高等数学习题及解答(极限,连续与导数)
极限导数考试题及答案

极限导数考试题及答案1. 计算极限:\(\lim_{x \to 0} \frac{\sin x}{x}\)。
答案:根据洛必达法则,当\(x\)趋近于0时,\(\frac{\sin x}{x}\)的极限等于\(\frac{\cos x}{1}\)的极限,即\(\lim_{x \to 0}\frac{\sin x}{x} = \cos 0 = 1\)。
2. 求函数\(f(x) = x^3 - 3x^2 + 2\)在\(x = 1\)处的导数。
答案:首先求导数\(f'(x) = 3x^2 - 6x\),然后将\(x = 1\)代入得到\(f'(1) = 3(1)^2 - 6(1) = 3 - 6 = -3\)。
3. 判断极限\(\lim_{x \to \infty} \frac{1}{x}\)是否存在,并说明理由。
答案:极限\(\lim_{x \to \infty} \frac{1}{x} = 0\)存在,因为当\(x\)趋向于无穷大时,\(\frac{1}{x}\)趋向于0。
4. 计算定积分\(\int_{0}^{1} x^2 dx\)。
答案:根据定积分的定义,\(\int_{0}^{1} x^2 dx =\left[\frac{x^3}{3}\right]_0^1 = \frac{1^3}{3} - \frac{0^3}{3} = \frac{1}{3}\)。
5. 求函数\(g(x) = e^x\)的导数。
答案:根据指数函数的导数公式,\(g'(x) = e^x\)。
6. 计算极限:\(\lim_{x \to 2} \frac{x^2 - 4}{x - 2}\)。
答案:首先对分子进行因式分解,得到\(\lim_{x \to 2} \frac{(x - 2)(x + 2)}{x - 2} = \lim_{x \to 2} (x + 2) = 2 + 2 = 4\)。
7. 求函数\(h(x) = \ln(x)\)在\(x = e\)处的导数值。
高等数学函数极限连续练习题及解析

高等数学函数极限连续练习题及解析第一篇:高等数学函数极限连续练习题及解析数学任务——启动——习题1一、选择题:(1)函数y=-x+arccosx+1的定义域是()2(A)x≤1;(B)-3≤x≤1(C)(-3,1)(D)xx<1⋂x-3≤x≤1(2)函数y=xcosx+sinx是()(A)偶函数(B)奇函数(C)非奇非偶函数(D)奇偶函数(3)函数y=1+cos{}{}π2x的最小正周期是()(A)2π(B)(4)与y=π(C)4(D)1 2x2等价的函数是()(A)x;(B)(x)(C)x)(D)23x⎧x-1-1<x≤0(5)f(x)=⎨,则limf(x)=()x0<x≤1x→0⎩(A)-1(B)1(C)0(D)不存在二、填空题:(1)若f ⎪=⎛1⎫⎝t⎭5+2t2,则f(t)=_________,ft2+1=__________.t()⎧⎪1(2)φ(t)=⎨⎪sinx⎩π⎫⎛π⎫3,则φ⎛φ⎪=______。
⎪=______,π⎝6⎭⎝6⎭x>30,1],则fx2的定义域为______,f(sinx)的定义域为x≤π(3)若f(x)的定义域为()______,f(x+a)(a>0)的定义域为___,f(x+a)+f(x-a)(a>0)的定义域为______。
1-4x2(4)lim。
=__________12x+1x→-2(5)无穷小量皆以______为极限。
三、计算题(1)证明函数y=11sin在区间(0,1]上无界,但当x→+0时,这个函数不是无穷大。
xx(2)求下列极限(1)lim2x3+3x2+5x→∞7x3+4x2-1(3)lim(tanx)tan2xx→π(5)limex-1xx→0(7)lim+xsinx-1x→0x2arctanx(2)lim1-cos2x x→0xsinx(4)lim(1+2n+3n1n n→∞(6)limtanx-sinxx→0sin32x ⎛1(8)limx ex-1⎫⎪x→∞⎝⎪⎭(3)设f(x)=⎨⎧1-xx<0,求limf(x)。
大学高数极限考试题及答案

大学高数极限考试题及答案# 大学高数极限考试题及答案一、选择题1. 下列函数中,极限不存在的是()A. \( f(x) = \frac{x^2 - 1}{x - 1} \) 当 \( x \to 1 \)B. \( g(x) = \sin(x) \) 当 \( x \to \pi \)C. \( h(x) = x^2 \) 当 \( x \to 2 \)D. \( k(x) = \frac{\sin(x)}{x} \) 当 \( x \to 0 \)答案:A2. 计算极限 \( \lim_{x \to \infty} \frac{x^2}{x + 1} \) 的结果是()A. \( \infty \)B. \( 1 \)C. \( 0 \)D. \( \frac{1}{2} \)答案:A二、填空题1. \( \lim_{x \to 0} x \cdot \sin(\frac{1}{x}) = \) ______答案:02. \( \lim_{x \to 1} (x^2 - 1) = \) ______答案:0三、计算题1. 计算极限 \( \lim_{x \to 3} \frac{x^2 - 9}{x - 3} \)。
解答:\( \lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3}\frac{(x - 3)(x + 3)}{x - 3} = \lim_{x \to 3} (x + 3) = 3 + 3 = 6 \)2. 计算极限 \( \lim_{x \to 0} \frac{\sin(x)}{x} \)。
解答:使用洛必达法则(L'Hôpital's Rule):\( \lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0}\frac{\cos(x)}{1} = \cos(0) = 1 \)四、证明题1. 证明 \( \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \)。
高中数学函数的极限与连续练习题及参考答案2023

高中数学函数的极限与连续练习题及参考答案2023题目一:函数极限1. 计算以下极限:a) lim(x→2) (x^2 + 3x - 4)b) lim(h→0) [(4+h)^2 - 16]/hc) lim(x→∞) [(x+1)/(x-1)]^2d) lim(x→0) (1/x - 1)/(1 - sqrt(1 + x))解答:a) 将x代入函数,得到:lim(x→2) (2^2 + 3*2 - 4) = 8b) 将h代入函数,得到:lim(h→0) [(4+0)^2 - 16]/0 = 0c) 当x趋向于正无穷大时,[(x+1)/(x-1)]^2 = 1d) 将x代入函数,得到:lim(x→0) (1/0 - 1)/(1 - sqrt(1)) = undefined题目二:连续函数2. 判断以下函数在给定区间是否连续:a) f(x) = x^2 - 5x + 6, 在区间[1, 5]上b) g(x) = √(x + 2), 在区间[-2, 3]上c) h(x) = 1/(x-2), 在区间(-∞, 2)上解答:a) 函数f(x)是一个二次函数,对于任意实数x,f(x)都是连续的。
因此,f(x)在区间[1, 5]上连续。
b) 函数g(x)是一个开根号函数,对于非负实数x,g(x)都是连续的。
在区间[-2, 3]上,g(x)的定义域为[-2, ∞),因此在该区间上连续。
c) 函数h(x)在x=2处的定义域为无穷,因此在该点不连续。
在区间(-∞, 2)上除x=2之外的点,h(x)为一个连续函数。
题目三:函数极限的性质3. 判断以下命题的真假,并简要说明理由:a) 若lim(x→a) f(x) = L,且L≠0,则lim(x→a) [f(x)]^2 = L^2。
b) 若lim(x→a) f(x) = L,且f(x) > 0,那么lim(x→a) 1/f(x) = 1/L。
c) 若lim(x→a) f(x) = L,且lim(x→a) g(x) = M,则lim(x→a) [f(x) +g(x)] = L + M。
高数极限习的题目及问题详解

练习题1. 极限 <5> 011lim 2=⎪⎪⎭⎫ ⎝⎛--++∞→b ax x x x , 求常数a , b . <6> x x x x sin 1sin lim 20→ <7> 211lim 22x x x x ⎪⎪⎭⎫ ⎝⎛+-∞→ <8> x x x21lim 0-→<9> x x x sin )31ln(lim 0-→ <10> ⎪⎪⎭⎫ ⎝⎛-∞→1lim 1x x e x2. 函数的连续性<1> 确定b 的值, 使函数在x =0点连续.<2> 确定a , b 的值, 使函数在整个实数轴上连续.<3> 讨论如下函数的连续性, 并判断其连续点的类型. ①x xx f sin )(= ②⎪⎪⎩⎪⎪⎨⎧=≠+-=0001212)(11x x x f x x3. 连续函数的性质<1> 设1)(1-+++=-x x x x f n n , 证明:)(x f 有一个不大于1的正根.<2> 假如),()(∞+-∞∈C x f , 且A x f x =∞→)(lim ,证明:),()(∞+-∞在x f 内有界.提高1º),()(∞+-∞在x f 内至少有一个最值存在. 2º 对于最值与A 间的任意值C , 存在21,ξξ, 使得C f f ==)()(21ξξ.2. 函数的连续性<1> 确定b 的值, 使函数在x =0点连续.解:100)(lim )(lim )0(-→→====-+e x f b x f f x x<2> 确定a , b 的值, 使函数在整个实数轴上连续.解:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=++-=-+<->==121121111)(2x ba xb a x bx ax x xx f y<3> 讨论如下函数的连续性,并判断其连续点的类型. ①x x x f sin )(=解: x =0为可去连续点.②⎪⎪⎩⎪⎪⎨⎧=≠+-=0001212)(11x x x f x x 解:1)(lim 1)(lim 00-=≠=-+→→x f x f x x , x =0为跳跃连续点.3. 连续函数的性质<1> 设1)(1-+++=-x x x x f n n , 证明:)(x f 有一个不大于1的正根. 解: 假如n=1, 如此显然有解x =1.假如n>1, 如此01)1(,01)0(>-=<-=n f f , 由零点定理可知在<0, 1>内至少有一个根..<2> 假如),()(∞+-∞∈C x f , 且A x f x =∞→)(lim , 证明: ),()(∞+-∞在x f 内有界.解: 由A x f x =∞→)(lim 可知: 0>∃X , 当X x >时, 1)(<-A x f , 故1)(+<A x f 由),()(∞+-∞∈C x f 可知]1,1[)(+--∈X X C x f , 故01>∃M ,当1+<X x 时, 1)(M x f < 取}1,max{1+=A M M 即可.提高1º),()(∞+-∞在x f 内至少有一个最值存在. 2º 对于最值与A 间的任意值C , 存在21,ξξ, 使得C f f ==)()(21ξξ.证明: 假如A x f ≡)(, 如此显然结论成立.设存在A x f >)(0, 如此存在X >0, 当X x ≥时, 有于是: )(2)()(00x f A x f x f <+< 由],[)(X X C x f -∈, 可知存在],[X X -∈ξ 从而),()(∞+-∞在x f 内有最大值)(ξf .对于任意的C , )(ξf C A <<, 存在X 1>0, 当1X x ≥时, 有 C A C x f <+<2)( 于是有C A C X f <+<±2)(1. 分别在闭区间],[],,[11X X ξξ-上使用介值定理即可得结论2º.。
高中数学练习题附带解析极限与连续函数的计算

高中数学练习题附带解析极限与连续函数的计算高中数学练习题附带解析:极限与连续函数的计算第一题:求以下函数在$x=0$处的右导数和左导数,判断该函数在$x=0$处是否连续。
$$f(x)=\begin{cases}x+1 &,x<0 \\x^2 &,x \geq 0\end{cases}$$解析:首先求该函数在$x=0$处的函数值$f(0)$,由于$x \geq 0$时,$f(x)=x^2$,因此$f(0)=0$。
其次,求该函数在$x=0$处的右导数和左导数。
当$x<0$时,$f(x)=x+1$,因此该函数在$x=0$处的左导数为$f'_{-}(0)=1$。
当$x>0$时,$f(x)=x^2$,因此该函数在$x=0$处的右导数为$f'_{+}(0)=0$。
由于$f'_{-}(0) \neq f'_{+}(0)$,因此该函数在$x=0$处不存在导数,所以该函数在$x=0$处不连续。
第二题:求以下函数在$x=1$处的极限。
$$f(x)=\begin{cases}x+1 &,x<1 \\x^2 &,x >1\end{cases}$$解析:该函数在$x=1$处的左极限为$$\lim_{x \to 1^{-}}f(x)=\lim_{x \to 1^{-}}(x+1)=2$$该函数在$x=1$处的右极限为$$\lim_{x \to 1^{+}}f(x)=\lim_{x \to 1^{+}}(x^2)=1$$由于左极限和右极限不相等,因此该函数在$x=1$处不存在极限。
第三题:求以下函数在$x \to +\infty$时的极限。
$$f(x)=\frac{3x^3+x^2+1}{5x^3-2x+1}$$解析:首先将分母的最高次幂提取出来,得到$$f(x)=\frac{3x^3+x^2+1}{5x^3-2x+1}=\frac{x^3(3+\frac{1}{x}+\frac{1}{x^3})}{x^3(5-\frac{2}{x^2}+\frac{1}{x^3})}$$当$x \to +\infty$时,$\frac{1}{x} \to 0$,$\frac{1}{x^2} \to 0$,$\frac{1}{x^3} \to 0$,所以$$\lim_{x \to +\infty}f(x)=\lim_{x \to+\infty}\frac{x^3(3+\frac{1}{x}+\frac{1}{x^3})}{x^3(5-\frac{2}{x^2}+\frac{1}{x^3})}=\frac{3}{5}$$因此,该函数在$x \to +\infty$时的极限为$\frac{3}{5}$。
高数竞赛练习题答案(函数、极限、连续)

高数竞赛练习题答案(函数、极限、连续)第一篇:高数竞赛练习题答案(函数、极限、连续)函数、极限、连续1.f(x),g(x)∈C[a,b],在(a,b)内二阶可导且存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:(1)∃η∈(a,b),使f(η)=g(η)(2)∃ξ∈(a,b),使f''(ξ)=g''(ξ)证明:设f(x),g(x)分别在x=c,x=d处取得最大值M,不妨设c≤d(此时a<c≤d<b),作辅助函数F(x)=f(x)-g(x),往证∃ξ∈(a,b),使F''(ξ)=0令F(x)=f(x)-g(x),则F(x)在[a,b]上连续,在(a,b)二阶可导,且F(a)=F(b)=0,① 当c<d,由于F(c)=f(c)-g(c)=M-g(c)≥0F(d)=f(d)-g(d)=f(d)-M≤0由“闭.连.”零点定理,∃η∈[c,d]⊂(a,b),使f(η)=g(η)② 当c=d,由于F(c)=f(c)-g(c)=f(c)-g(d)=M-M=0即∃η∈(a,b),使f(η)=g(η) 对F(x)分别在[a,η],[η,b]上用罗尔定理,∃ξ1∈(a,η),ξ2∈(η,b),使在[ξ1,ξ2]上对F(x)在用罗尔定理,F'(ξ1)=F'(ξ2)=0,∃ξ∈(ξ1,ξ2)⊂(a,b),使F''(ξ)=0,∃ξ∈(a,b),使f''(ξ)=g''(ξ).2.设数列{xn}满足0<x1<π,xn+1=sinxn,n=1,2,Λxn存在,并求该极限(1)证明limn→∞xn+1x1n(2)计算lim()n→∞xn分析:(1)确定{xn}为单调减少有下界即可1xn,用洛必达法则.(2)利用(1)确定的limn→∞解:易得0<xn≤1(n=2,3,Λ),所以xn+1=sinxn<xn,n=(2,3,Λ),即{xn}为xn存在,并记为limxn=a,则a∈[0,1],单调减少有下界的数列,所以 lim n→∞n→∞对等式xn+1=sinxn<xn,两边令n→∞取极限,得a=sina,a∈[0,1],所以a=0,即limxn=0.n→∞lim((2)n→∞xn+1sinxn)=lim()n→∞xnxn2xn2xn令t=xn=lim(t→0sint)=et→0ttlimln()tt2由于limt→0tln(sin)ttsintln[1+(sin-1)]-1-1t2sint-t洛cost-11tt2=lim=lim=lim=lim=lim=- t→0t→0t→0t→0t→03t2t2t2t33t26 xn+1xn-1所以lim()=e.n→∞xn3.已知f(x)在[0,1]连续,在(0,1)可导,且f(0)=0,f(1)=1,证明:(1)∃ξ∈(0,1),使f(ξ)=1-ξ,(2)存在两个不同点η,ζ∈(0,1),使f'(η)f'(ζ)=1证:(1)令F(x)=f(x)+x-1,则F(x)在[0,1]上连续,且F(0)=-1<0,F(1)=1>0,由“闭.连.”零点定理,∃ξ∈(0,1),使F(ξ)=0,即f(ξ)=1-ξ(2)f(x)在[0,ξ],[ξ,1]上都满足拉格朗日中值定理,所以∃η∈(0,ξ),ζ∈(ξ,1),使f(ξ)-f(0)=f'(η)(ξ-0),f(1)-f(ξ)=f'(ζ)(1-ξ),即f'(η)=f'(ζ)=f(ξ)ξ=1-ξξ1-f(ξ)1-(1-ξ)ξ==1-ξ1-ξ1-ξ∴f'(η)f'(ζ)=1-ξξ⋅ξ1-ξ=14.设方程xn+nx-1=0,其中n为正整数,证明此方程存在唯一的正α实根xn,并证明当α>1时,级数∑xn收敛.n=1∞证:令f(x)=xn+nx-1,则f(x)在(0,+∞)上连续,且f(0)=-1<0,f()=()n>0nn所以由连续函数的零点定理,所给方程在(0,)内有根,又由f'(x)=n(xn-1+1)>0,即f(x)在(0,)内单调递增,所以所给方程(0,)内只有唯一的根,在(,∞)上无根,即所给方程存在唯一的正实根xn.α<由上述知,对n=1,2,Λ,有0<xn<,有0<xn∞1n1n1n1n1n1,nα此外,由α>1知,级数∑收敛,所以由正项级数比较审敛法,知αn=1n∑xα收敛.nn=1∞5.求lim(cosx)x→01ln(1+x)x→0ln(1+x)解:lim(cosx)x→01ln(1+x)=elimlncosx,其中limln(1+xx→0lncosx)=limx→0ln[1+(cosx-1)]ln(1+x)=limx→0-x22x=-(cosx)所以,limx→0ln(1+x)=e-6.f(x)在x=0的某邻域内具有一阶连续导数,且f(0)≠0,f'(0)≠0,若af(h)+bf(2h)-f(0)在h→0时是比h高阶的无穷小,试确定a,b的值.解1:(利用导数定义)0=limaf(h)+bf(2h)-f(0)af(h)-af(0)+af(0)+bf(2h)-bf(0)+bf(0)-f(0)=limh→0h→0hhaf(h)-af(0)bf(2h)-bf(0)[(a+b)-1]f(0)[(a+b)-1]f(0)=l im+lim+lim=(a+b)f'(0)+limh→0h→0h→0h→0hhhh⎧a+b=1'由f(0)≠0,f(0)≠0,得⎨,即a=2,b=-1a+2b=0⎩解2:按解1,只要假定f(x)在x=0处可导即可,但在题中“f(x)在x=0的某邻域内具有一阶连续导数”的假定下,有以下解法:由lim h→0h→0af(h)+bf(2h)-f(0)=0得 limaf(h)+bf(2h)-f(0)=0h→0h即0=limaf(h)+bf(2h)-f(0)=(a+b-1)f(0),由f(0)≠0,得a+b=1(1)af(h)+bf(2h)-f(0)洛=limaf'(h)+2bf'(2h)=(a+2b)f'(0)且f'(0)≠0,又由0=limh→0h→0h所以 a+2b=0(2)由(1)、(2)得a=2,b=-1.⎛2+esinx⎫⎪.7.求lim 4+x→0x⎪⎝1+e⎭解:⎛2e-+e-sinx⎫⎛2+esinx⎫⎪=1⎪=lim lim+4+4++-x→0x→0 x⎪x⎪⎝1+e⎭⎝e+1⎭⎛2+esinx⎫⎛2+esinx⎫ ⎪⎪=1 lim=lim4+4---⎪x→0x⎭x→0⎝1+ex⎪⎝1+e⎭所以原式 = 18.求limx→0143+x+-x-2.2x解1:(泰勒公式)因+x+-x-2=[1+1111x-x2+o(x2)]+[1-x-x2+o(x2)]-22828(x→0)=-x2+o(x2)~-x2所以1-x2+x+-x-2=-1lim=limx→0x→0x2x24解2:(洛必达法则)-+x+-x-2洛必达lim=limx→0x→0x22x1-x-+x1⋅lim=lim x→0+x-x4x→0x1-2x1=lim.=-4x→0x(-x++x)4第二篇:高数课件-函数极限和连续一、函数极限和连续自测题1,是非题(1)无界变量不一定是无穷大量()(2)若limf(x)=a,则f(x)在x0处必有定义()x→x012x(3)极限lim2sinx=limx=0()x→+∞x→+∞33x2,选择题(1)当x→0时,无穷小量1+x-1-x是x的()A.等价无穷小B.同阶但不等价C.高阶无穷小D.低价无穷小⎧x+1-1x≠0⎪(2)设函数f(x)=⎨,则x=0是f(x)的()x⎪0x=0⎩A.可去间断点 B.无穷间断点C 连续点D 跳跃间断点⎧exx<0(3)设函数f(x)=⎨,要使f(x)在x0处连续,则a=()⎩a+xx≥0A.2B 1C 0D -13n2-5n+1=()(4)lim2n→∞6n+3n-2A 151B -C -D ∞ 2321⎧xsinx<0⎪⎪x(5)设f(x)=⎨,则在x=0处f(x) ()⎪1sinx-1x>0⎪⎩xA 有定义B 有极限C 连续D左连续3(6)x=1是函数y=x-1的()x-1A 可去间断点B 无穷间断点C 连续D跳跃间断点3.求下列极限(1)limx→∞x+sinxsin(-2x)x+2-3(2)lim(3)limx→0x→12xln(1+2x)x-1e-2x-1(4)lim(5)limn[ln(1+n)-lnn](6)lim(sinn+1-sinn)n→∞n→∞x→0x2x+3x+2(sinx3)tanx2lim()(7)lim (8)(9)limx(x+1-x)x→∞2x+1x→01-cosx2x→∞cosx-cosaarctanxex-ex0(10)lim(11)lim(12)limx→ax→∞x→x0x-xx-ax0x2+32x2+1sin(x-1))(13)lim(14)lim(2x→∞x→1x-1x+24,求满足下列条件的a,b的值1x2+x+a=b(2)lim(3x-ax2-x+1)=(1)limx→+∞x→26x-2⎧tanaxx<0ax+b⎪=2(4)已知f(x)=⎨x(3)lim且limf(x)存在x→0x→1x-2⎪x+2x≥0⎩x<-1⎧-2⎪2(5)已知f(x)=⎨x+ax+b-1≤x≤1在(-∞,+∞)内连续⎪2x≥1⎩⎧sin2x+e2ax-1x≠0⎪(6)函数f(x)=⎨在x=0点连续x⎪ax=0⎩5.求下列函数的间断点并判断其类型⎧x-1x≤11-cosxx2-1(1)y=2(2)y=⎨(3)f(x)=sinxx-3x+2⎩3-xx>1⎧1x>0x⎪(4)f(x)=⎨ex-1(5)y=tanx⎪⎩ln(1+x)-1<x≤026.已知x→-1时,x+ax+5x+1是同阶无穷小,求a7.证明方程x-4x+2=0在区间(1,2)内至少有一个根8.当x→0时,e+ln(1-x)-1与x是同阶无穷小,求n 9.设函数f(x)=a,(a>0,a≠1),求limxxn41ln[f(1)f(2)K f(n)]n→∞n2第三篇:高数极限和连续第二章极限和连续【字体:大中小】【打印】2.1 数列极限一、概念的引入(割圆术)“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣” ——刘徽正六边形的面积A正十二边形的面积A2n-1正6×2形的面积AnA1,A2,A3,…,An,…→…S二、数列的定义定义:按自然数1,2,3...编号依次排列的一列数x1,x2,...,xn, (1)称为无穷数列,简称数列。
高等数学习题详解-第2章 极限与连续(精品范文).doc

【最新整理,下载后即可编辑】习题2-11. 观察下列数列的变化趋势,写出其极限: (1) 1n n x n =+ ; (2)2(1)n n x =--;(3)13(1)nn x n=+-; (4)211n x n=-. 解:(1) 此数列为12341234,,,,,,23451n n x x x x x n =====+ 所以lim 1n n x →∞=。
(2) 12343,1,3,1,,2(1),n n x x x x x =====-- 所以原数列极限不存在。
(3)1234111131,3,3,3,,3(1),234n n x x x x x n=-=+=-=+=+-所以lim 3n n x →∞=。
(4)12342111111,1,1,1,,1,4916n x x x x x n =-=-=-=-=- 所以lim 1n n x →∞=-2.下列说法是否正确:(1)收敛数列一定有界 ; (2)有界数列一定收敛; (3)无界数列一定发散;(4)极限大于0的数列的通项也一定大于0. 解:(1) 正确。
(2) 错误 例如数列{}(-1)n 有界,但它不收敛。
(3) 正确。
(4) 错误 例如数列21(1)nn x n ⎧⎫=+-⎨⎬⎩⎭极限为1,极限大于零,但是11x =-小于零。
*3.用数列极限的精确定义证明下列极限:(1) 1(1)lim1n n n n-→∞+-=;(2) 222lim 11n n n n →∞-=++; (3)323125lim -=-+∞→n n n证:(1) 对于任给的正数ε,要使1(1)111n n n x n n ε-+--=-=<,只要1n ε>即可,所以可取正整数1N ε≥.因此,0ε∀>,1N ε⎡⎤∃=⎢⎥⎣⎦,当n N >时,总有1(1)1n n n ε-+--<,所以1(1)lim 1n n n n-→∞+-=. (2) 对于任给的正数ε,当3n >时,要使222222332211111n n n n n x n n n n n n n n nε---+-=-==<<<+++++++,只要2n ε>即可,所以可取正整数2max ,3N ε⎧⎫=⎨⎬⎩⎭.因此,0ε∀>,2max ,3N ε⎧⎫∃=⎨⎬⎩⎭,当n N >时,总有22211n n n ε--<++,所以222lim 11n n n n →∞-=++. (3)对于任给的正数ε,要使25221762()()131333(31)313n n x n n n n ε+--=--=<=<----,只要123n ε->即可,所以可取正整数213N ε≥+.因此,0ε∀>,213N ε⎡⎤∃=+⎢⎥⎣⎦,当n N >时,总有522()133n n ε+--<-,所以323125lim-=-+∞→n n n . 习题2-21. 利用函数图像,观察变化趋势,写出下列极限: (1)21lim x x →∞ ; (2) -lim x x e →∞; (3) +lim x x e -→∞; (4) +lim cot x arc x →∞; (5) lim2x →∞;(6) 2-2lim(1)x x →+; (7) 1lim(ln 1)x x →+; (8) lim(cos 1)x x π→- 解:(1)21lim 0x x →∞= ;(2) -lim0x x e →∞=;(3) +lim 0x x e -→∞=; (4) +lim cot 0x arc x →∞=; (5) lim 22x →∞= ;(6) 2-2lim(1)5x x →+=; (7) 1lim(ln 1)1x x →+=; (8) lim(cos 1)2x x π→-=- 2. 函数()f x 在点x 0处有定义,是当0x x →时()f x 有极限的( D )(A ) 必要条件 (B ) 充分条件 (C ) 充要条件 (D ) 无关条件解:由函数极限的定义可知,研究()f x 当0x x →的极限时,我们关心的是x 无限趋近x 0时()f x 的变化趋势,而不关心()f x 在0x x =处有无定义,大小如何。
高等数学函数的极限与连续习题精选和答案

1、函数()12++=x x x f 与函数()113--=x x x g 相同.错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。
∴()12++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与()x g 是不同的函数。
2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。
3、如果数列有界,则极限存在.错误 如:数列()nn x 1-=是有界数列,但极限不存在4、a a n n =∞→lim ,a a n n =∞→lim .错误 如:数列()nn a 1-=,1)1(lim =-∞→nn ,但n n )1(lim -∞→不存在。
5、如果()A x f x =∞→lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。
6、如果α~β,则()α=β-αo .正确 ∵1lim=αβ,是 ∴01lim lim =⎪⎭⎫⎝⎛-=-αβαβα,即βα-是α的高阶无穷小量。
7、当0→x 时,x cos 1-与2x 是同阶无穷小.正确 ∵2122sin 412lim 2sin 2lim cos 1lim2022020=⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅==-→→→x x x x x x x x x 8、 01sin lim lim 1sin lim 000=⋅=→→→xx x x x x x .错误 ∵xx 1sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。
9、 e x xx =⎪⎭⎫⎝⎛+→11lim 0.错误 ∵e x xx =⎪⎭⎫⎝⎛+∞→11lim10、点0=x 是函数xxy =的无穷间断点.错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→xx x ∴点0=x 是函数xxy =的第一类间断点.11、函数()x f x1=必在闭区间[]b a ,取得最大值、最小值.错误 ∵根据连续函数在闭区间上的性质,()x f x1=在0=x 处不连续 ∴函数()x f x1=在闭区间[]b a ,不一定取得最大值、最小值 二、填空题:1、设()x f y =的定义域是()1,0,则 (1)()xef 的定义域是( (,0)-∞ );(2)()x f 2sin 1-的定义域是( ,()2x x k x k k Z πππ⎧⎫≠≠+∈⎨⎬⎩⎭);(3)()x f lg 的定义域是( (1,10) ). 答案:(1)∵10<<xe (2)∵1sin 102<-<x (3)∵1lg 0<<x2、函数()⎪⎩⎪⎨⎧≤<-=<<-+=403000222x x x x x x f 的定义域是( (]4,2- ).3、设()2sin x x f =,()12+=ϕx x ,则()[]=ϕx f ( ()221sin +x ).4、nxn n sinlim ∞→=( x ).∵x x n x n x n n x n x n n n n =⋅==∞→∞→∞→sinlim 1sin limsin lim 5、设()11cos 11211xx x f x x x x π-<-⎧⎪⎪=-≤≤⎨⎪->⎪⎩,则()10lim x f x →--=( 2 ),()=+→x f x 01lim ( 0 ). ∵()1010lim lim (1)2x x f x x →--→--=-=,()()01lim lim 0101=-=+→+→x x f x x6、设()⎪⎩⎪⎨⎧=≠-=00cos 12x ax x x x f ,如果()x f 在0=x 处连续,则=a ( 21 ).∵21cos 1lim 20=-→x x x ,如果()x f 在0=x 处连续,则()a f xx x ===-→021cos 1lim 20 7、设0x 是初等函数()x f 定义区间的点,则()=→x f x x 0lim ( ()0x f ).∵初等函数()x f 在定义区间连续,∴()=→x f x x 0lim ()0x f8、函数()211-=x y 当x →( 1 )时为无穷大,当x →( ∞ )时为无穷小.∵()∞=-→2111limx x ,()011lim2=-∞→x x9、若()01lim2=--+-+∞→b ax x x x ,则=a ( 1 ),=b ( 21-). ∵()b ax x xx --+-+∞→1lim2()()()bax x x bax x x b ax x x x +++-+++---+-=+∞→111lim 222()()b ax x x b ax x x x +++-+-+-=+∞→11lim 222()()()b ax x x b x ab x a x +++--++--=+∞→11211lim 2222欲使上式成立,令012=-a ,∴1a =±,上式化简为()()()2211212112lim lim lim1x x x bab ab x b ab a →+∞→+∞→+∞--++-++--+==+∴1a =,021=+ab ,12b =-10、函数()x x f 111+=的间断点是( 1,0-==x x ). 11、()34222+--+=x x x x x f 的连续区间是( ()()()+∞∞-,3,3,1,1, ).12、若2sin 2lim =+∞→x xax x ,则=a ( 2 ). ()200lim sin 2lim sin 2lim =+=+=⎪⎭⎫ ⎝⎛+=+∞→∞→∞→a a x x a x x ax x x x ∴2=a13、=∞→x x x sin lim( 0 ),=∞→xx x 1sin lim ( 1 ), ()=-→xx x 11lim ( 1-e ),=⎪⎭⎫ ⎝⎛+∞→kxx x 11lim ( ke ). ∵0sin 1lim sin lim=⋅=∞→∞→x x xx x x 111sin lim1sin lim ==∞→∞→xx x x x x()[]1)1(110)(1lim 1lim --⋅-→→=-+=-e x x xx x x k kx x kxx e x x =⎥⎦⎤⎢⎣⎡+=⎪⎭⎫ ⎝⎛+∞→∞→)11(lim 11lim14、limsin(arctan )x x →∞=( 不存在 ),lim sin(arccot )x x →+∞=( 0 )三、选择填空:1、如果a x n n =∞→lim ,则数列n x 是( b )a.单调递增数列 b .有界数列 c .发散数列2、函数()()1log 2++=x x x f a 是( a )a .奇函数b .偶函数c .非奇非偶函数 ∵()()11log 1)(log 22++=+-+-=-x x x x x f aa()()x f x x a -=++-=1log 23、当0→x 时,1-xe 是x 的( c )a .高阶无穷小b .低阶无穷小c .等价无穷小4、如果函数()x f 在0x 点的某个邻域恒有()M x f ≤(M 是正数),则函数()x f 在该邻域( c )a .极限存在b .连续c .有界5、函数()x f x-=11在( c )条件下趋于∞+. a .1→x b .01+→x c .01-→x6、设函数()x f xxsin =,则()=→x f x 0lim ( c )a .1b .-1c .不存在 ∵1sin lim sin limsin lim000000-=-=-=-→-→-→xx x x x xx x x1sin lim sin lim 0000==-→+→xx x x x x 根据极限存在定理知:()x f x 0lim →不存在。
高数极限必做150题及答案

极限必做150解答033002020001021111.lim ()x sin tan tan sin tan (1cos )1lim lim 2ln()ln()2ln 2.lim1121lim lim 22()()l x x x x x x x x x ax x x x x x x x a x a x a x x a x a x x x a x a x a→→→→→→→→→---===++----+-===-+-===00002201tan 6.lim(sin lim ln(1)ln(1x x )7.lim secx cosxl x ax ax a x x x x x x mxm nx mx m nx n x x →→→→→→→→→+=+==-==+++-+-=、n 为正整数)=2224222002020ln (1)im lim 1sec (1cos )1..8.lim ln()1111121lim ....2x x x x nxx x x nx x x x x x x x xe e e x n e e e n n x nn n n n n →→→→⎡⎤+-+⎣⎦==-+++⎛⎫---+=+++=+++= ⎪⎝⎭)22(1)22(1)6(1)lim2312li 9.limsinlim(1))lim(1)03210.lim 346lim 1312111.lim 212lim 121n n nnn n n n n n n n n n n nn nn n n n ee n n n e n π→∞→∞→∞→∞+→∞+-+-+→∞→∞→∞=--=-=⎛⎫- ⎪+⎝⎭⎛⎫=-== ⎪+⎝⎭+⎛⎫ ⎪-⎝⎭⎛⎫=+= ⎪-⎝⎭2m 21ln ln lim lim ()2211(2)(2)22(2)(2)2(2)(2)(2)(2200012.lim 13.lim 212lim lim lim 2n n n n n nn a ba bn n n nn nn t t t t t t t t t e ee en e e e t ne e e e e e e t t →∞→∞→∞-→∞++⎝⎭+-→∞+-+-+-→→→=⎝⎭====⎡⎤+-⎢⎥⎣⎦=+--+===令)21lim 1lim 1214.lim 1 (a ln lim ln 15.lim 1n n n n n n nn n n e n a a n a nn eeee →∞→∞→∞→∞→∞⎫⎪⎪-⎝⎭⎝⎭=⎡⎤-⎢⎥⎣⎦=⎛ ⎪+⎝⎭====为整数)=[]211lim21116.lim ln()ln()2ln 1,n17.lim lim (1)lim 1118.lim (1)19.lim ln(1)ln 1lim ln lim n n a bn n n abnn n n nn n n n n n n a a a n n t n e e n e n e a b e n ne n e e nn n n n n n →∞→∞→∞→∞→∞→∞→∞→∞⎡⎤++--⎢⎥⎣⎦=⎛⎫- ⎪⎝⎭⎛⎫=---=- ⎪⎝⎭⎛⎫+ ⎪⎝⎭=+-=+-+⎛⎫== ⎪⎝⎭令同第二题[]211120201ln(1)1120.limln (1)(1)(1)(1)limlim 2ln()(1)21.lim ln(1)ln(1)122lim ln()lim ln(1)lim 2111ln cos 22.limln(1cosx 1)lim li x x x x x x x x x n n x x x x x x x x x x xx xx x x x x xx x →∞→-→-→-→+∞→+∞→+∞→+∞→→+=-+-+-===--++--+==+==---+-==[]2022cos 11m 223.lim (2)ln(2)2(1)ln(1)ln 2lim ln(2)ln(1)ln ln(1)2ln()121lim ln ln 2lim ln(1)221111(1)x x x x x x x x x x x x x xx x x x x x x x x x x x x x x x x x x x →→+∞→+∞→+∞→+∞-=-++-++++⎡⎤=+-++-++⎢⎥+⎣⎦+⎡⎤=++=-+=-=⎢⎥+++⎣⎦)00010110112lim 2cot 0sin()cos()44limcos()tan cos()sin()244424.lim26.lim tan()427.lim sin x x x x xx xx x xxx x x x x x x x xe ee eex e e x ππππππ→→→→→→→--→---------→+=====⎡⎤-⎢⎥⎣⎦===()22222221sin cos 1cos 1limlim1tan2sin 1cos limlim12cos cos 2222122lim 1lim 2121cos 28.lim(sin )2129.lim 21x x x x x x xx x x xxxx x x x xxx x x x x x x x x x x eeex e eex x x x eeπππ→→→→→∞→∞+--+→---→∞⎛⎫-+-+⎛⎫- ⎪ ⎪ +-+-⎝⎭⎝⎭+======⎛⎫-+ ⎪+-⎝⎭==132lim 3621122130.lim 212lim(1)2131.lim(12)x xx x x x xx e x x e e x x e →∞⎪-→∞⎛⎫⎪+⎝⎭→∞-→=+⎛⎫⎪-⎝⎭=+=+-=22lim cos1lim()221cos cos sinlim limtancos()cos0002232.lim coscos33.limcosln()ln()2ln134.lim35.limx xx a x axxx xxx ax ax a xaa x a axxe e exae e ex x x x xx xππ→+∞→+∞→→→+∞⎡⎤⎫-⎢⎪⎥-⎭⎣⎦-→----→→+===⎛⎫⎪⎝⎭===++--+同第二题-[]00011211121ln(1)ln(1)ln(1)lim ln(1)lim lim1ln(sec tan)36.limsinln(1sin)cos ln(1sin)ln coslim lim lim137.lim()lim(axax axaxaxx x xxx x xx xxxxbexb b e abee abx x ex xxx x x xx x xx a ax a a∞→+∞→+∞→+∞→→→→+→+∞+→+∞+++=+===++++==+=-=22122111(ln ln) 0005111)lim()ln lim ln ln1(1)138.lim111lim explim explim1(1)139.lim5x xx xx xxxx x x x x xxa bx xx x xxxxx a a ax x x xxaxbxa xb a b a b aexb x xb x x bex-+→+∞→+∞→-→→→→-=-==++⎛⎫+⎪+⎝⎭⎛⎫----===-== ⎪++⎝⎭-=20000tan 30tan 300300240.lim 1111lim lim lim 12222241.lim sin 11lim lim 132142.lim 3ln lim 3ln 43.lim()lim lim x x x x x x x x x x x x x x x x x x x x x a x a a x a x a x e e x e e e e x x x e e x e e x x a x x a a xa a x a a a x a -→--→→→→→→→→→-→→+----==-=+=---=-=-=--==--==-0000100101000()ln ln ln ln 144.lim145.lim11(1)1lim lim 46.lim 2112x 47.lim()11explim explim a a a x x n x n t t xxxx bx x x bx bx a bx x a x a a a a x a x x x x x x x x tt nt n t t a b t ax e ax e e a e x x→→→→→→+→→-=--=----=+-===⎛⎫+ ⎪⎝⎭=++--==+=令令,如题31148.ln 1 n ()ln(1)1()10,[0,)11()[0,)()(0),[0,)11ln(1)0ln(1)ln(1)()32,()(x 1),()n n nf x x xxf x x x xf x f x f x x x x x n nx x x x c c x αβα⎛⎫+< ⎪⎝⎭=+--'=-=≤∈+∞+++∞<∈+∞+-<⇒+<⇒+<=-+=-→证明不等式:其中为正整数解:令当所以在递减 所以即证毕49.设确定及n,使当x 1时,3211111211~()()3233lim 1lim 1lim 1()(1)(1)3(1)(x 1)3(1)lim1lim 1(1)(1)612,c 350.()(),A ()~()l n n x x x n n x x kx x x x x x c x cn x x x cn x cn x n cn Af xg x f x g x x βαβ-→→→--→→-+-=⇒=⇒=--+-+⇒=⇒=--=⇒====→∞解:所以n-2=0,设确定K 及,使当x +,解:1212()im1lim1()~()lim1lim 1()lim11111,,1,224k x x k x x kx f x g x Ax x f x g x Axk A A-→+∞→+∞-→+∞→+∞-=⇒==-=→∞=⇒=⇒===--==-所以k+4。
高等数学:函数 、极限与连续习题含答案

1第一章函数、极限与连续一、选择题1.函数)(x f 的定义域为[]10,,则函数51()51(-++x f x f 的定义域是().A.⎥⎦⎤⎢⎣⎡-54,51B.⎥⎦⎤⎢⎣⎡56,51C.⎦⎤⎢⎣⎡54,51D.[]1,02.已知函数()62+x f 的定义域为[)4,3-,则函数)(x f 的定义域是().A.[)4,3-B.[)14,0C.[]14,0D.⎪⎭⎫⎢⎣⎡--1,293.函数211ln ++-=x xy 的定义域是().A.1≠x B.2-≥x C.2-≥x 且1≠x D.[)1,2-4.下列函数)(x f 与)(x g 是相同函数的是().A.11)(+⋅-=x x x f ,1)(2-=x x g B.2)(π=x f ,x x x g arccos arcsin )(+=C.x x x f 22tan sec )(-=,1)(=x g D.1)(=x f ,x x x g 22cos sin )(+=5.下列函数)(x f 与)(x g 是相同函数的是().A.x x g x x f lg 2)(,lg )(2==B.2)(,)(x x g x x f ==C.33341)(,)(-=-=x x x g x x x f D.xx x g x f 22tan sec )(,1)(-==6.若1)1(2-=-x x f ,则)(x f =().A.2)1(+x x B.2)1(-x x C.)2(+x x D.)1(2-x x 7.设xx f cos 2)(=,xx g sin 21)(⎪⎭⎫⎝⎛=,在区间⎪⎭⎫ ⎝⎛20π,内成立().A.)(x f 是增函数,)(x g 是减函数B.)(x f 是减函数,)(x g 是增函数C.)(x f 和)(x g 都是减函数D.)(x f 和)(x g 都是增函数28.函数)1lg()1lg(22x x x x y -++++=().A.是奇函数B.是偶函数C.是非奇非偶函数D.既是偶函数,也是奇函数9.下列函数中()是奇函数.A.1cos sin +-=x x y B.2xx a a y -+=C.2211x x y +-=D.)1)(1(+-=x x x y 10.函数x x x f sin )(2=的图形().A.关于x 轴对称B.关于y 轴对称C.关于原点对称D.关于直线x y =对称11.下列函数中,()是奇函数.A.2ln(1)x +B.)x C.sin x x D.x xe e-+12.若()f x 是奇函数,且对任意实数x ,有(2)()f x f x +=,则必有(1)f =().A.1-B.0C.1D.213.偶函数的定义域一定是().A.包含原点的区间B.关于原点对称 C.),(+∞-∞D.以上三种说法都不对14.若)(x f 是奇函数,)(x ϕ是偶函数,且)]([x f ϕ有意义,则)]([x f ϕ是().A.偶函数B.奇函数C.非奇非偶函数D.奇函数或偶函数15.函数xx f 1sin )(=是其定义域内的什么函数().A.周期函数B.单调函数C.有界函数D.无界函数16.若()f x 在(,)-∞+∞内单调增加,()x ϕ是单调减少,则[()]f x ϕ在(,)-∞+∞内().A.单调增加B.单调减少C.不是单调函数D.无法判定单调性17.函数xxe e y -+=的图形对称于直线().A.y x=B.y x=-C.0x =D.0y =318.下列函数中周期为π的是().A.xy 2sin =B.xy 4cos = C.xy πsin 1+= D.()2cos -=x y 19.下列函数是周期函数的是().A.)sin()(2x x f =B.xx f 1cos)(=C.xx f πcos )(=D.xx f 1sin)(=20.设1cos )(-=x x f 的定义域和周期分别为().A.πππ2,,22=∈+=T Z k k x B.ππ2,,2=∈=T Z k k x C.ππ=∈=T Z k k x ,,D.πππ=∈+=T Z k k x ,,221.下列结论不正确的是().A.基本初等函数在其定义域内是连续的B.基本初等函数在其定义区间内是连续的C.初等函数在其定义域内是连续的D.初等函数在其定义区间内是连续的22.下列说法正确的是().A.无穷小的和仍为无穷小B.无穷大的和仍为无穷大C.有界函数与无穷大的乘积仍为无穷大D.收敛数列必有界23.下列说法不正确的是().A.两个无穷小的积仍为无穷小B.两个无穷小的商仍为无穷小C.有界函数与无穷小的乘积仍为无穷小D.在同一变化过程中,无穷大的倒数为无穷小24.若无穷小量α与β是等价的无穷小,则αβ-是()无穷小.A.与β同阶不等价的B.与β等价的C.比β低阶的D.比β高阶的25.当0→x 时,4x x +是32x x +的().A.高阶无穷小B.低阶无穷小C.同阶无穷小D.等价无穷小26.当0→x 时,x x sin 2-是x 的().A.高阶无穷小B.低阶无穷小C.同阶无穷小但不等价D.等价无穷小27.设232)(-+=xxx f ,则当0=x 时,有().4A.)(x f 与x 是等价无穷小B.)(x f 是x 同阶但非等价无穷小C.)(x f 是比x 高阶的无穷小D.)(x f 是比x 低阶的无穷小28.设x x f -=1)(,31)(x x g -=,则当1→x 时().A.)(x f 是比)(x g 高阶的无穷小B.)(x f 是比)(x g 低阶的无穷小C.)(x f 与)(x g 是同阶但不等价的无穷小D.)(x f 与)(x g 是等价无穷小29.当0→x 时,与x 不是等价无穷小量的是().A.2sin xx -B.xx 2sin -C.3tan x x -D.xx -sin 30.当0→x 时,下列函数为无穷小量的是().A.x x sin B.xx sin 2+C.)1ln(1x x+D.12-x 31.当0→x 时,是无穷大量的有().A.xx 1sin 1B.xx sin C.2xD.xx 21-32.当0→x 时,下列函数不是无穷小量的是().A.x x x x tan cos 2-B.21sin xx C.x x x sin 3+D.xx )1ln(2+33.下列等式正确的是().A.1sin lim=∞→x xx B.11sinlim =∞→xx C.11sinlim =∞→xx x D.11sin lim=∞→xx x 34.设函数()f x 在闭区间[1,1]-上连续,则下列说法正确的是().A.1lim ()x f x →+必存在B.1lim ()x f x →必存在C.1lim ()x f x →-必存在D.1lim ()x f x →-必存在35.=→xx 102lim ().A.0B.∞+C.∞D.不存在36.下列各式中正确的是().A.0cos lim0=→xxx B.1cos lim0=→xxx C.0cos lim=∞→xxx D.1cos lim=∞→xxx537.若(sin )3cos 2f x x =-,则(cos )f x =().A.3sin 2x+B.32sin 2x-C.3cos 2x+D.3cos 2x -38.设21()arcsin 3lim ()1x x f x f x x x→∞=++,则lim ()x f x →∞等于().A.2B.21C.2-D.21-39.设x xx f )31()2(-=-,则=∞→)(lim x f x ().A.1e-B.2e-C.3e-D.3e40.极限lim sinx x xπ→∞=().A.1B.πC.2eD.不存在41.当0x →时,1xe 的极限是().A.0B.+∞C.-∞D.不存在42.当5x →时,5()5x f x x -=-的极限是().A.0B.∞C.1D.不存在43.设x x x f 21)(-=,则=→)(lim 0x f x ().A.1B.不存在C.2eD.2e-44.若0→x 时,kx x x ~2sin sin 2-,则=k ().A.1B.2C.3D.445.若52lim22=-++→x bax x x ,则().A.1=a ,6=b B.1-=a ,6-=b C.1=a ,6-=b D.1-=a ,6=b 46.=+-∞→x x xx arctan 1lim ().A.2πB.2π-C.1D.不存在647.=+→xx x )1ln(lim0().A.1-B.1C.∞D.不存在但非∞48.已知22lim 222=--++→x x bax x x ,则b a ,的值是().A.8,2-==b a B.b a ,2=为任意值C.2,8=-=b a D.b a ,均为任意值49.=-+-+++∞→11)2(3)2(3lim n n nn n ().A.31B.31-C.∞D.050.xx x x 1011lim ⎪⎭⎫⎝⎛+-→的值等于().A.2eB.2e-C.1D.∞51.设xx g x3e 1)(2-=,当0≠x 时,)()(x g x f =,若)(x f 在0=x 处连续,则)0(f 的值是().A.0B.32-C.1D.3152.设函数⎪⎪⎩⎪⎪⎨⎧<+=>-=0,1sin 0,10,1e )(2x a x x x x x x f x 在点0=x 处连续,则常数=a ().A.1-B.1C.2-D.253.若)(x f 在点0x 点连续,则=+→)2(sin lim 00h x f h ().A.)2(sin 0h x f +B.)(sin 0x f C.)(sin 0x f D.不存在54.函数⎪⎩⎪⎨⎧=≠--=0,210,cos 1)(42x x x x xx f 的间断点有().7A.3个B.1个C.0个D.2个55.设0=x 是⎪⎪⎪⎩⎪⎪⎪⎨⎧>=<+=0,1sin 0,00,11)(1x x x x x ex f x 的().A.跳跃间断点B.可去间断点C.第二类间断点D.连续点56.11)(11+-=xxe e xf ,则0=x 是)(x f 的().A.可去间断点B.跳跃间断点C.第二类间断点D.连续点二、填空题57.函数xxx f -+=11ln21)(的定义域是_________.58.函数2ln arcsin +=x xy 的定义域为_________.59.函数xx y 1arctan3+-=的定义域是_________.60.设)(x f 的定义域[]1,0=D ,则)(sin x f 的定义域_________.61.若函数()f x 的定义域为[1,0]-,则函数(cos )f x 的定义域为_________.62.若函数()f x 的定义域为[0,1],则函数(arctan 2)f x 的定义域为_________.63.设2(1)32f x x x +=-+,则f =_________.64.函数nn x a y 12)(-=的反函数是_________.65.函数)0(≠-++=bc ad dcx bax y 的反函数是_________.66.函数x y 3sin 2=⎪⎭⎫ ⎝⎛≤≤-66ππx 的反函数是_________.867.函数3arccos2xy =的反函数是_________.68.______28153lim 233=+-++∞→n n n n n n .69._______43867lim 22=+-+∞→n n n n .70.⎪⎭⎫⎝⎛++++∞→n n 21...41211lim =_________.71.2)1(...321limnn n -++++∞→=_________.72.35)3)(2)(1(limn n n n n +++∞→=_________.73._______lim 2210=+→x x x e.74._______1lim432=-+++∞→nn n n n n .75._______43...21lim 2=++++∞→nn nn .76._______1!!sin lim=+∞→n n n .77.=⎪⎭⎫⎝⎛++++++∞→πππn n n n n n 222...221lim _________.78.设012lim 2=⎪⎪⎭⎫⎝⎛--++∞→b ax x x x x ,则=a _________,=b _________.79._______4421lim 22=⎪⎭⎫ ⎝⎛---→x x x .80._______2)2sin(lim22=---→x x x x .81._______63sin lim=∞→xxx .982.m n x x x )(sin )sin(lim 0→(m n ,为正整数,且m n >)=.83._______1cos 1lim 20=--→x e x x .84._______4tan 8arcsin lim0=→xxx .85._______81221lim 32=⎪⎭⎫ ⎝⎛---→x x x .86.xxx x 30sin sin tan lim-→=.87.)1(lim 2x x x x -++∞→=.88.)1sin 1)(11(tan sin lim32-+-+-→x x xx x =.89.若2)1sin(1lim 21=--+→x ax x x ,则_________=a .90.若0x →时函数tan sin x x -与nmx 是等价无穷小,则=m ,n =.91.当∞→x 时,函数)(x f 与21x是等价无穷小,则_______)(3lim 2=∞→x f x x .92.当0→x 时,函数112-+ax 与x 2sin 是等价无穷小,则_______=a .93.当∞→x 时,函数)(x f 与x4是等价无穷小,则_______)(2lim =∞→x xf x .94.若1x →时,2(1)1mx x --是比1x -高阶的无穷小,则m 的取值范围是.95.11232lim +∞→⎪⎭⎫⎝⎛++x x x x =_________.96.40)21(lim -→=-e x x kx ,则_________=k .1097.nn n x x f ⎪⎭⎫⎝⎛+=∞→sin 1lim )(,则=')(x f .98.4lim e a x a x xx =⎪⎭⎫ ⎝⎛+-+∞→,则_______=a .99._______1lim 23=⎪⎭⎫ ⎝⎛++∞→x x x x .100.如果201cos ()3lim ()x xf x f x x→-=+,则0lim ()x f x →=.101.设函数⎪⎩⎪⎨⎧≥<<+≤+=1,10,0,2)(2x bx x a x x x x f 在),(+∞-∞内连续,则___________,==b a .102.)(lim 2)sin 21()(031x f x x f x x→++=,求()=x f .103.如果201cos ()3lim ()x xf x f x x→-=+,则0lim ()x f x →=.104.设2211xx x x f +=⎪⎭⎫ ⎝⎛-,则=)(x f .105.函数⎪⎩⎪⎨⎧=≠+=010,1sin 1)(x x xx x f 的连续区间是.106.若函数()⎪⎩⎪⎨⎧>+≤+=0,21ln 0,)(12x x x x a x f x 在0=x 处连续,则=a .107.极限02sin 3lim[sin]x x x x x→+=.108.极限3sin 2lim[sin ]x xx x x→∞+=.109.若⎪⎩⎪⎨⎧=≠-+=-0,0,316sin )(3x a x x e x x f ax 在0=x 连续,则_______=a .110.函数⎪⎩⎪⎨⎧><<-±===2,420,42,0,2)(2x x x x x x f 的间断点有_________个.111.函数653)(2+--=x x x x f 的第二类间断点是_________.112.函数)5)(32(86)(22-----=x x x x x x f 的间断点是.113.设⎪⎩⎪⎨⎧≤+>=,0,,0,1sin )(2x x a x x x x f 要使)(x f 在),(+∞-∞内连续,则=a .114.设⎪⎩⎪⎨⎧<+=>+=0,20,0,)(2x b x x a x e x x f 在点0=x 处连续,则=a ,=b .115.设⎪⎩⎪⎨⎧≤>=0,0,3sin )(x x x x x x f ,则点0=x 是)(x f 的第类间断点.116.设⎪⎩⎪⎨⎧≤<-+>=-,01),1ln(,0,)(11x x x e x f x 则点0=x 是)(x f 的第类间断点;点1=x 是)(x f 的第类间断点.117.若函数=)(x ϕ,则函数)(x f 为奇函数这里⎪⎪⎩⎪⎪⎨⎧<=>++=0, )( 0, 0 0 ),1ln()(2x x x x x x x f ϕ118.⎩⎨⎧<-≥=00 )(22x x x x x f ,则)(x f 是(奇/偶)函数.119.⎩⎨⎧>+≤-=0 10 1)(x x x x x f ,则)(x f 是(奇/偶)函数.三、计算题120.设函数1)1(2++=x x x f 0>x ,求)(x f .121.设函数2211xx x x f +=⎪⎭⎫ ⎝⎛+,求)(x f .122.设xx f -=11)(,求))((x f f .123.设23)1(2+-=+x x x f ,求)(x f .124.已知x x g xx f -==1)(,1)(,求))((x g f .125.设x x x f 2)1(2-=-,求)1(+x f .126.求函数321)(2-+=x x x f 的连续区间.127.设函数)(x f 的定义域为)0,1(-,求函数)1(2-x f 的定义域.128.设x xx f +=12arccos )(,求其定义域.129.设)(x f 的定义域为[]1,0,求)(cos x f 的定义域.130.已知⎩⎨⎧≤<≤≤=+21,210,)1(2x x x x x ϕ,求)(x ϕ.131.设⎩⎨⎧<+≥+=0,40,12)(2x x x x x f ,求)1(-x f .132.判断函数x x x f 32(32()(-++=的奇偶性.133.判断11-+=x x a a x y 的奇偶性.134.设)21121)(()(-+=x x f x F ,已知)(x f 为奇函数,判断)(x F 的奇偶性.135.求函数x x y 44sin cos -=的周期.136.求函数2cos sin x x y +=的周期.137.求函数x y 3sin 2=)66(ππ<<-x 的反函数.138.求函数)1ln(2-+=x x y 的反函数.139.xx x 3113sin lim +-∞→.140.633lim 6--+→x x x .141.2203)1ln(lim x x x +→.142.x xx 4cos 12sin 1lim 4-+→π.143.2321lim 4--+→x x x .144.123lim 221-+-→x x x x .145.25273lim 33+-++∞→x x x x x .146.)cos 3(11lim 32x x x x +++∞→.147.2021cos lim x x x -→.148.2021lim x ex x -→.149.3222......21lim nn n +++∞→.150.)3(lim 2x x x x -++∞→.151.xx x ln 1lim 21-→.152.20cos 1lim x x x -→.153.38231lim x x x +---→.154.⎪⎪⎭⎫ ⎝⎛+-++⨯+⨯∞→)12)(12(1...531311lim n n n .155.n n 11lim +∞→.156.114sin lim 0-+→x xx .157.)(lim 22x x x x x --++∞→.158.156223lim 22+-++∞→n n n n n .159.nx mxx sin sin lim 0→.160.⎪⎭⎫ ⎝⎛-→x x x x ln ln 1lim 1.161.145lim 1---→x xx x .162.⎪⎪⎭⎫ ⎝⎛--→11lim 31x x x .163.xx x --→πππ1cos )(lim .164.20cos 1lim x mx x -→.165.11sinlim -+∞→x x x x x .166.)15(lim 323x x x x -+-∞→.167.)cos 1(cos 1lim 0x x x x --+→.168.28lim 38--→x x x .169.n n n 31...9131121...41211lim ++++++++∞→.170.xx x x x 6sin 4cos lim ++∞→.171.)1(lim 2x x x x -+∞→.172.⎪⎪⎭⎫⎝⎛-+→114sin lim 0x x x .173.174lim 22++→x x x .174.2220)1()41ln(lim x x e x -+→.175.115)2(5)2(lim ++∞→+-+-n n nn n .176.xx e 1011lim +→.177.若123lim 22=-+-→x ax x x ,求a .178.已知01lim 2=⎪⎪⎭⎫ ⎝⎛--+∞→b ax x x x ,其中a ,b 是常数,求a ,b .179.已知),0()1(lim 2017∞≠≠=--∞→A n n n k k n ,求k 的值.180.计算⎪⎭⎫ ⎝⎛+++++++++∞→n n n n n n n n n 2222211lim .181.已知5312)(22+++-=bx x ax x f ,当∞→x 时,求a 和b 的值使)(x f 为无穷小量.182.当0→x ,比较函数22)(-+=x x e x f 与x 是否为同阶无穷小.183.已知82lim 3=⎪⎭⎫ ⎝⎛-+∞→x x a x a x ,求a .184.()xx x sec 32cos 1lim +→π.185.11212lim +∞→⎪⎭⎫⎝⎛-+x x x x .186.26311lim -∞→⎪⎭⎫ ⎝⎛+x x x 187.xx x x 311lim ⎪⎭⎫ ⎝⎛+-∞→.188.21232lim +∞→⎪⎭⎫ ⎝⎛++x x x x .189.xx x tan 2)(sin lim π→.190.已知⎪⎪⎩⎪⎪⎨⎧<=>+=0,sin 10,0,1sin )(x x x x p x q x x x f 在点0=x 处极限存在,求p 和q 的值.191.求函数⎪⎩⎪⎨⎧=≠--=0,210,cos 1)(42x x x x xx f 的间断点的个数.192.判断函数111)(--=x x ex f 的间断点及其类型.193.判断函数xx x f 1cos)(=的间断点及其类型.194.设)(x f 在点0=x 处连续,且⎪⎩⎪⎨⎧=≠-=0,0,cos 1)(2x a x x x x f ,求a .195.求函数xxy sin =的间断点及类型.196.求函数)1()(22--=x x xx x f 的间断点.197.证明方程019323=+--x x x 至少有一个小于1的正根.198.判断函数122+=x y 的单调性.199.已知⎪⎪⎪⎩⎪⎪⎪⎨⎧<⎪⎭⎫ ⎝⎛-=>+--=0,110,0,1)1(2sin )(2x x x b x a e e x f x x x 在点0=x 处连续,求a 和b 的值.200.设函数⎩⎨⎧≥+<=0,0,)(x x a x e x f x 在),(+∞-∞内连续,求a .201.设⎪⎪⎩⎪⎪⎨⎧<≤---+=>+=01,110,00,)1ln()(x x xx x x x x x f ,判断其间断点及类型.202.设xe xf x 1)(-=,判断其间断点及类型.203.设⎪⎩⎪⎨⎧≤<-+>=-01),1ln(0)(,11x x x e x f x ,判断)(x f 的间断点及其类型.204.求曲线65222+-=x x x y 的渐近线.205.求xex f -+=1111)(的间断点并判断其类型.206.设⎪⎪⎪⎩⎪⎪⎪⎨⎧>++=<=0,)21ln(0,0,sin 1sin )(2x a xx x b x x x x x f ,求b a ,的值使其在),(+∞-∞内连续.207.设⎪⎪⎩⎪⎪⎨⎧≤<=<<-=-21,1,210,1ln )(1x e x x x xx f x ,(1)求)(x f 的定义域(2)判断间断点1=x 的类型,如何改变定义使)(x f 在这点连续?208.判断函数x x y ln +=在区间),0(+∞内的单调性.第一章函数、极限与连续1..54,51:15101510⎥⎦⎤⎢⎣⎡⇒⎪⎪⎩⎪⎪⎨⎧≤-≤≤+≤D x x 选C2.43<≤-x ,826<≤-x ,14620<+≤x 。
高等数学函数的极限与连续习题及答案

上式化简为
1a2
0,∴a1,
2
1b
12ab12abx1b212ablimlimlim
xxx1a∴1
a1,12ab0,b2
10、函数fx
的间断点是(x0,x1).
11
xx2x2
11、fx2的连续区间是(,1,1,3,3,).
x4x3ax2sinx
2,则a(2)12、若lim.
xx∴aax2sinxsinxlimlima2a0a02limxxxxx
a
xx21
logaxx21fx
3、当x0时,ex1是x的(c)
a.高阶无穷小b.低阶无穷小c.等价无穷小
4、如果函数fx在x0点的某个邻域b.连续c.有界
5、函数fx1
1x在(c)条件下趋于.
a.x1 b.x10 c.x10
6、设函数fxsinx
x,则limx0fx(c)
a.1b.-1c.不存在∵sinx
6、如果~,则o.
1,是
∴limlim10,即是的同阶无穷小.
2xx2sin2sin1cosx11limlim2正确∵limx0x0x04x2x2x2
2正确∵lim
11limxlimsin0.x0xx0x0x
1错误∵limsin不存在,∴不可利用两个函数乘积求极限的法则计算。x0x8、limxsin
高等数学函数的极限与连续习题精选及答案
第一章函数与极限复习题
1、函数fxx2x31x1与函数gxx1相同.
错误∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。
∴fxx2x31x1与gx函数关系相同,但定义域不同,所以fx与gxx1
是不同的函数。
2、如果fxM(M为一个常数),则fx为无穷大.
高数难题试题库及答案

高数难题试题库及答案1. 极限计算题目:计算极限 \(\lim_{x \to 0} \frac{\sin x}{x}\)。
答案:根据洛必达法则,原式等于 \(\lim_{x \to 0} \frac{\cos x}{1} = 1\)。
2. 导数求解题目:求函数 \(f(x) = x^3 - 3x^2 + 2\) 的导数。
答案:\(f'(x) = 3x^2 - 6x\)。
3. 不定积分题目:计算不定积分 \(\int (2x + 3) \, dx\)。
答案:\(\int (2x + 3) \, dx = x^2 + 3x + C\)。
4. 定积分计算题目:计算定积分 \(\int_{0}^{1} x^2 \, dx\)。
答案:\(\int_{0}^{1} x^2 \, dx = \frac{1}{3}x^3 \Big|_0^1= \frac{1}{3}\)。
5. 级数求和题目:求级数 \(\sum_{n=1}^{\infty} \frac{1}{n(n+1)}\) 的和。
答案:通过裂项法,\(\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1\)。
6. 微分方程求解题目:解微分方程 \(y'' - 2y' + y = 0\)。
答案:该方程的特征方程为 \(t^2 - 2t + 1 = 0\),解得 \(t =1\),因此通解为 \(y = C_1e^x + C_2xe^x\)。
7. 多元函数偏导数题目:求函数 \(z = x^2y + y^2\) 在点 \((1, 2)\) 处的偏导数。
答案:\(\frac{\partial z}{\partial x} = 2xy\),\(\frac{\partial z}{\partial y} = 2x + y\)。
在点 \((1, 2)\) 处,\(\frac{\partial z}{\partial x} = 4\),\(\frac{\partialz}{\partial y} = 4\)。
高等数学练习册及答案

高等数学练习册及答案### 高等数学练习册及答案#### 第一章:极限与连续练习题1:计算下列极限:1. \(\lim_{x \to 0} \frac{\sin x}{x}\)2. \(\lim_{x \to \infty} \frac{\sin x}{x}\)3. \(\lim_{x \to 1} (x^2 - 1)\)答案:1. 根据洛必达法则,我们首先对分子分母同时求导,得到 \(\lim_{x \to 0} \frac{\cos x}{1} = 1\)。
2. 由于 \(\sin x\) 的周期为 \(2\pi\),当 \(x\) 趋向无穷大时,\(\frac{\sin x}{x}\) 趋向于0。
3. 直接代入 \(x = 1\),得到 \(\lim_{x \to 1} (x^2 - 1) = 0\)。
练习题2:判断函数 \(f(x) = \frac{x^2 - 1}{x - 1}\) 在 \(x =1\) 处是否连续。
答案:函数 \(f(x)\) 在 \(x = 1\) 处的极限为2,但 \(f(1)\) 未定义,因此 \(f(x)\) 在 \(x = 1\) 处不连续。
#### 第二章:导数与微分练习题1:求下列函数的导数:1. \(f(x) = x^3 - 2x\)2. \(g(x) = \sin x + e^x\)答案:1. \(f'(x) = 3x^2 - 2\)2. \(g'(x) = \cos x + e^x\)练习题2:利用导数求函数 \(h(x) = x^2\) 在 \(x = 2\) 处的切线方程。
答案:首先求 \(h'(x) = 2x\),然后计算 \(h'(2) = 4\),切点坐标为\((2, 4)\)。
切线方程为 \(y - 4 = 4(x - 2)\),简化得 \(y = 4x - 4\)。
#### 第三章:积分学练习题1:计算下列不定积分:1. \(\int x^2 dx\)2. \(\int \frac{1}{x} dx\)答案:1. \(\int x^2 dx = \frac{x^3}{3} + C\)2. \(\int \frac{1}{x} dx = \ln |x| + C\)练习题2:计算定积分 \(\int_{0}^{1} x^2 dx\)。
成人高考《高等数学一》章节练习题答案及解析

成人高考《高等数学一》章节练习题答案及解析- 1 -2021 年专升本数学一习题第一章极限、连续1.已知f(x) = � 3x + 2,x ≥0x 2 −1,x < 0。
求f(0)=2. limx→∞sinxx=3. limx→2 (x −2)sin1x−2=4. limx→0xln(3x+1)=5. limx→0sin4xx=6. limx→∞�1 +5x �x =7. limx→0tan2x2x=8. limx→0 (1 −x)1x =9. limx→0 (1 + x)−1x =10. limx→∞�1 +1x �x+2 =11. limx→0x ⋅tanx= 12. limx→0sinxsin2x =13. limx→0ln (2x+1)sin3x14. limx→1x−1x 2 −1=15. limx→4x−4√x+5−3=- 2 -- 2 -16. limx→∞2x 3 +3x 2 +5 7x 3 +4x 2 −1 = 17.设f(x) = �x −1,x < 0 0,x = 0x + 1,x > 0,求limx→0f(x)18. limx→2x 2 +x−6x 2 −4=19. limx→0x−sinxx 2 +x=20.设函数f(x) = �√x3,x < 0,x 2 + 1,x ≥0, 则在点x=0 处是否连续。
21.函数f(x) =x 2 +1x−3的间断点是()。
22.设函数f(x) = �e x,x < 0x + a,x ≥0 在x=0 处连续,则a=()第二章一元函数微分学1.已知f ′(2) = 2,求limΔx→0f(2−3Δx)−f(2)Δx=2.已知f ′(4) = 1,求limΔx→0f(4+2Δx)−f(4)Δx=3x + lnx在点(1,0)处切线斜率K。
4lnx在点(1,0)处的切线方程和法线方程。
5x 2 上的一点,使该点处的切线与直线y = 2x + 2平行。
函数、极限和连续试题及答案-写写帮文库

••••••••••现在位置: > > 正文函数、极限和连续试题及答案时间:2019-05-14 作者:会员上传简介:写写帮文库小编为你整理了多篇相关的《函数、极限和连续试题及答案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《函数、极限和连续试题及答案》。
极限和连续试题(A卷)1.选择题(正确答案可能不止一个)。
(1)下列数列收敛的是()。
A.xnn-1n=(-1)nB.xn1n=(-1)nC.xnπn=sinD.xn=2n(2)下列极限存在的有()。
A.lim1x→∞sinxB.xlim→∞xsinxC.lim11x→02x-D.limn→∞2n2+1(3)下列极限不正确的是()。
A.lim(x+1)=2B.lim1x→1-x→0x+1=1 12C.lim4x-2xx→2=∞D.xlim→0+e=+∞(4)下列变量在给定的变化过程中,是无穷小量的有()。
A.2-x-1(x→0)B.sinxx(x→0)2C.e-x(x→+∞)D.xx+1(2-sin1x)(x→0)⎧⎪1(5)如果函数f(x)=xsinx,⎪x<0;⎨a,x=0;在x=0处连续,则a、b的值为(⎪⎪⎩xsin1x+b,x>0.A.a=0,b=0B.a=1,b=1C.a=1,b=0D.a=0,b=1 2.求下列极限:(1)lim(x322x→1-3x+1);(2)xlim→-2(3x+2x-5);(3)lim1x(1+x-3);(4)limx-3→0x→2x2+x;x2-8x2(5)limx→3x-3;(6)lim-16x→4x-4;(7)limx2-1x-2x→12x2-x-1;(8)lim;x→2x-2。
)(9)limx→0cosx1+x-1;(10)lim;x→∞xxx3+3x-1x4+3x-1(11)lim;(12)lim;x→∞3x3-xx→∞5x4-x3x3+3x-19x3+3x-1(13)lim;(14)lim;42x→∞x→∞x-xx-1x3.(15)limx→03xsin⎧2-x,x<0⎪23.设f(x)=⎨2x+1,0≤x<1,求limf(x),limf(x),limf(x),limf(x)。
函数极限题库及答案详解

函数极限题库及答案详解1. 求极限 \(\lim_{x \to 0} \frac{\sin x}{x}\)。
答案:根据洛必达法则,当 \(x \to 0\) 时,分子分母同时趋向于0,可以应用洛必达法则。
对分子分母同时求导,得到 \(\lim_{x \to 0}\frac{\cos x}{1} = 1\)。
2. 求极限 \(\lim_{x \to \infty} \frac{3x^2 + 2x + 1}{x^2 +5}\)。
答案:当 \(x \to \infty\) 时,分子和分母的高次项将主导极限的值。
因此,\(\lim_{x \to \infty} \frac{3x^2}{x^2} = 3\)。
3. 求极限 \(\lim_{x \to 2} \frac{x^2 - 4}{x - 2}\)。
答案:这是一个0/0的不定式,可以进行因式分解,分子可以分解为\((x - 2)(x + 2)\),因此原式变为 \(\lim_{x \to 2} (x + 2)\),结果为4。
4. 求极限 \(\lim_{x \to 0} \frac{e^x - 1}{x}\)。
答案:根据e的泰勒展开式,\(e^x = 1 + x + \frac{x^2}{2!} +\frac{x^3}{3!} + \cdots\),当 \(x \to 0\) 时,高阶项可以忽略,因此 \(\lim_{x \to 0} \frac{e^x - 1}{x} = 1\)。
5. 求极限 \(\lim_{x \to 0} \frac{1 - \cos x}{x^2}\)。
答案:根据泰勒展开,\(\cos x = 1 - \frac{x^2}{2!} +\frac{x^4}{4!} - \cdots\),因此 \(\lim_{x \to 0} \frac{1 -\cos x}{x^2} = \lim_{x \to 0} \frac{-\frac{x^2}{2!} +\text{高阶项}}{x^2} = -\frac{1}{2}\)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学习题库淮南联合大学基础部2008年10月第一章 映射,极限,连续习题一 集合与实数集基本能力层次:1: 已知:A ={x|1≤x ≤2}∪{x|5≤x ≤6}∪{3},B={y|2≤y ≤3} 求:在直角坐标系内画出 A ×B解:如图所示A ×B ={(x,y )| ,x A y B ∈∈ }.2:证明:∵ P 为正整数,∴p =2n 或p =2n+1,当p =2n+1时,p 2=4n 2+4n+1,不能被2整除,故p =2n 。
即结论成立。
基本理论层次:习题二 函数、数列与函数极限基本能力层次1:解:2:证明:由得cxy ay ax b -=+即 ay bx cy a+=-,所以 ()x f y = 所以命题成立3:(1)22x y -= (2)lg(sin )y x x =+(3 []y x = (4)0,01,0x y x ≥⎧⎫=⎨⎬<⎩⎭解:4:用极限定义证明: 1lim1n n n →∞-=(不作要求)证明:因为 ω∀ 有11|1|n n n ω--=<成立,只要1n ω>取N =[1ω],则当n>N 时,就有11|1|n n nω--=<有定义变知1lim 1n n n →∞-=成立5:求下列数列的极限(1)lim 3n n n→∞ (2)222312limn n n →∞+++(3)(4)1lim 1n n→∞+解:(1) 233nn n n <,又2lim 03n n x →∞=,所以 0lim 03n n n →∞≤≤ , 故:lim 3n n n →∞=0 (2)由于2223312(1)(21)111(1)(2)6n n n n n n n n n+++++==++又因为:1111lim (1)(2)63n n n n →∞++=,所以:2223121lim3n n n →∞+++ (3)因为:所以:(4) 因为:11111n n n ≤+≤+,并且1lim(1)1n n →∞+=, 故由夹逼原理得111n n+=6:解:由于7:解:8:9:习题三无穷小与无穷大、极限运算法则及两个重要极限基本理论层次1:解:同理:(3),(4)习题四无穷小的比较、函数的连续及性质基本理论层次1:(1)(2)2:第二章一元微分学及应用习题一导数及求导法则、反函数及复合函数的导数.基本理论层次21,1,,,,1()(1)(1)lim lim 1x a b x bx x f x f bx x ⎧+≥⎪⎨-+<⎪⎩-+-==-2222-ax 1.设f(x)=试求常数使f(x)在x=1处可导。
解:首先必须f(x)在x=1处连续,f(1-0)=limf(x)=lim(-x +bx)=b-1f(1+0)=limf(x)=lim(ax +1)=a+1,由f(1-0)=f(1+0)f(1) 得b-1=a+1,即b=a+2-x f'(1)(1){(1)}lim 11()(1)1(1),'(1)lim lim 2.11'(1)'(1)0,a x x a x x f x f a a f a x x f f a ++-+---+=---+-+====--==2ax 又因为由得从而b=2。
()()()()()ln ln ln ln ln ln 2,(0),,1'1'ln 'ln ln '111ln ln ln 0.xxx x x xxx x xxx x x x x e e y x e e y e x x x e x x x x x x x x +>===++⎛⎫∴=++⋅++ ⎪⎝⎭⎛⎫=+++⋅++> ⎪⎝⎭xx x xx x x x x x x x 2.求函数y=x+x x 解:设x x 所以x x x x x()()()()()()()()()()()()()()()()()()()()()()()()()()()()222222233113.(),3211112211111'1212211212111"'12212111!21nn n n nn n n f x f x x x f x x x x x f x x x x x x x x x x x x x n n fx x x ++=-+==-----⎛⎫⎛⎫--∴==- ⎪ ⎪ ⎪⎪------⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫----=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭-⋅-⋅=---求解:…由数学归纳法可得出:!()()()111111!.21nn n n x x ++⎡⎤⎛⎫=-⋅- ⎪⎢⎥ ⎪--⎢⎥⎣⎦⎝⎭()()()()()()()()()()()222222323222222223324.,33''''6132666'112122'16663322t dy dt at y at y t dy dx x t at t a t tat a t aty t tt a t at tx t t a a t at a t dy dxa at=⎧⎪⎪⎨⎪=⎪⎩⎛⎫⎪⎝⎭==⎛⎫⎪⎝⎭+--+==+++-=+-+-+==-2222求下面的参数方程所确定的函数的导数。
2at x=1+t 求1+t 1+t 解:又因为2at 1+t 23.1tt-习题二 导数的运算、高阶导数、隐函数及参数方程确定的函数的导数、函数的微分略习题三 中值定理 罗必达法则 泰勒公式基本理论层次1.2.3.45.]6.7.习题四导数的应用基本理论层次1.综合练习题一、 填空题1、设()f x 在x a =可导,则0()()lim x f a x f a x x →+--=。
2、设(3)2f '=,则0______________(3)(3)lim 2h f h f h→--=。
3、设1()xf x e -=,则0_____________(2)(2)limh f h f h→--=。
4、已知00cos (),()2,(0)1sin 2x f x f x x x π'==<<-,则0_______________________()f x =。
5、已知2220x y y x +-=,则当经x =1、y =1时,_______________dydx =。
6、()x f x xe =,则_______________(ln 2)f '''=。
7、如果(0)y ax a =>是21y x =+的切线,则__________a =。
8、若()f x 为奇函数,0()1f x '=且,则0_________________()f x '-=。
9、()(1)(2)()f x x x x x n =+++,则_________________(0)f '=。
10、ln(13)x y -=+,则____________________y '=。
11、设0()1f x '=-,则0___________00lim(2)()x xf x x f x x →=---。
12、设tan x y y +=,则_________________________dy =。
13、设lny =_______________(0)y '''=。
14、设函数()y f x =由方程42ln xy x y +=所确定,则曲线()y f x =在点(1,1)处的切线方程是______________________。
15、1cos0()00x x f x xx λ⎧≠⎪=⎨⎪=⎩,其导数在0x =处连续,则λ的取值范围是_______________________。
16、知曲线323y x a x b =-+与x 轴相切 ,则2b 可以通过a 表示为____________。
二、 选择题。
17、设()f x 可导,()()(1sin )F x f x x =+,则(0)0f =是()F x 在0x =处可导的( )。
A 充分了必要条件,B 充分但非必要条件,C 必要条件但非充分条件,D 既非充分条件又非必要条件。
18、函数3221()31xx f x xx ⎧≤⎪=⎨⎪>⎩在1x =处 ( )A 左右导数均存在,B 左导数存在,右导数不存在,C 左导数不存在,右导数存在,D 左右导数均不存在。
19、设周期函数()f x 在(,)-∞+∞内可导,周期为4,又0(1)(1)lim 12x f f x x→--=-,则曲线()y f x =在点(5,(5))f 处的切线斜率为 ( )A12, B 0 , C –10, D –2 。
20、设函数11cos (1)1()0ax x f x ⎧⎪--=⎨⎪⎩11x x ≠= 则实常数a 当()f x 在1x =处可导时必满足( )A 1a <-;B 10x -≤<;C 01x ≤<;D 1a ≥21、已知212()2x x x ax b x ϕ⎧->=⎨+≤⎩ ,且(2)ϕ'存在,则常数,a b 的值为 ( )A 2,1;a b ==B 1,5;a b =-=C 4,5;a b ==-D 3, 3.a b ==- 22、函数()f x 在(,)-∞+∞上处处可导,且有(0)1f '=,此外,对任何的实数,x y 恒有()()()2f x y f x f y xy +=++,那么()f x '=( )A ;x eB ;xC 21x +;D 1x +。
23、已知函数()f x 具有任何阶导数,且2()[()]f x f x '=,则当n 为大于2的正整数时,()f x 的n 阶导数()()n f x 是 ( )A 1![()]n n f x +;B 1[()]n n f x +;C 2[()]n f x ;D 2![()].n n f x24、若函数()y f x =有01()2f x '=,则当0x ∆→时,该函数在0x x =处的微分dy 是x ∆的( ) A 等价无穷小; B 同阶但不等价的无穷小; C 低阶无穷小; D 高阶无穷小。
25、设曲线1y x=和2y x =在它们交点处两切线的夹角为ϕ,则tan ϕ= ( ) A 1-; B 1; C 2; D 3 。
26、设由方程组2110y x t te y =-⎧⎨++=⎩ 确定了y 是x 的函数,则202t d ydx ==( )A 21e ;B 212e ;C 1e -;D 12e- 。