Pylex玻璃熔窑设计概述

合集下载

玻璃熔窑设计三章.池窑尺寸设计

玻璃熔窑设计三章.池窑尺寸设计

玻璃熔窑设计三章.池窑尺寸设计第3章池窑尺寸及其他的设计3.1 熔化部尺寸的设计设计步骤如下:①熔化量熔化量取500 t/d②熔化率浮法熔窑一般取2.30~2.50 t/(m2·d)之间;熔化率取的过小,窑炉不节能,取得过大,熔化操作困难,或是达不到设计容量,所以取2.4 t/(m2·d)。

则熔化面积为:F m=(m2)③熔化面积及其尺寸前脸墙距1#小炉中心线4.0 m,小炉中心线间距3.1 m,共6对小炉。

小炉间距大,可以有效提高火焰的覆盖面积,1#小炉前脸墙距离长些,可以适当提高1#小炉的火焰温度,加速配合料的熔化,提高熔化率和热效率;另外有利于减轻对前脸墙或L型吊墙的烧损,减轻飞料对1#、2#小炉蓄热室格子体的堵塞、侵蚀。

则熔化面积长L=4.0+3.1×5+1.0=20.5 (m)宽B=考虑到池底排砖,横向取整块砖,池底砖:300×300×1000 mm,在排砖时不考虑实际存在的砖缝隙。

则有由于砖必须是整块的,故需要34块池底砖。

熔化面积宽B'=34×0.3=10.2 (m)长宽比浮法熔窑的长宽比在1.95~2.50之间,所以长宽比合理。

熔化面积F=B'× L=10.2×20.5=209.10 (m2)实际熔化率K=()末对小炉(6#)中心线后1m到卡脖的距离取14.5m则熔化部长L'=14.5+L=35 (m)F熔化部=B'× L'=10.2×35=357.0 (m2)合理。

熔化部的长宽比''3.2 池窑深度池深选取选取h=1.2 m选取浅池的原因是减少玻液的回流,节能效果好;由于上层玻璃液液流厚度与熔化池深成正比,池深变浅,上层液流厚度随之减少,有利于玻璃液澄清,提高玻璃的质量。

但是浮法玻璃含铁量较低,玻璃液热透射性较强,将使池底温度提高较多,池底玻璃液的流动性增强,对池底砖的冲刷加剧,所以在池底结构上要选择较好的铺面砖,本设计选取电熔无缩孔锆刚玉砖。

玻璃的熔制及熔窑.ppt

玻璃的熔制及熔窑.ppt
连续通道式结构单位面积受热面积小,但它的格 子孔道互不相通,可以防止气流分层,使气体分 布均匀。
编篮式是连续通道式格子体结构的改进形式,由 于格子砖的两个端面都是受热面,所以其单位格 子体体积的受热面积最大,而且稳定性也好。
十字形格子砖是一种新型格子砖,是AZS电熔浇 注砖,耐高温侵蚀性能好,容积密度大、热容量 高、热导率大等特性。蓄热效能好,周期温度波 动小,是一种理想的格子体。
3 玻璃的熔制及熔窑
3.2.2 热源供给及余热回收部分
3.2.2.1 热源供给 主要指小炉和燃烧喷嘴。 小炉是玻璃熔窑的重要组成部分,是使燃料和
空气预热、混合、组织燃烧的配置。 (1)燃油与天然气小炉 (2) 燃煤气小炉
A.小炉结构:应保证火焰有一定长度、亮度、刚 度、角度,有足够的覆盖面积,不发飘,不分层, 还要满足窑内所需的温度和气氛的要求。
e.炉条碹
炉条是承受蓄热室格子体重力的砖材结构。实际上 也是拱碹结构,是由单一的碹砖砌成的一条一条拱 碹,条与条之间留空以通气体,俗称炉条碹。
炉条碹是承受格子体重力的拱碹,上面码砌格子砖, 因此拱碹上面必须找平。
找平的方法有几种: ①在拱碹的弧形上面用爬碴砖砌平 ②直接用上面平直而下面弧形的碹砖砌成。
玻璃池窑那些部位耐火材料受到的侵蚀 最严重?举例说明蓄热室格子体耐火材 料的配置方案?
A 连通式蓄热室 熔窑一侧小炉下面的空气蓄热室为连通的一个 室,煤气蓄热室也为连通的一个室。 气流分布不均,容易形 成局部过热使格子砖很快烧损,目前已不再使用。
B 分隔式蓄热室 熔窑一侧蓄热室以每个小炉分成若干个互不相通的独立室, 气体分配分别由各分支烟道上的闸板调节,并分别与煤气及 空气支烟道上的闸板调节,并分别与煤气及空气支烟道相通。 其结构特点是气体分配调节方便,热修条件较好,但分隔墙 占据较多空间,减少了格子体的有效体积。是最普遍采用的 方式之一.2.2 余热回收部分

玻璃窑炉结构及窑炉用耐火材料性能.

玻璃窑炉结构及窑炉用耐火材料性能.

5、热源供给:蓄热室
1)用途:蓄热室是利用耐火材料做蓄热体 (称为格子体)蓄积从窑内排出烟气的部分 热量,用来加热进入窑内的助燃空气 ---这样不但可以利用烟气余热,而且使得助燃 空气加热到较高温度,有利于提高作业温度; ---同时还起到把窑内废气排出及助燃空气 进入的通道;
2)蓄热室是什么结构和材质? 蓄热室是由前、后墙、隔墙及蓄热室内格子体组成, 使用温度分为上部为1200~1500℃,中部为 800~1200℃,下部为<800℃: a.蓄热室碹(砖厚350mm,外有3*64mm保温砖),其使 用条件为粉料的飞散,高温的温度变化,氧化还原反应, 材质为优质硅砖; b.蓄热室目标墙(砖厚350mm,外有146 的粘土砖及 178mm保温砖)其使用条件同蓄热室碹,材质为 AZS33#锆刚玉砖或高纯电熔镁砖; c.主墙和隔墙:上部(砖厚350mm),使用条件同蓄热室 碹,材质为优质硅砖;中部(砖厚230mm),使用条 件为中温的温度变化,材质为高铝砖或镁质砖;下部 (砖厚350mm),使用条件为低温的温度变化,材质 为低气孔粘土砖。 d.底部炉条碹,使用条件同下部格子砖,材质为低气孔率
卡脖出 口矮碹 卡脖吊 平碹 熔化部 大碹 卡脖入口 J形吊墙
卡脖池底
卡脖大 水包
池壁
2)玻璃液分隔装置有卡脖、冷却水包、窑坎等: ---卡脖是熔化部和冷却部之间的一段缩窄窑池,与 矮碹、吊墙配合使用,对熔化部和冷却部之间的 气体空间及玻璃液起分隔作用,从而降低玻璃液 的温度; ---冷却水管是由一组通过冷却水的圆形或方形钢管 组成,水管高度根据实用确定。冷却水管附近的 玻璃液受冷却后,形成粘度较大的不动层,构成 一道挡墙、降温作用大,不但可以阻挡未熔化的 浮渣进入冷却部,而且通过调节水管的沉入深度, 可以控制进入冷却部玻璃液的质量; ---窑坎,是斜坡式分隔能阻挡玻璃液的对流,窑的 纵向有多个窑坎,如澄清带,进入卡脖及进入工 作部前端均可设置窑坎。

全氧燃烧玻璃熔窑的结构和应用第一章概述

全氧燃烧玻璃熔窑的结构和应用第一章概述
(7)生产成本总体下降:举例来说,600t/d优质浮法玻璃熔窑采用 全氧燃烧技术,油价按照3500元/吨测算,每年可为企业创造1600多万 元的附加直接经济效益,而且从长远看燃料价格的进一步上升是必然趋 势。
(8) 天然气/氧气预热技术。 可以通过利用废气余热把天然气和氧气预热到400℃以上进行燃烧, 在普通全氧窑炉的基础上还能再节约 5-10%能耗。 (9)热化学蓄热技术。 利用废气中 H2O、CO2与 燃料CH4热裂解反应生成CO和H2,然后再进 入窑炉内燃烧。相当于给燃料预热,同时提高火焰辐射能力。
1、概述
1.2 全氧燃烧技术的基本原理
纯氧燃烧技术最早主要被应用于增产、延长窑炉使用寿命以及减少 NOx排放,但随着制氧技术的发展以及电力成本的相对稳定,纯氧燃烧 技术正在成为取代常规空气助燃的更好选择,这得益于纯氧燃烧技术在 节能、环保、质量、投资等方面的优势。
对于日用玻璃和建材行业,以前多采用低热值燃料如发生炉煤气,由 于燃料本身含有大量N2和CO2,用它做全氧窑炉燃料时节能减排效果大 打折扣,同时由于燃料成本低廉,节省的燃料费用难以抵消氧气的制备 费用,因此很少采用全氧燃烧技术。当前环保要求玻璃窑炉采用清洁燃 料天然气,由于天然气成本居高不下,采用全氧燃烧窑炉的优势越来越 明显。
1、概述
表1光伏压延玻璃全氧燃烧和空气燃烧的窑炉对比(燃料为天然气)
1、概述
1.2 全氧燃烧技术的基本原理
在玻璃熔制过程中所需要的热量主要是通过燃料和氧气在高温下进行 燃烧反应而获得,传统的燃料燃烧反应所需要的氧气是从空气中获得, 这样大量的氮气被无谓地加热,并在高温下排入大气,同时,氮气在高 温下还与氧气反应生成NOx,NOx气体排入大气层极易形成酸雨造成环境 污染。甲烷的燃烧反应: 空气-燃料:CH4+2O2+8N2→2H2O+CO2+8N2 每Mcal热需1.97Nm3空气 氧气-燃料:CH4+2O2 →2H2O+CO2 每Mcal热需0.22Nm3氧气

玻璃熔制及熔窑---熔窑1

玻璃熔制及熔窑---熔窑1

玻璃的池窑
(浮法玻璃熔窑各部分结构尺寸)
大碹:平碹:散热面积小。 拱碹:合适的股跨比,燃油的一般在1/7~1 /8。 股高越小,散热越小,但横推力越大。保证足够强度的前 提下适当减小股高。 材质:楔形的优质硅砖或电熔刚刚玉砖。砖长不得小于砖 厚的一半,砌筑时横向砖缝错开,纵横向砖缝不得大于 1mm,不得用黏土质泥浆砌筑。 厚度:以大碹跨度的1/20~1/25来考虑。 大碹的节数:一般分为3节,每节之间留80~100mm膨胀缝, 两端留要大于120mm的膨胀缝 。
玻璃的池窑
(浮法玻璃熔窑各部分结构尺寸)
投料易控,但易 飞料堵塞格子体。
振动式投料机
玻璃的池窑
(浮法玻璃熔窑各部分结构尺寸)
螺旋式投料机
玻璃的池窑
(浮法玻璃熔窑各部分结构尺寸)
a.投料机:
弧毯式投料机
螺旋式投料机
斜毯式投料机(后端漏料 )
玻璃的池窑
(浮法玻璃熔窑各部分结构尺寸)
弧毯式尺寸: 2.7/2.8/3.0/3.4/ 4.0/4.5/10.3米 斜毯式尺寸: 0.85/1米
弧毯式投料机
玻璃的池窑
(浮法玻璃熔窑各部分结构尺寸)
特点:投料池的宽度一般为熔化池宽度的80%以上。所玻璃 与配合料混合在一起加料,可以连续薄层加料,布料均匀, 覆盖面积大。 为目前使用最普遍的加料机。 b.投料口与投料池 投料口:由投料池与上部挡墙(前脸墙)组成 。 投料池:突出于窑池外面与池窑相通的矩形小池。 要求:配合料能按时按量加入,并且保持薄层和覆盖面尽可能 大,投料池内的玻璃液不冻结,窑内外没有飞料 。 投料口工作环境:温度高,散热慢,受到配合料的化学侵蚀与 机械磨损,尤其在拐角处更易损伤,所以经常选用优质耐火材 料电熔锆刚玉砖。。

玻璃熔窑设计

玻璃熔窑设计

目录前言 (1)第一章浮法玻璃工艺方案的选择与论证 (3)1.1平板玻璃工艺方案 (3)1.1.1有曹垂直引上法 (3)1.1.2垂直引上法 (3)1.1.3压延玻璃 (3)1.1.4 水平拉制法 (3)1.2浮法玻璃工艺及其产品的优点 (4)1.3浮法玻璃生产工艺流成图见图1.1 (5)图1.1 (5)第二章设计说明 (6)2.1设计依据 (6)2.2工厂设计原则 (7)第三章玻璃的化学成分及原料 (8)3.1浮法玻璃化学成分设计的一般原则 (8)3.2配料流程 (9)3.3其它辅助原料 (10)第四章配料计算 (12)4.1于配料计算相关的参数 (12)4.2浮法平板玻璃配料计算 (12)4.2.1设计依据 (12)4.2.2配料的工艺参数; (13)4.2.3计算步骤; (13)4.3平板玻璃形成过程的耗热量的计算 (15)第五章熔窑工段主要设备 (20)5.1浮法玻璃熔窑各部 (20)5.2熔窑主要结构见表5.1 (21)5.3熔窑主要尺寸 (21)5.4熔窑部位的耐火材料的选择 (24)5.4.1熔化部材料的选择见表5.3 (24)5.4.2卡脖见表5.4 (25)5.4.3冷却部表5.5 (25)5.4.4蓄热室见表5.6 (25)5.4.5小炉见表5.7 (26)5.5玻璃熔窑用隔热材料及其效果见表5.8 (26)第六章熔窑的设备选型 (28)6.1倾斜式皮带输送机 (28)6.2毯式投料机 (28)6.3熔窑助燃风机 (28)6.4池壁用冷却风机 (29)6.5碹碴离心风机4-72NO.16C (29)6.6L吊墙离心风机9-26NO11.2D (29)6.7搅拌机 (29)6.8燃油喷枪 (29)6.9压缩空气罐C-3型 (29)第七章玻璃的形成及锡槽 (30)第八章玻璃的退火及成品的装箱 (32)第九章除尘脱硫工艺 (33)9.1除尘工艺 (33)9.2烟气脱硫除尘 (33)第十章技术经济评价 (34)10.1厂区劳动定员见表10.1 (34)10.2产品设计成本编制 (35)参考文献 (38)致谢 (39)摘要设计介绍了一套规模为900t/d浮法玻璃生产线的工艺流程,在设计过程中,原料方面,对工艺流程中的配料进行了计算;熔化工段方面,参照国内外的资料和经验,对窑的各部位的尺寸、热量平衡和设备选型进行了计算;分析了环境保护重要性及环保措施参考实习工厂资料,在运用相关工艺布局的基础下,绘制了料仓、熔窑、锡槽、成品库为主的厂区平面图,具体对熔窑的结构进行了全面的了解,绘制了熔窑的平面图和剖面图,还有卡脖结构图,整个设计参照目前浮法玻璃生产的主要设计思路,采用国内外先进技术,进行全自动化生产,反映了目前浮法生的较高水平。

玻璃工艺学7玻璃熔窑

玻璃工艺学7玻璃熔窑
玻璃:由熔融物冷却硬化而得的非晶态固体物质
玻璃在无机非金属材料工业中属于一种比较特殊的制品。
特殊性表现在物理化学性 能上和生产工艺上
原料的制备
玻璃生产过程 玻璃液熔制
玻璃产品的成型
玻璃制品的退火
将玻璃配合料在合理温度制度下熔融成液相, 并将其均化、澄清,使其成为透明的液体。
在玻璃窑内完成
玻璃池窑的分类
C.窑池 a.池壁 池壁砖的结构
b.池底 池底的结构
D.耳池
耳池:布置在平板玻璃两侧、与窑池相同、向外突出的长方形或正方形小池 耳池处玻璃液温度较低,其处玻璃液横向流动加强,对玻璃液流能够起到调 节和澄清作用
(3)分隔装置
是指熔化部与冷却部之间的分隔装置。 包括玻璃液的分隔装置和气体空间的 分隔装置。
(3)格子砖型式 新型的除了众所周知的十字型电熔格子砖外, 还有筒子型(Chimney)和组合型 (Integrated),就其形式亦可称为工字 型与双工字型。
5.2.3.3 玻璃熔窑保温
参看以前讲述.
5.2.4 燃烧器的选型及其安装布置
5.2.4.1 燃烧器的设计选型及其要求 (1) 雾化效果好,在熔窑内部能完全燃烧; (2) 使燃料燃烧的热量尽可能多地传递给配合料和 玻璃液,尽可能少地传递给上部结构; (3) 能合理组织火焰,使喷出火焰符合熔化要求; (4) 火焰对耐火材料砌体烧损要尽可能的少; (5) 不污染玻璃液; (6) 便于操作和维修,使用寿命长。
小炉的组 成及作用
喷火口 使预燃的混合气体加速,形成具有一定速度和刚度 小炉的结构
的火焰进入窑内。它直接关系到火焰的长度、厚度、 宽度、距液面的距离及燃烧程度
结构特征:象一个鸭头或鹅头见图所示

第八章玻璃的熔制与窑炉

第八章玻璃的熔制与窑炉
玻璃工艺学
11
铅硅酸盐玻璃
1 Na 2O K 2O PbO 8 其中:氧化物—各氧化物在玻璃中的重量百分数; —表示玻璃相对难熔的特征值; 与值相应的熔化温度
SiO 2Fra bibliotek值
6
1450~1460
5.5
1420
4.8
1380~1400
4.2
1320~1340
熔化温度℃
注意:常数是一经验值,确定熔制温度时,此常数不能认 为是唯一的决定因素,它未考虑如粒度、温度等因素。
玻璃工艺学 6
2.多组分反应:除了包括单组分和双组分的加热反应特点外, 还包括含自身反应特点,如复盐的反应;形成低共熔物,使得熔制 温度低,所以组成越多,熔制温度越低;硅酸盐的生成等。 如:生成CO2的来源有碳酸盐的单组分分解、碳酸盐生成硅酸 盐的反应、复盐的分解等。 因此配合料的加热反应基本上是单组分和多组分加热反应的综 合。
1000℃
900℃
SiO2+Na2O+CaO反应速度与温度
玻璃工艺学 8
分解% 100
75 50 25 0
4
3
2
1
10 20
30 40
50
60
70 80 分钟
CaCO3与SiO2在不同比例时的反应速度 1—CaCO3;2—CaCO3+SiO2;3—CaCO3+2SiO2; 4—CaCO3+3SiO2;
此外,还有部分气体吸附在玻璃表面上(量很少)。 玻璃的澄清过程一般是指排除可见气泡,完全排除包括化 学结合气体在内的玻璃中的气体(去气)只有采用特殊方法熔 制才可实现。 (三)气泡的生成和长大 气泡的形成即是玻璃中新相的形成,分两个阶段: 泡核的形成和气泡的长大 1.小于临界泡核的,不能长大,将溶解于玻璃内;大于临 界泡核的,长大。

玻璃熔窑设计-2---副本

玻璃熔窑设计-2---副本

目录目录I〔一〕原始资料11.产品:机制啤酒瓶12.出料量:13.玻璃成分〔设计〕〔%〕:14.料方与原料组成15.碎玻璃数量:16.配合料水分:27.玻璃熔化温度:28.工作部玻璃液平均温度:29.重油。

210.雾化介质:211.喷嘴砖孔吸入的空气量:212.助燃空气预热温度:213.空气过剩系数α:214.火焰空间外表温度:215.窑体外外表平均温度〔℃〕216.熔化池玻璃液温度〔℃〕317.熔化部窑顶处压力:318.窑总体简图见图。

3(二)玻璃形成过程耗热量计算41.生成硅酸盐耗热〔以1公斤湿粉料计,单位是千卡/公斤〕52.配合料用量计算73.玻璃形成过程的热平衡〔以1公斤玻璃液计,单位是千卡/公斤,从0℃算起〕7(四)熔化部面积计算91.各尺寸确实定92.确定火焰空间尺寸:93.熔化带火焰空间容积与面积计算104.火焰气体黑度〔ε气〕计算105.火焰温度计算10〔五〕燃料消耗量与窑热效率计算111.理论燃料消耗量计算:11〔1〕熔化部收入的热量11〔2〕熔化部支出的热量122.近似燃料消耗计算163.实际燃烧消耗量计算164.列熔化部热平衡表165.熔化部热负荷值,单位耗热量与窑热效率计算〔按实际耗油量〕17 〔六〕蓄热室受热外表计算17〔七〕排烟系统阻力计算181.局部阻力计算列下表182.摩擦阻力计算列表:193.蓄热室几何压头计算:20〔八〕烟囱计算201.烟囱高度〔H〕计算202.烟囱出口直径〔D〕计算:20〔一〕原始资料1.产品:翠绿料2.出料量:每天熔化玻璃135吨。

3.玻璃成分〔设计〕〔%〕:4.料方与原料组成5.碎玻璃数量:占配合料量的50%。

6.配合料水分:靠石英砂和纯碱的外加水分带入,不另加水。

7.玻璃熔化温度:1400℃。

8.工作部玻璃液平均温度:1300℃。

9.重油。

10.雾化介质:用压缩空气,预热到120℃,用量为0.6标米3/公斤油。

11.喷嘴砖孔吸入的空气量:0.5标米3/公斤油。

【玻璃】玻璃熔窑的结构及窑炉各部位耐火砖的选择

【玻璃】玻璃熔窑的结构及窑炉各部位耐火砖的选择

【玻璃】玻璃熔窑的结构及窑炉各部位耐火砖的选择耐火材料是玻璃熔窑的主要组成材料,它对玻璃质量、能源消耗以及产品成本都有决定性的影响。

玻璃熔制技术的未来在一定程度上依赖于耐火材料生产制造技术的进步和产品质量的提高。

玻璃窑炉的结构及窑炉各部位耐火砖的选择玻璃熔窑的炉型结构对于大型浮法线来说,玻璃窑炉的构成通常由L型吊墙(通常使用硅砖)、熔化部(与玻璃液直接接触的区域要使用电熔砖,靠顶部的使用硅砖或电熔砖)、卡脖(通常使用硅砖)、冷却部包括耳池(与玻璃液直接接触的地方通常使用刚玉质材料,不与玻璃液直接接触的地方使用硅砖或刚玉)、退火窑、蓄热室(由高铝砖、粘土砖、直接结合镁铬砖)等部分构成。

玻璃窑炉的结构及窑炉各部位耐火砖的选择1、碹顶玻璃熔窑熔化部和冷却部的碹顶(包括拱角),这些部位处于1600摄氏度的工作温度下,使用在这些部位的耐火材料既要能够承受高温、荷重而又要承受碱蒸汽及配合料的冲刷作用,因此,用作顶部的耐火材料必须具备极高的耐火度、高的荷重软化温度及良好的耐蠕变性,而且导热系数小,高温下的耐火材料不能污染玻璃液,材质的容重也要较小,高温强度好等特点。

而高性能优质高纯硅砖正好具备以上的特点:1、荷重温度高接近其耐火度;2、高温下稳定性好,耐压强度高;3、由于主要成分SiO2,含量>96%,与玻璃组成的主要元素成分相同,所以高温条件下的侵蚀物基本不会污染玻璃液;4、价格便宜。

因此在各种玻璃碹顶,高纯优质硅砖成为各玻璃生产制作过程中的首选。

配合飞料和碱蒸汽与耐火材料的高温化学反应所产生的化学侵蚀,以及由于物相迁移和温度所产生的晶型转化和结构致密性变化是造成碹顶砖损毁的主要原因。

研究结果表明:碹顶用优质玻璃窑硅砖,在窑炉高温作用下的蚀变过程基本上是杂质迁移和杂相变所引起的,化学侵蚀和熔解作用基本可以忽略。

相变和自净化的作用,使窑炉运作带逐渐改变性能,其高温性能得到提高。

玻璃窑炉的结构2、池壁A)、与玻璃液接触的部位熔化部与冷却部池壁与玻璃液直接接触的部分,受到高温,玻璃液引起的化学侵蚀和流动引起的机械物理冲刷,这个部位对耐火材料最主要条件是具有良好的抗玻璃液侵蚀性能,同时不能污染玻璃液。

玻璃熔窑热风烤窑

玻璃熔窑热风烤窑

玻璃熔窑热风烤窑本论文从玻璃熔窑的概述出发,系统阐述了玻璃熔窑热风烤窑中注意的问题。

接着研究了玻璃熔窑热风烤窑的应用。

标签:玻璃熔窑,热风,烤窑一、前言随着经济玻璃熔窑热风烤窑技术的不断完善,对持续改进玻璃熔窑热风烤窑的要求也越来越高,那么我们该如何控制好温度,这是当下所要解决的一大难题。

二、玻璃熔窑的概述玻璃熔窑根据自身使用燃料的特点,有气体燃料和液体燃料两种烘烤方法,采用最多的是液体燃料——柴油热风循环方法烘烤。

以600t级烧重油熔窑为例,柴油热风循环方法烘烤一般以0#柴油做烘烤燃料(如烤窑时环境温度低于-5℃可改为-10#柴油),压缩空气作为雾化介质(若采用航空发电机式的燃烧装置则可不用压缩空气),采用热风循环烘烤升温方法。

烤窑时使用10~20t临时贮油罐2个,根据使用情况需准备0#柴油200~320t,用油罐车将柴油陆续注入临时贮油罐。

根据熔窑吨位大小,可使用热风喷枪9~17支。

热风喷枪的布置位置一般为:投料池5~9支,澄清部和冷却部两侧4~8支。

熔化玻璃的熔窑通常由熔化部、小炉、蓄热室、卡脖、冷却部、烟道、烟囱及窑体钢架结构等部分组成,为了保证窑炉正常运行,还在熔窑周围配置了各种风机、风管、烟道闸板、电器及电控设备。

这些部位砌筑质量是否符合设计要求、设备安装是否合格关系到以后玻璃产品质量的好坏,甚至生产线的运行寿命,所以,在点火前对这些设备都必须进行仔细检查,以便及早发现,提前处理。

三、玻璃熔窑热风烤窑中注意的问题1、必须完全了解整个大窑各部位的钢结构及所有砖材的性能、线膨胀、真密度、体积密度、气孔率、砖材的成形压力。

一般硅砖的显气孔率为17~25%。

体积密度为1.8~1.95g/cm3。

硅砖的成形压力愈高,体积密度愈大。

增大体积密度可以提高硅砖的结构强度、导热性和抗渣能力。

硅砖在加热过程中,除了存在一般的热膨胀外,还发生晶型转变并伴有体积膨胀。

如果砖内存在未转变的残余石英,高温下将继续转变成鳞石英或方石英,产生较大的体积膨胀。

第八章 玻璃熔窑

第八章 玻璃熔窑
目前我过基本上采用火焰池窑。其构造由玻璃溶剂,热源供 给,余热回收,排烟供气四大部分组成。玻璃熔制部分,相当 于玻璃溶质过程,池窑窑体沿长度方向分成熔化部,冷却部和 成形部。
5
熔化部
熔化部是进行配合料熔化和玻璃液澄清,均化的部分,鉴于现 用火焰表面加热的熔化方法,熔化部分分为上下两部分。上部分 为火焰空间,下部分为窑池。火焰空间由窑拱和胸墙组成。窑池 由池壁和池底两部分构成,均用大砖砌筑,其形状基本上成长方 形或正方形,池壁池底的厚度常取300mm。
20
3)与烟气相接触的耐火材料-----烧结刚玉耐火 材料、镁质耐火材料、镁铝质耐火材料、高铝质 耐火材料、粘土质耐火材料。
(二)耐火材料的侵蚀 玻璃熔体对耐火材料的侵蚀过程,起决定性
作用的因素是溶解度。设某种耐火材料的溶解度
为CS,被溶解的物质将通过扩散及对流在作为溶
剂的溶体中传播开,称为对流扩散。
8
(一)池窑 平板玻璃横火焰窑熔化部平面图。
9
浮法玻璃熔窑
10
平板玻璃池窑内的熔融玻璃液流
11
12
(二)坩埚窑 早期熔制玻璃大多采用坩埚窑,后来逐步为池窑所代
替。现在大部分是用连续熔制的池窑。但是,对于小规 模生产的玻璃制品,仍然采用间歇操作的坩埚窑,它在 玻璃生产中仍占有一定地位。
13
14
使用开口坩埚时,火焰在玻璃料面上掠过,因此火 焰和窑壁的辐射热对玻璃的熔制起着极为有效的作用, 其传热效率比闭口坩埚高得多。
闭口坩埚有多种容量,用于熔制质量要求较 高的器皿玻璃、晶质玻璃和各种颜色玻璃。
而开口坩埚,则主要是用于熔制光学玻璃及特种玻 璃,其容量,小的为数百公斤,大至1~2吨。
21
1. 水平方向侵蚀(冲刷线侵蚀)

【免费下载】玻璃熔窑的定义

【免费下载】玻璃熔窑的定义

玻璃熔窑的定义:玻璃熔窑是将按玻璃成分配好的粉料和掺加的熟料(碎玻璃)在窑内高温熔化、澄清并形成符合成型要求玻璃液的热工设备。

玻璃熔窑的热工过程: 玻璃熔窑内除有燃烧反应和产生高温外,还有热量传递、动量传递和质量传递。

1、热量传递:包括在火焰空间内和玻璃液中由温度差引起的火焰空间热交换、玻璃液内热交换、蓄热室内热交换和窑墙与外界环境的热交换。

2、动量传递:由压强差引起的不可压缩气体流动、可压缩气体流动、气体射流和玻璃液流动。

3、质量传递:燃烧过程中由气相浓度差引起的气相扩散和玻璃液浓度差引起的液相扩散。

玻璃熔窑的分类: 玻璃熔窑有坩埚窑和池窑两大类。

它们均包括玻璃熔制、热源供给、余热回收和排烟供气4个部分。

坩埚窑:窑膛内放置单只或多只坩埚。

坩埚窑中玻璃熔制的各阶段(熔化、澄清、均化、冷却)在同一坩埚中随时间推移依次进行,窑内温度制度随时间推移变动。

成型时,用人工从坩埚口取料,再进行吹制、压制、拉引、浇注等,也可以坩埚底供料,或将整坩埚移出取料。

坩埚材质以粘土居多,也有用铂的。

形状有开口和横口(闭口)两种。

开口坩埚的坩埚口朝向窑膛,能直接得到窑墙及热源辐射和传递的热能;横口坩埚的坩埚口朝向窑外,要通过坩埚壁间接取得热量,能避免窑内气氛对玻璃液的影响和污染。

坩埚窑适用于熔制产量小、品种多或经常更换料种的玻璃。

池窑:窑膛包含一耐火材料砌筑的熔池,配合料投入窑池内熔化。

池窑有间歇式和连续式两种。

间歇式池窑又称日池窑,一般较小,熔池面积仅几平方米。

熔制过程完成后,从取料口取料,大多采用手工或半机械成型。

适用于生产特种玻璃。

绝大多数池窑属于连续式(图2),各个熔制阶段在窑的不同部位进行。

各部位的温度制度是稳定的。

配合料由投料口投入,在熔化部经历熔化和玻璃液澄清、均化的行进过程,转入冷却部进一步均化和冷却,继而进入成型部最后均化(包括玻璃液温度均化)和稳定供料温度。

由于池窑靠近底部玻璃液温度低而呈滞流状态,因此窑池玻璃液总容量大于作业玻璃量,连续作业的加料量与成型量保持平衡。

【精品完整版】玻璃窑炉设计及先进经验技术引用

【精品完整版】玻璃窑炉设计及先进经验技术引用

【精品完整版】玻璃窑炉设计及先进经验技术引用(此文档为word格式,下载后您可任意编辑修改!)玻璃窑炉设计及先进经验技术引用第一章单元窑第一节单元窑的结构设计一、单元窑熔化面积的确定二、熔池长、宽、深的确定三、池底鼓泡位置的确定四、窑池结构设计五、火焰空间结构设计六、烟道七、通路结构设计第二节耐火材料的选用及砌筑一、单元窑选用的主要耐火材料二、窑炉的砌筑技术第三节单元窑的附属设备一、投料机二、鼓泡器三、燃烧系统四、金属换热器第四节助熔易燃技术的应用一、辅助电熔在单元窑上的应用二、纯氧助燃技术的应用第五节窑炉的启动和投产一、投产准备二、燃料准备三、熟料准备四、制定窑炉升温曲线五、采用热风烤窑技术六、点火烤窑注意事项七、投产第二章玻璃球窑第一节窑炉的结构一、球窑的种类二、马蹄焰球窑结构设计三、球窑砖结构和耐火材料第二节窑炉的熔制一、玻璃球的熔制二、玻璃球的成型三、玻璃球的退火四、玻璃球生产工艺规程第三章全电熔玻璃窑第一节全电熔玻璃窑概述一、全电熔窑的优缺点二、全电熔窑的分类三、全电熔窑一览四、熔制特性及对配合料要求五、电熔窑是防止环境污染有力措施六、玻璃全电熔窑的技术经济分析第二节全电熔窑的结构设计一、全电熔窑的形状二、全电熔玻璃窑炉的加料三、供电电源和电极连接第四章电助熔技术第一节火焰池窑电助熔的意义一、池窑电助熔的优缺点二、电助熔加热的技术分析第二节电助熔池窑设计和操作一、熔窑内电极布置和功率配置二、熔加热功率的计算第三节电助熔池窑的实例一、生产硼硅酸盐BL电助熔池窑二、生产有色BL的电助池窑三、生产平板BI的电助熔池窑第五章供料道的电加热第一节供料道电加热概述一、供料道工作原理及其加热现状二、供料道电加热的优越性三、供料道电加热分类第二节供料道电加热的设计一、料道加热方式的选择二、电加热能耗的计算三、变压器功率确定、电极配置第三节供料道电加热的使用第四节供料道电加热实例第六章先进经验、技术一、窑炉新技术二、窑炉富氧然绕技术三、窑炉图片玻璃窑炉设计及先进经验技术引用第一章单元窑用来制造E玻璃和生产玻璃纤维的窑炉,通常采用一种称为单元窑的窑型。

250吨玻璃熔窑毕业设计说明书

250吨玻璃熔窑毕业设计说明书

I 日产250吨太阳能玻璃熔制车间设计摘要太阳能玻璃主要是指用于太阳能光伏发电和太阳能光热组件的封装或盖板玻璃。

作为未来清洁、高效、永不衰竭的绿色能源技术之一,近年来太阳能技术的应用越来越广泛,太阳能产业已经成为能源市场中成长速度最快的领域。

本设计旨在针对太阳能用光伏玻璃的生产,从节能环保、提高制品质量与生产效率、改善工人生产工作条件的角度出发,采用全氧燃烧、池底鼓泡以及配合料预热等三项关键技术。

再结合其他技术,遵循玻璃工厂的设计原则对玻璃成分的确定,生产工艺流程,熔制车间设备选型,玻璃窑炉结构,重点对熔制车间平面布置以及工厂的平面布置等进行了具体的设计。

经过计算验证基本达到了设计任务书中要求目标。

关键词:太阳能玻璃,熔制车间,全氧燃烧,工艺设计II The Design of Melting Workshop of solar glass Plant forProducing 250 T solar Glass a dayABSTRACTSolar glass is mainly used for solar photovoltaic and solar thermal components of the package or cover glass.It is a clean,efficient,and potential green energy technologies,solar technology is widely applied in recent years,solar energy industry has become the fastest growing energy market in the area.This design is intended to address the production of solar photovoltaic glass, From the start with the energy-saving,environmental protection,improve product quality and production efficiency,improve the working conditions of workers, in this design oxy-fuel technology and the pulse-bubbling technique were used. Combine the technology, following the design principles of the glass factory to determine the glass composition, production process,glass machinery and equipment, glass furnace,structure and layout of factories,etc.Through the caculation we can find that this design achieved the desired verification purposes.KEY WORDS:solar glass, melting shop, full oxy-fuel furnace,process designIII目录摘要 (I)ABSTRACT (II)1绪论 (2)1.1 太阳能利用概述 (2)1.2 国内外太阳能光伏玻璃生产状况 (2)1.3 设计的依据和范围 (3)1.3.1 设计依据 (3)1.3.2 设计范围和要求 (4)1.4建厂地点,规模及产品方案 (4)1.4.1 建厂地点 (4)1.4.2 产品方案及规模 (4)2 工厂总平面布局设计 (5)2.1 总平面设计的基本原则 (5)2.1.1 一般工厂总平面设计原则 (5)2.1.2 玻璃工厂总平面设计原则 (5)2.2 厂址选择 (5)2.3 当地的地质气候条件 (6)2.3.1 工程位置地形及水纹 (6)2.3.2 气象 (6)2.4 总平面的布置论述 (6)2.4.1 根据玻璃工厂的厂区功能分区 (6)2.4.2 工厂的总平面布置 (7)2.5 工厂主要建筑指标 (8)2.6 厂内外运输论述 (8)2.6.1 厂内运输 (8)2.6.2 厂外运输 (8)IV3 熔制成形车间工艺设计 (9)3.1 设计依据及原则 (9)3.1.1 设计依据 (9)3.1.2 设计原则 (9)3.2 主要生产技术的确定和论证 (9)3.2.1 玻璃的化学成分设计和论证 (9)3.2.2 玻璃原料的选择 (11)3.2.3 玻璃配方计算 (12)3.2.4 物料衡算 (14)3.2.5 玻璃的理化性能和工艺参数计算 (14)3.2.6 玻璃熔化工艺的流程的设计 (19)3.2.7 玻璃熔窑及退火炉的设计 (19)3.2.8 熔化车间主要设备选型计算与论证 (29)3.2.9 热工测量及自动控制方案论述 (34)3.2.10 熔制车间厂房设计及论述 (34)3.2.11 车间生产设备工艺布置 (35)3.2.12设备明细表 (36)4 实验室及机修 (37)4.1 实验室 (37)4.2 机修 (37)5 劳动保护和安全措施 (38)5.1 劳动保护 (38)5.1.1 除尘 (38)5.1.2 隔热 (38)5.1.3 防噪 (38)5.2 安全措施 (38)6 环境保护 (39)V6.1 粉尘污染及防治 (39)6.2 大气污染防治 (39)6.3 废水污染防治 (39)6.4 噪声污染防治 (40)7 水电、土建、通风采光 (41)7.1 电力 (41)7.2 给水排水 (41)7.3 土建 (41)7.4 采光通风 (41)8 熔制成形车间劳动组织和机构 (42)8.1 劳动组织 (42)8.4 对本设计的评价 (42)致谢 (43)参考文献 (44)陕西科技大学毕业论文(设计说明书)21绪论1.1 太阳能利用概述(1)太阳能集热器领域聚焦型太阳能集热器是利用玻璃镜的聚焦反射,将太阳的辐射热能聚焦在集热器锅炉上而加热液体,驱动透平机发电。

玻璃窑简介

玻璃窑简介


小炉
熔 化池
火焰 空间 花格 墙 工 作池
供料 道
油喷 嘴
流液 洞
蓄热式池窑立剖面图
玻璃窑炉
(4)换热式双碹池窑: F<20m2,也有>30m2,纵焰。烧煤、重油、
天然气等。 优点:与单碹池窑相比,窑顶散热小,炉温
较高,窑内温度分布均匀且稳定。 缺点:砌筑费时,内碹易被高温和粉料蚀损,
与蓄热式比热效率低,换热室易堵,易漏 气。
缓慢 煤炭 飞跃 高热值 持续 高热值
1920~1945年池窑 1945~1960年池窑 1960~至今池窑
窑龄
几个月
0.5年~1.0 年 1~2年 3~4年 7~8年
玻璃窑炉
1.1.2 池窑的几项主要技术指标 (1)熔化率k 窑池每平方米面积上每天熔制的玻璃液量。 t /(m2 ·24h)。 (2)燃料单位消耗量 熔化一吨玻璃液消耗的燃料重量(或体积)。
kg燃料/ t玻璃或m3 / t玻璃液。
玻璃窑炉
(3)有效热效率 (用于玻璃熔制的耗热量 / 单位耗热量)% (4)窑龄和周期熔化率 连续生产的时间。以年为单位。 周期熔化率=窑龄×熔化率(t/ m2 )
玻璃窑炉
1.1.3 玻璃窑炉现状
截止2008年我国玻璃行业约拥有玻璃窑 炉4000~5000座,生产各种玻璃 2800~3500万吨,耗用能源(主要燃料为 煤炭、重油、天然气及电等)折合标准 煤1700~2800万吨。
焰空间分隔
墙等.
形式
全分隔 完全分隔
玻璃窑炉
1.2.1 熔窑分类(3)
玻璃液分 流液洞 流液洞 隔形式 无流液洞
窑产量 大型>150t;中型: 50~100t;小型
窑的规模

玻璃窑

玻璃窑
(2)燃料单位消耗量 熔化一吨玻璃液消耗的燃料重量(或体积)。 kg燃料/ t玻璃或m3 / t玻璃液。
玻璃窑炉
(3)有效热效率 (用于玻璃熔制的耗热量 / 单位耗热量)% (4)窑龄和周期熔化率 连续生产的时间。以年为单位。
周期熔化率=窑龄×熔化率(t/ m2 )
玻璃窑炉
1.1 玻璃熔窑的分类
横火焰玻璃池窑内运行照片
玻璃窑炉
玻璃窑炉
玻璃窑炉
玻璃窑炉
(1) 玻璃熔制部分 熔化部
投料口 冷却部 分隔装置 气体
胸墙和大碹(见下页图)
池壁与池底 矩形,半圆形,多面形
成型部
花格墙、矮碹、吊矮碹、 吊墙 玻璃液分隔装置 卡脖、冷却水管深层 (流液洞、窑坎) 锡槽和供料道
玻璃窑炉
1.4.1 温度制度
玻璃窑炉
“窑温”指胸墙挂钩砖温度。
依靠燃料消耗比例调节。 马蹄焰和纵焰池窑的热点值取决于熔化
玻璃的品种、燃料和耐材质量。热点位
置选在熔化部的1/2~2/3处,不易控制。
玻璃窑炉
1.4.2 压力制度
压强或静压头,沿气体流程。(见下页图) 玻璃液面处静压微正压(+5Pa),微冒火。 测点在澄清带处大碹或胸墙。 用烟道的开度调节抽力压强。
玻璃窑炉
(2)我国窑型选择情况 a.横焰流液洞池窑。质量要求高的玻璃。 b.蓄热式马蹄焰池窑。20~80m2 ,适应产品多, 造价较低,占地小,热耗低,维修方便。
c.双碹换热式池窑。小于20m2,造价低,温度 稳定,燃耗较马蹄焰窑高。 d.电熔窑:生产微晶玻璃,硼玻璃,铅、氟等 玻璃。
玻璃窑炉
1.4 玻璃池窑作业制度 包括温度制度、压力制度、泡界线制度、 液面制度和气氛制度。 通过温度、气氛的控制满足工艺要求。要 稳定,又要适时调整。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作者简介 作者于1 年毕业于山东 7 9 9 轻工业学院.同 年入力诺集团有限资任公司工作至今, 先后从事车间工艺员、 窑炉设计和 施工、车间 主任等工作,现任窑炉工程部部长,负资窑炉设计、 施工等工作.
图 1我公司 3 平方米蓄热室马蹄焰燃天然气池窑示愈图 7
考虑,卜 部为气孔率小于 1 的低气孔粘土砖, 5 % 上部为气孔率小于 1 的低气孔粘土砖,实践证明, 3 % 此 种砖材使用周期约为 1 个月,一个周期后要进行热换, 8 影响生产5 天。 至6
32小炉 .
321小炉内倾角度 . . 我公司 开始几台池窑小炉内 倾角度 ( 即小炉中 心线与池炉纵向中心线之间的夹角)为0 在池炉 0, 运行过程中发现挂勾砖烧损严重,于是将内 倾角调整为 3 调整后虽然增加了砌筑难度, 0, 但达到了 预 期的效果,挂勾砖的烧损大大的减轻了。 322小炉口尺寸 .. 原设计单个小炉口 宽度为 1 0 3 毫米,在运行过程中,大炉火焰较长,对前墙烧损严重: 0 通过调整 天然气喷枪,虽也能将火焰缩短, 但火焰形状不够理想。在以后的设计中, 将小炉口宽度调整为 1 0 3 5 毫米,高 度不变, 如此, 喷火口 面积增大, 助燃风喷出 速度减小, 火焰相应缩短。
因Plx ye 玻璃熔化难度较大, 且在池深方向容易分层, 故在池深的设计方面较为谨慎。 池深较小, 玻璃液面与池底温差小, 玻璃液分层趋向小, 但熔化率小: 池深较大,玻璃液面与池底温差大, 玻璃液 分层趋向 大, 但如果池深设计恰当, 熔化率会增加。 初始设计时池深为70 0 毫米. 运行一段时间 无问 题 后作了 调整,窑坎后熔化区设为80 0 毫米, 窑坎前澄清区仍保持 70 0 毫米,运行中 取得了 一定的效果。
熔化温度高
理论熔化温度 ( =1 帕 ・ q 0 秒时)可达 18` 60 C,比普通钠钙硅玻璃高出将近 30 0' C.
2硼挥发
高 A随水蒸气挥发, 温时B 使硼硅酸盐玻璃液面上因B A挥发减少, 产生富含 S A的析晶 料皮。 尤 其是Plx ye 玻璃熔化成型 温度高, 挥发量更大.
13玻璃液的分层 . Pl 玻璃在 30 左右粘度较大,因 15℃ ye x 而流动性较差, 成分中比 重较大的 AA等组分易于下沉, l 造成在池窑熔化时下层玻璃液中As 含量较高, O la 0 N, 含量较低,形成分层 “ 变质” 玻璃。
设计概述
3 1 蓄热室 .
311结构 ..
蓄热室采用单通道蓄热室, 格子砖用二枚条和一枚半条以西门子式排列, 格孔尺寸 1 X , 6 15 比受 5 6 热表面积为2. 平方米/ 05 平方米。 312选用 .. 材质 室墙选用材质下部为普通粘土砖,上部为气孔率小于 1 的 3 低气孔粘土砖,后来基于成本方面的考 % 虑, 上部改为一级高铝砖, 使用效果较好. 格子砖选用材质从耐急冷急热性、 荷重软化温度、 成本方面
4后计
在Pl 玻璃熔窑设计方面, ye x 我们虽然作了 一些工作, 但离我国Plx ye 玻璃行业发展的需要还有很 大差距, 我们还需继续努力。 特别需要提出的是, 在此文的撰写过程中, 得到了王纪祥老师的大力帮助 和指导,在此表示感谢! 文中有不当之处,请各位专家批评指正。
参考文献
1西北轻工业学院主编. 玻玻工艺李. 北京: 轻工业出版社,9148 0 19:9-52
1 e 玻 Pl 璃理化 简介 yx 性能
Pl 玻璃与普通钠钙硅玻璃相比 ye x 有许多 优点:很低的热膨胀系数 ( = X ' ' 。 33 - - ,热稳定性 . 1 K ) 0 很好; 硬度较高: 抗磨耗性好;导热性较高;介电损失小,电阻率高。但其在生产工艺,尤其在熔化工
艺上,又有一系列的特殊性问题:
2公司Pl 玻璃熔窑简 yx e 介
力诺集团绝大部分Plx ye 玻璃熔窑为蓄热室马蹄焰燃天然气池窑, 熔化面积 3 平方米( 7 见图1, )实 际运行 熔化率达到05 / . 吨 平方米 ・ 产品 天。 主要为管材、 棒材等, 外径由c 至( 7 不等。 b 6 } 20 成型方式 主要分两种, 一种为垂直引下法, 每炉设四 条生产线;另一种为VLO EL 拉管法, 每炉设两条生产线。 因 成型方式及蓄热室结构的原因, 液面标高为+74 米,而VLO .5 EL 拉管机安装在三层平台上。
34工作池和分配料道 . 原设计中多 采用八角形工作池, 此工作池的主要优点是减少了 “ 死料”的留存空间, 且易于 布置料道出口, 缺点是火焰空间大, 燃料消耗较多. 现在设计中以 分配料道代替工作池, 减少了 燃料消
耗,但缺点是料道出口较难布置( 特别是布置四条生产线时) 。
35料道 .
开始设计为开式料道, 硼挥发严重, 液面料皮较多, 故在料道及成型料盆处共设置两套溢流 装置,以 除去料皮。 现在设计为封闭 料道, 料道盖板浸入玻璃液中, 盖板上方火焰空间 燃天然气, 盖板 下玻璃液通道内设置钥棒电 极电 加热系统, 料道靠近成型料盆处设置搅拌桨, 成型料盆处设置溢流装置。
之后又进一步的调整,将整个池深设为80 0,运行效果良 好。 333窑坎 . . 窑坎全部浸没在玻璃液中, 受到玻璃液的三面侵蚀和冲测, 又加之 Pl 玻璃熔化温度较高, ye x 对窑 坎的冲测尤其剧烈。 原设计窑坎为单层窑坎, 厚度为30 0 毫米, 运行三年后停炉中修时测量, 其大部分 在高度上 将窑坎加厚为50 0 毫米, 且做成前后错缝的两层。 334电 . 助熔系统 . 电极为底插铝棒电极,带冷却水套,对称窑炉纵向中心线布置。 335选用材质 . . 熔池中与玻 璃液接触的部位全部采用国产优质氧化法电 熔错刚玉砖, 其中加料口 拐角砖、 窑坎组砖、 流液洞组砖采用4# 1 无缩孔浇铸砖, 其它池壁砖采用3# 3倾斜浇铸砖, 铺面砖采用3# 3无缩孔浇铸砖。 火 焰空间原设计全部采用优质硅砖, 后来由于 熔窑运行过程中前后墙烧损比较严重, 加之胸墙保温的需要, 前后墙及胸墙加一层还原法电 熔铬刚玉砖( # 3 普通浇铸) 衬砖。 3 作内
323选用材质 ..
全部为优质硅砖。
33 .、熔化池
331概述 . .
熔化池长 宽比为 151 流液洞尺寸 ( 宽X 为 1 0 0 0( . , : 长X 高) 0 X X 单位:毫米) 设置窑坎、 0 4 2 0 0 ,
电助熔系统,有些池炉设鼓泡系统。
33 2池深 ..
Pl 玻璃熔窑设计概述 ye x
薛俊田
( 力诺集团有限责任公司200 ) 510
概 Pe yx 长 要: 述7 l 玻璃熔窑设计中某些方面的工作及其改进过程. 摘
关键词:
1引言
P 4 y ;长 长 l 俨3
熔窑设计;改进
力诺集团现有Plx ye 玻璃熔窑二十多座, 笔者有幸参加了 其中 绝大部分窑炉的设计工作。 现将我公 司设计过程中 某些方面的工作进行总结,以 与读者交流。
相关文档
最新文档