《数学分析》第三版全册课后答案 (1)

合集下载

数学分析课本(华师大三版)-习题及答案20+22

数学分析课本(华师大三版)-习题及答案20+22

习 题 二十、二十二1.计算下列第一型曲线积分.(1) ,其中L 是的上半圆周. ()x y ds L +∫x y R 22+=2 (2) x y d L 22+∫s 2,其中L 是的右半圆周. x y R 22+= (3) e d x y L 22+∫s 2,其中L 是圆,直线x y a 22+=y x =以及x 轴在第一象限中所围成图形的边界. (4) xyds L ∫,其中L 是由所构成的矩形回路.x y x y ====004,,,2(5) ,其中: xds L∫ (a) L 是上从原点O 到点y x =2(,)00B (,)11间的一段弧.(b) L 是折线OAB 组成,A 的坐标为(,,B 的坐标为.)10(,)11(6),其中∫L ds y 2L 为曲线)cos 1()sin (t a y t t a x −=−=,,其中,0>a π20≤≤t .(7) ,其中L 是螺旋线弧段(x y z d L 222++∫)s cos sin ,,x a t y a t z bt ===)(π20,0≤≤>t a .(8) ,其中∫L yzds x 2L 为折线,这里依次为点(0,0,0),(0,0,2),(1,0,2),(1,3,2)ABCD D C B A ,,,2.计算下列第二型曲线积分.(1),其中∫−L ds y x )(22L 为在抛物线上从点(0,0)到点(2,4)的一段弧.2x y =(2) ,其中L 为xdy ydx L −∫① 沿直线从点(,到点(,;)00)12② 沿抛物线x y =24从点到点; (,)00(,)12③ 沿折线从点(,经点(,到点(,.)00)02)12(3) xydx L ∫,其中L 是由所构成的沿逆时针方向的矩形回路.x y x y ====004,,,2(4) x dy y dxx y L 225353−+∫,其中L 是沿星形线在第一象限中从点(,x R t y R t ==cos sin 33,)R 0到(,)0R 的弧段(R >0).(5) ,其中L 是从点到xdx ydy zdz L ++∫A (,,)111B (,,)234的直线段. (6) ,其中L 为曲线∫−+Lydz zdy dx x 2θθκθsin cos ,a z a y x ===,上对应θ从0到π的一段弧.3.设质点受力F 作用,力的方向指向原点,大小等于质点到原点的距离.(1) 计算当质点沿椭圆在第一象限中的弧段从(,到(,时,F 所作的功;x a t y b t ==cos sin ,)a 0)0b (2) 计算当质点沿椭圆逆时针方向运动一圈时,力F 所作的功.4.利用格林公式计算下列积分.(1) ()()x y dx x y dy L +++∫222,L 是沿逆时针方向,以为顶点的三角形. A B C (,)(,)(,)113125,, (2)()()x y dx x y dy L ++−∫,L 是方程x y +=1所围成的顺时针方向的闭路.(3) []e ydx y y x L (cos (sin )1−−−∫dy x ,L 是沿y =sin 上从点(,)π0到点的一段弧.(,)00(4) dy ye x x dx e y x xy x y x x x L )2sin ()sin 2cos (222−+−+∫,其中L 为正向星形线)0(323232>=+a a yx . (5) dy y x x y dx x y xy x L )3sin 21()cos 2(223+−+−∫,其中L 为在抛物线上由点(0,0)到22y x π=)1,2(π的一段弧. (6) ,其中dy y x dx y x L ∫+−−)sin ()(22L 为在圆周22x x y −=上由点(0,0)到点(1,1)的一段弧.5.验证下列曲线积分与路径无关,并求它们的值.(1) ,L 是从点经圆周上半部到点的弧段.()()12222++−∫xe dx x e y dy y y L O (,)00+−2)2(x 42=y A (,)40 (2),L 是从点到点的任意弧段. e ydx ydy x L (cos sin )−∫(,)00(,)a b (3) ydx xdy x −∫22112(,)(,)沿右半平面的任意路线.(4) ,L 是从点经抛物线到点的弧段.()(x y xdx ydy L22++∫)(,)00y x =2(,)11 (5) ∫++L y x xcdxydy 322)(,L 是从点到点的不经过原点的弧段.(,)11(,)22 6.求椭圆所围图形的面积.x a t y b t ==cos sin , 7.求下列微分方程的通解.(1) .()()x xy y dx x xy y dy 222222+−+−−=0 (2) [][]e e x y y dx e e x y dy x y x y ()()−+++−+=1100=.(3) .()()x xy dx x y y dy 43224465++− 8.下列各式是否为某函数的全微分,若是,求出原函数.(1) ; (2)x dx y dy 22+xdx ydy x y ++22. 9.求下列第一型曲面积分.(1),其中S 是球面:. zds S ∫∫x y z R 222++=2 (2)(243x y z d S ++∫∫)s ,其中S 是平面x y z 2341++=在第一卦限的部分. (3) ,其中S 是锥面(xy z d S 222++∫∫)s z x y =+22)介于之间的部分.z z ==01、 (4) ,其中S 是由曲面和平面所围立体的表面.∫∫+Sds y x )(22x y z 2220+−=z h h =>(0(5) ,其中S 是锥面(xy yz zx dsS ++∫∫)z x y =+22x 被柱面所截得的部分.x y a 222+=(6) ∫∫SxyzdS ,其中S 是由平面0,0,0===z y x 及1=++z y x 所围成的四面体的整个边界曲面.(7) ,其中S 为锥面∫∫++S ds zx yz xy )(z x y =+22x )0被柱面所截得的有限限部分.x y a 222+= 10.计算下列第二型曲面积分.(1) , 其中S 是三个坐标平面与平面所围成的正方体的表面的外侧.()()()x yz dydz y zx dzdx z xy dxdy S222−+−+−∫∫x a y a z a a ===>,,(0(2) ,其中S 是由平面 xydydz yzdzdx xzdxdy S++∫∫x y z ===00,,与平面x y z ++=1所围成的四面体表面的外侧.(3),其中S 是上半球面yzdzdx S ∫∫z a x y =−−222的下侧. (4) e x y dxdy z S 22+∫∫,其中S 是锥面z x y =+22与平面所围成立体边界曲面的外侧.z z ==12, 11.利用奥-高公式计算下列第二型曲面积分. (1) x dydz y dzdx z dxdy S333++∫∫,其中S 是球面:的外侧.x y z a a 22220++=>() (2) xdydz y dzdx z dxdy S 222++∫∫,其中S 是锥面与平面所围成的立体表面的外侧.x y z 22+=2)z h =(h >0 (3) ()()x y dxdy x y z dydz S−+−∫∫,其中S 为柱面及平面所围立体的表面外侧.x y 221+=z z ==0,1(4) ,其中S 为三个坐标平()()()x y z dxdy y z z dzdx S+++++−∫∫23212面与平面x y z ++=1所围成的四面体的外侧.(5)∫∫++S yzdxdy dzdx yxzdydz 24,其中为平面S 0,0,0===z y x ,所围成的立方体的表面外侧.1,1,1===z y x 12.利用斯托克斯公式计算下列第二型曲线积分. (1) x y dx dy dz L 23++∫,其中L 为坐标平面上圆周,并取逆时针方向. Oxy x y a 22+=2 (2) ()()()y z dx x z dy x y d L 222222+++++∫z ,其中L 是x y z ++=1与三个坐标平面的交线. (3) x yzdx x y dy x y d L 2221+++++∫()(z ),其中L 为曲面与曲面的交线,且从面对z 轴正向看去取顺时针方向.x y z 2225++=z x y =++221 13.验证下列的空间曲线积分与路径无关,并求它们的值.(1) . 22000xe dx z x e dy y zdz y y x y z −−+−−∫(cos )sin (,,)(,,) (2) . xdx y dy z dz +−∫23111234(,,,)(,,) 14.求下列各式的原函数.(1) yzdx xzdy xydz ++.(2) . ()()(x yz dx y xz dy z xy dz 222222−+−+−)15.计算,其中为圆周 ∫L ds x 2S ⎩⎨⎧=++>=++.0),0(2222z y x a a z y x 16. 若dy cx Y dy ax X +=+=,,且L 为包围坐标原点的简单的封闭曲线,计算∫+−=L YX YdX XdY I 2221π. 17.证明:若L 为封闭的曲线且l 为任意的方向,有∫=Lds l 0),cos(. 18.若半径为的球面上每点的密度等于该点到球的某一直径上距离的平方,求球面的质量.a 19.为了使线积分()F x y ydx xdy L (,)+∫与积分路径无关,可微函数F x y (,)应满足怎样的条件?20.设磁场强度为E x y z (,,),求从球内出发通过上半球面的磁通量.x y z a z 22220++=≥,。

数学分析课本(华师大三版)-习题及答案16+17

数学分析课本(华师大三版)-习题及答案16+17
46.讨论函数
1 ⎧ 2 2 ( x , y ) ≠ 0,0) ⎪( x + y ) sin 2 f ( x, y) = ⎨ x + y2 ⎪ 0 ( x , y ) = (0,0) ⎩
在 ( 0,0) 处的可微性与偏导数的连续性. 47.设函数 u = f ( x , y ) 满足拉普拉斯方程
12.求下列函数的全微分. (1) z = x y
2 3
(2) z =
xy x−y ⎛ x+ y⎞ ⎟ ⎟ ⎝ 1 − xy ⎠
(3) z = arcsin 13.求 z = xy sin 14.求 z =
y x 1 x + y2
2
(4) z = arctan⎜ ⎜ 在点 (0,1) 的全微分.
y ,当 x = 2 ,y = 1,Δx = 01 . ,Δy = −0.2 时的全增量 Δz 与全 x du ; dt
2 2 2
(3) u = ln( x +
y 2 + z 2 ) 从点 A ( 1 , 0 , 1 ) 到点 B ( 3 , − 2 , 2 ) 的方向.
2 2
27. 求函数 z = x + y 在点 p ( 1 , 2 ) 处的最大方向导数. 28. 求下列函数的梯度 (1) z =
4 + x 2 + y 2 在点 ( 2 , 1 ) ;
(2) z = x y − xy ,其中 x = u cos v,y = u sin v ,求
3
∂ 2z 17.设 z = yf ( x − y ) ,求 2 . ∂y
2 2
18.求由下列方程确定的函数 y ( x ) 的导数. (1) x + 2 xy − y = a (3) xy − ln y = a

数学分析_复旦_欧阳光中陈传璋第三版3版上下册课后习题答案解析(下)

数学分析_复旦_欧阳光中陈传璋第三版3版上下册课后习题答案解析(下)
101
(4) b•
ê§ lim
x→∞
xb eax
=
lim
x→∞
bxb−1 aeax
=
··· =
lim
x→∞
b! abeax
=0
bؕ
ê§K[b]
b
<
[b]+1§u´
|x|[b] eax
|x|b eax
<
|x|[b]+1 eax (|x|
> 1)§
þ¡®y²§‚ 4••0§Ïd§¥m 4•••0.
l
§é?¿a, b§þk lim
lim
+
=
x→0
24
24
1
6
ax − bx
ax ln a − bx ln b
a
(9) lim
= lim
= ln a − ln b = ln (a = 0, b = 0)
x→0 x
x→0
1
b
x−1
1
(10) lim
x→1
ln x
= lim
x→1
1
=1
x
(11) lim ax − xa = lim ax ln a − axa−1 = aa(ln a − 1)
(x2 − 1) sin x
(4) lim x→1 ln
1 + sin π x
2

x2 sin 1
1
1
2x sin − cos
1 cos
(1) Ï
x ©f!©1Óžéx¦ ê§
x

x x → 0ž4•Ø•3§Ïdâ
sin x
cos x
cos x

数学分析课本(华师大三版)-习题及答案第三章

数学分析课本(华师大三版)-习题及答案第三章

第三章第三章函数极限 一、填空题一、填空题 1.若[]2)(1ln lim20=+®x x f x ,则=®20)(lim xx f x _________ 2.=--+-®xxe e x x x x x 340sin 21sin lim _______________ 3.设xx x x f ÷øöçèæ+-=11)(,则=+¥®)1(lim x f x ____________ 4.已知ïîïíì>-=<+=2,12,02,1)(x x x x x x f ,1)(+=xe x g ,[]=®)(lim 0x gf x ________ 5.()x x x x ln cos arctan lim -+¥®=_________________ 6.[]=®x x x tan)sin(sin sin lim0_____________7.________24tan lim =÷øöçèæ+¥®n n x p8.________ln 1ln ln lim 20=÷øöçèæ+®x x x x9.)1ln(lim 2cos 0x x e e x x x x +-®=__________ 10.=×+-¥®x xx x x cos 1sin 21lim 22_________ 11.=÷øöçèæ-®x x xx tan 11lim 2_________ 12.310)(1lim e x x f x xx =úûùêëé++®,则úûùêëé+®20)(1lim x xf x =_______13.()=+++®)1ln(cos 11cos sin 3lim 20x x xx x x ___________二、选择填空二、选择填空1.=-®tt t cos 1lim( ) A.0 B.1C.2D.不存在不存在 2.函数x x x f 1cos 1)(=,在0=x 点的任何邻域内都是() A.有界的有界的 B.无界的无界的 C.单增单增 D.单减单减 3.已知()25lim 2=++-+¥®cyx ax x ,则必有() A.20,25-==b a B. 25==b a C.0,25=-=b aD.2,1==b a 4.设nn n x n x f ÷øöçèæ-+=+¥®2lim )1(,则=)(x f ( ) A.1-x eB.2+x eC.1+x eD.xe -5.若22lim222=--++®x x b ax x x ,则必有() A.8,2==b a B.5,2==b a C. 8,0-==b aD. 8,2-==b a 6.0)(6sin lim30=+®x x xf x x ,则=+®20)(6lim xx f x ( ) A. 0 B.6 C.36D.¥ 7.设对任意x 点有)()()(x g x p x ££j ,且[]0)()(lim =-¥®x x g x j ,则=¥®)(lim x f x () A.存在且一定为0B.存在且一定不为0C.一定不存在一定不存在D.不一定存在不一定存在 8.当0®x 时,变量x x 1sin12是( ) A.无穷小无穷小 B.无穷大无穷大C.有界,但不是无穷小有界,但不是无穷小D.无界的,但不是无穷大无界的,但不是无穷大9.=-+÷øöçèæ+¥®p 21sin 1])1(1[lim n nn n() A.peB.p 1eC.1D.p 2e 10.=--®xx x xx x tan )(arctan 1lim 220()A.0B.1C.21D.21-11.x x x g dt t x f xsin )(,tan )(sin 02-==ò,则当0®x 时,)(x f 是)(x g 的() A.高阶无穷小高阶无穷小 B.低阶无穷小低阶无穷小 C.同阶非等价无穷小同阶非等价无穷小 D.等价无穷小等价无穷小三、计算题三、计算题1.求下列极限:求下列极限:(1))x x cos x (sin 2lim 22x --p ®; (2)1x x 21x lim 220x ---®; (3)1x x 21x lim 221x ---®; (4)3230x x2x )x 31()1x (lim +-+-®;(5)1x 1x lim m n 1x --®,(n ,m 为自然数);(6)2x 3x 21lim 4x --+®;(7))0a (,xa x a lim 20x >-+®;(8)x x cos x lim x -¥®; (9)4x xsin x lim 2x -¥® ;(10).)1x 5()5x 8()6x 3(lim 902070x --+¥® 2.设,0a ,b x b x b x b a x a x a x a )x (f 0n1n 1n 1n 0m 1m 1m 1m 0¹++++++++=---- 0b 0¹,m ≤n ,试求).x (f lim x ¥® 3.求下列极限(其中n 为自然数):(1)2x x 11x xlim +®;(2)20x x 11x x lim ++®; (3)1x nx x x lim n 21x --+++® ;(4)x1x 1lim nx -+®;(5)úûùêëé®x 1lim 0x ;(6)[]x x1lim x +¥®. 4.求下列函数在0x =处的左右极限或极限。

数学分析课本(华师大三版)-习题及答案第四章

数学分析课本(华师大三版)-习题及答案第四章

第四章 函数的连续性一、填空题1.设⎪⎪⎩⎪⎪⎨⎧>+=<=0 11sin 0 0sin 1)(x x x x k x x x x f ,若函数)(x f 在定义域内连续,则=k ;2.函数⎩⎨⎧≤>-=0sin 01)(x x x x x f 的间断点是 ;3.函数x x f =)(的连续区间是 ; 4.函数321)(2--=x x x f 的连续区间是 ;5.函数)3(9)(2--=x x x x f 的间断点是 ;6.函数)4)(1(2)(+++=x x x x f 的间断点是 ;7.函数)2)(1(1)(-+=x x x f 的连续区间是 ;8.设⎪⎩⎪⎨⎧=≠-=-00 )(x k x xe e xf x x 在0=x 点连续,则 =k ;9.函数⎪⎩⎪⎨⎧≤≤+-<≤+-<≤-+=3x 1 31x 0101 1)(x x x x x f 的间断点是 ; 10.函数0b a 0)(0)(2≠+⎩⎨⎧<++≥+=x x x b a x b ax x f .则)(x f 处处连续的充要条件是 =b ;11.函数⎪⎩⎪⎨⎧=≠=-0 0 )(21x a x e x f x,则=→)(lim 0x f x ,若)(x f 无间断点,则=a ;12.如果⎪⎩⎪⎨⎧-=-≠+-=11 11)(2x a x xx x f ,当=a 时,函数)(x f 连续二、选择填空1.设)(x f 和)(x ϕ在()+∞∞-,内有定义,)(x f 为连续函数,且0)(≠x f ,)(x ϕ有间断点,则( )A.[])(x f ϕ必有间断点。

B.[]2)(x ϕ必有间断点C.[])(x f ϕ必有间断点D.)()(x f x ϕ必有间断点 2.设函数bx ea xx f +=)(,在()∞∞-,内连续,且)(lim x f x -∞→0=,则常数b a ,满足( ) A.0,0<<b a B.0,0>>b a C.0,0>≤b a D.0,0<≥b a3.设xx e e x f 1111)(-+=,当,1)(;0-=≠x f x 当0=x ,则A 有可去间断点。

数学分析Ⅲ练习册参考答案

数学分析Ⅲ练习册参考答案

1、平面点集{}22(,)|01E x y x y =<+<的内部为 ,边界为 . 解 {}{}222222int (,)|01,(,)|01E x y x y E x y x y x y =<+<∂=+=+=或2、平面点集11,,E n m n m ⎧⎫⎛⎫=⎨⎬ ⎪⎝⎭⎩⎭为整数的聚点集为 .解 {}11,00,(0,0)n m n m ⎧⎫⎧⎫⎛⎫⎛⎫⎨⎬⎨⎬⎪ ⎪⎝⎭⎝⎭⎩⎭⎩⎭为整数为整数3、设(,)ln 1f x y x y=--,则函数(,)f x y 的定义域为 .解(){}222,014x y xy y x <+<≤且4、设2222),(y x y x y x f +-=则00limlim (,)x y f x y →→= ,),(lim lim 00y x f x y →→= .解 222200000limlim (,)limlim lim11x y x y x x y f x y x y →→→→→-===+()222200000limlim (,)limlim lim 11y x y x x x y f x y x y →→→→→-==-=-+ 5、函数1(,)sin sin f x y x y =的间断点集为 .解(){},,,x y x k y l k l ππ==∈Z 或二、选择题1、函数f x y x y (,)=-+-1122的定义域是( D ) A 、闭区域 B 、开区域 C 、开集 D 、闭集解 f x y x y (,)=-+-1122的定义域是(){},1,1E x y x y =≤≥E 是闭集但不具有连通性,故不是闭区域.2、函数y x z -=的定义域是( C )A 、有界开集B 、有界闭集C 、无界闭集D 、无界开集 解 y x z -=的定义域是(){}2,0E x y y x =≤≤E 是无界闭集.3、以下说法中正确的是( A )A 、开区域必为开集B 、闭区域必为有界闭集C 、开集必为开区域D 、闭集必为闭区域 4、下列命题中正确的是( A )A 、如果二重极限,累次极限均存在,则它们相等;B 、如果累次极限存在,则二重极限必存在;C 、如果二重极限不存在,则累次极限也不存在;D 、如果二重极限存在,则累次极限一定存在.A 、有界点列2}{R P n ⊂必存在收敛的子列;B 、二元函数),(y x f 在D 上关于x ,y 均连续,则),(y x f 在D 上连续;C 、函数),(y x f 在有界区域D 上连续,则),(y x f 在D 上有界;D 、函数),(y x f 定义在点集2R D ⊂上,D P ∈0,且0P 是D 的孤立点,则f 在0P 处连续.三、用ε-δ定义证明22200lim 0.x y x yx y →→=+ 证明 由于当(,)(0,0)x y ≠时2222||0||22x y x y x x x y xy -≤=≤+ 故0,,(,):0|0|,0|0|,x y x y εδεδδ∀>∃=∀<-<<-<有2220||x yx x y ε-≤<+故22200lim 0.x y x yx y →→=+ 四、求下列极限1、222200lim x y x y x y →→+解 当(,)(0,0)x y 时222222222x y y x x x y x y ,而200lim 0x y x →→=所以222200lim 0x y xy x y →→=+. 2、2200x y →→解 因为22222222222211111111x y x y x yx y xyx y所以222222000limlim11211x x y y x y x y xy.1、设xy e z =,则z x ∂=∂ ,z y∂=∂ . 解,xy xy z zye xe x y∂∂==∂∂ 2、设000000(,)0,(,)4,(,)5x y f x y f x y f x y ''===,则000(,)limx f x x y x ∆→+∆=∆ ,000(,)lim y f x y y y∆→+∆=∆ .解 0000000000(,)(,)(,)limlim (,)4x x x f x x y f x x y f x y f x y x x∆→∆→+∆+∆-'===∆∆ 0000000000(,)(,)(,)limlim (,)5y y y f x y y f x y y f x y f x y y y∆→∆→+∆+∆-'===∆∆ 3、设ln 1x z y ⎛⎫=+ ⎪⎝⎭,则(1,1)dz = .解 21111,()11z z x x x x x y x y y y y x y y y ⎛⎫∂∂=⋅==⋅-=- ⎪∂+∂+⎝⎭++ (1,1)(1,1)11,22z z x y ∂∂∴==-∂∂ (1,1)111()222dz dx dy dx dy ∴=-=- 4、设2sin()z x y =,则dz = .解2222cos(),cos()z zxy x y x x y x y∂∂==∂∂ ()22222cos()cos()cos()2dz xy x y dx x x y dy x x y ydx xdy ∴=+=+ 5、求曲面arctany z x 在点⎪⎭⎫⎝⎛4,1,1π处的切平面方程为 ,法线方程 .解 2222,x yy xz z x y x y 11(1,1),(1,1)22x y z z故曲面arctan y z x 在点⎪⎭⎫⎝⎛4,1,1π处的切平面方程为11(1)(1)422z x y π-=--+-,即202x y z π-+-=法线方程为11411122z x y π---==--,即202204x y x z π+-=⎧⎪⎨--+=⎪⎩1、设),(y x f 在点(,)a b 处偏导数存在,则lim(,)(,)x f a x b f a x b x→+--0=( C )A 、(,)x f a b 'B 、(2,)x f a b 'C 、2(,)x f a b 'D 、1(,)2x f a b '解 [][]xb a f b x a f b a f b x a f x b x a f b x a f x x ),(),(),(),(lim ),(),(lim00----+=--+→→ [][]000(,)(,)(,)(,)lim (,)(,)(,)(,)lim lim (,)(,)2(,)x x x x x x f a x b f a b f a x b f a b xf a x b f a b f a x b f a b x x f a b f a b f a b →→→+----=+---=+-''=+'=2、设),(y x f 在点00(,)x y 处存在关于x 的偏导数,则00(,)(,)x y f x y x ∂=∂( A )A 、x y x f y x x f x ∆-∆+→∆),(),(lim00000 B 、xy x f y y x x f x ∆-∆+∆+→∆),(),(lim 00000C 、x y x x f x ∆∆+→∆),(lim 000D 、xy x x f y y x x f x ∆∆+-∆+∆+→∆),(),(lim 00000解 0000000(,)(,)(,)(,)limx x y f x x y f x y f x y x x∆→+∆-∂=∂∆ 3、函数f x y xy x y x y x y (,)=++≠+=⎧⎨⎪⎩⎪222222000在点(0,0)处有( D )A 、连续且偏导数存在B 、连续但偏导数不存在C 、不连续且偏导数不存在D 、不连续但偏导数存在 解 当(,)x y 沿y x =趋于(0,0)时22200001lim (,)lim (,)lim 2x x x y x f x y f x x x x →→→→===+ 当(,)x y 沿0y =趋于(0,0)时00lim (,)lim (,0)lim 00x x x y f x y f x →→→→===故00lim (,)x y f x y →→不存在,于是函数),(y x f 在点(0,0)处不连续.000(,0)(0,0)00(0,)(0,0)00limlim 0,lim lim 0x x y x f x f f y f x x y y∆→∆→∆→∆→∆--∆--====∆∆∆∆ (,)f x y ∴在原点存在偏导数且(0,0)0,(0,0)0x y f f ''==4、在点00(,)x y 处的某邻域内偏导数存在且连续是),(y x f 在该点可微的( B ) A 、必要条件 B 、充分条件 C 、充要条件 D 、无关条件解 P175定理25、下面命题正确的是( C )A 、若),(y x f 在00(,)x y 连续,则),(y x f 在00(,)x y 的两个偏导数存在;0000C 、若),(y x f 在00(,)x y 可微,则),(y x f 在00(,)x y 的两个偏导数存在; D 、若),(y x f 在00(,)x y 处的两个偏导数存在,则),(y x f 在00(,)x y 处可微.解 P172定理1 三、求解下列各题 1、求曲面xy z =上一点,使得曲面在该点的切平面平行于平面093=+++z y x ,并写出这切平面方程和法线方程.解 设所求的点为000(,,)x y z .由于,x y z y z x ''== 故000000(,),(,)x y z x y y z x y x ''==于是曲面xy z =在点000(,,)x y z 的切平面方程为 00000()()()0y x x x y y z z -+---=由已知切平面与平面093=+++z y x 平行,故001131y x -== 于是000003,1,3x y z x y =-=-==,故所求的点为(3,1,3)--.曲面在点(3,1,3)--的切平面方程为(3)3(1)(3)0x y z -+-+--=,即330x y z +++= 法线方程为313131x y z ++-==---,即1333y x z ++==- 2、讨论函数2222222,0(,)0,0x yx y f x y x y x y ⎧+≠⎪=+⎨⎪+=⎩在附近的连续性、偏导数的存在性及可微性.解2221(,)(0,0)02x y x y x x y ≠≤≤+当时,且001lim 02x y x →→=. 2220000lim (,)lim 0(0,0)x x y y x yf x y f x y →→→→∴===+(,)f x y ∴在点(0,0)的连续.0000(,0)(0,0)00(0,)(0,0)00lim lim 0,lim lim 0x x y y f x f f y f x x y y ∆→∆→∆→∆→∆--∆--====∆∆∆∆ (,)f x y ∴在点(0,0)存在偏导数且(0,0)(0,0)0x y f f ''==.[]()22223222(,)(0,0)(0,0)(0,0)x y x yf x y f f x f y z dzx yxyρ∆∆⎡⎤''∆∆--∆+∆∆-∆∆===∆+∆当(,)x y ∆∆沿y x ∆=∆趋于(0,0)时()23300222limlimlim x x y z dzx yxyρρ→∆→∆→∆→∆-∆∆===∆+∆ 当(,)x y ∆∆沿0y ∆=趋于(0,0)时()3300222limlimlim0x x y z dzx yx xyρρ→∆→∆→∆→∆-∆∆===∆∆+∆故极限()230222limx y x yxy∆→∆→∆∆∆+∆不存在,从而极限0limz dzρρ→∆-不存在,即(,)f x y 在点(0,0)不可微.1、2ln ,,32,u z x y x y u v v ===-求,.z zu v∂∂∂∂解 22ln 3z z x z y x y x u x u y u v y∂∂∂∂∂=⋅+⋅=+∂∂∂∂∂ 222ln 2z z x z y ux y x v x v y v v y∂∂∂∂∂=⋅+⋅=--∂∂∂∂∂ 2、,,x y u f y z ⎛⎫= ⎪⎝⎭求,,.u u ux y z ∂∂∂∂∂∂解 令,x y s t y z ==,则函数,,x y u f y z ⎛⎫= ⎪⎝⎭由函数(,),,x yu f s t s t y z ===复合而成,记12,u u f f s t∂∂==∂∂,则11222211,,.u u s u u s u t x u u t y f f f f x s x y y s y t y y z z t z z ∂∂∂∂∂∂∂∂∂∂∂=⋅==⋅+⋅=-+=⋅=-∂∂∂∂∂∂∂∂∂∂∂ 二、求下列函数在给定点沿给定方向的方向导数1、求22(,,)f x y z x xy z =-+在点0(1,0,1)P 沿(2,1,2)l =-的方向导数. 解 由于l 的方向余弦为212cos ,cos ,cos 333αβγ====-==()0000()22,()1,()22x y P z P P f P x y f P xf P z'''=-==-=-==所以()000212()cos ()cos ()cos 123333x y z f f P f P f P l αβγ∂⎛⎫++⋅+-⋅-+⋅= ⎪∂⎝⎭==2 2、求u xyz =在点(5,1,2)A 处沿到点(9,4,14)B 的方向AB 上的方向导数. 解 由于(4,3,12)AB =,故它的方向余弦为4312cos ,cos ,cos 131313αβγ====()2,()10,()5x y Az A A f A yz f A zxf A xy '''======所以000431298()cos ()cos ()cos 10513131313x y z f f P f P f P l αβγ∂++⋅+⋅+⋅=∂==21、如果 ,则有0000(,)(,)xyyx f x y f x y ''''=. 解 如果函数(,)f x y 在点00(,)P x y 的某邻域G 内存在二个混合偏导数(,)xy f x y ''与(,)yx f x y '',并且它们在点00(,)P x y 连续,则0000(,)(,)xyyx f x y f x y ''''=. 2、设24z x y =,则2zx y ∂=∂∂ .解 2432,8z z xy xy x x y∂∂==∂∂∂ 3、二元函数xy y x y x f ++=),(在点)2,1(的泰勒公式为 .解 222221,1,0,1,0,0(2)n m n m f f f f f fy x n m x y x x y y x y+∂∂∂∂∂∂=+=+====+>∂∂∂∂∂∂∂∂22()(1,2)3,(1,2)2,(1,2)0,(1,2)1,(1,2)0,(1,2)0(2)m nm n x y xy x y x y f f f f f f n m +''''''''∴======+> (,)f x y x y xy ∴=++在点)2,1(的泰勒公式为 (,)f x y x y xy =++1(1,2)(1,2)(1)(1,2)(2)1!x y f f x f y ''⎡⎤=+-+-⎣⎦ 22221(1,2)(1)2(1,2)(1)(2)(1,2)(2)2!xy x y f x f x y f y ⎡⎤''''''+-+--+-⎣⎦ 53(1)2(2)(1)(2)x y x y =+-+-+--4、函数22(,)4()f x y x y x y =---在稳定点 处取得极大值,且极大值是 .解 令(,)420(,)420xy f x y x f x y y ⎧'=-=⎪⎨'=--=⎪⎩得稳定点(2,2)-.由于22(,)2,(,)0,(,)2xy xyf x y f x y f x y ''''''=-==-222(2,2)20,(2,2)0,(2,2)2,40xy x y A f B f C f B AC ''''''=-=-<=-==-=-∆=-=-<故函数22(,)4()f x y x y x y =---在稳定点(2,2)-取得极大值,且极大值是(2,2)8f -=.5、设),(),(00y x y x f z 在=存在偏导数,且在),(00y x 处取得极值,则必有 .解 0000(,)0(,)0x y f x y f x y '=⎧⎨'=⎩二、选择题1、二元函数3322339z x y x y x =+++-在点M 处取得极小值,则点M 的坐标是( A )A 、(1,0)B 、(1,2)C 、(-3,0)D 、(-3,2) 解 令22(,)3690(,)360xy f x y x x f x y y y ⎧'=+-=⎪⎨'=+=⎪⎩得稳定点(1,0),(3,0),(1,2),(3,2)----.由于22(,)66,(,)0,(,)66xy xyf x y x f x y f x y y ''''''=+==+在点(1,0),2120,0,6,720A B C B AC =>==∆=-=-<在点(3,0)-,212,0,6,720A B C B AC =-==∆=-=> 在点(1,2)-,212,0,6,720A B C B AC ===-∆=-=>在点(3,2)--,2120,0,6,720A B C B AC =-<==-∆=-=-<故函数339z x y x y x =+++-在点(1,2)-,(3,0)-不取得极值,在点(1,0)取得极小值, 在点(3,2)--取得极大值.2、二元函数2222),(22+-+-=x y xy x y x f 的极小值点是( C )A 、(-1,-1)B 、(0,0)C 、(1,1)D 、(2,2) 解 令(,)4220(,)220xy f x y x y f x y y x ⎧'=--=⎪⎨'=-=⎪⎩得稳定点(1,1).由于22(,)4,(,)2,(,)2xy xyf x y f x y f x y ''''''==-=240,2,2,40A B C B AC =>=-=∆=-=-<故函数2222),(22+-+-=x y xy x y x f 在点(1,1)取得极小值. 3、关于二元函数下列论断①(,)f x y 在),(00y x 取得极值,则),(00y x 是(,)f x y 的稳定点;②),(00y x 是(,)f x y 的稳定点,则(,)f x y 在),(00y x 取得极值; ③(,)f x y 在),(00y x 不存在偏导数,则(,)f x y 在),(00y x 不会取得极值; ④)0,0(以xy z =为极小值点. 其中正确的个数是( A )A 、0B 、1C 、2D 、3解 ①错误:偏导数不存在的点也可能是极值点,例如z =在点(0,0)取得极小值,但点(0,0)不是稳定点.②错误:稳定点不一定是极值点,例如在第1题中,点(1,2)-是稳定点,但却不是极值点.③错误:偏导数不存在的点也可能是极值点,例如z =在点(0,0)的偏导数不存在,但点(0,0)是该函数的极小点.④错误: 令00xy z y z x ⎧'==⎪⎨'==⎪⎩得稳定点(0,0).由于22(,)0,(,)1,(,)0xy x y z x y z x y z x y ''''''=== 20,1,0,10A B C B AC ===∆=-=>故函数z xy =在点(0,0)不取得极值.4、如果点()00,x y 为(,)f x y 的极值点且()()0000,,,x y f x y f x y ''存在,则它是(,)f x y 的( B ) A 、最大值点 B 、稳定点 C 、连续点 D 、最小值点 解 P200定理35、下列命题中,正确的是( D )A 、设点00(,)P x y 为函数(,)f x y 的稳定点,则它一定是(,)f x y 极值点;B 、设点00(,)P x y 为函数(,)f x y 的极值点,则它一定是(,)f x y 稳定点;C 、设点00(,)P x y 为函数(,)f x y 的稳定点且0∆=,则它不是(,)f x y 极值点;D 、设点00(,)P x y 为函数(,)f x y 的稳定点且0∆>,则它不是(,)f x y 极值点. 解 P201定理4 三、求解下列各题 1、求函数333(0)z axyx y a的极值.解 令22330330x yz ay x z ax y得稳定点(0,0)和(,)a a . 226,3,6xy x y z x z a z y对于点(0,0),220,3,0,90A B a C B AC a 故点(0,0)不是极值点. 对于点(,)a a ,2260,3,6,270A a B a C a B AC a 故点(,)a a 是极大点,极大值为3(,)z a a a .2、在xy 平面上求一点,使它到三直线0,0x y ==及2160x y +-=的距离平方和最小. 解 设(,)x y 为平面上任一点,则它到三直线0,0x y ==及2160x y +-=的距离平方和为()222216(,)5x y S x y x y +-=++于是问题转化为求函数()222216(,)5x y S x y x y +-=++在2R 上的最小值.令22162054216205xyx y S x xy S y得(,)S x y 在2R 上的唯一稳定点816,55⎛⎫⎪⎝⎭.2212418,,555xy x y S S S 2124180,,,80555A B C B AC 故点816,55⎛⎫⎪⎝⎭是极小点.根据问题实际意义,函数(,)S x y 在2R 上一定存在最小值,而(,)S x y 在2R 上只有唯一一个极小点,故(,)S x y 在点816,55⎛⎫ ⎪⎝⎭取得最小值.即平面点816,55⎛⎫⎪⎝⎭到三直线0,0x y ==,2160x y +-=的距离平方和最小.1、设方程0sin 2=-+xy e y x 确定隐函数()y f x =,则dxdy= . 解法一 令2(,)sin x F x y y e xy =+-,则2(,),(,)cos 2x x y F x y e y F x y y xy ''=-=-于是22(,)(,)cos 2cos 2x x x x dy F x y e y y e dx F x y y xy y xy'--=-=-='-- 解法二 方程两边对x 求导得2cos 20x dy dy y e y xy dx dx ⎛⎫⋅+-+⋅= ⎪⎝⎭2cos 2xdy y e dx y xy-=- 2、设方程0z e xyz -=确定隐函数(,)z f x y =,则z x ∂=∂ ,zy∂=∂ . 解法一 令(,,)z F x y z e xyz =-,则(,,),(,,),(,,)z x y z F x y z yz F x y z xz F x y z e xy '''=-=-=- 于是(,,)(,,)(,,)(,,)x z z y zz z F x y z yz x F x y z e xyF x y z z xz y F x y z e xy'∂=-='∂-'∂=-='∂-解法二 方程两边分别对,x y 求偏导得00z z z z e y z x x x z z e x z y yy ∂∂⎧⎛⎫⋅-+⋅= ⎪⎪∂∂⎝⎭⎪⎨⎛⎫∂∂⎪⋅-+⋅= ⎪⎪∂∂⎝⎭⎩于是,z z z yz z xzx e xy y e xy∂∂==∂-∂-.3、设sin cos ,sin sin ,cos x r y r z r φθφθφ===,则(,,)(,,)x y z r θφ∂∂= .解2(,,)sin (,,)x y z r r φθφ∂=∂4、若函数组(,),(,)u u x y v v x y ==与(,),(,)x x s t y y s t ==均有连续的偏导数,且(,)(,)14,(,)(,)2u v x y x y s t ∂∂==∂∂,则(,)(,)u v s t ∂=∂ .解(,)(,)(,)142(,)(,)(,)2u v u v x y s t x y s t ∂∂∂=⋅=⨯=∂∂∂ 5、若函数组(,),(,)u u x y v v x y ==有连续的偏导数且(,)2(,)u v x y ∂=∂,则(,)(,)x y u v ∂=∂ .解(,)(,)2(,)x y u v u v ==∂∂∂ 二、选择题1、下列命题正确的是( D )A 、任何方程都可以确定一个隐函数;B 、任何方程所确定的隐函数是唯一的;C 、任何方程所确定的隐函数一定是初等函数;D 、如果一个方程在某点满足隐函数存在定理的条件,则它确定的隐函数是唯一的. 2、方程0sin 2=++xy y x 在原点(0,0)的某邻域内必可确定的隐函数形式为( A )A 、)(x f y =B 、)(y g x =C 、两种形式均可D 、无法确定 3、隐函数存在定理中的条件是隐函数存在的( A )A 、充分条件B 、必要条件C 、充要条件D 、无关条件4、方程组22201x y z x y z ++=⎧⎨++=⎩所确定的隐函数组()()x f z y g z =⎧⎨=⎩的导数为 ( B ) A 、,dx y z dy z xdz y x dz x y --=--= B 、,dx y z dy z x dz x y dz x y --==-- C 、,dx y z dy x z dz x y dz x y--==-- D 、,dx y z dy x z dz y x dz x y--==-- 解 方程两边分别对z 求导得102220dx dydz dzdx dy x y z dz dz ⎧++=⎪⎪⎨⎪⋅+⋅+=⎪⎩解方程得,dx y z dy z x dz x y dz x y--==--. 三、证明方程ln 1(0,1,1)xz xy z y e ++=在点的某领域内能确定隐函数(,),x x y z =并求,x x y z∂∂∂∂. 解 令(,,)ln 1,xz F x y z xy z y e =++-则(1) (,,),F x y z (,,),xz x F x y z y ze '=+(,,),y zF x y z x y'=+(,,)ln xz z F x y z y xe '=+都在(0,1,1)的某邻域内连续;(2) (0,1,1)0F =; (3) (0,1,1)20x F '=≠.故方程可确定隐函数(,)x f y z =.2(,,)(,,)y xz xzx z x F x y z x xy z yy y ze y yze F x y z +'∂+=-=-=-∂++' (,,)ln (,,)xzz xzx x F x y z y xe z y ze F x y z '∂+=-=-∂+'四、设方程组⎩⎨⎧=--=--0022xu v y yv u x 确定隐函数组(,),(,)u u x y v v x y ==,求,u vx x ∂∂∂∂. 解 方程组关于x 求偏导得12020u vu y x xv u v u x x x解此方程组得24u v uy x uv xy ,224v u xx xy uv1、二元函数(,)f x y xy =在条件1x y +=下的存在 (极小值/极大值),其极大(小)值为 .解 由2(1)f xy x x x x ==-=-,令120f x '=-=得稳定点12x =;又由于20f ''=-<,故函数在12x =取得极大值111,224f ⎛⎫= ⎪⎝⎭.2、平面曲线09)(233=-+xy y x 在点(2,1)处的切线方程为 ,法线方程为 . 解 令33(,)2()9F x y x y xy =+-,则22(,)69,(,)69x y F x y x y F x y y x ''=-=-22(,)69(,)69x y dy F x y x y dx F x y y x'-=-=-'- (2,1)54dy k dx ==- 故所求的切线方程为51(2)4y x -=--,即54140x y +-=.法线方程为41(2)5y x -=-,即4530x y --=.3、空间曲线23,,x t y t z t ===在点1t =处的切线方程为 ,法平面方程为 .解 由于21,2,3x y t z t '''===,则(1)1,(1)2,(1)3x y z '''===,故所求的切线方程为111123x y z ---== 法平面方程为(1)2(1)3(1)0x y z -+-+-=,即2360x y z ++-=.4、空间曲面236222x y z ++=在点()1,1,1P 处的切平面方程为 , 法线方程为 . 解 由于222(,,)236F x y z x y z =++-,则(,,)4,(,,)6,(,,)2x y z F x y z x F x y z y F x y z z '''=== (1,1,1)4,(1,1,1)6,(1,1,1)2x y z F F F '''===故所求的切平面方程为4(1)6(1)2(1)0x y z -+-+-=,即2360x y z ++-= 法线方程为111462x y z ---==,即11123x y z --==-. 5、曲面2132222=++z y x 在点 的切平面与平面460x y z ++=平行. 解 设所求的点为000(,,)x y z ,由于222(,,)2321F x y z x y z =++-,则(,,)2,(,,)4,(,,)6x y z F x y z x F x y z y F x y z z '''===000000000000(,,)2,(,,)4,(,,)6x y z F x y z x F x y z y F x y z z '''===0002220002461462321x y z x y z ⎧==⎪⎨⎪++=⎩ 解方程得000122x y z =⎧⎪=⎨⎪=⎩或000122x y z =-⎧⎪=-⎨⎪=-⎩,故所求的点为(1,2,2),(1,2,2)---.二、选择题1、在曲线23,,x t y t z t ==-=的所有切线中与平面24x y z ++=平行的切线( B )A 、只有一条B 、只有二条C 、至少有三条D 、不存在 解 设曲线在0t t =处的切线与平面24x y z ++=平行,由于21,2,3x y t z t '''==-= 则200000()1,()2,()3x t y t t z t t '''==-= 由已知可得2001430t t -+=于是013t =或01t =,故曲线上有两点的切线与平面24x y z ++=平行的点.2、曲线2226x y z x y z ⎧++=⎨++=⎩在点(1,2,1)M -处的切线平行于( C )A 、xoy 平面B 、yoz 平面C 、zox 平面D 、平面0x y z ++= 解 令22212(,,)6,(,,)F x y z x y z F x y z x y z =++-=++,则11122211122211122222(,)2(),11(,)22(,)2()11(,)22(,)2()11(,)F F x y x y F F x y F F x y x yF F y z y z F F y z F F y z yzF F z x F F z xz x F F z x z x∂∂∂∂∂===-∂∂∂∂∂∂∂∂∂∂===-∂∂∂∂∂∂∂∂∂∂===-∂∂∂∂∂ 121212(,)(,)(,)6,6,0(,)(,)(,)M M MF F F F F F x y y z z x ∂∂∂==-=∂∂∂故曲线在点(1,2,1)M -处的切线为121606x y z -+-==-,即202x z y +-=⎧⎨=-⎩ 该直线平行于xoz 平面.1、求表面积一定而体积最大的长方体.解 设长方体的长、宽、高分别为,,x y z ,表面积为20,a a则问题转换为求函数,,,f x y z xyz 在条件22xy yz xza 下的最大值.设()2,,,[2()]L x y z xyz xy yz xz a λλ=+++-,令()()()()220202020x y zL yz y z L xz x z L xy x y L xy yz xz a λλλλ'=++=⎧⎪'=++=⎪⎨'=++=⎪⎪'=++-=⎩ 解得.6ax y z根据问题实际意义,体积最大的长方体一定存在,且稳定点只有一个,故表面积一定的长方体中正方体的体积最大.2、求曲线2222222393x y z z x y在点(1,1,2)的切线与法平面方程. 解 设222222(,,)239,(,,)3F x y z x y z G x y z z x y ,在点(1,1,2)处有4,6,4x y z F F F ,6,2,4x y z G G G (,)(,)(,)32,40,28(,)(,)(,)F G F G F G y z z x x y所以切线的法向量为(8,10,7),切线方程为1128107x y z法平面方程为8(1)10(1)7(2)0x y z 或8107120x y z .1、=++⎰+∞0284x x dx.解 ()222000(2)1212lim lim arctan lim arctan 4822224822AA A A A dx d x x A x x x ππ+∞→+∞→+∞→+∞+++⎛⎫===-= ⎪++⎝⎭++⎰⎰ 2、20x xe dx +∞-=⎰= .解()()2222200111limlim lim 1222AA x x x A A A A xedx xedx e d x e +∞----→+∞→+∞→+∞==--=--=⎰⎰⎰3、无穷积分dxx p 1+∞⎰在 时收敛,在 时发散. 解 无穷积分dxxp 1+∞⎰在1p >时收敛,在1p ≤时发散(课本p263例3). 4、无穷积分1(,0)1mnxdx m n x ∞≥+⎰在 时收敛,在 时发散. 解 由于lim lim 111m n n mn nx x x x x x x -→+∞→+∞⋅==++,故无穷积分⎰∞≥+0)0,(1n m dx x x n m在1n m ->时收敛,在1n m -≤时发散.5、无穷积分1sin p xdx x +∞⎰在 时绝对收敛,在 时条件收敛. 解 无穷积分1sin pxdx x +∞⎰在1p >时绝对收敛,在1p ≤时条件收敛. 二、选择题1、f x dx ()-∞+∞⎰收敛是f x dx a()+∞⎰与f x dx a()-∞⎰都收敛的( B )A 、无关条件B 、充要条件C 、充分条件D 、必要条件解 如果f x dx ()-∞+∞⎰收敛,则f x dx a()+∞⎰与f x dx a()-∞⎰都收敛,反之也成立. 2、设()0f x >且⎰+∞)(dx x f 收敛,则e f x dx x -+∞⎰()0( C )A 、可能收敛B 、可能发散C 、一定收敛D 、一定发散解 当0x ≥时,()()xe f x f x -≤,而⎰+∞0)(dx x f 收敛,由比较判别法知e f x dx x -+∞⎰()0收敛.3、设)(x f 在[,)a +∞连续且c a <,则下列结论中错误的是( D )A 、如果 )(dx x f a ⎰+∞收敛,则 )(dx x f c ⎰+∞必收敛.B 、如果 )(dx x f a⎰+∞发散,则 )(dx x f c⎰+∞必发散.C 、 )(dx x f a ⎰+∞与 )(dx x f c⎰+∞同时收敛或同时发散.D 、 )(dx x f a⎰+∞收敛, )(dx x f c⎰+∞不一定收敛.解 ,A a ∀>由于)(x f 在[,)a +∞连续,故()x e f x -在[,],[,]a A a c 上连续从而在[,],[,]a A a c 上可积.又由于()()()Ac Ax x x aace f x dx e f x dx e f x dx ---=+⎰⎰⎰故lim ()()lim()x x x aacA A e f x dx e f x dx e f x dx ---→+∞→+∞=+⎰⎰⎰即 )(dx x f a⎰+∞与 )(dx x f c⎰+∞同时收敛或同时发散.4、设在[,)a +∞上恒有()()0f x g x ≥>,则( A ) A 、⎰+∞a dx x f )(收敛,⎰+∞a dx x g )(也收敛B 、()af x dx +∞⎰发散,()ag x dx +∞⎰也发散C 、⎰+∞adx x f )(和⎰+∞adx x g )(同敛散D 、无法判断解 由于0()()g x f x <≤,由比较判别法知当⎰+∞adx x f )(收敛时,⎰+∞adx x g )(也收敛(P270定理7).5、⎰∞+adx x f )(收敛是⎰∞+adx x f )(收敛的( B )A 、充分必要条件B 、充分条件C 、必要条件D 、既不是充分也不是必要条件解 由于无穷积分性质知,果⎰∞+adx x f )(收敛,则⎰∞+adx x f )(也收敛(P267推论2).但逆命题不成立.例如无穷积分sin a xdx x +∞⎰收敛,但无穷积分sin a x dx x+∞⎰发散(P275,例11).三、讨论下列无穷限积分的敛散性(1)+∞⎰(2) 0+∞⎰ (3) 31arctan 1x x dx x+∞+⎰ (4) 11x xdx e +∞-⎰ 解 (1) 由于434lim 1,1,13x x d λ→+∞==>=故无穷积分+∞⎰收敛.(2) 由于121lim 1,,1,12x x d λ→+∞==<= 故无穷积分+∞⎰.(3) 由于23arctan lim ,21,122x x x x d x ππλ→+∞⋅==>=+ 故无穷积分31arctan 1x xdx x +∞+⎰收敛. (4) 由于2lim 0,21,01x x xx d e λ→+∞⋅==>=- 故无穷积分11x x dx e +∞-⎰收敛,从而无穷积分11x xdx e +∞-⎰也收敛. 四、讨论下列广义积分的绝对收敛性和条件收敛性201dx x +0100x + 解 (1) 由于()22sgn sin 111x x x≤++,而2011dx x +∞+⎰收敛,故()20sgn sin 1x dx x +∞+⎰绝对收敛.(2) 令(),()cos 100f x g x x x ==+,由于()f x '= 故当100x >时,()0f x '<.于是()f x 在[100,)+∞上单调递减且lim ()lim0x x f x →+∞→+∞==又由于0()()cos sin A A F A g x dx xdx A ===⎰⎰,()1F A ≤,故由狄里克雷判别法知无穷积分⎰收敛.另一方面)1cos 212(100)2x x +=≥==+⎣⎦可证0⎰发散,而0⎰收敛,故0dx ⎰发散,原积分条件收敛. 五、证明题若无穷积分()af x dx +∞⎰绝对收敛,函数()x ϕ在[,)a +∞上有界,则无穷积分()()af x x dx ϕ+∞⎰收敛.证明 由于函数()x ϕ在[,)a +∞上有界,故0,[,)M x a ∃>∀∈+∞有()f x M ≤ 从而()()()f x x M f x ϕ≤ 由于无穷积分()af x dx +∞⎰绝对收敛,故()af x dx +∞⎰收敛.由比较判别法知,无穷积分()()af x x dx ϕ+∞⎰收敛.1、1=⎰.解 由于1lim x →=∞,故1x =为瑕点,由瑕积分定义知()11120000001lim lim 1lim 2x εεεεεε---→+→+→==--=-⎰⎰⎰0lim 11ε→+⎤=-=⎦2、10ln xdx =⎰= .解 由于0lim ln x x →+=-∞,故0x =为瑕点,由瑕积分定义知1111110000ln lim ln lim ln ln lim ln xdx xdx x x xd x x x dx εεεεεεεε→+→+→+⎡⎤⎡⎤==-=-⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰ []0lim ln (1)1εεεε→+=---=-3、 是积分0sin xdx xπ⎰的瑕点. 解0lim 1,lim sin sin x x x x x xπ→+→-==∞ x π∴=是积分0sin xdx xπ⎰的瑕点. 4、瑕积分10(0)q dxq x >⎰在 时收敛,在 时发散.解 瑕积分dxx q 01⎰在01q <<时收敛,在1q ≥时发散(P280例3).5、瑕积分201cos (0)m xdx m xπ->⎰在 时收敛,在 时发散. 解0x =是积分201cos (0)mxdx m x π->⎰的瑕点且 22001cos 1cos 1lim lim 2m m x x x x x x x -→+→+--⋅== ∴瑕积分201cos (0)mxdx m x π->⎰在03m <<时收敛,在3m ≥时发散.二、选择题1、瑕积分⎰-112xdx( D ) A 、收敛且其值为-2 B 、收敛且其值为2C 、收敛且其值为0D 、发散解 11122211001111lim lim 21dx dx dx x x x x x εεεεεεε----→+→+-⎡⎤⎡⎤⎛⎫=+=--=-=∞⎢⎥ ⎪⎢⎥⎣⎦⎝⎭⎢⎥⎣⎦⎰⎰⎰ 2、下列积分中不是瑕积分的是( B )A 、⎰e xx dx 1lnB 、⎰--12xdxC 、⎰-11x edx D 、⎰2cos πxdx解 ⎰e x x 1ln ,⎰-101x e ,⎰20cos x是瑕积分. 3、下列瑕积分中,发散的是(C )A 、0⎰B 、11211--⎰x dxC 、2211ln dx x x⎰D 、1⎰解 对于积分10sin dxx⎰,0x =为瑕点,由于 0lim 1sin xx →= 故瑕积分10sin dx x⎰收敛.对于积分11211--⎰xdx ,1x =±为瑕点且12111211lim(1)lim lim (1)limx x x x x x →-→→-+→--==+==故瑕积分010,-⎰⎰均收敛,故原积分收敛;对于积分2211ln dx x x⎰,1x =为瑕点且22222111111(1)2(1)2lim(1)lim lim lim lim 12ln 2ln ln ln 2ln ln 1x x x x x x x x x x x x x x x x x x x→+→-→-→-→----⋅=====+++故该积分发散;对于积分10⎰,0x =为瑕点且 121lim(0)1x x →--= 故该积分收敛.4、若瑕积分⎰badx x f )(收敛(a 为瑕点),则下列结论中成立的是( B )A 、()baf x dx ⎰收敛B 、⎰badx x f )(收敛C 、⎰badx x f )(2收敛D 、⎰badx x f )(2发散解 若瑕积分⎰badx x f )(收敛,则()b af x dx ⎰不一定收敛,例如1011sin dx x x⎰收敛,但111sin dx x x⎰发散(P287例10). 若瑕积分⎰b adx x f )(收敛,则⎰badx x f )(2可能收敛也可能发散,例如取()f x =,则瑕积分⎰b a dx x f )(收敛,⎰b a dxx f )(2发散;取()f x =,则瑕积分⎰b a dxx f )(收敛,⎰a dx x f )(2也收敛.5、当 ( A )时,广义积分10(0)1px dx p x <+⎰收敛. A 、 10p -<< B 、1-≤p C 、0<pD 、1-<p解 当0p <时,⎰+101dx x x p为瑕积分,0x =为瑕点且 001lim lim 111p px x x x x x -→+→+⋅==++ 故当1p -<时,即当10p -<<时,广义积分⎰+101dx x xp 收敛. 三、讨论下列假积分的敛散性(1) 302sin x dx x π⎰ (2) 1⎰ (3) 10ln 1x dx x -⎰ (4)130arctan 1xdx x -⎰解 (1)0x =为瑕点且123002sin sin lim (0)lim 1x x x xx xx →+→+-⋅==故该积分收敛.(2)0,1x =为瑕点,10.5100=+⎰⎰⎰,由于1200111lim (0)lim 0ln lim(1lim 1x x x x x x x →+→+→-→-==-==-于是积分0.50⎰收敛,而1⎰发散,故原积分发散.(3)由于01ln ln lim,lim 111x x x xx x→+→-=∞=---,故0x =为瑕点.又由于 1200ln lim(0)lim 01x x x x x →+→+-⋅==- 故积分10ln 1xdx x-⎰收敛. (4)1x =为瑕点.由于3211arctan arctan lim(1)lim 1112x x x x x x x x π→-→--⋅==-++ 故积分130arctan 1xdx x -⎰发散.1、⎰→100sin lim dy x xyx = . 解 11100000sin sin 1lim lim 2x x xy xy dy dy ydy x x →→===⎰⎰⎰ 2、=-⎰dx x xx a b 10ln .)0(>>a b 解 11100011lnln 11b a b b b y y a a a x x b dx dx x dy dy x dx dy x y a -+====++⎰⎰⎰⎰⎰⎰ 3、Γ函数与B 函数的关系为 .解 ()()(,)()p q B p q p q ΓΓ=Γ+4、12⎛⎫Γ ⎪⎝⎭= ,()1n Γ+=.解 12⎛⎫Γ= ⎪⎝⎭()1!n n Γ+=5、13,44B ⎛⎫= ⎪⎝⎭.解 由于()131313134444,134414444B ⎛⎫⎛⎫⎛⎫⎛⎫ΓΓΓΓ ⎪ ⎪ ⎪ ⎪⎛⎫⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭⎝⎭===ΓΓ ⎪ ⎪ ⎪Γ⎛⎫⎝⎭⎝⎭⎝⎭Γ+ ⎪⎝⎭,又由余元公式有1344sin 4ππ⎛⎫⎛⎫ΓΓ== ⎪⎪⎝⎭⎝⎭故13,44B ⎛⎫= ⎪⎝⎭.二、选择题1、21ln()d xy dy dx ⎰=( )A 、0B 、x1C 、xD 、不存在解 []22221111111ln()ln()d d xy dy xy dy dy dy dx dx x x x ====⎰⎰⎰⎰ 2、⎰+∞-→022lim dy e y x x =( B )A 、2B 、41C 、21 D 、 4解 2[1,3],x yyx ee --∀∈≤,而无穷积分0y e dy +∞-⎰收敛,故含参变量无穷积分20x y edy +∞-⎰在{}(,)13,0R x y x y =≤≤≤<+∞上一致收敛.又由二元初等函数的连续性知2x y e -在R 上连续,故2240221lim lim 4x yx yy x x edy edy e dy +∞+∞+∞---→→===⎰⎰⎰3、2x edx +∞-=⎰( )A 、πB 、πC 、2πD 、2π 解 2x e dx +∞-=⎰(课本P316例13)4、22x x e dx +∞--∞=⎰( C )A 、πB 、πC 、2πD 、2π 解 由于被积分函数为偶函数,故222202x x x e dx x e dx +∞+∞---∞=⎰⎰,对积分220x x e dx +∞-⎰,令x=则2112220000111311222242x tt tx e dx te dt t e dt t e dt +∞+∞+∞+∞----⎛⎫⎛⎫=⋅===Γ=Γ= ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰22x x e dx +∞--∞=⎰5、1122(1)n x dx --⎰=( C )A 、12n +⎛⎫Γ ⎪⎝⎭B 、11,22n B +⎛⎫⎪⎝⎭C 、111,222n B +⎛⎫ ⎪⎝⎭D 、112,22n B +⎛⎫⎪⎝⎭解令x =则1111111222220001111(1)(1)(1),2222n n n n x dx t t t dt B ----+⎛⎫-=-=-⋅= ⎪⎝⎭⎰⎰⎰三、证明下列含参量无穷积分在所指定的区间上一致收敛.(1) 0sin ,(0)tx e xdx a t a +∞-≤<+∞>⎰ (2) 230cos ,110t tx dx t x t +∞≤≤+⎰ 证明 (1) 由于sin ,tx ax e x e a t --≤≤<+∞而无穷积分0ax e dx +∞-⎰收敛,故含参变量积分0sin tx e xdx +∞-⎰在[,)a +∞上一致收敛.(2) 由于232cos 10,1101t tx t x t x ≤≤≤++而无穷积分2011dx x +∞+⎰收敛,故含参变量积分230cos t tx dx x t +∞+⎰在[1,10]上一致收敛. 四、用Γ函数和B 函数求下列积分.(1)⎰ (2)642sin cos x xdx π⎰解 (1)()()111220331113322422(1),22338x x dx B π⎛⎫⎛⎫⎛⎫⎛⎫ΓΓΓΓ ⎪ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭⎝⎭=-==== ⎪ΓΓ⎝⎭⎰⎰(2) ()64207553113111753222222222sin cos ,22265!512x xdx B ππ⎛⎫⎛⎫⎛⎫⎛⎫ΓΓ⋅⋅⋅Γ⋅⋅⋅Γ ⎪ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭⎝⎭====⎪Γ⎝⎭⎰1、2sin y xdy dx x ππππ-=⎰⎰.解 2000sin sin sin cos 2x y x x dy dx dx dy xdx x x xπππππππππ+-===-=⎰⎰⎰⎰⎰. 2、Ddxdy =⎰⎰ , 其中D 为椭圆19422=+y x 所围区域. 解Ddxdy ⎰⎰表示区域D 的面积,故6Ddxdy π=⎰⎰.3、()22Df x y dxdy '+=⎰⎰ , 其中D 为圆222x y R +=所围区域.解 作极坐标变换,则()()()()22222220012RR Df x y dxdy d f r rdr d f r d r ππθθ'''+==⎰⎰⎰⎰⎰⎰ ()()()()2221020f R f d f R f πθπ⎡⎤=-⎣⎦⎡⎤=-⎣⎦⎰4、将二重积分化为累次积分:221x y fdxdy +≤⎰⎰=.解 作极坐标变换,则()22211x y fdxdy d f r rdr πθ+≤=⎰⎰⎰⎰5、改变累次积分的顺序: ⎰⎰⎰⎰+2242220),(),(y x y dx y x f dy dx y x f dy = .解2422202122(,)(,)(,)y x y y xdy f x y dx dy f x y dx dx f x y dy +=⎰⎰⎰⎰⎰⎰二、选择题1、函数(,)f x y 在有界闭域D 上连续是二重积分(,)Df x y dxdy ⎰⎰存在的( B )A 、充要条件B 、充分条件C 、必要条件D 、无关条件解 连续一定可积,但可积不一定连续.2、设(,)f x y 是有界闭域222:a y x D ≤+上的连续函数,则201lim (,)a Df x y dxdy a π→⎰⎰=( B )A 、不存在B 、(0,0)fC 、(1,1)fD 、(1,0)f解 由积分中值定理知,(,)D ξη∃∈,使2(,)(,)(,)D Df x y dxdy f S a f ξηπξη=⋅=⎰⎰故 22200011lim(,)lim(,)lim (,)(0,0)a a a Df x y dxdy a f f f a a πξηξηππ→→→=⋅==⎰⎰.3、若(,)f x y 在区域{}41),(22≤+≤=y x y x D 上恒等于1,则二重积分f x y dxdy D(,)⎰⎰=( D )A 、0B 、πC 、2πD 、3π解22(,)213DDDf x y dxdy dxdy Sπππ===⋅-⋅=⎰⎰⎰⎰.4、设⎰⎰+=D dxdy y x I 22sin ,{}22224),(ππ≤+≤=y x y x D },则I =( B )A 、26πB 、26π-C 、0D 、6π-解 作极坐标变换,则2220sin 6DI d r rdr πππθπ===-⎰⎰⎰⎰5、设D 由曲线1,2,,4xy xy y x y x ====所围成,作坐标变换,yu xy v x==,则二重积分22Dx y dxdy ⎰⎰可化为( B )A 、24211du u dv⎰⎰B 、2241112u du dv v ⎰⎰ C 、42211du u dv ⎰⎰ D 、2421112u du dv v⎰⎰ 解 由于 2(,)1111(,)2(,)2(,)1x y u v y y xu v v x y xy x x∂====∂∂∂- 且坐标变换后积分区域为{}(,)12,14D u v u v '=≤≤≤≤,于是224221112Du x y dxdy du dv v =⎰⎰⎰⎰. 三、求解下列各题1、求2y De dxdy -⎰⎰,其中D 由直线1,y y x ==及x 轴围成.解 选择先对y 后对x 的积分次序,由于 {}(,)01,0D x y y x y =≤≤≤≤ 故()2222111110000011122yy y y y x dx e dy dy e dx ye dy e e e ----===-=-⎰⎰⎰⎰⎰2、求由曲面22222,2z x y z x y =+=+所围立体V 的体积. 解 V 在xy 平面上的投影区域为{}22(,)4D x y x y =+≤于是空间立体V 的体积为()2212DDV x y dxdy =-+⎰⎰作极坐标变换cos sin x r y r θθ=⎧⎨=⎩,则222223000011644233V d r dr d r dr ππππθθπ=-=-=⎰⎰⎰⎰3、求由曲线,,,(0,0)x y a x y b y x y x a b 所围的平面图形面积.解 作坐标变换u x yyv x =+⎧⎪⎨=⎪⎩,则。

数学分析三习题答案

数学分析三习题答案

数学分析三习题答案【篇一:《数学分析》第三版全册课后答案 (1)】class=txt>------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------第页(共)------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------【篇二:数学分析三试卷及答案】lass=txt>一. 计算题(共8题,每题9分,共72分)。

111.求函数f(x,y)??在点(0,0)处的二次极限与二重极限.yx11解:f(x,y),因此二重极限为0.……(4分)yx1111因为与均不存在,x?0yxy?0yx故二次极限均不存在。

……(9分)zxf(xy),yy(x),2. 设? 是由方程组?所确定的隐函数,其中f和f分别f(x,y,z)?0z?z(x)??dz数,求.dx解:对两方程分别关于x求偏导:dy?dzf(xy)xf(xy)(1),??dxdx?……(4分)dydz?f?f?fz?0。

xydxdxdzfy?f(x?y)?xf?(x?y)(fy?fx)?解此方程组并整理得.……(9分) dxfy?xf?(x?y)fz3. 取?,?为新自变量及w?w(?,v)为新函数,变换方程2z2zzz。

2?x?x?y?xx?yx?y设??,??,w?zey (假设出现的导数皆连续).22解:z看成是x,y的复合函数如下:wx?yx?y。

数学分析课本(华师大三版)-习题及答案10

数学分析课本(华师大三版)-习题及答案10

习 题 十1. 求下列曲线所围图形的面积. (1) y x x x y ====114,,,0=; (2) 轴;y x y y ==38,, (3) ;y e y e x xx==−,,1 (4) y x y x x ===lg .,,,001=10; (5) x y y x ==2380,,=1;(6) y x y y x y =+===14,,,;3(7) ; y x x y 224=−=, (8) .x y y x =−=210(), 2. 求抛物线以及在点y x x =−+−24(,)03−和处的切线所围图形的面积.(,)30 3. 设曲线与直线y x x =−2y ax =,求参数,使该曲线与直线围图形面积为a 92. 4. 曲线与相交于原点和点f x x ()=2g x cx c ()=>30()(,)112c c,求的值,使位于区间c [,01c上,两曲线所围图形的面积等于23. 5. 求星形线所围图形的面积(a ). x a ty a tt ==⎧⎨⎪⎩⎪≤≤cos sin 3302 ()π>0 6. 求下列极坐标方程所表曲线所围成的图形的面积.(1) 三叶玫瑰线r =83sin θ; (2) 心形线r =−31(sin )θ;(3) r =+1sin θ与r =1; (4) r =2与r =4cos θ.7. 证明:球的半径为R 、高为的球冠的体积公式为:h V h R =−1332π()h8. 计算圆柱面与所围立体(部分)的体积.x y a 22+=22x z z ==,0z ≥0 9. 计算两个柱面与所围立体的体积.x y a 22+=222a z x =+ 10. 计算四棱台的体积.四棱台的上底面是边长为与b 的矩形,下底面是边长为与a A B 的矩形,高为.h 11. 求下列曲线围成的图形绕x 轴旋转所得旋转体的体积.(1) ; y x x =≤sin () 0π≤;(2) y x x y ===220,,(3) y x y x ==2,;(4) ; y x x e =≤ln () 1≤3(5) . y x y x ==22,12. 求y x =,x 轴和x =4所围图形分别绕x 、y 轴旋转所得旋转体的体积.13. 求曲线与曲线所围图形的面积.并将此图形绕y x x =−32y x =2y 轴旋转,求所得旋转体的体积. 14. 求下列曲线的弧长.(1) ;y x x 2301=≤,()≤ (2) y x x =≤≤ln (),38;(3) x y y y =−≤≤141212ln (),e ; (4) r a a =>≤≤θθ ,()003;(5) r a =≤sin ()3303≤θθπ,; (6) .x a t t t y a t t t t =+=−≤≤(cos sin )(sin cos )(),,02π 15. 计算曲线:的质量中心(线密度x y a y 2220+=≥ ()ρ为常数). 16. 计算星形线:在第一象限的质量中心(线密度x a y a ==cos sin3θ,3θρ为常数). 17. 计算下列曲线所围图形的质量中心. (1) ax ;y ay x a ==>220, () (2) x a y bx a y b 2222100+=≤≤≤≤,,();(3) 轴,()y a x x =sin ,01≤≤x ;18. 若1公斤的力能使弹簧伸长1厘米,问把弹簧伸长10厘米要作多少功? 19. 物体按规律x ct =3(c )做直线运动,设介质阻力与速度的平方成正比,求物体从.>0x =0到x a =时,阻力所作的功.20. 一圆台形的水池,深15厘米,上下口半径分别为20厘米和10厘米,如果将盛满的水全部抽尽,需要作多少功?21. 有一横截面积为s =20平方米,深为5米的圆柱形水池,现把池中盛满的水全部抽到高为10米的水塔顶上去,需要作多少功?22. 把半径为R 的空心球,由与水面相切的位置压入水中,至球刚好完全淹没在水中,求克服浮力所作的功.23. 水坝中有一直立的矩形闸门,宽20米,高16米,闸门的上边平行水面,试求下述各情况闸门所作的功.(1) 闸门的上边与水面平齐时; (2) 水面在闸门的顶上8米时.24. 一块高为,底为的等腰三角形薄板,垂直地沉没在水中挡住水,顶在下,底与水面相齐.试求薄板所受压力.如果把它的顶与水面相齐,而底与水面平行,则压力又如何?a b 25. 闸门的形状为等腰梯形铅垂地挡住水,闸门的二水平边的长分别为200米和50米,高为10米,且较长的上底与水面相齐,试计算水对闸门的压力. 26. 一正方形薄板垂直地沉没在水中,正方形的一顶点位于水面,而一对角线平行于水面,设正方形的边长为a ,试求薄板每侧所受的压力.27. 求由x a y b+=1(a )与坐标轴所围图形的面积. b >>0,0) 28. 求由曲线所围图形的面积.y x x 221=−( 29. 求曲线r =6sin θ与r =12sin θ所围图形的面积.30. 直径为6米的球浸入水中,其球心在水平面下10米,求球面上所受的压力.。

数值分析第三版课本习题及答案

数值分析第三版课本习题及答案

第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式11783100n n Y Y -=-( n=1,2,…)计算到100Y .若取783≈27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字(783≈27.982).8. 当N 充分大时,怎样求211Ndx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2?10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小. 11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若02 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12. 计算6(21)f =-,取2 1.4≈,利用下列等式计算,哪一个得到的结果最好?36311,(322),,9970 2.(21)(322)--++13. 2()ln(1)f x x x =--,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式22ln(1)ln(1)x x x x --=-++计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b cs a b c ∆∆∆∆≤++第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令200011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xx x ----==证明()n V x 是n 次多项式,它的根是01,,n x x - ,且101101()(,,,)()()n n n n V x V x x x x x x x ---=-- .2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3. 给出f (x )=ln x 的数值表用线性插值及二次插值计算ln 0.54 的近似值.x 0.4 0.5 0.6 0.7 0.8 ln x -0.916291-0.693147-0.510826-0.357765-0.2231444. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i) 0()(0,1,,);nk kj j j x l x x k n =≡=∑ii)()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()xf x e =的等距节点函数表,若用二次插值求xe 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?9. 若2n n y =,求4n y ∆及4n y δ.10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)kf x k m ∆≤≤是m k -次多项式,并且()0(m lf x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆.12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n nn n f x a a x a x a x --=++++ 有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i)若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x = ;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+ .16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦ 及0182,2,,2f ⎡⎤⎣⎦ . 17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限.19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()n x ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差.23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差. 24. 给定数据表如下:j x 0.25 0.30 0.39 0.45 0.53 j y0.50000.54770.62450.67080.7280试求三次样条插值()S x 并满足条件i) (0.25) 1.0000,(0.53)0.6868;S S '='= ii)(0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明 i)[][][][]222()()()()2()()()bbbbaaaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n == ,式中i x 为插值节点,且01n a x x x b =<<<= ,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =.3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式.4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式.5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一? 9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式.10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nTx 是在[]0,1上带权21x x ρ=-的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式.13. 设()x f x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若nf L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差. 15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n nF x H ∈也是奇(偶)函数.17. 求a 、b 使[]220sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义 ()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.[]2sin (1)arccos ()1n n x u x x +=-是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin2f x x =在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.26. 用最小二乘法求一个形如2y a bx =+的经验公式,使它与下列数据拟合,并求均方误差.i x 19 25 31 38 44 i y19.032.349.073.397.827. 观测物体的直线运动,得出以下数据:时间t (秒) 0 0.9 1.9 3.0 3.9 5.0 距离s (米) 010305080110求运动方程.28. 在某化学反应里,根据实验所得分解物的浓度与时间关系如下:时间 0 5 10 15 20 25 30 35 40 45 50 55 浓度0 1.272.162.863.443.874.154.374.514.584.624.64用最小二乘拟合求()y f t =.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: (1)101()()(0)()hh f x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)91,4xdx n =⎰; (4)260sin ,6dx n π-ϕ=⎰.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. 用辛普森公式求积分1x e dx-⎰并计算误差.5. 推导下列三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2baf f x dx b a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰.6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8. 用龙贝格方法计算积分12x e dxπ-⎰,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是22201()sin cS a d a π=-θθ⎰,这里a 是椭圆的半长轴,c是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长.10. 证明等式3524sin3!5!n nn n ππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计误差.()f x 的值由下表给出:x1.0 1.1 1.2 1.3 1.4 ()f x0.25000.22680.20660.18900.1736第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。

数学分析课本(华师大三版)-习题及答案第十六章

数学分析课本(华师大三版)-习题及答案第十六章

第十六章 多元函数的极限与连续一、证明题1. 证明: 当且仅当存在各点互不相同的点列{p n }⊂E,p ≠p 0. ∞→n lim P n =P 0时P 0是E 的聚点. 2. 证明:闭域必是闭集,举例证明反之不真.3. 证明:点列{p n (x n ,y n )}收敛于p 0(x 0,y 0)的充要条件是∞→n lim x n =x 0和∞→n lim y n =y 0. 4. 证明: 开集与闭集具有对偶性——若E 为开集,则E c 为闭集;若E 为闭集,则E c 为开集.5. 证明:(1) 若F 1,F 2为闭集,则F 1∪f 2与F 1∩F 2都为闭集;(2) 若E 1,E 2为开集,则E 1∪E 2与E 1∩E 2都为开集;(3) 若F 为闭集,E 为开集,则F\F 为闭集,E\F 为开集.6. 试把闭区域套定理推广为闭集套定理,并证明之.7. 证明定理16.4(有限覆盖定理):8. 证明: 若1°y)f(x,lim (0,0)y)(x,→存在且等于A;2°当y 在b 的某邻域内时,存在有(y)y)f(x,lim a x ϕ=→,则A y)f(x,lim lim a x b y =→→.9. 试应用ε-δ定义证明: 0y x y x lim 222(0,0)y)(x,=+→. 10. 叙述并证明: 二元函数极限存在的唯一性定理,局部有界性定理与局部保号性定理.11. 叙述并证明二元连续函数的局部保号性.12.设f(x,y)=()()⎪⎩⎪⎨⎧=+>≠++0y x 0,0p 0y x ,y x x 2222p 22试讨论它在(0,0)点的连续性.13. 设f(x,y)定义于闭矩形域S=[a,b]×[c,d],若f 对y 在[c,d]上处处连续.对x 在[a,b]上(且关于y)为一致连续,证明f 在S 上处处连续.14. 证明:若D ⊂R 2是有界闭域,f 为D 上连续函数,则f(D)不仅有界(定理16.8)而且是闭区间.15. 若一元函数ϕ(x)在[a,b]上连续,令f(x,y)=ϕ(x),(x,y)∈D=[a,b]×(-∞,+∞),试讨论f 在D 上是否连续?是否一致连续?16. 设(x,y)=x y11-,(x,y)∈D=[)[)1,01,0⨯,证明f 在D 上不一致连续.17. 设f 在R 2上分别对每一自变量x 和y 是连续的,并且每当固定x 时f 对y 是单调的,证明f 是R 2上的二元连续函数.二、计算题1.判断下列平面点集,哪些是开集、闭集、有界集或区域?并分别指出它们的聚点与界点。

数学分析课本(华师大三版)-习题及答案第十一章

数学分析课本(华师大三版)-习题及答案第十一章

第十一章 反常积分一、填空题 1.⎰+∞-++131xx ee dx= 2.⎰-+-31)3()1(x x dx =3.⎰+∞2)(ln kx x dx其中k 为常数,当1≤k 时,这积分 ,当1<k 时,这积分当这积分收敛时,其值为4.=++⎰+∞284x x dx5.=-+⎰∞+22)7(x x dx___________6.=+⎰∞---02)1(dx e xe x x____________二、选择填空 1. ⎰--=1121xxdx I 则( )A 可以令t x sin =求得⎰-=22sin ππtdt I 之值B 可从凑微分求得⎰----=11221)1(21xx d I 之值C 因被积函数在]1 ,1[-内不连续,不能直接换元D 因被积函数在]1 ,1[-内不连续,I 之值不存在 2.)(x f 在] ,[∞+a 连续c a <,则( ) A)(dx x f a⎰+∞收敛, )(dx x f c⎰+∞也必收敛,但 )(dx x f a⎰+∞发散, )(dx x f c⎰+∞不一定发散。

B)(dx x f a⎰+∞发散, )(dx x f c⎰+∞也必发散,但 )(dx x f a⎰+∞收敛, )(dx x f c⎰+∞不一定收敛。

C )(dx x f a ⎰+∞与 )(dx x f c⎰+∞同时收敛或同时发散。

D)(dx x f a⎰+∞收敛, )(dx x f c⎰+∞必发散。

3.若xx x f 104)5(2-=-,则积分=+⎰40)12(dx x f ( ) A.0 B.4πC.是发散的广义积分D.是收敛的广义积分 4.=+⎰-222)1(x dx( )A.34-B.34C.32- D. 不存在 5.下列广义积分发散的是( )A.⎰-11sin x dx B.⎰--1121x dxC.⎰+∞-02dx e xD.⎰∞+22ln x x dx 三.计算题1.计算下列无究限积分:(1)⎰∞+12x dx ; (2)()⎰∞++12x 1x dx; (3)⎰∞+∞-++1x 2x 2dx2; (4)⎰∞+0x e dx ; (5)⎰+∞-0x dx xe 22.讨论下列无穷限积分的敛散性:(1)⎰∞++0341x dx ;(2)⎰∞+-axdx e 1x; (3)⎰∞++0x1dx ;(4)⎰∞++13dx x 1xarctgx;(5)()⎰∞+->+01a 1a dx x1x ;(6)()⎰∞+≥+0nm0n ,m dx x 1x ; (7)()⎰∞++1ndx xx 1ln ; (8)()⎰∞+3x ln ln x dx3.讨论下列非正常积分的绝对收敛与条件收敛:(1)⎰+∞02dx x sin ;(2)()dx x 1x sin sgn 02⎰∞++; (3)⎰∞++0dx x 100xcos x ;(4)()⎰∞+3xdx sin xln x ln ln 4.计算下列瑕积分的值:(1)⎰1xdx ln ; (2)⎰-1dx x1x; (3)()()()⎰≠--bab a x b a x dx5.判别下列非正常积分的敛散性:(1)()⎰-221x dx;(2)⎰123dx xx sin ;(3)⎰-104dx x1x ;(4)⎰-10dx x 1xln ; (5)⎰-103dx x 1arctgx; (6)⎰∞-0x dx x ln e ;(7)⎰1xln x dx ;(8)⎰π-20mdx xxcos 1 6.仿照无究限积分的阿贝耳判别法和狄利克雷判别法,写出瑕积分的相应判别法,并用来讨论下列非正常积分的绝对收或条件收敛:(1)⎰10dx xx 1cos ;(2)dx x x2sin e 02x sin ⎰∞+;7.计算下列瑕积分的值(其中n 为自然数): (1)()⎰10ndx x ln ; (2)dx x1x 1n ⎰-8.求()⎰-2211dx x9.求dx ex x x-+∞∞-+⎰)(10.求⎰+∞-11x x dx11.求dx xx ⎰-2322cos 1sin ππ12.求⎰+∞∞--++dx e x x x 2)1(213.求dx x⎰-312lnπ14.判断下列广义积分的敛散性(1)dx x⎰20sin 1π(2)⎰-+-1122)1)(1(1dx x x15.判别广义积分dx x x xx ⎰∞+-03421ln 的敛散性16.计算积分⎰--23212xx dx四、证明题 1.假定⎰∞)(dx xx f 对a 取任何正值时收敛,且)(x f 为连续函数,L f =)0(,证明αββαln )()(⋅=-⎰∞L dx x x f x f a2.证明无穷限积分的性质3:若f 在任何有限区间[a ,A]上可积,且⎰+∞af 收敛,则⎰+∞af 也收敛,且⎰⎰+∞+∞≤aaf f3.证明定理10.22:设定义在[]+∞,a 上的非负函数f 与g 在任何有限区间[a ,A]上都可积。

数学分析课本(华师大三版)-习题及答案第二十一章

数学分析课本(华师大三版)-习题及答案第二十一章

第十一章 重积分§1 二重积分的概念1.把重积分⎰⎰D xydxdy 作为积分和的极限,计算这个积分值,其中D=[][]1,01,0⨯,并用直线网x=n i ,y=nj (i,j=1,2,…,n-1)分割这个正方形为许多小正方形,每一小正方形取其右上顶点为其界点.2.证明:若函数f 在矩形式域上D 可积,则f 在D 上有界.3.证明定理(20.3):若f 在矩形区域D 上连续,则f 在D 上可积.4.设D 为矩形区域,试证明二重积分性质2、4和7.性质2 若f 、g 都在D 上可积,则f+g 在D 上也可积,且()⎰+D g f =⎰⎰+D D g f . 性质4 若f 、g 在D 上可积,且g f ≤,则 ⎰⎰≤D Dg f , 性质7(中值定理) 若f 为闭域D 上连续函数,则存在()D ,∈ηξ,使得()D ,f f D∆ηξ=⎰. 5.设D 0、D 1和D 2均为矩形区域,且210D D D =,∅=11D int D int , 试证二重积分性质3.性质3(区域可加性) 若210D D D =且11D int D int ∅=,则f 在D 0上可积的充要条件是f 在D 1、D 2上都可积,且⎰0D f =⎰⎰+21D D f f , 6.设f 在可求面积的区域D 上连续,证明:(1)若在D 上()0y ,x f ≥,()0y ,x f ≠则0f D>⎰; (2)若在D 内任一子区域D D ⊂'上都有⎰'=D 0f ,则在D 上()0y ,x f ≡。

.7.证明:若f 在可求面积的有界闭域D 上连续,,g 在D 上可积且不变号,则存在一点()D ,∈ηξ,使得()()⎰⎰D dxdy y ,x g y ,x f =()ηξ,f ()⎰⎰Ddxdy y ,x g .8.应用中值定理估计积分⎰⎰≤-++10y x 22ycos x cos 100dxdy 的值§2 二重积分的计算1.计算下列二重积分:(1)()⎰⎰-Ddxdy x 2y ,其中D=[][]2,15,3⨯;(2)⎰⎰D2dxdy xy ,其中(ⅰ)D=[][]3,02,0⨯,(ⅱ)D=[]3,0 []2,0⨯; (3)()⎰⎰+Ddxdy y x cos ,其中D=[]π⨯⎥⎦⎤⎢⎣⎡π,02,0; (4)⎰⎰+D dx dy x y 1x ,其中D=[][]1,01,0⨯. 2. 设f(x,y)=()()y f x f 21⋅为定义在D=[]⨯11b ,a []22b ,a 上的函数,若1f 在[]11b ,a 上可积,2f 在[]22b ,a 上可积,则f 在D 上可积,且⎰D f =⎰⎰⋅1122b a b a 21f f . 3.设f 在区域D 上连续,试将二重积分()⎰⎰Ddxdy y ,x f 化为不同顺序的累次积分:(1)D 由不等式x y ≤,a y ≤,b x ≤()b a 0≤≤所确的区域:(2)D 由不等式222a y x ≤+与a y x ≤+(a>0)所确定的区域;(3)D=(){}1,≤+y x y x .4.在下列积分中改变累次积分的顺序:(1) ()⎰⎰20x 2x dy y ,x f dx ; (2) ()⎰⎰----11x 1x 122dy y ,x f dx ; (3)()⎰⎰10x 02dy y ,x f dy +()()⎰⎰-31x 3210dy y ,x f dx .5.计算下列二重积分:(1)⎰⎰D2dxdy xy ,其中D 由抛物线y=2px 与直线x=2p (p>0)所围的区域; (2)()⎰⎰+D 22dxdy y x,其中D=(){1x 0y ,x ≤≤, y x ≤ }x 2≤; (3)⎰⎰-D x a 2dx dy (a>0),其中D 为图(20—7)中的阴影部分; (4)⎰⎰Ddxdy x ,其中D=(){}x y x y ,x 22≤+; (5)⎰⎰D dxdy xy ,其中为圆域222a y x ≤+.6.写出积分()⎰⎰ddxdy y ,x f 在极坐标变换后不同顺序的累次积分:(1)D 由不等式1y x 22≤+,x y ≤,0y ≥所确定的区域;(2)D 由不等式2222b y x a ≤+≤所确定的区域;(3)D=(){}0x ,y y x y ,x 22≥≤+.7.用极坐标计算二重积分: (1) ⎰⎰+D22dxdy y x sin ,其中D=(){222y x y ,x +≤π }24π≤; (2)()⎰⎰+Ddxdy y x ,其中D=(){}y x y x y ,x 22+≤+; (3)()⎰⎰+'D22dxdy y x f ,其中D 为圆域222R y x ≤+.8.在下列符号分中引入新变量后,试将它化为累次积分:(1) ()⎰⎰--20x 2x 1dy y ,x f dx ,其中u=x+y,v=x-y;(2) ()dxdy y ,x f D⎰⎰,其中D=(){a y x y ,x ≤+,0x ≥, }0y ≥,若x=v cos U 4, v sin U y 4=.(3)()⎰⎰dxdy y ,x f ,其中D=(){a y x y ,x ≤+,0x ≥, }0y ≥,若x+y=u,y=uv.9.求由下列曲面所围立体V 的体积:(1) v 由坐标平面及x=2,y=3,x+y+Z=4所围的角柱体;(2) v 由z=22y x +和z=x+y 围的立体; (3) v 由曲面9y 4x Z 222+=和2Z=9y 4x 22+所围的立体.11.试作适当变换,计算下列积分:(1)()()⎰⎰-+Ddxdy y x sin y x ,D=(){π≤+≤y x 0y .x }π≤-≤y x 0;(2)⎰⎰+D y x y dxdy e,D=(){1y x y ,x ≤+,0x ≥,}0y ≥.12.设f:[a,b]→R 为连续函数,应用二重积分性质证明:()≤⎥⎦⎤⎢⎣⎡⎰2b a dx x f ()()⎰-b a 2dx x f a b , 其中等号仅在f 为常量函数时成立。

数学分析课本(华师大三版)-习题及答案第八章

数学分析课本(华师大三版)-习题及答案第八章

数学分析课本(华师大三版)-习题及答案第八章第八章 不定积分一. 填空题1.若x e f x+='1)(,则=)(x f ___________2.设)(x f 的一个原函数为xxe ,则='⎰dx x f x )(-_____________3.若xe -是)(xf 的一个原函数,则⎰=dx x xf )(________________4.若[]1)(3='x f ,则=)(x f ____________ 5.⎰=dx x x ),max(2___________________6.若)(x f 有原函数xx ln ,则⎰=''dx x f x )(_______________ 7.⎰=dx xx 2sin )ln(sin ________________8.若⎰⎰+++=+xdxB xx A x dx cos 21cos 21sin )cos 21(2,则=A __________,=B __________9.设C x dx x xf +=⎰arcsin )(,则⎰=)(x f dx_________10.⎰=-)4(x x dx_________________ 11.⎰=-dx xx 21ln _________________12.[]=-⎰dx xx x a n )cos(ln )sin(ln ________________13.[]⎰='+dx x f x x f )()(________________14.⎰=+xe dx1_____________15.⎰=+dx x xe x2)1(_____________________16.=++⎰dx xx xx cos 2sin cos 3sin 4______________17.已知xx x f 22tan sin )cos 2(+=+',则=)(x f _______________18.[]⎰=+'dx x f x f 2)(1)(______________19. 若⎰+=C x F dx x f )()(,而),(x u ϕ=则⎰=du u f )(___________. 20设函数)(x f 的二阶导数)(x f ''连续,那么⎰=''__________)(dx x f x .21设)(x f 的原函数是xxsin ,则⎰='__________)(dx x f x . 22已知曲线)(x f y =上任一点的切线斜率为6332--x x,且1-=x 时,211=y 是极大值,则)(x f __________=;)(x f 的极小值是__________.23已知一个函数的导数为211)(xx f -=,并且当1=x 时,这个函数值等于π23,则这个函数为__________)(=x F . 24 设)1(cos )(sin22<='x x x f ,则)(x f __________=.25 若)(x f 为连续函数,且)()(x f x f =',则⎰=__________)(dx x f . 26 若⎰='x dx x f ln ))((,则)(x f __________=.27 已知2xe -是)(x f 的一个原函数,则⎰=__________sec )(tan 2xdx x f . 28 ⎰='__________)2(12dx xf x . 29 设C xx dx x f ++-=⎰11)(,则)(x f __________=. 30 在积分曲线族⎰dxxx 1中,过(1,1)点的积分曲线是__________=y .二、选择填空题 1.设dx e e I xx ⎰+-=11,则=I ( )A.Cex++)1ln( B.Cx ex+-+)1ln(2C.Ce x x++-)1ln(2 D.Cex+-)1ln(2.设)(x f 是连续的偶函数,则期原函数)(x F 一定是( )A.偶函数B.奇函数C.非奇非偶函数D.有一个是奇函数 3.设⎰⎰+=++=)1(,)1(121u u duI dx xe x x I x ,则存在函数)(x u u =,使( ) A.xI I+=21B.xI I-=21C.12I I-=D.12I I =4.当1-≠n 时,⎰=xdx x n ln ( )A.C nx n x n +-)1(ln B.C n x n x n +----)11(ln 11C.C n x x n n ++-++)11(ln 111 D.C x n x n +++ln 117.⎰=+dx xx )2sin 2(cos ( ) A.C x x +-)2cos 2(sin 2 B.C x x +-)2sin 2(cos 2 C.C x x +-2cos 2sin D.C x x +-2sin 2cos 8.⎰=++dx xx x cos 1sin ( ) A.C x x +2cot B.C x x +2tan C.C x x +cot 2 D.C x x +2tan 2 9.若)(x f 的导函数是xe xcos +-,则)(x f 的一个原函数为( ) A.xexcos -- B.xexsin +-- C.xexcos --- D.xexsin +-10.若)(x f 是以l 为周期的连续函数,则其原函数( )。

数学分析课本(华师大三版)-习题及答案01

数学分析课本(华师大三版)-习题及答案01

第一章 实数集与函数习题§1实数1、 设a 为有理数,x 为无理数。

证明: (1)a+ x 是无理数;(2)当a ≠0时,ax 是无理数。

2、 试在数轴上表示出下列不等式的解:(1)x (2x -1)>0;(2)|x-1|<|x-3|;(3)1-x -12-x ≥23-x 。

3、 设a 、b ∈R 。

证明:若对任何正数ε有|a-b|<ε,则a = b 。

4、 设x ≠0,证明|x+x1|≥2,并说明其中等号何时成立。

5、 证明:对任何x ∈R 有(1)|x-1|+|x-2|≥1;(2)|x-1|+|x-2|+|x-3|≥2。

6、 设a 、b 、c ∈+R (+R 表示全体正实数的集合)。

证明|22b a +-22c a +|≤|b-c|。

你能说明此不等式的几何意义吗?7、 设x>0,b>0,a ≠b 。

证明xb x a ++介于1与ba 之间。

8、 设p 为正整数。

证明:若p 不是完全平方数,则p 是无理数。

9、 设a 、b 为给定实数。

试用不等式符号(不用绝对值符号)表示下列不等式的解: (1)|x-a|<|x-b|;(2)|x-a|< x-b ;(3)|2x -a|<b 。

§2数集、确界原理 1、 用区间表示下列不等式的解:(1)|1-x|-x ≥0;(2)| x+x1|≤6;(3)(x-a )(x-b )(x-c )>0(a ,b ,c 为常数,且a<b<c ); (4)sinx ≥22。

2、 设S 为非空数集。

试对下列概念给出定义: (1)S 无上界;(2)S 无界。

3、 试证明由(3)式所确定的数集S 有上界而无下界。

4、 求下列数集的上、下确界,并依定义加以验证:(1)S={x|2x <2};(2)S={x|x=n !,n ∈+N };(3)S={x|x 为(0,1)内的无理数};(4)S={x|x=1-n21,n ∈+N }。

数学分析课本(华师大三版)-习题及答案Part-I

数学分析课本(华师大三版)-习题及答案Part-I

a1 = b1 = 1 > 0, an + bn 2 = (an −1 + bn −1 2) 2 . Find the limit lim
n →∞
an . b pn . n →∞ q n
28. Assume p1 > 0, q1 > 0, pn +1 = pn + 3qn , qn +1 = pn + qn . Find the limit lim 29. Assume x1 = a, x2 = b, xn +1 =
41. Prove that (1) (2)
f ( x) = 3 x is uniformly continuous on [0, +∞) ; g ( x) = e x cos 1 is not uniformly continuous on [0,1] . x
42. Suppose that f
is defined on [ a, +∞) . And | f ( x ) − f ( y ) |≤ k | x − y | (k > 0) holds
an =a; n →∞ n
an 1 1 ∈ [a − , a + ] (n = 1, 2L) . n n n
f ∈ C (−∞, +∞) and that | f ( x) − f ( y ) |≤ k | x − y | (0 < k < 1) holds for any
x, y ∈ (−∞, +∞) . Prove that f has the unique fixed point on (−∞, +∞) .
34. Let f ∈ C[ a, b] . And for arbitrary x ∈ [ a, b] , there exists y ∈ [ a, b] such that

数学分析课本(华师大三版)-习题及答案第二十一章(20200511214824)

数学分析课本(华师大三版)-习题及答案第二十一章(20200511214824)

第十一章重积分§ 1二重积分的概念1•把重积分. .xydxdy作为积分和的极限,计算这个积分值,其中D=l0,1】0,1】,并用直线D「i j网x= ,y= (i,j=1,2,…,n-1)分割这个正方形为许多小正方形,每一小正方形取其右上顶点为n n其界点•2•证明:若函数f在矩形式域上D可积,则f在D上有界•3•证明定理(20.3):若f在矩形区域D上连续,则f在D上可积•4•设D为矩形区域,试证明二重积分性质2、4和7.性质2若f、g都在D上可积,则f+g在D上也可积,且° f g = f °g •性质4若f、g在D上可积,且f _ g ,则岂D g ,性质7(中值定理)若f为闭域D上连续函数,则存在, D,使得D f =f , D5. 设D o、D1和D2均为矩形区域,且D o = D1 D 2, intD j int D j = •一,试证二重积分性质 3.性质3(区域可加性)若D o =D1 D2且int D1int D j —一,则f在D o上可积的充要条件是f在D2上都可积,且6. 设f在可求面积的区域D上连续,证明:(1) 若在D 上f x,y - 0,f x,y - 0则D f 0 ;(2) 若在D内任一子区域D D上都有D f 二0,则在D 上f x,y . = 0。

7・证明:若f在可求面积的有界闭域D上连续,,g在D上可积且不变号,则存在一点, D,使得f x,yg x,y dxdy=f , gx,y dxdy.D D8.应用中值定理估计积分r r dxdy2 2-凶砒o1OO cos x cos y的值§ 2二重积分的计算1.计算下列二重积分:⑴y -2x dxdy,其中D= 3,5】1,2】;D⑵xy2dxdy,其中(i )D= 0,2〕0,3 1( ii )D= 0,3】0,2】;D2.设f(x,y)= f l x f2 y为定义在D= a i, bj ^2, bj上的函数若f l在la i,b」上可积,f2在a2,b21上可积,则f在D上可积,且3. 设f在区域D上连续试将二重积分 f x,y dxdy化为不同顺序的累次积分D(1)D由不等式y-x,y-a,x-b 0-a-b所确的区域⑶!! cosx y dxdy,其中D=D⑷..Dx1 xydxdy,其中D= 0,1 0,11.2 2 2⑵D 由不等式x y _a 与x y <a (a>0)所确定的区域(3)D=如,y )x + y4. 在下列积分中改变累次积分的顺序5. 计算下列二重积分2(1) i ixy dxdy ,其中D 由抛物线y=2px 与直线D⑵ 11 ix 2 y 2 dxdy ,其中 D= :x,y 0 _ x _1, . x 乞 y 乞 2 一 x [D卄 dxdy(3) .. ------------- (a>0),其中D 为图(20— 7)中的阴影部分;D2a -x⑷ I l -xdxdy ,其中 D='x,y x 2 y 2 乞 x jD(5) Il xydxdy ,其中为圆域 x 2 ya 2.D6.写出积分11 f x,y dxdy 在极坐标变换后不同顺序的累次积分d2 2(1)D 由不等式x y 乞1,y^x ,y-0所确定的区域x(1) 0 dx x f (x,y dy ;11 ^x 2⑵ j d ^_1^2fx,y dy ;⑶ 0dy 0 f x,y dy + dxX 专(p >0)所围的区域;3dy .⑵D由不等式a2 _x2• y2 _b2所确定的区域(3)D= :x,y x2y2zy,x _0「7•用极坐标计算二重积分:⑴Il si n x2y2dxdy,其中D= ' x, y 二2乞x2y2<4~2';D(2) x y dxdy,其中D^ x,y x2y2_x y』;曽F rD(3) II「X2• y2dxdy,其中D为圆域x2R2.D8•在下列符号分中引入新变量后,试将它化为累次积分:2 2丄(1) 0 dx f (x, y )dy ,其中u=x+y,v=x-y;(2) i if x,y dxdy ,其中D=,x,y . x y 乞.a , x _ 0 , y _ 0』,若x= U cos4 v ,D4y 二U sin v .(3) i if x,y dxdy,其中D=,x,y x y — a ,x — 0, y — Of,若x+y=u,y=uv.9•求由下列曲面所围立体V的体积:(1) v由坐标平面及x=2,y=3,x+y+Z=4所围的角柱体;2 2 | 一 ,(2) v由z= x * y 和z=x+y围的立体;2 2 2 22 x v x v(3) v由曲面Z 和2Z= 所围的立体•4 9 4 911. 试作适当变换,计算下列积分:(1) 11 [x y sin x - y dxdy ,D= :x.y 0 _ x y _ 二0 _ x - y _ T;Dy(2)I ie x y dxdy ,D= x,y x y 岂1, x _ 0,y _ 0D12. 设f:[a,b] T R为连续函数,应用二重积分性质证明-b I2j b|[f(xdx I 兰(b—a)[f (xdx,其中等号仅在f为常量函数时成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2 2 S
x2 y 2 z 2 (0 z h) 的外侧.
4、 (10 分) (两题选作一题)用适当方法完成下列计算: (1)计算拉普拉斯积分: I


0
cos 2 x dx ; 1 x2
(2)计算菲涅尔积分: I


sin x 2 dx .
0
得分
评阅人
四、证明题(共 3 小题,35 分)
4、一阶微分方程 (3x 4 xy)dx 2 x dy 0 的通解(可以用隐函数表达)为 5、设二阶可微函数 f ( x, y) 满足 .
专业:
2 f 2 f 2 f y , x y , x, 则 f ( x, y) 的表达形式为 x 2 xy y 2
得分
评阅人
第 2 页(共
3 页)
------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------
1 u( , )d d r 2 ( x )2 2 2 ( y ) r 1 2
u( x, y)
1 2 r
( x ) ( y ) r
2

u( , )ds
2 2

2
u( x r cos , y r sin )d
0
对任意 r 0 成立.
I lim I
0.ຫໍສະໝຸດ (1) 证明I 1 2 n 1 n ;

1 u ( x y) 2 v 1 ( y x) 2 (2)利用变量替换:
2
计算积分 I 的值,并由此推出 6

1 2 n 1 n

第 3 页(共
3 页)
1、(10 分)设 A 0, AC B 0. 求平面曲线 Ax 2Bxy Cy 1所围成的图形的面积.
2 2 2
2、 (10 分)计算二重积分: A
0,10,1

1 xy dxdy . 4
3、 (10 分)计算曲面积分: I
x dydz y dzdx z dxdy , S 为锥面:
0
S
e x
e x dx =_____________. x2
2
2
年级:
( x y z )dS , S : x
y 2 z 2 a 2 , z 0 的值为
.
3、由曲面 z xy, x y z 1, z 0 围成的立体体积为
2 2
. .
1、 (本题 10 分)设定义在 (0, ) 上的函数 f 满足下列三个条件: (1) x 0, f ( x) 0, f (1) 1; (2) f ( x 1) xf ( x), x 0; (3) ln f 是 (0, ) 上的凸函数. 证明: (1) f ( x) lim
期末考试试卷(A 卷)
课程名称 数学分析 3(试点班) 课程编号 83410004 任课教师 张正杰 陈世荣 题型 填空 题 分值 得分
得分 评阅人
学号:
计算 题I 15
计算 题 II 40
证明 题 35
总分
10
100
学生姓名:
一、填空题(共 5 题,10 分)
2
1、 设 0 ,则 2、第一型曲面积分 I
(2) f ( x, y) 在 (0, 0) 点的可微性.
2、 (本题 7 分)设函数 f ( x ) 在0, 上有界且连续, f (0) 0, 讨论函数
F ( y)

0
yf ( x) dx 的连续性. x2 y 2
得分
评阅人
三、计算题 II(共 4 小题,共 40 分)
华中师范大学 2008–2009 学年第二学期
------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------
二、计算题 I.(共 2 小题,15 分)
: 院(系)
1 , x 2 y 2 0, xy sin 2 2 x y 1、 (本题 8 分)设 f ( x, y ) .试讨论: 2 2 0, x y 0
(1) f x( x, y), f y( x, y) 在 (0, 0) 点的存在性和连续性;
3、 (本题 15 分) 设
R {( x, y) : 0 x 1;0 y 1} R {( x, y) : 0 x 1 ;0 y 1 } .
考虑积分
I
R
dxdy dxdy I R 1 xy 1 xy , ,
定义
n x n! ; n x( x 1) ( x n)
(2)验证欧拉积分 ( x) 也满足题述的三个条件,并由此证明 f ( x) ( x).
2 2、 (本题 10 分)设 u ( x, y ) 在 R 上连续,对任意 r 0 ,证明:等式
u( x, y)
成立的充要条件是等式
相关文档
最新文档