初中勾股定理课件
勾股定理数学优秀ppt课件
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
初中数学《勾股定理》课件
(图中每个小方格代表一个单位面积)
你是怎样得到正方形c 的面积。
P
Q CR
P
Q CR
用了“补”的方法
用了“(1)你能求出正方形R的面积吗?
C A
(2)在图1-2中,正方 形A,B,C中各含有多 少个小方格?它们的面 积各是多少?
B
图1-1
C A
B
图1-2
(3)你能发现图1-1中 三个正方形A,B,C的 面积之间有什么关系吗? 图1-2中呢?
小明妈妈买了一部29英寸(74厘米)的 电视机.小明量了电视机的屏幕后,发现屏幕 只有58厘米长和46厘米宽,他觉得一定是售 货员搞错了.你同意他的想法吗?你能解释这 是为什么吗?
1、小明家住在18层的高楼,一天,他与妈妈去买竹竿。
买最 长的 吧!
快点回家, 好用它凉衣
服。
糟糕,太 长了,放 不进去。
国我家国之是一。最早早在三了千解多勾年前股,定理的 国国家家之之一。一早。在早三千在多三年前千,多年前,周 朝国家数之学一。家早商在高三千就多提年前出,,将一根直 尺国家折之成一。一早个在直三千角多,年前如,果勾等于三, 股国家等之于一。四早,在那三千么多弦年前就,等于五,即 “国家勾之三一。、早股在四三千、多弦年前五,”,它被记 载国家于之我一。国早古在代三千著多名年前的,数学著作 《国家周之髀一。算早经在》三千中多。年前
SA+SB=SC
即:两条直角边上的正方形面积之和等于 斜边上的正方形的面积
C A
B
C
图1-1 A
(1)你能用三角 形的边长表示正方 形的面积吗?
(2)你能发现直 角三角形三边长度 之间存在什么关系 吗?与同伴进行交 流。
B
直角三角形两直角边的
初中数学《勾股定理及其应用》课件
A
c= a2 b2
股 c弦
b
a= c2 b2 b= c2 a2
C a勾B
拼图
运用勾股定理 可解决直角三角形中边的计算
例1 在 Rt△ABC中,∠C=90° ⑴已知a=6,b=8,则c1=0 __ ⑵已知a=9,c=41,则b4=0 __ ⑶已知c=25,b=15,则2a0=__ ⑷已知a=n2-1,b=2n,则nc2=+1____
2PBCD2=*P(DDC+PD)2=CD2+PD2+
∴ PB2+P2CC2D=*P2DBD2+2PD2=2(AD2+PD2)=
练一练 2PA2
练一练
M N
B 如图,已知:在Rt△ABC中, ∠ACB=90º,AC=12,BC=5,
AM=AC,BN=BC
则MN的长是__4__
A
C
练一练
折叠矩形ABCD的一边AD,点D
例3 已知:在△ABC中,AB=AC,
AB=17,BC=16,求△ABC的面 积A 。 解:作△ABC边BC上的高AD
∵ AB=AC ∴BD=DC=8
在Rt△ABD中,
AD2=AB2-BD2=BC=22=125 1B5C*AD=
120
运用勾股定理
可解决直角三角形中边的计算
例3 已知:在△ABC中,AB=AC,
AB=17,BC=16,求△ABC的面
积。
A
思考:若过C点作AB边
D
上的高CD,则如何求解?
B
C
运用勾股定理 可解决直角三角形中边的计算
例 4
B
A 如图,已知:△ABC中, AD是中线,AE⊥BC于E
⑴若AB=12,BC=10, AC=8 求:DE的长度
人教版八年级数学下册《勾股定理》PPT精品教学课件
数轴上画出表示 13 的点.
如图,在数轴上找出表示3的点A, 则OA=3,过点A作直
线l垂直于OA,在l上取点B,使AB = 2,以原点O为圆心,以
OB为半径作弧,弧与数轴的交点C即为表示 13 的点.
0
1 2
•
3 4
新知导入
想一想:
2, 3, 5 …的线段(图1).
随堂练习
4.如图,在△ABC中,AB=AC,D点在CB 延长线上,
求证:AD2-AB2=BD·
CD.
A
证明:过A作AE⊥BC于E.
∵AB=AC,∴BE=CE.
在Rt △ADE中,AD2=AE2+DE2.
在Rt △ABE中,AB2=AE2+BE2.
AD2-AB2= DE2- BE2
= (DE+BE)·( DE- BE)
键是仔细观察所给图形,面积与边长、直径有平
方关系,就很容易联想到勾股定理.
课程讲授
2
勾股定理与图形面积
练一练:
如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,
则b的面积为( D )
A.16
B.12
C.9
D.7
随堂练习
64 cm²
1.图中阴影部分是一个正方形,则此正方形的面积为_________.
角形外作三个半圆,则这三个半圆形的面积之间的关系式
S1 S 2 S3
是_______________.(用图中字母表示)
课程讲授
2
勾股定理与图形面积
归纳:与直角三角形三边相连的正方形、半圆及
正多边形、圆都具有相同的结论:两直角边上图
形面积的和等于斜边上图形的面积.本例考查了
勾股定理课件(共19张PPT)人教版初中数学八年级下册
1
+2·
2
ab =
即:在Rt△ABC 中,∠C=90 °
c2 = a2 + b2
1 2
c +ab
2
伽
菲
尔
德
证
法
归纳小结
“赵爽弦图”通过图形的切割、拼接,巧妙地利用面积关系证实
了命题的正确性,命题与直角三角形的边有关,我国把它称为
勾股定理:直角三角形两直角边的平方和等于斜边的平方.
即a2+b2=c2.
勾股定理: 直角三角形两直角边a、b的平
方和,等于斜边c的平方。
即:a2+b2 =c2
谢谢观看
哲学家、数学家、天文学家
新知探究
思考
图17.1-2中三个正方形的面积有什么关系?等腰
直角三角形的三边之间有什么关系?
A
B
a
b
c
C
图17.1-2
三个正方形A、
B、C的面积有
什么关系?
新知探究
探究
等腰直角三角形有上述性质,其他
直角三角形是否也有这个性质?
C
A
B
C'
图1
A'
B'
图17.1-3
图2
(图中每个小方格代表一个单位面积)
教 学 目 标 / Te a c h i n g a i m s
1
2
了解勾股定理文化背景,体验勾股定理的探究过
程。
理解不同勾股定理的证明方法,能够分析
它们的异同。
能够用勾股定理解决直角三角形的相关学习
3
和解决生活中的实际问题。
情景导入
图17.1-1
毕达哥拉斯(Pythagoras,约前
勾股定理小结与复习初中数学原创课件
二、勾股定理的逆定理
1.勾股定理的逆定理
A
c
如果三角形的三边长a,b,c满足 b
a2 +b2=c2 ,那么这个三角形是直角三角形. C a B
2.勾股数 满足a2 +b2=c2的三个正整数,称为勾股数.
3.原命题与逆命题 如果两个命题的题设、结论正好相反,那么把其中 一个叫做原命题,另一个叫做它的逆命题.
考点二 勾股定理的逆定理及其应用
例4 已知在△ABC中,∠A,∠B,∠C的对边分别是a,b, c,a=n2-1,b=2n,c=n2+1(n>1),判断△ABC是否为 直角三角形. 【解析】要证∠C=90°,只要证△ABC是直角三角形,并且 c边最大.根据勾股定理的逆定理只要证明a2+b2=c2即可.
解:如图,过半圆直径的中点O,作直径的垂线交下底边 于点D,取点C,使CD=1.4米,过C作OD的平行线交半圆直 径于B点,交半圆于A点. 在Rt△ABO中,由题意知OA=2米,DC=OB=1.4米, 所以AB2=22-1.42=2.04. 因为4-2.6=1.4,1.42=1.96, 2.04>1.96, 所以卡车可以通过. 答:卡车可以通过,但要小心.
∴AC= AB2 BC2 =24米,
已知AD=4米,则CD=24-4=20(米), ∵在直角△CDE中,CE为直角边,
∴CE= DE2 CD2 =15(米),
BE=15-7=8(米).故选C.
针对训练
3.如图,某住宅社区在相邻两楼之间修建一个上方是一个 半圆,下方是长方形的仿古通道,现有一辆卡车装满家 具后,高4米,宽2.8米,请问这辆送家具的卡车能否通 过这个通道?
第十七章 勾股定理
要点梳理
一、勾股定理
1.如果直角三角形两直角边分别为a,b,斜边为c,
初二数学《勾股定理》课件
勾股定理的重要性
勾股定理是几何学中的重要定理 之一,它揭示了直角三角形三边 之间的关系,是解决几何问题的
重要工具。
勾股定理在数学、物理、工程等 领域都有广泛的应用,如物理中 的力学、光学、声学等都涉及到
06
思考题
总结词:拓展思维
你能举出一些生活中应用 勾股定理的实际例子吗?
你认为勾股定理在现代科 技中有哪些应用?
列举
如何理解勾股定理在数学 中的地位和意义?
如何通过勾股定理来探索 和研究更复杂的几何问题
?
THANKS.
勾股定理在复数域的应用
勾股定理在复数域的应用
勾股定理可以在复数域中找到应用,例如在量子力学和信号处理等领域。
应用实例
在量子力学中,勾股定理可以用于描述粒子在三维空间中的运动状态;在信号处理中,勾股定理可以 用于计算信号的能量或功率等。
练习与思考
05
基础练习题
总结词:巩固基础
01
02
列举
勾股定理的基本形式是什么?
总结词
利用相似三角形证明勾股定理
详细描述
欧几里得通过构造两个相似三角形,利用相似三角形的性质,推导出直角三角 形两条直角边的平方和等于斜边的平方,从而证明了勾股定理。
赵爽的证法
总结词
利用面积证明勾股定理
详细描述
赵爽通过将直角三角形转化为矩形,利用面积关系,推导出直角三角形两条直角 边的平方和等于斜边的平方,从而证明了勾股定理。
勾股定理在解决与自然界的规律、现象等相关的问题时也 有着广泛的应用。例如,在解决与地球的自转、公转、太 阳系行星运动等相关的问题时,勾股定理可以提供重要的 思路和方法。
沪科版八年级数学下册课件.1勾股定理(24张)
c
2
a
=2ab+b2-2ab+a2
c a
b
b
=a2+b2
∴a2+b2=c2
c a
b
c a
b
新知探究
方法二 大正方形的面积可以表示为 (a+b)2 ; 也可以表示为c2 + 2ab.
∵ (a+b)2 = c2 + 2ab
c a
b
c a
b
c a
b
c a
b
a2+2ab+b2 = c2 +2ab ∴a2+b2=c2
论中正确的是( A )
A.c2=a2+b2
B.c2=a2+2ab+b2
C.c2=a2-2ab+b2 D.c2=(a+b)2
解析: 由题意得到四个完全一样的直角 三角板围成的四边形为正方形, 其边长为c, 里面的小四边形也为正方形, 边长为b-a, 则 有c2=ab×2+(b-a)2, 整理得c2=a2+b2. 故选A.
解析: 如图所示, 大正方形的面积是 (a+b)2, 另一种计算方法是4× 1 ab+c2,
2
即(a+b)2=4× 1 ab+c2, 化简得 a2+b2=c2.
2
课堂小测
2. 操作: 剪若干个大小形状完全相同的直角三角形, 三边长分别记为a, b, c. 如图(1)所示, 分别用4张这样的直角三角形纸片拼成如图(2)(3)所示的 形状, 图(2)中的两个小正方形的面积S2, S3与图(3)中小正方形的面积S1有 什么关系? 你能得到a, b, c之间有什么关系?
勾股定理第一课时初中数学原创课件
第1课时 勾股定理
学习目标
1.了解勾股定理的发现过程;
2.掌握勾股定理的内容并会运用;
3.在合作交流中解决问题,培养合作探究能力.
新知探索
数学家毕达哥拉斯的发现:
A
B
C
A、B、C的面积有什么关系?
SA+SB=SC
做一做
1.观察右边两个图并填写下表:
A的面积 B的面积 C的面积
猜想:如果直角三角形两
直角边长分别为a,b,斜
边长为c,那么a2+b2=c2.
C
A
c
a
b
B
图1-2
c
a
A b
C
B
图1-3
验证猜想
下图图案是2002年在北京召开的第24届国际数学家大会
的会徽.它与勾股定理有着密切联系.
问题1
这个图案由哪些基本图形组成?
由四个全等的直角三角形和一个
小正方形组成了一个大正方形.
勾股定理 (毕达哥拉斯定理)
如果直角三角形的两条直角边长分别为a,b,
c
a
斜边长为c,那么
a2+ b2=c2.
即:直角三角形两直角边的平方和等于斜边的平方.
b
美国总统证明勾股定理
美国第17任总统加菲尔德证明勾股定理的方法:两个全
等的直角三角形和一个等腰直角三角形拼成一个直角梯形.
尝试完成这个证明.
(× )
巩固练习
练习1
求下列直角三角形中未知边的长度.
解:在Rt△ABC中,根据勾股定理
A
5
C
x
12
(1)
x2 =52+ 122=169 .
初中数学《勾股定理》课件
例题1 如图,受大风影响,一棵树在离 地面8米的A处断裂,树的顶部B落在距 树根底部C相距6米处,这棵树折断前有 多高?
A
8 米
C 6米 B
例题2 如果一个直角三角形的两边长分 别为5cm和12cm,求第三边的长。
课堂小结 形成结构 1、回顾本节课的探究历程:
2、总结本节课学习涉及的思想方法: 3、谈谈本节课的体会。
作y业=0
1、必做题 P53 练习 第1、2、3题。
预习教材58,59页。 2、选做题
印度数学家什迦逻(1141年-1225年)曾提出 过“荷花问题”:
“平平湖水清可鉴,面上半尺生红莲; 出泥不染亭亭立,忽被强风吹一边, 渔人观看忙向前,花离原位二尺远; 能算诸君请解题,湖水如何知深浅? 请用学过的数学知识回答这个问题。
---- 这就是著名的勾股定理.
毕达哥拉斯定理
(Pythagoras’ m)
在国外,相传这个定
理是公元前500多年时
古希腊数学家毕达哥拉
斯首先发现的。因此又
称此定理为“毕达哥拉
斯定理”。法国和比利
时称它为“驴桥定理”,
埃及称它为“埃及三角
形”等。但他们发现的
毕达哥拉斯
时间都比我国要迟得多。
18.1 勾股定理
勾
股
在中国古代,人们把弯曲成直角的手臂的上半部分 称为"勾",下半部分称为"股"。我国古代学者把直角三 角形较短的直角边称为“勾”,较长的直角边称为 “股”,斜边称为“弦”.
商高是公元前十一世纪的中国 人。在中国古代大约是战国时期 西汉的数学著作《周髀算经》中 记录着商高同周公的一段对话。 商高说:“…故折矩,勾广三, 股修四,经隅五。”商高那段话 的意思就是说:当直角三角形的 两条直角边分别为3(短边)和4 (长边)时,径隅(就是弦)则 为5。以后人们就简单地把这个事 实说成“勾三股四弦五”。
初二数学《勾股定理》PPT课件
即直角三角形两直角边的平方和等于 斜边的平方.
a
c
勾
弦
b
股
在RT△ABC中,∠C=90°, ∠A 、∠B、 ∠C的对边分别为a 、b 、c ,则:
勾股定理的各种表达式:
c2=a2+b2 a2=c2-b2 b2=c2-a2
5米
B
A
C
12米
解:∵BC⊥AC, ∴在Rt△ABC中, AC=12,BC=5, 根据勾股定理,
1.求下列图中表示边的未知数x、y、z的值.
①
81
144
x
y
z
②
③
625
576
144
169
如图,一个高3 米,宽4 米的大门,需在相对角的顶点间加一个加固木条,则木条的长为( )
B
A
勾 股 定 理
C
一、情景引入
如图,一根电线杆在离地面5米处断裂,电线杆顶部落在离电线杆底部12米处,电线杆折断之前有多高?
5米
B
A
C
12米
电线杆折断之前的高度=BC+AB=5米+AB的长
SA+SB=SC
图甲
图乙
A的面积
B的面积
C的面积
4
4
A
B
C
C
图甲
1.观察图甲,小方格 的边长为1. ⑴正方形A、B、C的 面积各为多少?
A.3米 B.4米 C.5米 D.6米
C
2、湖的两端有A、B两点,从与BA方向成直角的BC方向上的点C测得CA=130米,CB=120米,则AB为( )
A
B
C
A.50米 B.120米 C.100米 D.130米
八年级数学下册课件(人教版)勾股定理
5 如图,将两个大小、形状完全相同的△ABC 和△A′B′C ′拼在一起,其 中点A′与点A重合,点C ′落在边AB上,连接B′C. 若∠ACB=∠AC′B ′ =90°,AC=BC=3,则B′C 的长为( A )
A.3 3 B.6 C.3 2 D. 21
知识点 2 勾股定理与面积的关系
在一张纸上画4个与图所示的全等的直角三边形,并把它们 剪下来.如图所示,用这四个直角三角形进行拼摆,将得到一个
17.1 勾股定理
第1课时
相传2500年前,一次毕达哥拉斯去朋友家作客, 发现朋友家用砖铺成的地 面反映直角三角形三边的 某种数量关系,同学们, 我们也来观察下面的图案, 看看你能发现什么?
A、B、C 的面积有什么关系?
直角三角形三边有什么关系?
A
B
C
让我们一起探索这个古老的定理吧!
知识点 1 勾股定理
正方形B的面积是 9 个单位面积.
正方形C的面积是 18 个单位面积.
C A
B
图2-1
C A
B
图2-2
(图中每个小方格代表一个单位面积)
分“割”成若干个 直角边为整数的三角形
S正方形c
= 4 133 2
=18(单位面积)
C A
B
图2-1
C A
B
图2-2
(图中每个小方格代表一个单位面积)
(2)在图2-2中,正方形A,B, C 中各含有多少个小方格?
A.3 B.4 C.5 D.7
4 如图,已知△ABC 为直角三角形,分别以直角边AC,BC 为直径 作半圆AmC 和BnC,以AB 为直径作半圆ACB,记两个月牙形阴 影部分的面积之和为S1,△ABC 的面积为S2,则S1与S2的大小关
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中勾股定理课件初中勾股定理课件已经为大家准备好啦,老师们,大家可以参考以下内容,准备好教学思路哦!一、内容和内容解析本节课为人教版八年级数学下册第十八章第一节,教材64页至66页(不含探究1)的内容。
其内容包括章前对勾股定理整章的引入:2002年北京召开的国际数学家大会的会徽及“赵爽弦图”的简介,反映了我国古代对勾股定理的研究成果,是对学生进行爱国主义教育的良好素材。
教材正文中从毕达哥拉斯发现等腰直角三角形的边之间的数量关系这一事实引入对勾股定理的探究,用面积法得到勾股定理的结论,而后教材又重点从“赵爽弦图”的方法对勾股定理进行了详细的论证;课后习题18.1的第1、2、7、11、12等题目针对勾股定理的内容适当的加以巩固,特别是第11、12题侧重对面积法运用的巩固。
勾股定理是几何中几个重要定理之一,揭示了直角三角形三边之间的数量关系,是对直角三角形性质的进一步学习和深入,它可以解决许多直角三角形中的计算问题,在实际生活中用途很大。
它不仅在数学领域而且在其他自然科学领域中也被广泛地应用,而说明数学是一门基础学科,是人们生活的基本工具。
学生接受勾股定理的内容“在直角三角形中两直角边的平方和等于斜边的平方”这一事实从学习的角度不难,包括对它的应用也不成问题。
但对勾股定理的论证,教材中介绍的面积证法即:依据图形经过割补拼接后,只要没有重叠,没有空隙,面积就不会改变。
学生接受起来有障碍(是第一次接触面积法),因此从面积的“分割”“补全”两种方法进行演示同时学生动手亲自拼接图形构成“赵爽弦图”并亲自验证三个正方形之间的面积关系得到勾股定理的证明。
有利的让学生经历了“感知、猜想、验证、概括、证明”的认知过程,感触知识的产生、发展、形成以提高学生学习习惯和能力。
本节的后续学习中,对勾股定理运用的探究和勾股定理逆命题的论证和应用,都是将图形与数量紧密的结合,将有利的培养学生数形结合的意识以提高学生分析问题、解决问题的能力。
同时也为后期学习四边形、圆中的有关计算及计算物体面积奠定基础,因此本节课无论从知识的角度还是从数学技能、数学思想方法及数学活动经验等层面都起着举足轻重的作用。
为此,教学重点:勾股定理的内容教学难点:勾股定理的论证二、教学目标及目标解析1、教学目标①、了解勾股定理的文化背景,体验勾股定理的探索过程,掌握勾股定理的内容。
②、在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想。
③通过观察课件探究拼图等活动,体验数学思维的严谨性,发展形象思维,体验解决问题方法的多样性,并学会与人合作、与人交流,培养学生的合作交流意识和探索精神。
④、在对勾股定理历史的了解过程中,感受数学文化,增强爱国情操,激发学习热情,养成关爱生活、观察生活、思考生活的习惯。
2、目标解析①、通过学生了解“赵爽弦图”、了解“毕达哥拉斯”探究勾股定理的过程而猜想、验证勾股定理,自愿接受这一理论事实并能简单运用。
②、通过面积法探究勾股定理,让学生感触到直角三角形这一图形与a2+b2=c2数量关系建立对应关系,同时不同图形从面积角度的论证得到面积的割补是形的变化而面积这一数量不变。
更深层次的建立数形结合的方法。
③、通过观察、探究的活动让学生感触知识的产生过程,学生从中学会合作交流,协作探究、归纳总结的学习方法,提高学生的探索能力。
④、勾股定理知识是我国数学领域的璀璨明珠,代表着历代人民智慧和探索精神的结晶。
通过学生亲身再次重温它的得来的过程从中感触我国数学知识源远流长和数学价值的伟大从中得到良好的思想的熏陶。
三、教学问题诊断分析学生对勾股定理的形式容易接受甚至利用结论进行有关的计算难度也不大,但究其缘由有难度,这正是数学学习活动中学生要具备的基本的学习品质和学习技能。
所以,在学习勾股定理由来的教学时,应有针对性地设计图形形式的多样呈现,让学生亲自动手拼接图形来揭示概念的由来及正确性。
对于图形面积的计算学生有基本的技能,但如何最合理的进行分割或补全一时是不易理解,这属于思想方法层面的问题,学生往往只停留在能听懂,但不能内化的层面,需要我进行精心的设计,充分展示“分割、补全、拼凑”以发挥教师的引导作用,为学生探究一般的直角三角形的三边关系做好铺垫,为数学多渠道多方法的探究证明做好引导。
四、教学支持条件分析根据本节课的教材内容特点,为了更直观、形象地突出重点,突破难点,提高课堂效率,采用以观察发现、动手操练、演算探究为主,多媒体演示为辅的教学组织方式.在教学过程中,给学生提供充足的活动时间和空间,以我设计探究实验和带有启发性及思考性的问题串,创设问题情景,启发学生思维,学生亲自动手操作、测量、演算,让学生亲身体验知识的产生、发展和形成的过程.五、教学过程设计(一)创设情境,导入新课。
问题1:请同学们欣赏2002年国际数学家大会会场情景的的.图片,重点抽取会徽图案,你能发现它是有什么图形构成的?(材料附后)教师展示ppt课件,介绍数学家大会及会徽“赵爽弦图”,学生观察、发表意见、聆听介绍。
【设计意图】以国际数学家大会------“赵爽弦图”为背景导入新课,提出问题,首先可以激发学生强烈的好奇心和求知欲,感受我国古代数学知识的伟大,进行爱国教育,增强学好数学的信心;其次让学生在观察、思考、交流的过程中,对勾股定理先有初步的感性认识.问题2:教师板书课题,介绍直角三角形各边的名称。
提问:你知道哪些勾股定理的知识?视学生回答情况确定下步的教学方案1:如果学生能够说出勾股定理的相关知识,则直接进入下一环节的学习。
方案2:如果学生有困难,则安排学生自学教材,再发表意见。
学生发言,教师倾听。
视学生回答的重点板书:勾三股四弦五等【设计意图】教师获得学生的知识储备以便以后的教学定位。
再次让学生感触勾股定理的存在、作用即勾股定理是研究直角三角形边之间的关系的定理,明确学习目标。
(二)观察演算,合作探究,初具概念问题3:介绍毕达哥拉斯发现勾股定理的故事。
利用ppt课件展示毕达哥拉斯的发现和他的探究的过程。
提问:这三个正方形之间的面积有什么关系?从中可以转化得到等腰直角三角形三边在数量上有什么关系?(故事附后)教师口述故事,ppt课件同步演示;学生借助直观的课件,学生个体或学生间观察交流探究得到结论。
【设计意图】首先,故事中代出问题既激发学生的兴趣又降低了学生探究的难度,让每个学生都可做,可得;其次得到三个正方形面积间的关系而得到等腰直角三角形三边之间的关系,由特殊的图形为研究定理的一般性做好铺垫;再者学生初步具有了勾股定理的雏形,即在等腰直角三角形中两直角边的平方和等于斜边的平方。
问题4:毕达哥拉斯想到:这一结论是不是所有的直角三角形都具备呢?于是展开了进一步的探索。
教师利用ppt课件展示,提出问题;学生利用《学习案》中第1题自己进一步探究,交流;猜测验证。
(学习案附后)【设计意图】问题更深一层次,调动学生高涨的探究热情,同时有效的渗透了由特殊到一般的数学思想。
(三)引导实验,探究论证,形成体系。
问题7:我们已经对直角三角形三边之间关系有了充分的认识。
但它的正确性需要数学理论做基础,我国古代数学家赵爽就对该命题进行了严谨的论证。
我们刚才欣赏的会徽就是他的论证方法。
下面我们一起进行论证。
教师用ppt课件演示拼凑过程,精讲强调面积的无缝、不重叠拼接得到面积相等。
【设计意图】上一环节是从数字上的验证,本环节上升到理论层面,以加强数学学习的严谨性。
让学生学懂面积法,再次加深对勾股定理的理解。
感受我国数学知识的悠久历史,唤起爱国精神,启发学习数学的兴趣。
问题8:学生用4个全等的直角三角形重新拼凑图形并根据排放画出图形并用面积法进行论证。
学生或小组间进行合作实验,共同协作探究;教师巡视指导。
【设计意图】学生自主探究,再次理解勾股定理,学会面积证勾股定理。
培养学生的动手探究能力,养成严谨的学习习惯;学会交流,达到知识、方法共享,体验合作的乐趣、合作的成功。
问题9:教师选取代表性的拼接方法,全班展示。
【设计意图】共享知识,拓展思路,体会一题多解,更深层次的了解掌握勾股定理。
(四)归纳提高,巩固运用,形成能力。
问题10:我们这节课研究的勾股定理是对什么的研究?它侧重是研究直角三角形的什么关系?以前学习直角三角形的哪些知识?学生回忆,发言。
教师强调:勾股定理的前提条件是直角三角形,也就是说其他的三角形是不具备的,但要解决其他三角形的计算问题,我们要借助辅助线(特别是高线)把它转化为直角三角形。
教师板书。
【设计意图】更新知识系统,逐渐完善知识脉络,提高分析问题解决问题的能力。
问题11:完成以下练习题教材69页第1题、学生独立完成;教师巡视指导,板书得数,介绍勾股数。
【设计意图】第1题针对勾股定理的直接运用。
提高学生对新知识的理解、运用。
巩固目标。
(五)归纳小结,反思提高问题12:通过本节课的学习,你有哪些收获?学生谈本节课的学习感受,教师梳理、概括本节课主要的学习内容,并揭示蕴涵的数学思想方法及评价学生在课堂上的表现对学生进行思想教育。
【设计意图】教师引导学生归纳本节课的知识要点和思想方法,使学生对直角三角形有一个整体全面认识,同时感受数形结合的数学思想。
布置作业.教材70页2、8题。
六、目标检测设计1.在等边三角形中边长为10,则该三角形的面积是多少?【设计意图】综合题,考查等边三角形的三线合一、30度角所对的直角边等于斜边的一半、勾股定理、三角形面积知识;培养学生的转化意识。
2.在一个直角三角形中两边的长为3、4,则第三条边长度是多少?【设计意图】分类讨论。
考查直角三角形的斜边最长及勾股定理。
3、湖中直立一荷花,花朵高水1m整,忽然一阵风吹来,荷花吹离2m处,斜于水面齐,问湖水几许深?【设计意图】诗情画意的情景呈现数学问题增强美的感受,在愉悦、放松的氛围中感受数学在生活中的作用,体验数学是一门基础学科,增强学好学生的决心。
培养学生的数学建模意识,提高解决问题的能力。