数学控制系统数学模型
第二章控制系统的数学模型.

2.2.1传递函数的定义和性质
⑴ 定义 线性定常系统的传递函数,定义为初始条件为零时,输出 量的拉氏变换与输入量的拉氏变换之比,记为G(S),即:
C ( s) G( s) R( s)
(2-4)
注:所有初始条件为零,指的是原系统处于静止状态. 设线性定常系统的n阶线性常微分方程为
dn d n 1 d a0 n c(t ) a1 n 1 c(t ) an 1 c(t ) an c(t ) dt dt dt dm d m1 d b0 m r (t ) b1 m 1 r (t ) bm1 r (t ) bm r (t ) dt dt dt
F(t)
K
F(t) F2(t)
m
f
m
x(t)
F1(t) b)
x(t)
根据牛顿第二运动定律有:
d 2 x (t ) F (t ) F1 (t ) F2 (t ) m dt2
a)
图2-2 机械位移系统
(2-2) 7
式中:
F1 (t ) ——阻尼器阻力。其大小与运动速度成正比,方向 与运动方向相反,阻尼系数为f,即: dx (t ) F1 (t ) f dt F2 (t ) ——弹簧力。设为线性弹簧,根据虎克定律有:
F2 (t ) Kx(t )
K——弹簧刚度 联立以上三式并整理得:
d 2 x (t ) dx(t ) m f Kx (t ) F (t ) 2 dt dt
(2-3) 8
综上所述,列写元件微分方程的步骤可归纳如下: ① 根据元件的工作原理及其在控制系统中的作用,确定其 输入量和输出量; ② 分析元件工作中所遵循的物理规律或化学规律,列写相 应的微分方程; ③ 消去中间变量,得到输出量与输入量之间关系的微分方 程,便是元件时域的数学模型. 9
基本要求-控制系统数学模型

自动控制原理
第二章控制系统的数学模型
线性连续系统微分方程的一般形式
d c (t ) d c (t ) dc (t ) an an 1 ... a1 a0 c ( t ) n n 1 dt dt dt d m r (t ) d m 1r (t ) dr (t ) bm bm 1 ... b1 b0 r (t ) m m 1 dt dt dt
航空工程学院航空工程实验中心
自动控制原理
第二章控制系统的数学模型
• 3.表示形式 a.时域:微分﹑差分﹑状态方程 b.复域:传递函数﹑结构图 c.频域:频率特性
三种数学模型之间的关系 线性系统
拉氏 傅氏 传递函数 微分方程 频率特性 变换 变换
航空工程学院航空工程实验中心
自动控制原理
第二章控制系统的数学模型
自动控制原理
第二章控制系统的数学模型
题目变种3,寻求新解法
1 R1 cs I ( s) U ( s) U r ( s) c 1 R1 cs
Uc( s ) I (s) R2
联立,可解得: 微分方程为:
U c ( s) R2 (1 R1Cs) U r (s) R1 R2 R1 R2 Cs
微分方程的标准形式: 1、与输入量有关的项写在方程的右端; 2、与输出量有关的项写在方程的左端; 3、方成两端变量的导数项均按降幂排列
mx(t ) fx(t ) kx(t ) F (t )
航空
第二章控制系统的数学模型
电气系统三元件(知识补充)
电阻
航空工程学院航空工程实验中心
自动控制原理
第二章控制系统的数学模型
2.为什么要建立数学模型: 只是定性地了解系统的工作原理和大致的 运动过程是不够的,还要从理论上对系统 性能进行定量的分析和计算。 另一个原因:许多表面上看毫无共同之处 的控制系统,其运动规律具有相似性,可 以用相同形式的数学模型表示。
自动控制原理:第二章--控制系统数学模型全

TaTLma KJe K
dMdML m dtdt
L
Tm
Ra J K eKm
——机电时间常数(秒);
Ta
La Ra
—电动机电枢回路时间常数 (秒)
若输出为电动机的转角q ,则有
TaTm
d 3q
dt 3
Tm
d 2q
dt 2
dq
dt
1 Ke
ua
Tm J
ML
TaTm J
dM L dt
—— 三阶线性定常微分方程 9
(1)根据克希霍夫定律可写出原始方程式
((23))式消LuLCcdd中去(titd)i中2d是utRc间2(中Cti1)变间C1量iR变dCti量idd后udt,ct,(t它)u输r与u(入tc输)(输t)出出uu微rc((tt)分)有方如程下式关系
或
T1T2
d 2uc (t) dt 2
T2
duc (t) dt
扰动输入为负载转矩ML。 (1)列各元件方程式。电动机方程式为:
TaTm
d 2w
dt 2
测输T速Km出发td为d电wt电测压机速w 反 K馈1e系ua数
Tm J
M反L馈 电TaJT压m
dM L dt
ua Kae ut Ktw e ur ut 12
(2)消去中间变量。从以上各式中消去中间变
量ua,e,ut,最后得到系统的微分方程式
线性(或线性化)定常系统在零初始条件下, 输出量的拉氏变换与输入量的拉氏变换之比 称为传递函数。
令线C性(s定)=常L[c系(t统)],由R下(s)述=Ln阶[r(微t)]分,方在程初描始述条:件为零
时[[aab,nnmbssdmdn进mt+ndn+dt行acmmbn(tm拉-r1)-(s1t氏ns)-am1变n+-1b1+…m换dd…1t+,nndd+1a1t得mm1bcs1(11到+ts)r+a关(t0b)]于0C]的RD(sM的s的a(()分s1s(分))=代sdbd为母)t1子为数cd传d多(tt多传方)r递项(项t程递函)式a式0函数c。b(0数tr) (t)
第二章_控制系统的数学模型

R
a
La
Ea
+
if -
i a (t ) U a (t )
m Mm
Jm fm
MC
dia ( t ) R a i a (t) E a dt E a C e m ( t ) u a La M m (t) M c (t) J m M m (t) C mi a (t) dm ( t ) f m m ( t ) dt
2.2 控制系统的复数域数学模型
1、传递函数的定义
在零初始条件下,线性定常系统输出量的拉普拉斯变 换与输入量的拉普拉斯变换之比,定义为线性定常系统 的传递函数。 即,
传递函数与输入、输出之间的关系,可用结构图表示:
若已知线性定常系统的微分方程为 dnc(t ) dn 1c(t ) dc(t ) a0 a1 a n 1 anc(t ) n n 1 dt dt dt m m 1 d r(t ) d r(t ) dr (t ) b0 b1 b m 1 b mr(t ) m m 1 dt dt dt
设 c(t)和r(t)及其各阶导数初始值均为零,对上 式取拉氏变换,得
(a0s a1s
n m
n 1
an 1s an )C(s)
(b 0s b1s
m 1
bm 1s bm )R(s)
则系统的传递函数为
C(s) b 0sm b1sm 1 bm 1s bm G (s ) R(s) a0sn a1sn 1 an 1s an
L[f (t )] e sF(s)
F ( s ) f ( 1 ) ( 0 ) ( 1 ) L[ f (t )dt ] , f (0) f (t )dt t 0 s s
控制系统的数学模型

第二章控制系统的数学模型第章控制系统的数学模2-1 1 数学模型数学模型本书中主要介绍的几种系统模型图型:信号流程图数学模型描述系统行为特性的数学表达式模方块图信号程图数学模型:微分方程传递函数频率特性一、数学模型:描述系统行为特性的数学表达式。
是对实际物理系统的一种数学抽象。
模型各有特点,使用时可灵活掌握。
若分析研究系统的动态特性,取其数学模型比较方便;若分析研究系统的内部结构情况,取其物理模型比较直观;若两者皆有,则取其图模型比较合理。
11——1.1. 控制系统的时域数学模型控制系统的时域数学模型微分方程r(t)——输入量c(t)c(t)a dc(t)a c(t)d a d a ++++L L dr(t)r(t)d r(t)db 其中,(i =0,1,2,…….n; j =0,1,2…….m) 均为实数,b a r(t)b b ++++=L L b (,,,;j ,,)实,j i2——定定常条输的变2.2.控制系统的复域数学模型控制系统的复域数学模型传递函数A. 定义:线性定常系统在初始条件为零时,输出量的拉氏变设:输入----r(t),输出----c(t),则传递函数:L[c(t)]G()式中C()L[(t)])s (C G(s)==式中:C(s)=L[c(t)]——输出量的拉氏变换式那么:C(s)=R(s)G(s)[R()G()][C()]()11[R(s)G(s)]L [C(s)]c(t)-1-1==推广到一般情况,系统时域数学模型——推广到般情况,系统时域数学模型微分方程:L L c(t)a a a a 011-n 1-n n n ++++r(t)b d b d d b -++++=L L b ()dt dtdt 011-m 1m m m L L R(s)b sR(s)b R(s)sb R(s)s b 01-1m m +++=a. 控制系统传递函数的一般表达形式:s −L L 传式011n n a s a s a a R(s)+++−b.b.表示成典型环节表达形式:111+++−s T s T s T s s R L )))()(21n υ∏∏i C )(s ωω;==11j l pnpnωωm 系统的稳态增益K =——系统的稳态增益;2m m m+=2n n nν++=c 零极点表达形式K C +++++L c. 表示成零、极点表达形式:)())(()(21m r z s z s z s s =−——νjp 系统的极点,个零极点。
控制系统数学模型

控制系统数学模型
控制系统数学模型是指用数学方法对控制系统进行建模和分析
的过程。
控制系统是指对一些物理过程进行控制的系统,包括机电控制系统、化工控制系统、航空航天控制系统等。
数学模型是指对一个系统或过程进行描述的数学式子或方程组。
建立控制系统的数学模型是控制工程的重要基础之一。
通过建立数学模型,可以更加深入地理解系统的特性,优化控制策略,提高系统的效率和稳定性。
在建立控制系统数学模型时,需要先对被控系统进行分析,确定系统的物理特性和运动规律。
然后,根据控制对象的特性,选择适当的数学模型进行建立。
常用的控制系统数学模型包括线性时不变系统模型、非线性系统模型、时变系统模型等。
线性时不变系统模型是指系统的输出与输入之间满足线性关系,且系统的特性不随时间变化。
非线性系统模型是指系统的输出与输入之间不满足线性关系。
时变系统模型是指系统的特性随时间变化。
除了建立数学模型外,还需要对模型进行分析和仿真。
常用的分析方法包括传递函数法、状态空间法等。
仿真可以通过计算机模拟系统运动过程,验证控制策略的有效性。
总之,控制系统数学模型是控制工程的重要基础之一,对于提高控制系统的性能和稳定性具有重要意义。
- 1 -。
控制系统的数学模型

第二章控制系统的数学模型对于一个控制系统,建立数学模型的目的有二个:第一,模型可以用在现存的控制系统特性的研究中,模型代表了我们对系统特性的认识,并且在我们对系统知道得更多时还可以修改和扩展模型。
第二,在实际系统尚不存在时,例如在建设工程刚刚开始时,可以借助模型来预测设计思想和不同控制策略的效果,而不招致建造和试验系统所带来的费用浪费,也避免了冒危险的可能。
2-1 物理系统的动态描述—数学模型每一个自动控制系统都是由若干个元件组成的。
每个元件在系统中都具有各自的功能,它们相互配合起来就构成一个完整的控制系统,共同实现对某个物理量(被控制量)的控制,而满足所要求的特定规律。
如果把控制系统中各物理量(变量)之间的关系用数学表达式描述出来,就得到了此控制系统的数学模型。
在静态条件下(即变量的各阶导数为零),描述各变量之间关系的数学方程,称为静态模型,而各变量在动态过程中的数学方程,称为动态模型。
在自动控制系统的分析中,主要是研究动态模型。
微分方程中,各变量的导数表示了它们随时间变化的特性。
因此,微分方程完全可以描绘系统的动态特性,微分方程是物理系统数学模型中最基本的一种。
系统的数学模型可以用实验法和分析法建立。
应当指出:同一个控制系统的数学模型可以有许多不同的形式,另外,对于一个具体系统而言,为了在系统分析中,既不包罗万象,把系统数学模型搞得很复杂,又不要忽略主要因素,而失去系统的准确性,必须对系统有全面的、透彻的了解。
得到控制系统的一个既简化又准确的数学模型,这是我们的根本出发点。
2-2 建立系统数学模型的一般步骤由于控制系统是由各种功能不同的元件组成的,因此,要正确建立系统的运动方程式,首先必须研究系统中各个元件的运动方程式,以及这些元件在控制系统中相互联系时的彼此影响等问题。
应当指出,在列写系统和各元件的运动方程式时,往往将系统分成若干个环节,能使问题简化。
所谓环节,就是指可以组成独立的运动方程式的那一部分。
控制系统的数学建模方法

控制系统的数学建模方法控制系统是指借助外部设备或内部程序,以使被控对象按照预定的要求或指令完成某种控制目标的系统。
在控制系统的设计过程中,数学建模是十分重要的一步。
通过数学建模,可以将实际的控制过程转化为数学方程,使得系统的行为可以被合理地分析和预测。
本文将介绍几种常用的数学建模方法,包括常微分方程模型、传递函数模型和状态空间模型。
1. 常微分方程模型常微分方程模型是控制系统数学建模中常用的方法。
对于连续系统,通过对系统的动态特性进行描述,可以得到常微分方程模型。
常微分方程模型通常使用Laplace变换来转化为复频域的传递函数形式,从而进行进一步的分析和设计。
2. 传递函数模型传递函数模型是描述线性时不变系统动态特性的一种方法。
它以输入和输出之间的关系进行建模,该关系可以用一个分子多项式与一个分母多项式的比值来表示。
传递函数模型常用于频域分析和控制器设计中,其数学形式直观且易于理解,适用于单输入单输出系统和多输入多输出系统。
3. 状态空间模型状态空间模型是一种将系统的状态表示为向量形式,并以状态方程描述系统动态行为的方法。
通过状态变量的引入,可以将系统行为从时域转换到状态空间,并进行状态变量的观测和控制。
状态空间模型具有较强的直观性和适应性,能够较好地描述系统的内部结构和行为特性,广泛应用于现代控制理论和控制工程实践中。
4. 神经网络模型神经网络模型是一种模拟人脑神经元间相互连接的计算模型,可以用于控制系统的建模与控制。
通过训练神经网络,可以实现对系统的非线性建模和控制,对于复杂控制问题具有较强的适应性和鲁棒性。
5. 遗传算法模型遗传算法是一种通过模拟生物进化过程,优化系统控制器参数的方法。
通过设定适应度函数和基因编码方式,利用遗传算法优化求解出最优控制器参数。
遗传算法模型广泛应用于控制系统自动调参和优化设计中,具有较强的全局寻优能力和较高的收敛性。
数学建模是控制系统设计的重要环节,通过合理选择建模方法,可以更好地描述和分析系统的动态特性,并基于此进行控制器设计和性能评估。
第二章 控制系统的数学模型

= Ur (s)
传递函数为: di + u ur= R · + L i c dt Uc (s) 1 = duc G (s) = i = C dt Ur (s) LCs2 + RCs + 1
电气系统三要素:电阻、电容、电感
+ ί(t) R –
u(t)= ί(t)· R
u (t )
ί(t) C
–
u(t) ί(t)= R
图2-9 速度控制系统
+
R1 R2 R2 R1 k2
ui
R1
k1 u 1
c
u2
功 ua 放
m
SM
ω
负 载
ut
TG
运算放大器
uu+ ii+
_ +
+
Add
uo
差模输入电压等于零
u+= u-
运放同相输入端与反向输入端两点的电压相等,如同该 两点短路一样,称为虚短。
i+=i-=0
运放同相输入端与反向输入端的电流都等于零,如同该 两点被断开一样,称为虚断。
Tm s m ( s ) m (t ) K1U a ( s )
Tm s 1 m ( s) K1U a ( s)
m ( s) K1 G ( s) U a ( s) Tm s 1
m ( s) K2 G ( s) M c ( s) Tm s 1
传递函数的性质(续)
(5)传递函数与微分方程有相通性;
b1s b2 C (s) G ( s) R( s ) a0 s 2 a1s a2
对角线相乘
a0 s 2 a1s a2 C ( s ) b1s b2 R ( s )
控制系统的数学模型及传递函数【可编辑全文】

可编辑修改精选全文完整版控制系统的数学模型及传递函数2-1 拉普拉斯变换的数学方法拉氏变换是控制工程中的一个基本数学方法,其优点是能将时间函数的导数经拉氏变换后,变成复变量S的乘积,将时间表示的微分方程,变成以S表示的代数方程。
一、拉氏变换与拉氏及变换的定义1、拉氏变换:设有时间函数,其中,则f(t)的拉氏变换记作:称L—拉氏变换符号;s-复变量; F(s)—为f(t)的拉氏变换函数,称为象函数。
f(t)—原函数拉氏变换存在,f(t)必须满足两个条件(狄里赫利条件):1)在任何一有限区间内,f(t)分断连续,只有有限个间断点。
2)当时,,M,a为实常数。
2、拉氏反变换:将象函数F(s)变换成与之相对应的原函数f(t)的过程。
—拉氏反变换符号关于拉氏及变换的计算方法,常用的有:①查拉氏变换表;②部分分式展开法。
二、典型时间函数的拉氏变换在实际中,对系统进行分析所需的输入信号常可化简成一个成几个简单的信号,这些信号可用一些典型时间函数来表示,本节要介绍一些典型函数的拉氏变换。
1.单位阶跃函数2.单位脉冲函数3.单位斜坡函数4.指数函数5.正弦函数sinwt由欧拉公式:所以,6.余弦函数coswt其它的可见表2-1:拉氏变换对照表F(s) f(t)11(t)t三、拉氏变换的性质1、线性性质若有常数k1,k2,函数f1(t),f2(t),且f1(t),f2(t)的拉氏变换为F1(s),F2(s),则有:,此式可由定义证明。
2、位移定理(1)实数域的位移定理若f(t)的拉氏变换为F(s),则对任一正实数a有, 其中,当t<0时,f(t)=0,f(t-a)表f(t)延迟时间a. 证明:,令t-a=τ,则有上式=例:, 求其拉氏变换(2)复数域的位移定理若f(t)的拉氏变换为F(s),对于任一常数a,有证:例:求的拉氏变换3、微分定理设f(t)的拉氏变换为F(s),则其中f(0+)由正向使的f(t)值。
控制系统的数学模型(卢京潮课件)

y( x ) y( x ) y( x0 )
E0 sin x0 ( x x0 )
即有
y E0 sin x0 x
线性定常微分方程求解
微分方程求解方法
复习拉普拉斯变换有关内容(1)
1 复数有关概念
(1)复数、复函数 复数
s j
复函数 F ( s ) Fx ( s ) jF y ( s ) 例1 F ( s ) s 2 2 j
§2.2 控制系统的数学模型—微分方程
§2.2.1 线性元部件及系统的微分方程
例1 R-L-C 串连电路
ur ( t ) L di ( t ) Ri( t ) uc ( t ) dt du ( t ) i (t ) C c dt
d 2 uc ( t ) duc ( t ) LC RC uc ( t ) 2 dt dt
例7 例8 例9
1 1 L 1 t e Le ss sa sa s3 s - 3t 2 L e cos 5t 2 2 2 s 3 5 s 5 s s 3
f (t ) e
F ( s ) F ( s A) 右 dt源自00
0
0-f 0 s f t e st dt sF s f 0 右
L f n t s n F s s n-1 f 0 s n- 2 f 0 sf n- 2 0 f n1 0
d 2 uc ( t ) R duc ( t ) 1 1 u ( t ) ur ( t ) c 2 dt L dt LC LC
§2.2.1 线性元部件及系统的微分方程(1)
现代控制理论第一章-控制系统数学模型

y b0
b1
bn1
xn
注:如果输入项的导数阶次和输出项导数阶次相同,则有d。
Y (s) R(s)
bn s n an s n
b1s b0 a1s a0
d
bn1sn1 b1s b0 ansn a1s a0
例1-4 已知描述系统的微分方程为 y18y 192y 640y 160u 640u
y bn1z(n1) b1z b0 z b0 x1 b1x2 bn1xn
写成矩阵形式
x1
x2
xn
0
0
0
a0
1 0 0 a1
0 1 0 a2
0 0 0 a3
0
0
0 1 an1
x1 x2
xn
0 u 0
1
x1
第1章 控制系统数学模型
本课程的任务是系统分析和系统设计。而不论是系统分析还是系 统设计,本课程所研究的内容是基于系统的数学模型来进行的。因 此,本章首先介绍控制系统的数学模型。
本章内容为: 1、状态空间表达式 2、由微分方程求出系统状态空间表达式 3、传递函数矩阵 4、离散系统的数学模型 5、线性变换(状态变量选取非唯一)
写成矩阵形式
x1 0 1 0 x1 0
x2
0
0
1
x2
0
u
x3 a0 a1 a2 x3 b0
x1
y 1
0
0
x2
x3
状态图如下:
一般情况下,n 阶微分方程为: y(n) an1 y(n1) a1 y a0 y b0u
选择状态变量如下:
x1 y x1 x2 y x2 x3 y
0
x2
1 M
控制系统的数学模型

/view/4306d34ef7ec4afe04a1dfc0.html第二章控制系统的数学模型本章目录2.1 列写系统微分方程式的一般方法2.2 非线性数学模型的线性化2.3 传递函数2.4 框图和系统的传递函数2.5 信号流程图与梅逊公式2.6 状态空间模型简介2.7 数学模型的MATLAB描述小结本章简介概述:1. 数学模型 ------描述系统变量之间关系的数学表达式2. 建模的基本方法: (1) 机理建模法(解析法)(2) 实验辩识法3. 控制系统数学模型的主要形式:(1) 外部描述法: 输入--输出描述(2) 内部描述法:状态变量描述系统是指相互联系又相互作用着的对象之间的有机组合。
许多控制系统,不管它们是机械的、电气的、热力的、液压的,还是经济学的、生物学的等等,都可以用微分方程加以描述。
如果对这些微分方程求解,就可以获得控制系统对输入量(或称作用函数)的响应。
系统的微分方程,可以通过支配着具体系统的物理学定律,例如机械系统中的牛顿定律,电系统中的克希霍夫定律等获得。
为了设计(或者分析)一个控制系统,首先需要建立它的数学模型,即描述这一系统运动规律的数学表达式。
有三种比较常用的描述方法:一、是把系统的输出量与输入量之间的关系用数学方式表达出来,称之为输入--输出描述,或端部(外部)描述,例如微分方程式、传递函数和差分方程。
第二种不仅可以描述系统的输入、输出间关系,而且还可以描述系统的内部特性,称之为状态变量描述,或内部描述,它特别适用于多输入、多输出系统,也适用于时变系统、非线性系统和随机控制系统。
另一种方式是用比较直观的方块图模型来进行描述。
同一控制系统的数学模型可以表示为不同的形式,需要根据不同情况对这些模型进行取舍,以利于对控制系统进行有效的分析。
建立系统数学模型的方法有:解析法和实验法。
本章所讨论的数学模型以传递函数和方块图为主,有关状态空间模型的说明本书仅进行简单介绍。
2.1 列写系统微分方程式的一般方法回目录本节应用解析法来建立系统的数学模型。
控制系统的数学模型1控制系统的运动方程式

U1 i
C
U2
解:根据基尔霍夫定律有 U U U U 1 R L C U Ri R di U L L dt 1 U U idt 2 C C di U Ri L U 1 2 dt 对(2)式求导得 代入(3)并整理得 du 2 LC RC 2 U U 2 1 dt dt2 d2U (1)
Y(S)
X1(S)
E(S) G1(S)
X2(S)
G2(S)
G1 (S)[X1 (S) - Y(S)] (4) (3)代入(4) X 2 (S) G1 (S)[X1 (S) - G 2 (S)X 2 (S)] X 2 (S) G1 (S)X1 (S) - G1 (S)G 2 (S)X 2 (S) X 2 (S) G1 ( S ) (S) X 1 ( S ) 1 G1 ( S )G2 ( S )
H(S)
C(S)
( S ) R( S ) Y ( S )
Y ( S ) H ( S )C ( S ) C ( S ) G( S ) X 2 ( S ) X 2 (S) X1(S) F(S) C(S) G1 ( S )G 2 ( S ) G2 ( S ) R( S ) F (S) 1 G1 ( S )G 2 ( S ) H ( S ) 1 G1 ( S )G 2 ( S ) H ( S )
C i1 R1 R2 U0
i Ui
解: i i1 i2 ui i1R1 u0 u0 iR2 1 i dt R i 11 c 2 由(1)式有 I1(S)
I(S) I1 (S) I2 (S) Ui (S) I1 (S)R1 U0 (S) U0 (S) R2I(S) R1I1 (S) 1 I2 ( S) CS I(S) ++ I2(S)
控制系统的数学模型

控制系统的数学模型
控制系统是一种能够自动实现某种规律性动态过程的机电设备,具有广泛的应用和重要的意义。
为了更好地理解和设计控制系统,我们需要学习控制系统的数学模型。
控制系统的数学模型是对系统动态行为的精确描述,通常用微分方程或差分方程来表示。
这个模型是由系统的结构和性质所决定的,因此在设计控制系统时需要考虑到不同方面的因素。
在实际应用中,通常采用系统的状态空间描述法来建立数学模型,其基本形式是:x(t+1) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)
其中,x(t)为系统的状态向量,表示系统各输出量之间的关系;u(t)为输入量向量,表示系统受控的变量;y(t)为输出量向量,表示系统运行时的响应状态;A、B、C、D是系统常数矩阵,分别表示状态转移矩阵、输入特性矩阵、输出矩阵和直流通道矩阵。
这个模型允许我们对控制系统的状态、输入、输出之间的关系进行全面的分析和掌握。
控制系统的数学模型建立好之后,我们需要对其进行仿真和实验验证。
通过模拟相应的输入和输出,可以检验数学模型的可靠性和精度,并找出有误差的地方进行调整和改进。
同时,也能够为控制系统的设计和优化提供有力的指导和参考。
综上所述,控制系统的数学模型是其设计和优化的基础和关键,
建立好数学模型能够更全面地分析和预测系统的运行状态,并为进一
步进行仿真和实验提供必要的基础。
因此,在学习和设计控制系统时,需要注重数学模型的学习和应用,以提高系统的可靠性和实用性。
控制系统的数学模型

课后作业:习题2-1
板书或旁注: 1. 传递函数的来自本概念的介绍 (16分钟)2. 图2-6、2-7既比例环节的讲解
3. 图2-8、2-9即惯性环节的讲解
(16分钟)
(16分钟)
4. 图2-10、2-11既积分环节的讲解
5. 图2-12、2-14既微分环节的讲解
(16分钟)
(16分钟)
教学内容:
第三节 控制系统的传递函数
式中ω ——角速度,单位s-1
ce——电动势常数,单位v.s 电磁力矩 M cm ia 式中cm——力矩常数,单位㎏.m/A d 转动方程:T TL J dt 机械力矩平衡方程式: f w M L J dw M
dt
式中f——集中粘性摩擦系数,单位 ㎏.m.s
ML——负载力矩,单位 ㎏.m
(3)系统的实际传递函数,一般有n≥m。
(4)一个传递函数只能表达一对输入输出间的关系。因而在分析 和求取传递函数时必须明确是哪个输入与哪个输出间的关系。同一 系统﹑不同输入则传函不同。 (5)不同元件和系统,物理构成不同,但可能有相同的传递数,
传函相同则对应物理量就有相同的动态特性。
(6)在作不同用途的分析时,传递函数有不同的表示方法,且各 系数有不同的物理意义。将上式G(s)分解。 在作不同用途的分析时,传递函数有不同的表示方法,且各系 数有不同的物理意义。将上式G(s)分解。
第二节 控制系统的动态微分方程
一﹑列写动态微分方程的一般方法 1.确定系统或各元件的输入变量﹑输出变量。系统的 给定或 扰动量都是输入变量,而被控量是输出变量。 2.从系统的输入端开始,依据各变量所付值的物理归(如电 路中的基尔霍夫定律;力学中的牛顿定律;热力学 定律以及 能量守衡定律等),列写出在变化过程中的各个动态微分方 程。并考虑其它因数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、微分方程解的形式
4、小结
三、传递函数零极点及传递系数
2、传递函数性质
§2.3典型环节数学模型
一个物理系统是由许多元件组合而成的,而各种元件的具体结构和作用原理 是多种多样的,例如电学系统,热力系统,机械系统,但是若抛开具体的结构和 物理特点,按其运动规律和数学模型的共性,就可以把一个系统划分为几个典型 环节:比例环节,惯性环节,积分环节,微分环节,振荡环节,滞后环节。
Ea Cem t
Jm
dm t
dt
fm
Mm t
Mct
M m t Cmia t
La J m
d
2m t
dt 2
LaBiblioteka fmRa J mdm t
dt
Ra
fm
CmCe
m t
Cmua t
La
dMc t
dt
RaMc t
工程中La很小可忽略得
Ra
Jm
dm t
dt
Ra
fm
CmCe
m
t
Cmua t
Ra M C
(1)根据元件工作原理及在控制系统中的作用确 定输入量和输出量
(2)分析元件在工件中所遵循的物理,或化学规 律,列写微分方程
(3)消去中间变量,得到输入输出间的微分方程
2、相似原理
不同系统可以用相同的微分方程描述——仿真
§2.2控制系统频域数学模型(传递函数)
一、传递函数的定义和性质
1、传递函数:零初始条件下,系统输出量拉氏变换与输入量拉氏变换的比。 线性定常系统微分方程:
第二章 控制系统数学模型
§2.0 引言 §2.1控制系统时域数学模型(微分方程)
§2.2控制系统频域数学模型(传递函数)
§2.3典型环节数学模型 §2.4控制系统结构图与信号流图
§2.0 引言
一、为什么要建模? 工程的最终目的是建造实际的物理系统以完成某些规定的任务,而用控制理论 分析、设计一个自动控制系统,首先需要建立实际物理系统的数学模型。
一、线性元件微分方程
例1、RLC无源网络
L
di dt
Ri u0
ui
i C du0 dt
LC
d 2u0 dt 2
RC
du0 dt
u0
ui
TLTC
d 2u0 dt 2
TC
du0 dt
u0
ui
其中(
TL
L R
,TC
RC
)
例2、电枢控制直流电动机
La
dia t
dt
Raia t
Ea
ua t
实际系统 简化系统的假设 物理模型数学描述 数学模型
Δ 理想化的简化假设的目的是为于便于分析设计,但这将影响模型的精度, 所以必须在模型的简单性及分析结果的精确性之间折衷。
Δ 建模过程实质上是对控制系统,首先是对被控对象调查研究的过程,只有通 过对系统的仔细调研忽略掉一些非本质因素,才能建立起既简单又能反映 实际物理过程的模型。
二、系统建模的两种基本方法
1. 机理分析法 2. 实验辩识法 (1)飞升实验法 (2)频率特性测试法 (3)参数辩识
三、线性定常系统的数学模型
1. 外部描述(I/O描述) (1)微分方程 (2)传递函数 (3)频率特性 2.内部描述 (1)状态方程 (2)多项式矩阵
§2.1 控制系统时域数学模型(微分方程)
t
如果 J m , Ra很小进一步简化为
Cem (t) ua (t)
例3、弹簧,质量阻尼器机械位移系统
F ma
F (t) f dx(t) kx(t) m d 2 x(t)
dt
dt 2
m
d
2 x(t) dt 2
f
dx(t) kx(t) F (t) dt
小结:
1、列写元件微分方程步骤
把一个复杂的物理系统划分为若干个典型环节,利用传递函数和方框图(或 信号流图)进行研究,已成为研究系统的一种重要方法。
输出与输入之间的一种固定比例关系
五、振荡环节
3、
=
证明:
§2。4控制系统结构图与信号流图
G1 (s )
G1 (s )