高; • 引起液体粘性的主要因素是分子之间的(内聚力), 温度升高,内聚力(分子之间的吸引力)减小,粘性 下降
(3)、声速:
p EV a
a 水 1450 m / s
气体的可压缩性:
气体的可压缩性与液体不一样,其值与压缩过程有关。
等温过程:
dp
d
p
EV p
等熵过程:
dp
d
p
EV p
不可压缩流体:
V 0
或者
EV
的流体
1.3
液体的表面张力
1. 表面张力 (surface tension):
流体力学基础流体的性质与流体力学原理
流体力学基础流体的性质与流体力学原理流体力学基础——流体的性质与流体力学原理流体力学是研究流体运动和流体力学基本原理的学科,广泛应用于航空、航海、能源、化工等领域。
本文将介绍流体的性质以及流体力学的基本原理。
一、流体的性质流体指的是气体和液体,在力学中被视为连续介质。
流体具有以下几个主要的性质:1. 可流动性:与固体不同,流体具有较低的粘性和内聚力,因此可以流动。
流体的流动性使其在工程领域中应用广泛,并且流体力学正是研究流体流动的力学学科。
2. 不可压性:对于液体来说,密度变化相对较小,一般可视为不可压缩的。
而对于气体来说,变化较大的压力会引起密度变化,所以流体力学中对气体流动的研究需要考虑密度的变化。
3. 流体静力学压力:流体静力学压力是由于流体自身重力或外力作用下的压力差异引起的。
流体中的每一点都承受来自其周围流体的压力。
4. 流体动力学压力:流体动力学压力是由于流体的动力作用引起的压力差异。
当流体以较高速度通过管道或物体时,流体动力学压力扮演着重要的角色。
二、流体力学原理流体力学原理是研究流体运动的基本规律,它由庞加莱提出的运动方程、贝努利定律、连续方程等组成。
以下将分别介绍这几个基本原理:1. 流体运动方程:流体运动方程描述了流体在空间中运动的规律。
流体运动方程包括质量守恒方程、动量守恒方程和能量守恒方程。
质量守恒方程指出质量在流体中不会凭空消失或产生;动量守恒方程描述了流体运动中受到的作用力和压力的关系;能量守恒方程则研究了流体在流动过程中的能量转化。
2. 贝努利定律:贝努利定律是流体力学中最为著名的定律之一。
它说明了在无粘度和定常状态下,流体在不同位置的速度、压力和高度之间存在着一种平衡关系。
贝努利定律在飞行器设计和管道流动等领域中有广泛的应用。
3. 材料导数:材料导数是流体力学中用来描述物质随时间变化的速率的重要概念。
对于流体来说,由于其非刚性的特性,物质随时间的变化需要通过材料导数来描述,它包括时间导数和空间导数。
流体的性质
D( ) ( ) (u )( ) D
式中,括弧内可以代表描述流体运动的任一物理
D( ) 量,如密度、温度、压强,可以是标量,也可以是矢量。 D ( ) 称为全导数, 为当地导数,u )( ) 为迁移导数。 (
材料工程基础
欧拉法优点:
一是利用欧拉法得到的是场,可用场论数学工具来研究。
x 3e
1
1, y e
1
1.
材料工程基础
dx dy ② 由流线方程 x y
积分得
( x )( y ) c1
c1 (1 ) 2
过(1,1)空间点有 故此流线方程为
( x )( y ) (1 )2
grange,1736-1813
Leonhard Euler,1707-1783
拉格朗日(Lagrange)法
欧拉(Euler)法
材料工程基础
2.2.1 拉格朗日法
(Lagrange) 又称随体法,在某一时刻,任一流体质点的位置为:
X=x (a,b,c, )
τ
y=y (a,b,c,τ)
二是加速度是一阶导数,而拉格朗日法,加速度是二阶导 数,所得的运动微分方程分别是一阶偏微分方程和二阶 偏微分方程,在数学上一阶偏微分方程求解容易。 三是在工程实际中,并不关心每一质点的来龙去脉。
材料工程基础
拉格朗日法与欧拉法比较
拉格朗日法
分别描述有限质点的轨迹
表达式复杂
欧拉法
同时描述所有质点的瞬时参数
-6
P一定, 温度升 高, 体积膨胀系 数增大。 60~70
556×10 548×10 539×10 523×10
流体力学基础讲解PPT课件
05
流体流动的湍流与噪声
湍流的定义与特性
湍流定义
湍流是一种高度复杂的三维非稳态、带旋转的不规则流动。 在湍流中,流体的各种物理参数,如速度、压力、温度等都 随时间与空间发生随机的变化。
湍流特性
湍流具有随机性、不规则性、非线性和非稳定性等特性。在 湍流中,流体的速度、方向和压力等都随时间和空间发生变 化,形成复杂的涡旋结构。
环境流体流动与环境保护
要点一
环境流体流动
环境中的流体流动对环境保护具有重要影响。例如,大气 中的气流会影响污染物的扩散和迁移,水流会影响水体中 的污染物迁移和沉积等。
要点二
环境保护
通过对环境中的流体流动进行研究和模拟,可以更好地了 解污染物扩散和迁移规律,为环境保护提供科学依据。同 时,通过合理规划和设计流体流动系统,可以有效降低污 染物对环境的影响,保护生态环境。
04
流体流动的能量转换
能量的定义与分类
总结词
能量是物体做功的能力,可以分为机械能、热能、电能等。在流体力学中,主要关注的是机械能中的 动能和势能。
详细描述
能量是物体做功的能力,它有多种表现形式,如机械能、热能、电能等。在流体力学中,我们主要关 注的是机械能,它包括动能和势能两种形式。动能是流体运动所具有的能量,与流体的速度和质量有 关;势能则是由于流体所处位置而具有的能量。
流体流动噪声
流体流动过程中产生的噪声主要包括 机械噪声和流体动力噪声。机械噪声 主要由机械振动和摩擦引起,而流体 动力噪声主要由湍流和流体动力振动 引起。
噪声控制
为了减小流体流动产生的噪声,研究 者们提出了各种噪声控制方法,如改 变管道结构、添加消音器和改变流体 动力特性等。这些方法可以有效降低 流体流动产生的噪声。
流体的主要力学性质
微观机制:分子间吸引力、分子不规则运动的动量交换。
流体力学-- Fluid Mechanics
天河学院 建筑工程系
Construction Engineering Department ,TianHe College
流体的黏性受温度的影响很大,而且液体和气体的黏性随温度的变化是不 同的。液体的黏性随温度升高而减小,气体的黏性随温度升高而增大。
造成液体和气体的黏性随温度不同变化的原因是由于构成它们黏性的主要 因素不同。分子间的吸引力是构成液体黏性的主要因素,温度升高,分子间的 吸引力减小,液体的黏性降低;构成气体黏性的主要因素是气体分子作不规则 热运动时,在不同速度分子层间所进行的动量交换。温度越高,气体分子热运 动越强烈动量交换就越频繁,气体的黏性也就越大。
二、流体的主要力学性质
2、粘性(viscosity)
y
F
U
b
uy
(1)牛顿内摩擦定律——Newton’s 实验
A
FU
du
Ab
dy
——内摩擦力。
Hale Waihona Puke 产生原因:分子引力;分子动量交换。
——动力粘性系数(Pa.s) 。 值越大,流体
越粘,抵抗变形运动的能力越强。
——运动粘性系数(m^2/s)。
二、流体的主要力学性质 2、粘性(viscosity) (2) 理想流体与粘性流体
理想流体: 的 0流体(无粘性流体)
粘性流体: 的0 流体(真实流体) (3) 牛顿流体和非牛顿流体
牛顿流体: c的on流st 体。剪应力和变 形速率满足线性关系。
非牛顿流体: (d的u 流dy体) 。剪切应力 和变形速率不满足线性关系。
流体力学
• 从微观上讲,流体是由大量的彼此之间有一定间 隙的单个分子所组成,而且分子总是处于随机运 动状态。 • 从宏观上讲,流体视为由无数流体质点(或微团) 组成的连续介质。 – 所谓质点,是指由大量分子构成的微团,其尺 寸远小于设备尺寸,但却远大于分子自由程。
– 这些质点在流体内部紧紧相连,彼此间没有间 隙,即流体充满所占空间,称为连续介质。
③判断安装是否合适:若
H g实
H 低于 g允
,则说明安装
合适,不会发生汽蚀现象,否则,需调整安装高度。
④欲提高泵的允许安装高度,必须设法减小吸入管路的
阻力。泵在安装时,应选用较大的吸入管路,管路尽 可能地短,减少吸入管路的弯头、阀门等管件,而将 调节阀安装在排出管线上。
4.1.4离心泵的类型与选用
• 注意:
• 对于静止流体,由于各流层间没有相对运动,粘滞性不 显示。 • 流体粘滞性的大小通常用动力粘滞性系数μ和运动粘滞 性系数ν来反映,它们是与流体种类有关的系数,粘滞 性大的流体,μ和ν的值也大,它们之间存在一定的比例 关系。 μ = νρ • 流体的粘滞性还与流体的温度和所受压力有关,受温度 影响大,受压力影响小。实验证明,水的粘滞性随温度 的增高而减小,而空气的粘滞性却随温度的增高而增大。
• (3)恒定流 流体运动时,流体中任一位置的压强、 流速等运动要素不随时间变化,这种流体运动称 为恒定流,如图1.11(a)所示。 • (4)非恒定流 流体运动时,流体中任一位置的运 动要素如压强、流速等随时间变化而变化,这种 流体运动称为非恒定流,如图1.11(b)所示。
四、流体的输送机械
常用的流体输送机械
2.汽蚀余量:
汽蚀余量NPSH :
泵入口处的动压头与静压头之和与以液柱高度表示的被输送液体在 操作温度下的饱和蒸汽压之差。
流体力学-流体的主要物理性质
固体有一定的体积也有一定的形状; 液体有一定的体积而无一定的形状; 气体既无一定的体积也无一定的形状。 IV 固体、液体和气体力学性能比较: 固体可以承受拉力、压力和切应力; 液体却只能承受压力,几乎不能承受拉力,在 极小的切应力作用下就会出现连续的变形流动,它 只呈现对变形运动的阻力,不能自行消除变形。这 一特性称为流体的易流动性。
三、连续介质假设
• 流体质点:包含有大量流体分子,并能保持其宏 观力学性能的微小单元体。
• 连续介质的概念:在流体力学中,把流体质点作 为最小的研究对象,从而把流体看成是由无数连 续分布、彼此无间隙地占有整个流体空间的流体 质点所组成的介质
• 连续介质模型的意义: (1)、流体质点在微观上是充分大的,而在宏观上 又是充分小的。流体质点在它所在的空间就是一个 空间点。当我们所研究的对象是比粒子结构尺度大 得多的流动现象时,就可以利用连续介质模型。 (2)、流体宏观物理量是空间点及时间的函数,这 样就可以顺利地运用连续函数和场论等数学工具研 究流体平衡和运动的问题,这就是连续介质假设的
为流体的压缩性。压缩性的大小用体积压缩率κ表示,它 的物理意义是单位压强变化所引起的体积的相对变化率,即
❖
1 V
V p
❖ 式中 κ——体积压缩性系数 (Pa-1)
(2-10)
❖
V——流体的体积 (m3)
❖
ΔV——流体体积的变化量 (m3)
❖
Δp——流体压强的变化量 (Pa)
由于压强增大,体积缩小, Δp与ΔV变化趋势相反,
A
lim
V 0
流体力学中的流速变化与流体分布的流体运动性质
流体力学中的流速变化与流体分布的流体运动性质引言流体力学是研究流体在力的作用下的运动规律和性质的学科,研究的范围既包括液体的运动,也包括气体的运动。
在流体力学中,流速变化与流体分布是流体运动性质的两个重要方面。
流速变化指的是流体在不同位置和不同时刻的速度发生改变的现象,而流体分布则指的是流体在空间中的分布情况。
本文将从流速变化和流体分布两个方面介绍流体运动性质在流体力学中的重要性和研究方法。
流速变化的重要性在流体力学中,流速变化是研究流体运动的重要参数之一。
流速变化的大小和趋势直接影响着流体的流动形态和性质。
例如,在液体管道中,液体的流速变化会导致压力变化,从而影响液体的流速和流量。
另外,流速变化还与流体的黏性相关,黏稠的液体更容易发生流速变化。
因此,研究流速变化可以帮助我们理解流体的流动规律和性质。
流速变化的研究方法流体力学基本方程流速变化的研究通常基于流体力学的基本方程,包括连续性方程、动量方程和能量方程。
连续性方程描述了流体的质量守恒,即单位时间内流入流体体积等于单位时间内流出流体体积。
动量方程描述了流体受力的平衡关系,包括压力力、重力力和黏性力等。
能量方程描述了流体的能量守恒,包括流体的热传导和机械功等。
数值模拟方法除了基于基本方程的解析方法,数值模拟方法也是研究流速变化的常用方法之一。
数值模拟方法通过离散化流体力学方程,通过数值迭代的方式求解流场的速度和压力分布。
常用的数值模拟方法有有限差分法、有限体积法和有限元法等。
实验方法实验方法是研究流速变化的另一种重要手段。
实验方法可以直接测量流体的速度和压力分布,从而获取流速变化的信息。
常用的实验方法包括激光测速法、压力传感器测量法和液晶显示颗粒测量法等。
流体分布的重要性流体分布是流体运动性质的重要方面之一,它描述了流体在空间中的分布情况。
不同的流体分布方式对流体的运动规律和性质产生不同的影响。
例如,在管道中,流体分布的均匀与否会影响流体的流速和流量,不均匀流体分布会导致流体速度的不稳定和流体中的能量损失。
流体力学的基本理论和应用
流体力学的基本理论和应用流体力学是研究流体运动规律的一门学科,其范围涉及气体、液体和等离子体等。
流体力学的研究对象是流体运动中各种物理量的变化规律,如速度、密度、压力、温度等。
它的研究领域广泛,从天气预报到飞机设计、石油勘探,都离不开流体力学的理论和应用。
1. 流体力学的基本理论流体力学的基本理论包括流体的性质、流体方程、流体的运动学和动力学方程等。
1.1 流体的性质流体有四种基本性质,即密度、压力、温度和粘度。
密度是指单位体积内质量的大小,压力是单位面积受到的力的大小。
温度是流体内部分子热运动的平均程度,粘度是流体阻力大小的表征。
1.2 流体方程流体方程主要包括连续性方程和动量守恒方程。
连续性方程描述了质量守恒的规律,即在任何一个时间和空间点,通过一个截面进入的质量等于通过该截面流出的质量。
动量守恒方程描述了流体中动量守恒的规律。
1.3 流体的运动学流体的运动学研究的是流体在时间和空间上的运动规律。
就速度场而言,它可以用速度矢量场描述。
在三维空间中,一个流体速度场是指有三个分量的三维矢量场。
1.4 流体的动力学方程流体的动力学方程是研究流体运动的方程,包括质量守恒方程、动量守恒方程和能量守恒方程。
这些方程可以用于描述流体在空间中的各种运动方式。
2. 流体力学的应用流体力学的应用非常广泛,它不仅是科学研究领域中不可或缺的一部分,也是工程设计、生物医学和化学工程等领域必不可少的一门技术。
以下是几个流体力学应用领域:2.1 飞机设计飞机设计需要对空气流动进行深入研究。
流体动力学理论可以帮助设计人员优化飞机的翼型和发动机喷口设计,以减少空气阻力和提高飞机性能。
流体动力学还可以帮助研究飞行器的失速问题,并提出优质的控制方法。
2.2 汽车行驶汽车行驶的过程中,空气阻力会影响汽车的速度和燃油消耗。
通过流体力学研究,在设计汽车的外形和风阻系数时,可以优化方案以降低空气阻力。
2.3 气象预报气象预报是一项很重要的工作,流体力学理论可以用于研究气象现象,用以预测天气。
流体力学总结
流体力学总结第一章流体及其物理性质1. 流体:流体是一种受任何微小剪切力作用都能连续变形的物质,只要这种力继续作用,流体就将继续变形,直到外力停顿作用为止。
流体一般不能承受拉力,在静止状态下也不能承受切向力,在任何微小切向力的作用下,流体就会变形,产生流动 2. 流体特性:易流动(易变形)性、可压缩性、粘性 3. 流体质点:宏观无穷小、微观无穷大的微量流体。
4. 流体连续性假设:流体可视为由无数连续分布的流体质点组成的连续介质。
稀薄空气和激波情况下不适合。
5. 密度0limV m m V V δδρδ→==重度0lim V G Gg V Vδδγρδ→===比体积1v ρ=6. 相对密度:是指*流体的密度与标准大气压下4︒C 时纯水的密度〔1000〕之比w wS ρρρ=为4︒C 时纯水的密度13.6Hg S = 7. 混合气体密度1ni ii ρρα==∑8. 体积压缩系数:温度不变,单位压强增量引起的流体体积变化率。
体积压缩系数的倒数为体积模量1P PK β=9. 温度膨胀系数:压强不变,单位温升引起的流体体积变化率。
10. 不可压缩流体:流体受压体积不减少,受热体积不膨胀,密度保持为常数,液体视为不可压缩流体。
气体流速不高,压强变化小视为不可压缩流体 11. 牛顿内摩擦定律:du dyτμ=黏度du dyτμ=流体静止粘性无法表示出来,压强对黏度影响较小,温度升高,液体黏度降低,气体黏度增加μυρ=。
满足牛顿内摩擦定律的流体为牛顿流体。
12. 理想流体:黏度为0,即0μ=。
完全气体:热力学中的理想气体第二章流体静力学1. 外表力:流体压强p 为法向外表应力,内摩擦τ是切向外表应力〔静止时为0〕。
2. 质量力〔体积力〕:*种力场对流体的作用力,不需要接触。
重力、电磁力、电场力、虚加的惯性力 3. 单位质量力:x y z Ff f i f j f k m==++,单位与加速度一样2m s 4. 流体静压强:1〕流体静压强的方向总是和作用面相垂直且指向该作用面,即沿着作用面的内法线方向2〕在静止流体内部任意点处的流体静压强在各个方向都是相等的。
(新)第一章 流体力学(讲解教学课件)
mgz 1 mu 2 m p
2
J
1kg流体的总机械能为: zg u 2 p
2
J/kg
1N流体的总机械能为: z u 2 p J/N
2g g
(新)第一章 流体力学(讲解教学课件)
压头:每牛顿的流体所具有的能量 静压头;
2、外加能量:1kg流体从输送机械所获得的机械能 。
符号:We;
单位:J/kg ;
和其深度有关。 (2)在静止的、连续的同一液体内,处于同一水平面
上各点的压力均相等。
(新)第一章 流体力学(讲解教学课件)
• (2) 当液体上方的压力有变化时,液体内 部各点的压力也发生同样大小的变化。
(新)第一章 流体力学(讲解教学课件)
三、静力学基本方程的应用 (1)测量流体的压力或压差
① U管压差计 对指示液的要求:指示液要与被测流体 不互溶,不起化学作用;其密度应大于 被测流体的密度。
• 如:4×103Pa(真空度)、200KPa (表压)。
(新)第一章 流体力学(讲解教学课件)
【例题1-1】 在兰州操作的苯乙烯精馏塔塔顶的真空度 为620mmHg。在天津操作时,若要求塔内维持相同 的绝对压力,真空表的读数应为多少?兰州地区的 大气压力为640mmHg,天津地区的大气压力为 760mmHg。
p1-p2=(指-)Rg
若被测流体是气体上式可简化为
p1-p2=指Rg
(新)第一章 流体力学(讲解教学课件)
• 通常采用的指示液有:着色水、油、四氯化碳、 水银等。
• U形管压差计在使用时,两端口与被测液体的 测压点相连接。
• U形管压差计所测压差,只与读数R、指示液 和被测液体的密度有关,而与U形管的粗细、 长短、形状无关,在此基础上又产生了斜管压 差计、双液柱微差计、倒U形管压差计等。
流体力学基础知识
余热发电专业理论知识培训教材流体力学基础知识一、流体的物理性质1、流动性流体的流动性是流体的基本特征,它是在流体自身重力或外力作用下产生的。
这也是流体容易通过管道输送的原因2、可压缩性流体的体积大小会随它所受压力的变化而变化,作用在流体上的压力增加,流体的体积将缩小,这称为流体的可压缩性。
3、膨胀性流体的体积还会随温度的变化而变化,温度升高,则体积膨胀,这称为流体的膨胀性。
4、粘滞性粘滞性标志着流体流动时内摩擦阻力的大小,它用粘度来表示。
粘度越大,阻力越大,流动性越差。
气体的粘度随温度的升高而升高,液体的粘度随温度的升高而降低。
二、液体静力学知识1、液体静压力及其基本特性液体静压力是指作用在液体内部距液面某一深度的点的压力。
液体静压力有两个基本特性:①液体静压力的方向和其作用面相垂直,并指向作用面。
②液体内任一点的各个方向的静压力均相等。
2、液体静力学基本方程P=Pa+ρgh式中Pa----大气压力ρ-----液体密度上式说明:液体静压力的大小是随深度按线性变化的。
3、绝对压力、表压力和真空①绝对压力:是以绝对真空为零算起的。
用Pj表示。
②表压力(或称相对压力):以大气压力Pa为零算起的。
用Pb表示。
③真空:绝对压力小于大气压力,即表压Pb为负值。
绝对压力、表压力、真空之间的关系为:Pj=Pa+Pb三、液体动力学知识1、基本概念①液体的运动要素:液体流动时,液体中每一点的压力和流速,反映了流体各点的运动情况。
因此,压力和流速是流体运动的基本要素。
②流量和平均流速:假定流体在流过断面时,其各点都具有相同的流速,在这个流速下所流过的流量与同一断面各点以实际流速流动时所流过的流量相当,这个流速称为平均流速,记作V。
单位时间内,通过与管内液流方向相垂直的断面的液体数量,称为流量。
流量可分为体积流量Qv和质量流量Qm。
Qv=V AQm=ρV A③稳定流和非稳定流:稳定流是指流体流速和压力不随时间的变化而变化的流动,反之则为非稳定流。
流体知识点应用总结
流体知识点应用总结一、流体的基本性质及其应用1. 流体的密度和浮力密度是流体的一个重要物理性质,它对于流体的浮沉和压缩性质有着重要的影响。
在工程中,我们常常要考虑流体的密度对于船舶、飞机等运载工具的浮力问题。
例如在设计船舶时,要考虑船体的浮力和吃水量,以及海水的密度和浮力对船体的影响。
另外,在水利工程中,需要考虑河流的水位变化与水的密度对于水坝和水库的作用。
2. 流体的粘度和摩擦力流体的粘度决定了流体运动的黏滞性,它对于流体的摩擦力和动量传递有着重要的影响。
在飞机设计中,要考虑空气对飞机表面的摩擦力和阻力对于飞机速度和稳定性的影响。
在汽车制造中,要考虑机油对于发动机摩擦力的影响。
另外,在水利工程中,需要考虑河流的流速和水位对于水轮机和水泵的摩擦力和损失情况。
3. 流体的温度和热传导流体的温度对于其密度和粘度有重要的影响,它还决定了流体对热量的传导能力。
在飞机设计中,要考虑空气对飞机表面的冷却和散热能力,以及空气的温度对飞机发动机和电子设备的影响。
在汽车制造中,要考虑发动机水箱对于发动机的冷却能力。
在水利工程中,需要考虑河流的水温对鱼类生长和生态环境的影响。
二、流体的运动规律及其应用1. 流体的运动方程和流速分布流体的运动方程描述了流体的运动规律,它能够帮助工程师对流体运动进行预测和分析。
在飞机设计中,要考虑空气的流速分布对飞机机翼和起落架的影响。
在汽车制造中,要考虑空气对汽车外表面的流动情况。
在水利工程中,需要考虑水流对于水工设施的冲刷和磨损情况。
2. 流体的动能和压力能流体的动能和压力能是其两种重要的能量形式,它们对于流体的动态性能有着重要的影响。
在飞机设计中,要考虑空气的动能对飞机升降和滑翔的影响。
在汽车制造中,要考虑汽车的空气动力性能和空气动力系数。
在水利工程中,需要考虑水流的压力能和水位的变化对于水厂和水库的影响。
3. 流体的不可压缩性和流速变化流体的不可压缩性描述了流体在运动时的密度保持不变的性质,它对于流体的流速变化有着重要的影响。
流体力学知识点总结
流体力学11.1 流体的基本性质1)压缩性流体是液体与气体的总称。
从宏观上看,流体也可看成一种连续媒质。
与弹性体相似,流体也可发生形状的改变,所不同的是静止流体内部不存在剪切应力,这是因为如果流体内部有剪应力的话流体必定会流动,而对静止的流体来说流动是不存在的。
如前所述,作用在静止流体表面的压应力的变化会引起流体的体积应变,其大小可由胡克定律描述。
大量的实验表明,无论气体还是液体都是可以压缩的,但液体的可压缩量通常很小。
例如在500个大气压下,每增加一个大气压,水的体积减少量不到原体积的两万分之一。
同样的条件下,水银的体积减少量不到原体积的百万分之四。
因为液体的压缩量很小,通常可以不计液体的压缩性。
气体的可压缩性表现的十分明显,例如用不大的力推动活塞就可使气缸内的气体明显压缩。
但在可流动的情况下,有时也把气体视为不可压缩的,这是因为气体密度小在受压时体积还未来得与改变就已快速地流动并迅速达到密度均匀。
物理上常用马赫数M来判定可流动气体的压缩性,其定义为M=流速/声速,若M2<<1,可视气体为不可压缩的。
由此看出,当气流速度比声速小许多时可将空气视为不可压缩的,而当气流速度接近或超过声速时气体应视为可压缩的。
总之在实际问题中若不考虑流体的可压缩性时,可将流体抽象成不可压缩流体这一理想模型。
2)粘滞性为了解流动时流体内部的力学性质,设想如图10.1.1所示的实验。
在两个靠得很近的大平板之间放入流体,下板固定,在上板面施加一个沿流体表面切向的力F 。
此时上板面下的流体将受到一个平均剪应力F/A 的作用,式中A 是上板的面积。
实验表明,无论力F 多么小都能引起两板间的流体以某个速度流动,这正是流体的特征,当受到剪应力时会发生连续形变并开始流动。
通过观察可以发现,在流体与板面直接接触处的流体与板有相同的速度。
若图10.1.1中的上板以速度u 沿x 方向运动下板静止,那么中间各层流体的速度是从0(下板)到u (上板)的一种分布,流体内各层之间形成流速差或速度梯度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
粘性、扩散性、热传导性
这种流体的输运性质,从微观上看,是通过分子的 无规则热运动及分子的相互碰撞实现的,分子在无 规则热运动中,将原先所在区域的流体宏观性质输 运到另一个区域,再通过分子的相互碰撞,交换、 传递了各自的物理量,从而形成新的平衡态。
流体的输运性质,主要指动量输运、能量输运、 质量输运,从宏观上看,它们分别表现为粘滞 现象、导热现象、扩散现象。
水 1.785 106 m2/s
1000C
水 0.282 103 Pa s
水 0.294 106 m2/s
-40C
空气 1.49 105 Pa s
空气 0.98105 m2/s
1000C
空气 2.18105 Pa s
空气 2.31105 m2/s
一般按具体流动中压缩程度的大小分类: 可压缩流 不可压缩流体
d 0
dt
一般地,当 / 5 时,按不可压缩流处理 一般情况下,水和其它液体认为不可压缩,可 忽略其密度变化。 低速气体流动(速度小于100米/秒),通常也按不 可压缩流处理 也与研究问题有关,如空气中声波,要考虑压缩性。
它起源于分子间的相互作用和跨界面的动量交换
粘滞现象示意图
流体粘滞现象
A层流体具有较大的动量
B层流体分子具有较小的动量
(气体)分子无规则运动及碰撞导致A、B两层
流体动量发生变化,
(液体分子为分子间吸引力作用),在相邻流体
层间产生内摩擦,存在一个平行于流体层的剪切力。
动量定理
d
(
mv)
F
1
( T )p
1 v
v ( T )p
1
(
p
)T
1 v
(
v p
)T
(物性系数由实验测量确定)
d dp dT
dv dp dT
v
流体的压缩性
等温压缩系数的倒数为体积弹性模量E 表示体积相对变化所需的压强增量。
E
1
(
p
)T
p v(v )T
上没有维度的点。
准平衡假设
经宏观上这样选取尺度后,流体质点所具有 的宏观物理量,在流体域内是连续分布的, 从而才构成了各种物理量场,
注意:另一方面,对流体分子团(质点)进行 统计平均的时间dt, 也是微观上足够长,宏观上 足够短。 微观上,分子碰撞已经许多次,足够进行统计 平均得到稳定的数值. 而宏观上又足够的短,可以看作为一个‘瞬间’, 一个‘时刻’。
连续介质假设
连续介质假设认为:真实流体可近似地看 作是由紧凑连续分布的‘流体质点’ 所构成 的连续介质。
流体质点: 是大量流体分子的集合,而且
要求流体质点微观上是充分地大,以保证
流体质点中包含足够多的分子,对它们进行统计 平均能取得稳定的宏观量值,不会因少量分子出
入流体质点而影响该宏观量值。在宏观上要充 分地小,以致可以把流体质点近似地看成在几何
流体力学
基本概念
1. 流体的定义 2. 研究流体的连续介质模型 3. 流体的基本物理性质
流体定义
流体是气体和液体的总称。 大气和水是最常见的两种流体 。 流体力学中研究得最多的流体也是水和空气。
流体的主要特性就是它的“流动性”。
定义:流体就是在剪切外力的作用下会发生 流动(持续变形)的物体。
流体在静止时不能承受剪切力,不管多么小的
准平衡假设
假设流体质点内所经历的热力过程是局部准 平衡过程,即假设流体质点在偏离某一热力 平衡状态后会立刻恢复平衡并达到新的平衡
状态,具有时时确定并且随时间连续变化的 宏观物理特性参数值。
流体问题定义为:连续地充满整个流动空间 的‘流体质点’的运动问题。每个空间点和 每 个时刻都有确定的物理量(值),它们是空 间坐标和时间的连续函数。
空气的动力粘性系数比水小2个数量级,但空气的 运动粘性系数比水大。
空气的粘性系数随温度升高而增大,而水的粘性系 数随温度升高而减小。
牛顿流体
两个概念: 牛顿流体(作纯剪切运动时遵循牛顿粘性
定律的流体). 即: 剪切应力正比于剪切应变率的流体。 如: 空气,水等 非牛顿流体 不满足牛顿粘性定律的流体。 如: 奶油、蜂蜜、沥青、水泥浆、大部分油类、 血液等。
事实合理性
空间 dx 冰点温度和一个大气压下,10-9厘米3的体积中 含有气体分子数为:2.71010个(分子) 水: 31013个分子
时间 dt 而在10-9厘米3体积内,10-6秒时间内,分子碰撞 1014次,而驰豫时间为10-9秒左右。 (驰豫时间为流体质点在失衡后达到新平衡的时间) 连续介质假设对一般气体和液体,均成立。
d dp
dv dp
v
实际流体都是具有可压缩性的。 气体比液体更易压缩。
• 液体的 E 随温度和压强而变,随温度变化不显著。液体的E
值很大,除非压强变化很剧烈、很迅速,一般可不考虑压缩 性,作不可压缩流体假设,即认为液体的E值为无穷大,密 度为常数。但若考虑水下爆炸、水击问题时,则必须考虑压 缩性。
E 越大, 越不易被压缩。
对完全气体,状态方程 pv=RT或 p=RT =1/T, =1/p
对均质液体而言,在正常条件下,它的状态方程为 密度=常数 0
流体的压缩性
由于液体的热容量很大(即加减很多热量, 而温度T变化很小),其压缩过程常可视为 等温过程。 液体的等温压缩系数在压力不是很高的 定温压缩过程中近似看作常数
切向应力,只要持续地施加,都能使流体流动 发生任意大的变形。
流动性
流体在静止时只有法向应力, 而没有切向应力。
一般都是各向同性流体 这与分子结构、分子间作用力性质相关。
连续介质假设
基本现象:流体由大量分子组成,分子间的真
空区其尺度远大于分子本身。每个分子无休止 地作不规则运动,相互间经常碰撞。因此流体 的微观结构和运动无论在时间和空间上都充满 着不均匀性,离散性和随机性。
系统会通过某种机理产生一种自发的过程,使之 趋向于一个新的平衡态。例如,当流体各层间速 度不同时,通过动量传递,速度趋向均匀;当流 体各处温度不均匀时,通过能量传递(传热), 温度趋向均匀;当流体各部分密度不同时,通过 质量传递,密度趋向均匀。流体这种由非平衡态
转向平衡态时物理量的传递性质,统称为流体的 输运性质。
流体宏观物理性质
1. 易流动性 (已讲过) 2. 惯性(质量、密度) 3. 可压缩性 4. 粘性 5. 热传导 6. 扩散性 7. 表面张力特性
等等
流体的宏观性质是微观性质的统计平均。
惯性
惯性:物体保持原有运动状态的性质。 质量是用来度量物体惯性大小的物理量。 密度:单位体积内的质量。
密度 lim m dm 数学上,0 0 d
流体微团
流体微团:尺度无穷小的流体质点系 其中宏观物理特性值存在微分的差异。
p
p0
p x
dx
0
x
dx
连续介质假设:说明
另外,一个给定的体积能否看成流体质点, 还依赖于所研究问题的空间尺度。
对于研究对象的宏观尺度和物质结构的微观尺 度量级相当的情况,连续介质假设不适用。 如在分析空间飞行器和高层稀薄大气的相互作 用时,飞行器尺度与空气分子平均程尺度相当。
对运动—无滑移现象. 也称为粘附条件。
2 流速分布u沿y为线性分布 3 流体中所有各处的压力均相同。
u u0 y
4 F u0 A,或 F u0
h
h
Ah
流体的粘性:h较大时
流体的粘性
当速度分布为u(y)时,流体层y处的剪切应力
du
dy
为一维粘性流体的 牛顿粘性定律
可以用数学分析、场论等数学工具来研究
流体质点
流体质点具有时时确定并且随时间连续变化 的宏观物理特性参数值。
p p(x, y, z, t)
(x,
y,
z,
t)
(r,
t)
T T(x, y, z, t)
v v(x, y, z, t)
可以用数学分析、场论等数学工具来研究
流体质点尺度
常温下,水的体积弹性系数
E水 2.0 109 Pa
相对压缩(或密度增加)1%,需要增压
p 2.0107 Pa
约为 200 个大气压,即 2000m 水下的压强。 一般情况下可以认为水是不可压缩的。
流体的压缩性
实际流动问题中,关心的不是流体的压缩性能, 而是流体在流动过程中的实际压缩程度。
dm , d
M d
(x, y, z, t) (r, t) (x,y,z)空间位置
量纲: ρ=[ML-3] 单位: kg·m-3
密度
均质 M dm ,
V
d
dm d
M (x, y, z)d
比容(比体积)v:密度的倒数v=1/ 单位体积流体的重量:重度
非牛顿流体
有粘和无粘
du
dy
粘性力不占主导时, (粘性小,或速度梯度不大时), 如远离物面的外流区域。 做无粘性的假设:理想流体。
理想流体:无粘流体
因此也无扩散和热传导。
0
0 粘性流体:
(实际流体)
粘性举例
粘性-理想(无粘)
流体的输运性
流体的输运性质 如果物质由于某种原因处于非平衡态,那么
=g (N/m3)
相对密度: d=/4度水
流体的压缩性
流体质点的密度随压力p或温度T而改变的性质