中文译本 AS4684-2009

合集下载

基于语料库的《简·爱》四种汉译本研究

基于语料库的《简·爱》四种汉译本研究
社 ,2011. 【4] 连淑 能 .英 汉对 比研 究 (增订 本 )[M】.北 京 :北 京高 等教 育 出
版社 ,2010. [5] 罗 廷凤 .英汉 思 维差 异及 其 对 翻 泽的 影响 [J].贵 帅f工业 大 学学
报 ,2008(4):120—123. 【6] 秦洪 武 ,王 克非 .英汉 比较 与翻译 [M].北京 :外 语教 学与 研 究
出版 社 ,2010. [7] 单文波.论英汉思维方式的差异对翻译的影响[J].海军工程大学
学报 ,2010(4):65-69. [8] 张威 ,董娜 .英 汉互 译策 略对 比 与应 用 【M].北京 :北 京语 言 大
学出版 社 ,2011.
Abstract:Thinking pattern is a way of culture and language com m unication.The change of language form s and the transform ation of thinking patterns often exist in E·C translation process.To start with the relationship between thinking and language,the w riter com pares the thinking pattern s of English and Chinese and the application in their language using by translating and analyzing som e English exam ples and also describes the diferences between Chinese thinking patters and W estern ones an d th e divergence caused by the differences in language perform ance in order to help English learn ers be able to quickly understand and accurately grasp som e translating strategies,and thereby explores som e w ay s to abandon neg ̄ ive interferences from thinking pa ̄em s in E—C tran slation process. K ey w ords:E—C translation;thinking;thinking pattem s; la n guage; linguistic structures

Detection-of-QTLs-with-Additive-Effects

Detection-of-QTLs-with-Additive-Effects

Agricultural Sciences in China 2009, 8(9): 1039-1045September 2009© 2009, CAAS. All rights reserved. Published by Elsevier Ltd.Detection of QTLs with Additive Effects, Epistatic Effects, and QTL ×Environment Interactions for Zeleny Sedimentation Value Using a Doubled Haploid Population in Cultivated WheatZHAO Liang, LIU Bin, ZHANG Kun-pu, TIAN Ji-chun and DENG Zhi-yingState Key Laboratory of Crop Biology, Group of Quality Wheat Breeding, Shandong Agricultural University, Tai’an 271018, P.R.ChinaAbstractIn order to understand the genetic basis for Zeleny sedimentation value (ZSV) of wheat, a doubled haploid (DH) population Huapei 3×Yumai 57 (Yumai 57 is superior to Huapei 3 for ZSV), and a linkage map consisting of 323 marker loci were used to search QTLs for ZSV. This program was based on mixed linear models and allowed simultaneous mapping of additive effect QTLs, epistatic QTLs, and QTL×environment interactions (QEs). The DH population and the parents were evaluated for ZSV in three field trials. Mapping analysis produced a total of 8 QTLs and 2 QEs for ZSV with a single QTL explaining 0.64-14.39% of phenotypic variations. Four additive QTLs, 4 pairs of epistatic QTLs, and two QEs collectively explained 46.11% of the phenotypic variation (PVE). This study provided a precise location of ZSV gene within the Xwmc 93 and GluD1 interval, which was designated as Qzsv-1D. The information obtained in this study should be useful for manipulating the QTLs for ZSV by marker assisted selection (MAS) in wheat breeding programs.Key words: doubled haploid population, Zeleny sedimentation value, quantitative trait loci (QTLs), wheat (Triticum aestivum L.)INTRODUCTIONThe Zeleny sedimentation value (ZSV) has been provento be useful in wheat breeding programs for the esti-mation of wheat eating and cooking quality (Mesdag1964; Kne et al. 1993; Liu et al. 2003; He et al.2004; Zhang et al. 2005; Özberk et al. 2006; Ozturket al. 2008). There is a positive correlation betweensedimentation volume and gluten strength or loaf volume.The ZSV method is often used as a screening test inwheat breeding. Mesdag (1964) showed that the valueof ZSV is a measure for the quantity and quality of thegluten. Because the baking value of wheat flour is largelydetermined by these components, the ZSV is also con-sidered as a useful predictor for the baking value. LiuReceived 3 December, 2008 Accepted 9 April, 2009Correspondence TIAN Ji-chun, Professor, Tel/Fax: +86-538-8242040, E-mail: jctian9666@et al. (2003) detected that the associations betweenZSV and DWCN’s (dry white Chinese noodle) appear-ance and taste also fit quadratic regression modelsignificantly. The gluten quality-related parameter ofsedimentation value was significantly associated withpan bread quality score (He et al. 2004). Özberk et al.(2006) found that the only quality analyses showingsignificant correlations with market price were Zelenysedimentation value and hectolitre weights (kg hL-1).Ozturk et al. (2008) reported that the cookie diametergave highly significant correlations with ZSV.The advent and utilization of molecular markers hasprovided powerful tools for elucidating the genetic ba-sis of quantitatively inherited traits. However, only afew studies have reported genetic loci that influenceZSV in wheat (Rousset et al. 2001; Kunert et al. 2007;1040ZHAO Liang et al.Sun et al. 2008). Rousset et al. (2001) reported that one strong QTL for ZSV was mapped on the long arm of chromosome 1A around Glu-A1. A distally located QTL for ZSV was mapped on chromosome arm 1BS, centered on the Gli-B1/Glu-B3 region. And a major QTL for ZSV, clearly corresponding to the Glu-D1 locus, was detected on chromosome arm 1DL. Kunert et al. (2007) found four putative QTLs for ZSV. Sun et al. (2008) identified three QTLs for ZSV in a F14 RIL derived from the cross between Chuan 35050 and Shannong 483.Additive effect QTLs were first identified and epi-static interactions among these additive effect QTLs were then estimated (Zanetti et al. 2001). However, this approach usually leaves out many QTLs that may have no additive effects but influence the trait only through epistatic interactions or QTL×environment in-teractions (QEs) (Ma et al. 2005, 2007; Rebetzke et al. 2007). Additive effect QTLs, epistatic QTLs, and QEs were detected using two-locus analyses in both the populations (Kulwal et al. 2005). Sometimes QTLs involved in such interactions contribute substantially to the total variation of a quantitative trait, and therefore should not be ignored. Further experimentation is needed to clarify whether the traits are also affected by epistatic and environment, and to dissect the genotype ×environment interaction effects at the molecular level. In this study, QTLs for ZSV were investigated based on the mixed linear model in a DH population across environments. The objective of this study was to com-prehensively characterize the genetic basis for ZSV of wheat in order to facilitate the future breeding of high-quality wheat varieties.MATERIALS AND METHODSMaterialsA population of 168 DH lines was produced from the cross between two Chinese wheat cultivars Huapei 3 (Hp3)/Yumai 57 (Ym57) and was used for the con-struction of a linkage map. The DH population and parents were kindly provided by Professor Yanhai, Henan Academy of Agricultural Sciences, Zhengzhou, China. Hp3 and Ym57 were registered by Henan Prov-ince of China in 2006 (Hai and Kang 2007) and by the state (China) in 2003 (Guo et al. 2004), respectively. The parents, planted over a large area in the Huang-Huai wheat region in China, differ in several agronomi-cally important traits as well as baking quality traits (Guo et al. 2004; Hai and Kang 2007).The field trials were conducted in three environments, at Tai’an (36.18°N, 117.13°E), Shandong Province, China, in 2005 and 2006, and at Suzhou (31.32°N, 120.62°E), Anhui Province, China, in 2006. The ex-perimental design followed a completely randomized block design with two replications at each location. In autumn 2005, all lines and parental lines were grown in 2 m long by three-row plots (25 cm apart); in autumn 2006, the lines were grown in 2 m long by four-row plots (25 cm apart). Suzhou and Tai’an differ in cli-mate and soil conditions. In Tai’an, there were differ-ences in temperature and soil conditions between the years 2005 and 2006. During the growing season, man-agement was in accordance with the local practice. The lines were harvested individually at maturity to prevent yield loss from over-ripening. Harvested grain samples were cleaned prior to conditioning and flour milling was performed in a mill (Quadrumat Senior, Brabender, Germany) to flour extraction rates of around 70%. Prior to milling, the hard, medium hard (mixtures of hard and soft wheat) and soft wheats were tempered to around 14, 15, and 16% moisture contents, respectively.Measurements of ZSVZeleny sedimentation volume was determined using AACC method 56-61A.Construction of the genetic linkage mapA genetic linkage map of DH population with 323 markers, including 284 SSR, 37 ESTs loci, 1 ISSR loci and 1 HMW-GS loci, was constructed. This linkage map covered a total length of 2485.7 cM with an aver-age distance of 7.67 cM between adjacent markers. Thirteen markers remained unlinked. These markers formed 24 linkage groups at LOD 4.0. The chromo-somal locations and the orders of the markers in the map were in accordance with the one reported for Triti-cum aestivum L. (Somers et al. 2004). The recom-mended map distance for genome wide QTL scanningDetection of QTLs with Additive Effects, Epistatic Effects, and QTL×Environment Interactions for Zeleny Sedimentation1041 was an interval length less than 10 cM (Doerge 2002).Thus the map was suitable for genome-wide QTL scan-ning in this study.Statistical analysisAnalysis of variance (ANOVA) was carried out usingSPSS ver. 13.0 (SPSS, Chicago, USA). QTLs withadditive effects and epistatic effects as well as QEs inthe DH population were mapped by the softwareQTLNetwork ver. 2.0 (Yang and Zhu 2005) based on amixed linear model (Wang et al. 1999). Composite in-terval analysis was undertaken using forward-backwardstepwise multiple linear regression with a probabilityinto and out of the model of 0.05 and window size setat 10 cM. Significant thresholds for QTL detectionwere calculated for each data set using 1000 permuta-tions and a genome-wide error rate of 0.10 (suggestive)and 0.05 (significant). The final genetic model incor-porated significant additive effects and epistatic effectsas well as their environmental interactions.RESULTSPhenotypic variation for DH lines and parentsAs is shown in Fig.1, ZSV of Ym57 showed highervalues than ZSV of Hp3; the means of the ZSV fellbetween the two parent’s values. It expressed the ex-istence of the large transgressive segregation. ZSV seg-regated continuously and approximately fit normal dis-tributions with absolute values of both skewness andkurtosis less than 1.0, indicating that this trait was suit-able for QTL mapping.QTLs with additive effects and additive×environment (AE) interactionsFour QTLs with significant additive effects were iden-tified on chromosomes 1B, 1D, 5A, and 5D (Table 1and Fig.2). These QTLs explained from 2.66 to14.39% of the phenotypic variance. The Qzsv-1B had the most significant effect, accounting for 14.39% of the phenotypic variance. The Ym57 alleles at three loci, Qzsv-1B,Qzsv-1D, and Qzsv-5D, increased Fig. 1 Frequency distributions of ZSV in 168 DH lines derived from a cross of Hp3×Ym57 evaluated at three environments in the 2005 and 2006 cropping seasons. The means of trait values for the DH lines and both parents are indicated by arrows. Several statistics for the traits in the DH lines are shown on the right of each plot.Zeleny sedimentation volume (mL)2006 in SuzhouZeleny sedimentation volume (mL)2006 in Tai’anZeleny sedimentation volume (mL)2005 in Tai’anMean: 24.39SD: 5.45Range: 12.00-39.00Skewness: 0.171Kurtosis: -0.153 252015105No.ofDHlinesDH linesYm57Hp315.0020.0025.0030.0035.0040.00DH linesYm57Hp320.0030.0040.0050.0060.00252015105No.ofDHlines30DH linesYm57Hp320.0030.0040.002015105No.ofDHlinesMean: 24.39SD: 5.45Range: 12.00-39.00Skewness: 0.171Kurtosis: -0.153Mean: 24.39SD: 5.45Range: 12.00-39.00Skewness: 0.171Kurtosis: -0.1531042ZHAO Liang et al.Table 1 Estimated additive effects and additive ×environment (AE) interactions of QTLs for ZSV at three environments in the 2005 and 2006 cropping seasonsQTL Flanking-marker 1)Position (cM)2)F -value P A 3)H 2 (A, %)4)AE 1H 2 (AE 1, %)5)AE 2H 2 (AE 2, %)AE 3H 2 (AE 3, %)Qzsv -1B Xwmc412.2-Xcfe023.236.425.220.000-2.5214.39------Qzsv -1D Xwmc93-GluD161.915.910.000-1.988.93------Qzsv -5A Xbarc358.2-Xgwm18638.18.100.000 1.08 2.66------Qzsv -5DXcfd101-Xbarc32060.612.690.000-1.203.25---1.042.44--1)Flanking marker, the interval of F peak value for QTL. The same as below.2)Position, the location of F peak value for QTL in “Flanking marker”. The same as below.3)Additive effects, a positive value indicates that the allele from Hp3 increased ZSV, a negative value indicates that the allele from Ym57 increased ZSV.4)H 2(A, %) indicates the contribution explained by putative additive QTL.5)H 2(AE 1, %) indicates the contribution explained by additive QTL ×environment 1 interaction. E 1, Tai’an 2005; E 2, Tai’an 2006; E 3, Suzhou 2006.Fig. 2 A genetic linkage map of wheat showing mapping QTLs with additive effects, epistatic effects, AE, and AAE for ZSV.1A 1B 1D 2A 3A5A 5D 7A 7DLocus involved in AELocus involved in additive effects Locus involved in epistasisLocus involved in AAEDetection of QTLs with Additive Effects, Epistatic Effects, and QTL ×Environment Interactions for Zeleny Sedimentation 1043ZSV by 2.52, 1.98, and 1.20 mL, respectively, owing to additive effects. The Hp3 allele increased ZSV at the Qzsv -5A by 1.08 mL, accounting for 2.66% of the phe-notypic variance. This suggested that alleles, which increased ZSV, were dispersed within the two parents,resulting in small differences of phenotypic values be-tween the parents and transgressive segregants among the DH population. The total additive QTLs detected for ZSV accounted for 29.23% of the phenotypic variance.One additive effect was involved in AE interactions (Table 1 and Fig.2). The Ym57 alleles at one locus,Qzsv -5D , increased the ZSV by 1.04 mL with corre-spondingly contributing 2.44% of the phenotypic variance.QTLs with epistasis effects and epistasis ×environment (AAE) interactionsFour pairs of epistatic QTLs were identified for ZSV,and were located on chromosomes 1A, 2A, 3A, 7A and 7D (Table 2 and Fig.2). These QTLs had correspond-ing contributions ranging from 0.64 to 6.79%. One pair of epistasis, occurring between the loci Qzsv -2A /Qzsv -7A , had the largest effect, which contributed ZSV of 1.73 mL and accounted for 6.79% of the phenotypic variance. The four pairs of epistatic QTLs explained 12.11% of the phenotypic variance. All the epistatic effects were non-main-effect QTLs.One pair of epistatic QTL was detected in AAE in-teractions for ZSV (Table 2 and Fig.2). The AAE ef-fects explained 2.33% of the phenotypic variance and this QTL, Qzsv3A.2/Qzsv7D.1, increased ZSV by 1.01mL owing to AAE effects, simultaneously the positive value means that the parent-type effect is greater than the recombinant-type effect.DISCUSSIONEpistatic effects and QTL ×environment interactions were important genetic basis for ZSV in wheatEpistasis, as an important genetic basis for complex traits, has been well demonstrated in recent QTL map-ping studies (Cao et al . 2001; Fan et al . 2005; Ma et al .2005, 2007). Ma et al . (2005) provided a strong evi-dence for the presence of epistatic effects on dough rheological properties in a wheat DH population. In the present study, four pairs of QTLs with epistatic ef-fects were detected for ZSV in three environments (Table 2 and Fig.2). The four pairs of epistatic QTLs explained 12.11% of the phenotypic variance.ZSV was predominantly influenced by the effects of genotype (Zhang et al . 2004, 2005), and in the present study, only one AE interaction and one AAE interaction were found. It is suggested that QTL ×environment interactions just play a minor role, but QTL ×environment interactions should not be ignored.ZSV and subunits of high molecular weight gluteninsSubunits of high molecular weight glutenins strongly influence wheat bread making quality. This study pro-vided a precise location of ZSV gene within the Xwmc 93 and GluD1 interval, which was designated Qzsv -1D and was located in the central region of a 2 cM interval.Also Rousset et al . (2001) detected a major QTL for sedimentation volume on 1DL, clearly corresponding to the Glu -D1 locus. Kunert et al . (2007) found that the SSR marker Xgwm642 on 1DL identified a QTLTable 2 Estimated epistatic effects and epistasis ×environment (AAE) interactions of QTLs for ZSV at three environments in the 2005 and 2006 cropping seasonsPosition Position H 2H 2H 2H 2(cM)(cM)(AA, %)2)(AAE 1, %)3)(AAE 2, %)(AAE 3, %)Qzsv -1A Xwmc278-Xbarc120.156.3Qzsv -3A.1Xbarc1177-Xbarc276.2196.3-0.94 1.99------Qzsv -2A Xgwm636-Xcfe6729.1Qzsv -7A Xbarc259-Xwmc59653.7-1.73 6.79------Qzsv -3A.2Xcfa2193-Xgwm155152.7Qzsv -7D.1Xcfd175-Xwmc14181.5-1.09 2.69 1.01 2.33----Qzsv -3A.2Xcfa2193-Xgwm155152.7Qzsv -7D.2Xgdm67-Xwmc634161.5-0.530.64------1)The epistatic effect. A positive value means that the parent-type effect is greater than the recombinant-type effect, and the negative value means that the parent-type effect is less than the recombinant-type effect.2)H 2 (AA, %) indicates the contribution explained by putative epistatic QTL.3)H 2 (AAE 1, %) indicates the contribution explained by epistatic QTL ×environment 1 interaction. E 1, Tai’an 2005; E 2, Tai’an 2006; E 3, Suzhou 2006.QTL Flanking-marker QTL Flanking-markerAA 1)AAE 1AAE 2AAE 31044ZHAO Liang et al. for ZSV. The position indicates an influence of theGlu-D1 locus. And a major QTL, clearly correspond-ing to the Glu-D1 locus, was detected on chromosomearm 1DL. Correlation coefficient between Glu-1 scoreand sedimentation values was significant (r=0.553).There were significant correlations between sedimen-tation values and Glu-lAa,Glu-1Ac,Glu-Ba, and Glu-1Bcalleles, respectively (Kne et al. 1993). Thesedimentation values showed statistically significantassociations with the status of the Glu-A1 locus(Witkowski et al. 2008).In this study, the Qzsv-1D increased ZSV by 1.98mL, correspondingly contributing 8.93% of the pheno-typic variance. Barro et al. (2003) found that HMW-GS 1Ax1 increased the sedimentation value. In contrast,HMW-GS 1Dx5 drastically decreased in sedimentationvalue.In summary, four additive QTLs, four pairs of epi-static QTLs, and two QEs were detected for ZSV in168 DH lines derived from a cross Hp3×Ym57. Onemajor QTL,Qzsv-1B, was closely linked to Xwmc412.20.2cM and could account for 14.39% of the phenotypicvariation without any influence from the environment.Therefore, the Qzsv-1B could be used in MAS in wheatbreeding programs. The results showed that both ad-ditive and epistatic effects were important as a geneticbasis for ZSV, and were also sometimes subject to en-vironmental modifications.AcknowledgementsThis work was supported by the National Basic Re-search Program of China (2009CB118301), the NationalHigh-Tech Research and Development (863) Programof China (2006AA100101 and 2006AA10Z1E9), andthe Doctor Foundation of Shandong AgriculturalUniversity, China (23023). Thanks Prof. Chuck Walker,University of Kansas State University, USA, for hiskindly constructive advice on the language editing ofthe manuscript.ReferencesBarro F, Barceló P, Lazzeri P A, Shewry P R, Ballesteros J,Martín A. 2003. Functional properties of flours from fieldgrown transgenic wheat lines expressing the HMW gluteninsubunit 1Ax1 and 1Dx5 genes. Molecular Breeding,12,223-229.Cao G, Zhu J, He C, Gao Y, Yan J, Wu P. 2001. Impact ofepistasis and QTL×environment interaction on thedevelopmental behavior of plant height in rice (Oryza sativaL.). Theoretical and Applied Genetics,103, 153-160.Doerge R W. 2002. Multifactorial genetics: Mapping and analysisof quantitative trait loci in experimental populations. NatureReviews,3, 43-52.Fan C C, Yu X Q, Xing Y Z, Xu C G, Luo L J, Zhang Q F. 2005.The main effects, epistatic effects and environmentalinteractions of QTLs on the cooking and eating quality ofrice in a doubled-haploid line population. Theoretical andApplied Genetics,110, 1445-1452.Guo C Q, Bai Z A, Liao P A, Jin W K. 2004. New high qualityand yield wheat variety Yumai 57. China Seed Industry,4, 54(in Chinese)Hai Y, Kang M H. 2007. Breeding of a new wheat vatiety Huapei 3with high yield and early maturing. Henan AgriculturalSciences, 5, 36-37. (in Chinese)He Z H, Yang J, Zhang Y, Quail K J, Peña R J. 2004. Pan breadand dry white Chinese noodle quality in Chinese winterwheats.Euphytica,139, 257-267.,G, D. 1993. Allelic variationat Glu-1 loci in some Yugoslav wheat cultivars. Euphytica,69,89-94.Kulwal P, Kumar N, Kumar A, Balyan H S, Gupta P K. 2005.Gene networks in hexaploid wheat: interacting quantitativetrait loci for grain protein content. Functional & IntegrativeGenomics,5, 254-259.Kunert A, Naz A A, Oliver D, Pillen K, Léon J. 2007. AB-QTLanalysis in winter wheat: I. Synthetic hexaploid wheat(T.turgidum ssp. dicoccoides × T. tauschii) as a source offavourable alleles for milling and baking quality traits.Theoretical and Applied Genetics,115, 683-695.Liu J J, He Z H, Zhao Z D, Peña R J, Rajaram S. 2003. Wheatquality traits and quality parameters of cooked dry whiteChinese noodles. Euphytica,131, 147-154.Ma W, Appels R, Bekes F, Larroque O, Morell M K, Gale K R.2005. Genetic characterisation of dough rheological propertiesin a wheat doubled haploid population: additive genetic effectsand epistatic interactions. Theoretical and Applied Genetics,111, 410-422.Ma X Q, Tang J H, Teng W T, Yan J B, Meng Y J, Li J S. 2007.Epistatic interaction is an important genetic basis of grainyield and its components in maize. Molecular Breeding,20,41-51.Mesdag J. 1964. in the protein content of wheat and its influenceon the sedimentation value and the baking quality. Euphytica,13, 250-261.Özberk I, Kýlýç H, Atlý A, Özberk F, Karlý B. 2006. Selectionof wheat based on economic returns per unit area. Euphytica,Detection of QTLs with Additive Effects, Epistatic Effects, and QTL×Environment Interactions for Zeleny Sedimentation1045152, 235-245.Ozturk S, Kahraman K, Tiftik B, Koksel H. 2008. Predicting the cookie quality of flours by using Mixolab. European Food Research and Technology,227, 1549-1554.Rebetzke G J, Ellis M H, Bonnett D G, Richards R A. 2007.Molecular mapping of genes for Coleoptile growth in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics,114, 1173-1183.Rousset M, Brabant P, Kota R S, Dubcovsky J, Dvorak J. 2001.Use of recombinant substitution lines for gene mapping and QTL analysis of bread making quality in wheat. Euphytica, 119,81-87.Somers D J, Isaac P, Edwards K. 2004. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics,109, 1105-1114.Sun H Y, Lu J H, Fan Y D, Zhao Y, Kong F, Li R J, Wang H G, Li S S. 2008. Quantitative trait loci (QTLs) for quality traits related to protein and starch in wheat. Progress in Natural Science,18, 825-831.Wang D L, Zhu J, Li Z K, Paterson A H. 1999. Mapping QTLswith epistatic effects and QTL × environment interactions by mixed linear model approaches. Theoretical and Applied Genetics,99, 1255-1264.Witkowski E, Waga J, Witkowska K, Rapacz M, Gut M, Bielawska A, Luber H, Lukaszewski A J. 2008. Association between frost tolerance and the alleles of high molecular weight glutenin subunits present in Polish winter wheats. Euphytica, 159,377-384.Yang J, Zhu J. 2005. Methods for predicting superior genotypes in multiple environments based on QTL effects. Theoretical and Applied Genetics,110, 1268-1274.Zanetti S, Winzeler M, Feuillet C, Keller B, Messmer M. 2001.Genetic analysis of bread-making quality in wheat and spelt.Plant Breeding,120, 13-19.Zhang Y, He Z H, Guo Y Y, Zhang A M, Maarten V G.2004.Effect of environment and genotype on bread-making quality of spring-sown spring wheat cultivars in China. Euphytica, 139, 75-83.Zhang Y, Zhang Y, He Z H, Ye G Y. 2005. Milling quality and protein properties of autumn-sown Chinese wheats evaluated through multi-location trials. Euphytica,143,209-222.(Edited by ZHANG Yi-min)。

EN12184中文版本

EN12184中文版本

NEN-EN12184:2009欧洲标准2009年9月ICS 11.180 10 取代EN12184:2006 电动轮椅、小型摩托车及其充电器-要求和试验方法本欧洲标准由欧洲标准化委员会于2009年8月27日批准。

CEN成员必须遵守CEN/CENELEC内部规则,其规定在国家标准没有任何变动的情况下制定出此欧洲标准。

最新的列表和有关这些国家标准的参考书目可向CEN管理中心或者任何CEN 成员申请获得。

这项欧洲标准有三种官方版本(英语版,法语版,德语版)。

由CEN成员翻译的并通知到CEN 管理中心的其他任何语言版本具有与官方版本同样的地位。

CEN成员是奥地利,比利时、保加利亚、塞浦路斯、捷克共和国,丹麦,爱沙尼亚,芬兰,法国,德国,希腊,匈牙利,冰岛,爱尔兰,意大利,拉脱维亚、立陶宛,卢森堡、马尔他、荷兰、挪威、波兰、葡萄牙、罗马尼亚,斯洛伐克,斯洛文尼亚,西班牙,瑞典,瑞士和英国的国家标准的主体。

管理中心:马尼克斯大街17号,B-1000 布鲁塞尔CEN国家成员保留任何形式、任何方式的开发权。

参考号:EN 12184:2009:E目录页数前言---------------------------------------------------------------------------------------------------------5介绍---------------------------------------------------------------------------------------------------------61.范围----------------------------------------------------------------------------------------------------72.引用标准----------------------------------------------------------------------------------------------73.术语及定义-----------------------------------------------------------------------------------------94.试验装置--------------------------------------------------------------------------------------------95.种类级别--------------------------------------------------------------------------------------------106.总体要求-------------------------------------------------------------------------------------------107.设计要求-------------------------------------------------------------------------------------------117.1脚支架,下肢支架和臂支架-----------------------------------------------------------------117.2充气轮胎---------------------------------------------------------------------------------------------117.3安装前骨盆支架-----------------------------------------------------------------------------------117.4在机动车中用作座椅的轮椅-------------------------------------------------------------------117.5刹车系统---------------------------------------------------------------------------------------------127.6飞轮装置---------------------------------------------------------------------------------------------127.7组件质量---------------------------------------------------------------------------------------------127.8电池外壳和电池盒--------------------------------------------------------------------------------127.9由乘员或者助手实行的操作-------------------------------------------------------------------137.10乘员操作的控制器-------------------------------------------------------------------------------137.11辅助控制组件,推手和手柄-------------------------------------------------------------------147.12充电连接器------------------------------------------------------------------------------------------148.性能要求-----------------------------------------------------------------------------------------------148.1总则-------------------------------------------------------------------------------------------------------148.2脚支架,下肢支撑组件和臂支架---------------------------------------------------------------148.21要求-----------------------------------------------------------------------------------------------------148.22测试-----------------------------------------------------------------------------------------------------158.3静态,冲击和疲劳强度-----------------------------------------------------------------------------15 8.3.1要求-----------------------------------------------------------------------------------------------------15 8.3.2测试-----------------------------------------------------------------------------------------------------15 8.4刹车系统-------------------------------------------------------------------------------------------------16 8.4.1总体要求-----------------------------------------------------------------------------------------------16 8.4.2测试------------------------------------------------------------------------------------------------------17 8.5操作力------------------------------------------------------------------------------------------------------18 8.5.1要求--------------------------------------------------------------------------------------------------------18 8.5.2测试----------------------------------------------------------------------------------------------------------19 8.6辅助控制组件,推手和手柄---------------------------------------------------------------------------19 8.6.1要求----------------------------------------------------------------------------------------------------------19 8.6.2测试----------------------------------------------------------------------------------------------------------20 8.7充电连接器---------------------------------------------------------------------------------------------------20 8.7.1要求-----------------------------------------------------------------------------------------------------------208.8驱动特性性能------------------------------------------------------------------------------------------------20 8.8.1总体-----------------------------------------------------------------------------------------------------------20 8..8.2攀爬最高安全斜坡的能力-----------------------------------------------------------------------------20 8.8.3地面不平坦性----------------------------------------------------------------------------------------------21 8.8.4最大下坡速度----------------------------------------------------------------------------------------------21 8.8.5动态稳定性-------------------------------------------------------------------------------------------------22 8.8.6越障-----------------------------------------------------------------------------------------------------------22 8.8.7静态稳定性-------------------------------------------------------------------------------------------------23 8.8.8最大速度-----------------------------------------------------------------------------------------------------23 8.8.9距离范围-----------------------------------------------------------------------------------------------------23 8.9表面温度--------------------------------------------------------------------------------------------------------23 8.10耐燃性----------------------------------------------------------------------------------------------------------24 8.10.1软垫复合部件----------------------------------------------------------------------------------------------24 8.10.2发泡材料----------------------------------------------------------------------------------------------------24 8.10.3其他部件----------------------------------------------------------------------------------------------------24 8.11气候试验---------------------------------------------------------------------------------------------24 8.12倾斜系统座椅调整--------------------------------------------------------------------------------24 8.12.1要求------------------------------------------------------------------------------------------------248.12.2测试方法------------------------------------------------------------------------------------------249.电气要求------------------------------------------------------------------------------------------------25 9.1总体要求---------------------------------------------------------------------------------------------25 9.2控制器开关要求------------------------------------------------------------------------------------25 9.3电源指示灯要求------------------------------------------------------------------------------------25 9.4电路保护要求---------------------------------------------------------------------------------------25 9.5电池充电器要求------------------------------------------------------------------------------------25 9.6充电指示器------------------------------------------------------------------------------------------26 10制造商提供的信息要求----------------------------------------------------------------------------26 10.1总则--------------------------------------------------------------------------------------------------26 10.2售前信息--------------------------------------------------------------------------------------------26 10.3用户信息--------------------------------------------------------------------------------------------27 10.4服务信息--------------------------------------------------------------------------------------------2810.5标签--------------------------------------------------------------------------------------------------2811.测试报告-----------------------------------------------------------------------------------------------2812 表格-----------------------------------------------------------------------------------------------------30 13图表------------------------------------------------------------------------------------------------------32 附录A(信息性的)质量超过100KG的测试假人的建议------------------------------------------36 A.1总则-----------------------------------------------------------------------------------------------------36 A.2结构-----------------------------------------------------------------------------------------------------36 A.3加速器安装--------------------------------------------------------------------------------------------36 A.4设计目的-----------------------------------------------------------------------------------------------37 附录B(信息性的)电动轮椅尺寸和操作空间的建议-----------------------------------------------45 B.1具体尺寸-----------------------------------------------------------------------------------------------45 B.1.1准备使用时的尺寸--------------------------------------------------------------------------------45B.1.3离地间隙--------------------------------------------------------------------------------------------45 B.2操作空间--------------------------------------------------------------------------------------------------45 B.2.1转向直径-----------------------------------------------------------------------------------------------45 B2.2换向宽度------------------------------------------------------------------------------------------------45 B.3速度设置-------------------------------------------------------------------------------------------------45 附录C(信息性的)推荐设计特点----------------------------------------------------------------------47C.1引言-------------------------------------------------------------------------------------------------------47 C.2总体建议-------------------------------------------------------------------------------------------------47 C.2.1防倾斜装置--------------------------------------------------------------------------------------------47 C.2.2组件质量-----------------------------------------------------------------------------------------------47 C.2.3配件和工具--------------------------------------------------------------------------------------------47 C.2.4轮胎-----------------------------------------------------------------------------------------------------47 C.2.5轮胎充气方法-----------------------------------------------------------------------------------------47 C.2.6表面温度--------------------------------------------------------------------------------------------- -47 C.2.7乘员坐入或者离开轮椅------------------------------------------------------------------------ ----48 C.2.8耐尿失禁污染-----------------------------------------------------------------------------------------48 C.2.9最大安全斜坡指示-----------------------------------------------------------------------------------48 C.2.10镜子---------------------------------------------------------------------------------------------------48 C.2.11头部支撑----------------------------------------------------------------------------------------------48 C.2.12意外释放刹车制动器和飞轮装置---------------------------------------------------------------48 C.3性能特征建议-------------------------------------------------------------------------------------------49 C.3.1电气故障的指示--------------------------------------------------------------------------------------49 C.3.2电池和电池盒-----------------------------------------------------------------------------------------49 C.3.3照明-----------------------------------------------------------------------------------------------------49 C.3.4控制机能反馈-----------------------------------------------------------------------------------------49 C.3.5飞轮报警-----------------------------------------------------------------------------------------------49 C.3.6最大速度-----------------------------------------------------------------------------------------------49 附录D(信息性的)推荐的座椅设计---------------------------------------------------------------------50 附录E(信息性的)操作力-----------------------------------------------------------------------------------51 E.1建议--------------------------------------------------------------------------------------------------------51 E.1.1推手力--------------------------------------------------------------------------------------------------51 E.1.2轮圈力--------------------------------------------------------------------------------------------------51 E.2轮圈电助力轮椅的操作测试-------------------------------------------------------------------------51 附录F(信息性的)相对于原先版本EN12184的技术改变--------------------------------------52 F.1第一版本(1999)与第二版本(2006)的技术改变------------------------------------------52 F.2相对于第二版本(2006)的技术改变-------------------------------------------------------------53 附录ZA(信息性的)此欧洲标准与1993年6月14日颁布的关于医疗设备的理事会指令93/42/EEC中的基本要求的之间的关系。

AS4684-09 儿童高脚椅-安全要求 中文版 澳大利亚标准

AS4684-09  儿童高脚椅-安全要求 中文版 澳大利亚标准

澳大利亚标准Australian StandardAS4684-2009高脚椅-安全要求High chairs —Safety requirement2009-11-17译制(Translated)2009-11-20印发(Issued)前言本标准为AS4684-2009版《高脚椅-安全要求》,供我公司研发设计、产品工程、质量工程和测试人员使用。

我们在翻译本标准的过程中,忠实原著,以直译为主,为了更确切的表达原文意思,采用了少量意译,并注意尽可能使语言和技术规范明了。

在技术术语上兼用了少量我公司的习惯用语,不妥之处敬请指正。

译文如与原文有不一致的地方,以原文为主。

目录1. 范围2. 参考文件3. 定义4. 高脚椅符合性5. 某些元素的迁移6. 安全束缚系统对乘坐者的保持力7. 稳定性8. 脚轮或滑轮9. 包装和信息标签10 标示附录A 胯带位置的测试B 束缚系统的束缚强度和附着强度测定C 稳定性测试1 范围本标准定义了独立式高脚椅的安全要求。

其中包括设计、结构、性能、标签和标示要求。

本标准适用于可转换成矮脚椅和斜躺椅的高脚椅。

当高脚椅转换成其它附加功能则不在本标准涵盖范围内。

2 参考文件以下标准供本AS/NZS ISO8124 玩具安全8124.3 每三部分:某种元素的迁移ISO 9221 家具-儿童高脚椅9221-1 第一部分:安全要求9221-2 每二部分:测试方法ASTM F404 高脚椅标准消费者规范EN 14988 儿童高脚椅14988-1 第一部分:安全要求14988-2 第二部分:测试方法3. 定义下述定义适用于本标准。

3.1 快速释放机构要求往一个方向施力来释放的保护装置。

3.2 结构失效阻碍操作、影响本标准要求或相应零部件适用标准中要求的明显破损或失效。

那些那些适用标准可以是第 4 节所提及的ISO,EN 或ASTM 标准。

4 高脚椅符合性除了第5, 6, 7, 8, 9 和10节,高脚椅应至少符合以下其中一个标准:(a) ISO 9221, 第1部分和第2部分.(b) ASTM F404.(c) EN 14988, 第1部分和第2部分.万一以上其中任一标准的要求与本标准的要求有冲突,则应确保完全符合本标准内所有要求。

华先发英汉翻译教程第四章

华先发英汉翻译教程第四章

拟声词的翻译
• • • • • • • • A tiger growls. 虎啸 a dog barks 犬吠 A lion roars 狮吼 A wolf howls 狼嚎 A horse neighs. 马嘶 A monkey screeches. 猿啼 An ass brays. 驴叫 A deer bleats. 鹿鸣
拟声词的翻译
• 1)英汉拟声词比较 • A. 同一声音在英语和汉语中用相同的拟声 词来表达; • B. 同一声音在英语中和汉语中用不同的拟 声词来表达 • C. 不同的声音用同一拟声词来表达,这种 情况在英语和汉语中都很普遍
拟声词的翻译
• (1)大多数英文拟声词都可译为汉语相应的拟声 词,有的译为独词句,有的则译为动词或者词的 辅助成分。 • Crack ! The stick broke into two. • Only the ventilator in the cellar window kept up a ceaseless rattle. • Round the corner of Crescent Bay, between the piled-up masses of broken rock, a flock of sheep came pattering.
颜色词的翻译
• A mark was on him from the day's delight, so that all his life, when April was a thin green and the flavor of rain was on his tongue, an old wound would throb and a nostalgia would fill him for something he could not quite remember. (Rawlings 2001:13)

Get格雅Unit6AFrenchFourth课文翻译综合教程四

Get格雅Unit6AFrenchFourth课文翻译综合教程四

Unit-6-A-French-Fourth课文翻译综合教程四Unit 6A French FourthCharles Trueheart1Along about this time every year, as Independence Day approaches, I pull an old American flag out of a bottom drawer where it is folded away -folded in a square, I admit, not the regulation triangle. I’ve had ita long time and have always flown itoutside on July 4. Here in Paris it hangs from a fourth-floor balcony visible from the street. I’ve never seen anyone look up, but in my mind’s eye an American tourist may notice it and smile, and a French passerby may be reminded of the date and the occasion that prompt its appearance. I hope so.2For my expatriated family, too, the flag is meaningful, in part because we don’t do anything else tocelebrate the Fourth. People don’t have barbecues in Paris apartments, and most other Americans I know who have settled here suppress such outward signs of their heritage -or they go back home for the summer to refuel.3Our children think the flag-hanging is a cool thing, and I like it because it gives us a few moments of family Q&A about our citizenship.My wife and I have been away from the United States for nine years, and our children are eleven and nine, so American history is mostly something they have learned -or haven’t learn ed -from their parents. July 4 is one of the times when the American in me feels a twinge of unease about the great lacunae in our children’s understanding of who they are and isprompted to try to fill the gaps. It’s also a time, one among many, when my thoughts turn more generally to the costs and benefits of raising children in a foreign culture.4Louise and Henry speak French fluently; they are taught in French at school, and most of their friends are French. They move from language to language, seldom mixing them up, without effort or even awareness.This is a wonderful thing, of course.And our physical separation from our native land is not much of an issue.My wife and I are grateful every day for all that our children are not exposed to. American school shootings are a good object lesson for our children in the follies of the society we hold at a distance.5Naturally, we also want to remind them of reasons to take pridein being American and to try to convey to them what that means. It isa difficult thing to do from afar, andthe distance seems more than just a matter of miles. I sometimes think that the stories we tell them must seem like Aesop’s (or La Fontaine’s) fables, myths with no fixed place in space or time. Still, connections can be made, lessons learned.6Last summer we spent a week with my brother and his family, who live in Concord, Massachusetts, and we took the children to the North Bridge to give them a glimpse of the American Revolution. We happened to run across a reenactment of the skirmish that launched the war, with everyone dressed up in three-cornered hats and cotton bonnets. This probably only confirmed to our goggle-eyed kids themake-believe quality of American history.7Six months later, when we were recalling the experience at the family dinner table here, I asked Louise what the Revolution had been about.She thought that it had something to do with the man who rode his horse from town to town. “Ah〞, I said, satisfaction swelling in my breast, “and what was that man’s name?〞“Gulliver?〞Louise replied. Henry, for his part, knew that the Revolution was between the British and the Americans, and thought that it was probably about slavery.8As we pursued this conversation, though, we learned what the children knew instead. Louise told us that the French Revolution came at the end of the Enlightenment, when people learned a lot of ideas, and one wasthat they didn’t need kings to tell them what to think or do. On another occasion, when Henry asked what makes a person a “junior〞or a “II〞or a “III〞, Louise helped me answer by bringing up kings like Louis Quatorze and Quinze and Seize;Henry riposted with Henry VIII.9I can’t say I worry much about our children’s European frame of reference. There will be plenty of time for them to learn America’s pitifully brief history and to find out who Thomas Jefferson and Franklin Roosevelt were. Already they know a great deal more than I would have wished about Bill Clinton.10If all of this resonates with me, it may be because my family moved to Paris in 1954, when I was three, and I was enrolled in French schools for most of my grade-school years. Idon’t remember much instruction in American studies at school or at home. I do remember that my mother took me out of school one afternoon to see the movie Oklahoma! I can recall what a faraway place it seemed: all that sunshine and square dancing and surreys with fringe on top. The sinister Jud Fry personified evil for quite some time afterward. Cowboys and Indians were an American clichéthat had already reached Paris through the movies, and I asked a grandparent to send me a Davy Crockett hat so that I could live out that fairy tale against the backdrop of gray postwar Montparnasse.11Although my children are living in the same place at roughly the same time in their lives, their experience as expatriates is very different from mine. The particular narratives ofAmerican history aside, American culture is not theirs alone but that of their French classmates, too. The music they listen to is either “American〞or “European,〞but it is often hard to tell the difference. In my day little French kids looked like nothing other than little French kids;but Louise and Henry and their classmates dress much as their peers in the United States do, though with perhaps less Lands’ End fleeciness.When I returned to visit the United States in the 1950s, it was a five-day ocean crossing for a month’s home leave every two years; now we fly over for a week or two, although not very often. Virtually every imaginable product available to my children’s American cousins is now obtainable here.12If time and globalization havemade France much more like the United States than it was in my youth, then I can conclude a couple of things.On the one hand, our children are confronting a much less jarring cultural divide than I did, and they have more access to their native culture. Re-entry, when it comes, is likely to be smoother. On the other hand, they are less than fully immersed in a truly foreign world.That experience no longer seems possible in Western countries - a sad development, in my view.在法国庆祝美国独立日查尔斯·特鲁哈特1 每年差不多到了独立日日益临近的时候,我都会把一面折叠好的旧的美国国旗从底层抽屉里取出——我成认我折叠国旗不是官方规定的三角形,而是正方形。

中译日最新发布词汇之二、三【原文】修正案

中译日最新发布词汇之二、三【原文】修正案

中文日文译词1 世博国際博覧会、万国博覧会、万博、エキスポ(EXPO)2 世博园区万博会場3 (世博)展馆、(世博)馆单独使用时,用「パビリオン」,等于「展示館」;具体馆名,则采用「館」,如「日本館」。

4 (世博)展区展示ゾーン5 (世博)国家馆日ナショナルデー6 (世博)荣誉日スペシャルデー7 互动视具体情况灵活翻译。

单独作名词使用时译为「双方向コミュニケーション,后面接名词时可译为「インタラクティブ+名詞」,如作动词使用时译为「交流(する)」8 低碳低炭素、ローカーボン9 碳交易平台炭素取引プラットホーム10 碳汇炭素クレジット、カーボンクレジット気候変動枠組(み)条約第三回締約国会議 (COP3)11 防止地球温室化京都会议(气候变动框架条约第三次缔约国会议 COP3)12 减排潜力排出削減のポテンシャル13 植被的变化植生の変化14 保障性住房保障性住宅(可以加注释)15 自住性住房自己居住用住宅16 商品房商品化住宅、分譲住宅17 蜗居ウサギ小屋18 穿越剧タイムトラベル19 淘掘り出し物を見つける20 亮点目玉、ハイライト、見所21 愿景ビジョン22 内退(提前退休)希望退職23 借读费越境入学手続き料24 菜篮子工程野菜かごプロジェクト25 看病难,看病贵受診難、高額医療費26 家电、汽车摩托车下乡政策「家電下郷」政策、家電購入補助政策27 家电、汽车以旧换新政策買換支援政策28 行政事业性收费行政管理・サービス関連費用・料金徴収29 砖窑レンガ焼成窯30 自备发电自家発電31 坑口发电山元発電32 创业板創業ボード、創業板、新興企業向け市場33 国际板国際板、海外企業向け市場34 翘尾因素タイムラグ要因35 国进民退国有企業が壮大し、民間企業が萎縮する36 企稳向好安定回復に向かう37 基本面ファンダメンタルズ38 对口支援パートナーシップ39 两高一资高エネルギー消費、高汚染物質排出、資源多消費40 软着陆ソフトランディング(軟着陸)41 土地收入土地使用権譲渡収入42 小金库裏金(口语)、私設口座(书面语)、帳簿外資金43 高企高騰44 中央高校国立大学45 动漫アニメ(漫画书)46 漫画书漫画(コミック)47 (网络)视频動画48 短片ピーアルVTR、ショートフィルム49 训练有素(軍事分野)ハイレベル50 规范(动词)規範化する・規範化させる51 统筹調達(社会調達)・総合的に配慮する(统筹国际国内市场)52 (加大对中日关系的)投入取り組み・取り組む(中日関係への取り組み・中日関係に対する取り組み)53 针对性ケースバイケース・対応性を高める・要所を突いている54 月嫂産褥ヘルパー55 穷忙族ワーキングプア56 乐活ロハス57 垃圾食品ジャンクフード58 强项強み59 不先发制人先制不使用60 症候群シンドローム61 软硬兼施的手法硬軟とりまぜた手法62 反洗钱法マネーロンダリング(資金洗浄)防止法63 (货币)汇率操纵国(通貨)為替操作国64 弹性柔軟性65 上游和下游领域川上と川下分野66 做大做强~を大いに発展させ、強化する67 不对付相性が悪い、合口が悪い68 挑动扇動69 老大大物70 闪婚電撃結婚、バーチャル結婚71 后危机时代ポスト危機の時代72 和则利,战则伤和すれば則ち共に利し、戦えば共に傷つく73 反卫星试验衛星の破壊実験74 人口红利人口ボーナス、人口学的な配当75 同舟共济,携手共进,共克时难同舟相救い、手を携えて進み、当面の困難な時期を乗り越える76 拉动力牽引力77 敬业精神仕事に対するマナー、働くマナー、忠誠度序中文日文译词修改意见気候変動枠組(み)条約第三回締約国会議 (COP3)11 防止地球温室化京都会议(气候变动框架条约第三次缔约国会议 COP3)14 保障性住房保障性住宅(可以加注释)14 保障性住房修改成:保障性住宅(低所得者層向けの住宅)。

英汉语篇翻译教程著者范守义郭立秋贾令仪

英汉语篇翻译教程著者范守义郭立秋贾令仪

第11段
In 2003, China became only the third country in the world after the United States and Russia to put its own astronauts into space.
其中的短语only the third country 表示绝无仅有,但不一 定是唯一的意思,例如At just 48 years old and not even nine months in office, Obama became only the third sitting U.S. president to win the Nobel Peace Prize。所以 这里的译文应该是“仅有的第三个……国家”。
Chang’e 1 (pronounced chang-uh; simplified Chinese: 嫦娥一 号; traditional Chinese: 嫦娥一號; pinyin: Cháng'é yī hào) was an unmanned Chinese lunar-orbiting spacecraft, part of the first phase of the Chinese Lunar Exploration Program. The spacecraft was named after the Chinese moon goddess, Chang’e. Chang’e 1 was launched on 24 October 2007 at 10:05:04 UTC from Xichang Satellite Launch Center. It left lunar transfer orbit on 31 October and entered lunar orbit on 5 November. The first picture of the Moon was relayed on 26 November 2007. On 12 November 2008, a map of the entire lunar surface was released, produced from data collected by Chang'e 1 between November 2007 and July 2008.

LOCTITE 460 INSTANT ADHESIVE 又名 460 PRISM 20G IN E

LOCTITE 460 INSTANT ADHESIVE 又名 460 PRISM 20G IN E

安全技术说明书 根据GB/T 16483-2008第 1 页 共 9 页LOCTITE 460 INSTANT ADHESIVE 又名 460 PRISM 20G IN EN/JP/CH安全技术说明书编号 : 434271V 001.4修订: 07.11.2019 发布日期: 12.02.2020化学品中文名称: LOCTITE 460 INSTANT ADHESIVE 又名 460 PRISM 20G IN EN/JP/CH推荐用途:氰基丙烯酸盐粘合剂企业信息:汉高(中国)投资有限公司 江湾城路99号6幢5、6、7层 200438 中国上海市杨浦区中国电话: +86-21-2891 8000 传真: +86-21-2891 5137电子邮件:***************************生效日期: 07.11.2019应急信息: 应急电话:+86 21 2891 8311 (24小时)。

物质或混合物的分类根据GB 13690-2009 (化学品分类和危险性公示通则):危险分类 危险类别 易燃液体类别 4 急性危害水生环境 类别 2 对水生环境有慢性危害类别 3标签要素根据GB 15258-2009 (化学品安全标签编写规定):信号词:警告危险性说明:H227可燃液体。

H401对水生生物有毒。

H412对水生生物有害并具有长期持续影响。

预防措施:P210远离热源/火花/明火/热表面。

禁止吸烟。

P273避免释放到环境中。

P280戴防护手套,防护眼罩和防护面具。

事故响应:P370+P378在发生火灾时:用干砂,干粉或抗溶性泡沫灭火。

安全储存:P403+P235存放在通风良好的地方。

保持低温。

废弃处置:P501在适合的处置和废弃设施内,按照可用的法律法规要求,以及废弃时的产品特性,废弃处置内容物/容器。

成分信息:混合物根据GB 13690-2009 公布的有害物质:有害物成分 CAS-No.含量GHS 分类聚甲基丙烯酸甲酯9011-14-7 2.5- < 10%急性危害水生环境H402馬來酰亞胺105391-33-1 1- < 2.5%急性危害水生环境H400对水生环境有慢性危害H410亚甲基双(4-甲基-6-叔丁基苯酚) 0.1- < 1%生殖毒性2H361只有那些根据GB13690-2009分类为有害的物质才被列入该表格。

宾为霖与《天路历程》的汉译

宾为霖与《天路历程》的汉译

2009年9月上海师范大学学报(哲学社会科学版)S,e pt.。

2009第3 8卷第5期Jour nal of Shnghm Normal Un i v e r s i t y(P h i l o s o p h y&S o c i a l Sciences Edit io n)V01.38,No.5中图分类号:1561.074文献标识码:A 文章编号:1004-8634(2009)05-0083·CO S)宾为霖与《天路历程》的汉译宋莉华(上海师范大学人文与传播学院,上海200234)摘要:《天路历程》是最早译介到中国的西方长篇小说,它的中文译本超过了30种,其中以宾为霖的译本影响最大。

他的译本并非是最早的,却是第一部完整的并被公认为是最佳的译本,版本最多,在中国读者中也最具影响力。

论文所关注的是,身为传教士的宾为霖在翻译此书时所采用的一些特殊策略,宾为霖译本的特点、流传,以及在宾为霖译本的影响下,<天路历程》这部宗教小说如何被中国读者所接受。

关键词:《天路历程》;中译本;宾为霖西方传教士著译的小说中,最为引人注目的,本并非是最早的,却是第一部完整的并被公认为除了米怜的《张远两友相论》之外,大约就要推宾是最佳的译本,在中国读者中也最具影响力。

本为霖(wi ll iam C.Burns,1815—1868年,也译作宾文所关注的是,身为传教士的宾为霖在翻译此书惠连、宾惠廉、宾威廉、宾维廉等,①本文采用当时时所采用的一些特殊策略,宾为霖译本的特点、流传教士中最常用的译法)翻译的《天路历程》了。

传,以及在宾为霖译本的影响下,《天路历程》这这首先当然得益于这部小说本身的文学成就。

部宗教小说是如何被中国读者所接受的。

《天路历程》是17世纪英国牧师、散文作家约翰·班扬(Jo hn Bunyan,1628--1688年)的代表作。

一、宾为霖的天路历程该书1678年面世后即获得了巨大成功,在不足一年的时间里连续印行3版,作者生前销售已达lO尽管《天路历程》由于宾为霖的译介而深入万余册,至今被翻译成120多种文字,在各地流人心,但这位译者本人似乎并不为人所熟悉。

文化缺省与翻译补偿——以《简·爱》中英对照译本为例

文化缺省与翻译补偿——以《简·爱》中英对照译本为例
为了解决这些问题,译者通常采用“翻译补偿”策略。所谓 “翻译补偿”就是通过一定的技巧或手段,在目的语文本中创造
惑。文中直译为“毕士大”,在译文当页的末尾则对 Bethesda 进行 了加注解释。Bethesda 源于亚兰文,最早出现于《约翰福音》中,原 义指的是“流动着的泉水”,是临近耶路撒冷羊门的一个水池,据 传说,其中的水有着医病救人的疗效。在译文中采用这样的方 法,为读者提供了详细的解释,帮助读者更好地理解文章,保证 了读者阅读思维上的连贯性。
能。而交际功能的实现则要求交际双方拥有共同的社会文化背 中有很多有关当时英国乡村及原野的风貌描写,同时还涉及社
景知识,否则很难顺利实现有效的交际行为。翻译作为跨文化交 流的一种手段,在帮助不同文化背景下的人们实现更好的交流 与沟通上起了重要的作用。由于历史背景、地理位置等原因,不 同社会群体在诸多方面都表现出了文化差异。尤其在文学作品 创作中,文化差异体现得则更为明显,而原作中文化缺省的现象 也不胜枚举,对此,译者一般采用翻译补偿的方法来进行妥善 处理。
一、文化缺省和翻译补偿的内涵 “文化缺省”的表意指的是文化因素缺少的部分,其具体内 涵是指原作的作者与其目的语读者交流时双方共有的相关文化 背景知识的省略。一般而言,对处在同一个地理或社会环境中的 人群来说,因为有着相似或相同的文化背景,所以在理解和认知
会习俗、风土人情等方面的内容,其中,文化因素体现得非常明 显,可以说夏洛特的《简·爱》很好地展现出了十九世纪的英伦风 情,当然文中的各种人物形象也是栩栩如生。在阅读原作时,笔 者也发现了不少文化缺省的部分。为了更好地探究翻译补偿策 略,笔者选取了广受认可且较为权威的盛世教育中英对照本。就 文化缺省的现象,翻译界已经给出了几种方法与技巧,比如文 外补偿、文内补偿、归化、删除、硬译等。

关于《道德经》三种英译本的译文风格

关于《道德经》三种英译本的译文风格

中国古代奇书《道德经》总括天地人伦,力揭宇 宙规律,是东方传统文化宝库的一颗璀璨夺目的明 珠。它对中国古代政治、军事、哲学、经济、文学、艺 术以及中国人民族精神和民族性格都产生了重大而 深远的影响。近现代,随着《道德经》各种译本的不 断问世,这本被尊为“万经之王”的圣书成为老子文 化传播到国外的桥梁,对世界文明也产生了巨大的 影响。很多著名的科学家、哲学家、作家、知名学者 都给 予《道 德 经》高 度 的 评 价。德 国 哲 学 家 尼 采 ( 1844 - 1900) 曾经评价《道德经》像一个永不枯竭、 满载宝藏的井泉; 美国科学家威尔·杜兰( 1885— 1981) 曾经盛赞到“在人类思想史中,《道德经》的确 可称得上是最迷人的一部奇书”[1]; 美国第四十任 总统里根曾在 1987 年国情咨文中引用老子的“治 大国若烹小鲜”的治国理念。由此可见《道德经》在 世界的影响力非同小可。
Hale Waihona Puke cred Books of the East) 的三十四卷出版于牛津大学 出版社。后来又在不同出版社多次再版。值得一提 的是,理本译文的问世刚好处在《道德经》翻译的第 一次高潮期( 1868 - 1905) 。此后 1934 年到 1963 年 期间出现了《道德经》翻译的第二次高潮,期间英国 的汉 学 大 师 兼 翻 译 家 亚 瑟 · 韦 利 ( Arthur Waley, 1888 - 1966) 翻译的《道与德: < 道德经 > 及其在中 国思想中的地位研究》( The Way and its Power: A Study of the Tao Te Ching and its Place in Chinese Thought) 被认为是比较权威的英译本( 下文简称韦 本) 。该书于 1934 年出版于伦敦,前言大篇幅、系 统地介绍了中国先秦哲学、老子哲学思想及学说地 位。后来又被多次重印。从 1973 年到 2004 年掀起 了《道德经》翻译的第三次高潮,美国诗人兼翻译家 大卫·希顿( 1954 - ) 的《道德经》译本( 下文简称 希本) 就是这个期间问世的,译作名为《老子道 德 经》( Lao Tzu’s Tao Te Ching) ,于 2000 年出版于美 国华盛顿特区 Counterpoint 出版社。该译本的引言 长达 23 页,详细地介绍了老子哲学思想的起源及其 特点。该译作的正文分为《道经》( 第一章到第三十 七章) 和《德经》( 第三十八章到八十一章) 两个部 分。鉴于理本、韦本和希本是在《道德经》翻译的三 个不同的阶段问世的,比较具有代表性,本文从形式 标记对这三个比较有代表性的译本进行评述,以理 性、客观地分析《道德经》在英译过程中的风格传递 效果。

阅读教程4第二版蒋静仪课文翻译

阅读教程4第二版蒋静仪课文翻译

阅读教程4第二版蒋静仪课文翻译Aesthetic Surgery involves techniques intendedfor the"enhancement"of appearance throughsurgical and medical techniques,and isspecifically concerned with maintaining normal appearance,restoring it,or enhancing itbeyond the average level toward someaesthetic ideal.In 2006,nearly 11 million cosmetic surgerieswere performed in the United States alone.The number of cosmetics proceduresperformed in the United States has increasedover 50 percent since the start of the century.Nearly 12 million cosmetic surgeries wereperformed in 2007,with the five most commonbeing breast augmentation,liposuction,nasalsurgery,eyelid surgery and abdominoplasty.The increased use of cosmetic surgery crossesracial and ethnic lines in the U.S,withincreases seen among African-Americans andHispanic Americans as well as CaucasianAmericans.In Europe,the second largestmarket for cosmetic procedures,cosmeticsurgery is a$2.2 billion business.Abdominoplasty(or"tummy tuck"):reshaping and firming of the abdomen Blepharoplasty(or"eyelid surgery"):Reshaping of the eyelids or theapplication of permanent eyeliner,including Asian blepharoplastyBreast augmentation("breast enlargement"or"boob job"):Augmentation of the breasts.This can involve either fat grafting,saline or silicone gel prosthetics. Initially performed to women with micromastia Breast reduction:Removal of skin and glandular tissue. Indicated to reduce back and shoulder pain in women with gigantomastia and/or for psychological benefit in women with gigantomastia/macromastia and men with gynecomastia.Breast lift(Mastopexy):Lifting or reshaping of breaststo make them less saggy,often after weight loss(after a pregnancy,for example).It involves removal of breast skin as opposed to glandular tissue or scarless Serdev suture techniqueButtock Augmentation(or"butt augmentation"or"butt implants"):Enhancement of the buttocks.Thisprocedure can be performed by using silicone implants or fat grafting and transfer from other areas of the body.Buttock lift(or"butt lift"or"brazilian butt lift"):Lifting, projection,tightening of the buttocks.This procedurecan be performed by using the scarless Serdev suture technique without implants.[10]Chemical peel:Minimizing the appearance of acne, pock,and other scars as well as wrinkles(dependingon concentration and type of agent used,except for deep furrows),solar lentigines(age spots,freckles),and photodamage in general.Chemical peels commonly involve carbolic acid(Phenol),trichloroacetic acid(TCA),glycolic acid(AHA),or salicylic acid(BHA)as the active agent.Rhinoplasty(or"nose job"):Reshaping of the nose Otoplasty(or ear surgery):Reshaping of the ear.Most often done by pinning the ear closer to the head. Rhytidectomy(or"face lift"):Removal of wrinkles and signs of aging from the faceSuction-Assisted Lipectomy(or liposuction):Removal of fat from the bodyBrow lift:higher brow position by surgical or scarless Serdev sutureChin augmentation:Augmentation of the chin with an implant(e.g.silicone),by sliding genioplasty of the jawbone,or by suture of the soft tissue.Cheek augmentation by suture Serdev sutureCheek lift/Midface lift using scarless suture technique. Collagen,fat,and other tissue fller injections(e.g. hyaluronic acid)Laser skin resurfacing1.Why do you think the youths are concerned about the appearance?2.What is beauty?Is there a standard to evaluate it?3.Why does the author think the sense of insecurity about look is a common phenomenon?4.Where do the pressures that make people worry about appearance come from?5.What'S author’S attitude towards the exaggerated concern about body image?6.How would you describe your own looks using appropriate words in this text?7.DO you think it is easier for better-looking people toreceive better job?。

GR-468-CORE中文版

GR-468-CORE中文版
3.2.1.2.1 连续波激光器的考虑因素…………………………………37 3.2.1.2.2 WDM激光器的考虑因素(略) 3.2.1.2.3 可调激光器的考虑因素(略) 3.2.1.2.4 高比特率应用的考虑因素…………………………………37 3.2.1.3 LEDs的光谱特性………………………………………………37 3.2.2 输出功率/驱动电流特性……………………………………………………38 3.2.2.1 一般输出功率和L-I曲线测量考虑因素(略) 3.2.2.2 激光门槛电流………………………………………………………38 3.2.2.3 激光门槛电流的温度灵敏度………………………………………38 3.2.2.4 特定电流水平的输出功率水平
2.2.5 逐批控制文件………………………………………………………………23 2.2.6 逐批控制的测试范围………………………………………………………23
2.2.6.1 外观检验……………………………………………………………23 2.2.6.2 电气和光学测试……………………………………………………24 2.2.6.3 筛选…………………………………………………………………25 2.2.7 数据记录和保留……………………………………………………………25 2.2.8 供应商历史记录数据的汇总…………………………………………………25 2.2.9 不良器件和不良批的处理…………………………………………………26 2.2.10 来料免检程序………………………………………………………………26 2.3 反馈和纠正措施………………………………………………………………………27 2.3.1 逐批控制数据…………………………………………………………………27 2.3.2 电路板测试和老化(略) 2.3.3 系统水平测试和老化(略) 2.3.4 现场返回器件的修复…………………………………………………………27 2.3.5 未经证实的电路板失效………………………………………………………28 2.3.6 数据的收集和分析……………………………………………………………28 2.3.7 器件失效的分析………………………………………………………………28 2.4 器件的存储和处理……………………………………………………………………28 2.4.1 不合格材料……………………………………………………………………28 2.4.2 材料复查系统…………………………………………………………………28 2.4.3 仓库存货规则…………………………………………………………………29 2.4.3.1 FIFO 存货法…………………………………………………………29 2.4.3.2 重工器件………………………………………………………………29 2.4.4 ESD 预防…………………………………………………………………29 2.5 文件和测试数据…………………………………………………………………29 2.5.1 文件的可用性…………………………………………………………………30 2.5.2 其它信息的可用性………………………………………………………………30 2.6 器件的可用性…………………………………………………………………………31 2.7 环境,健康,安全和物理设计考虑因素(略) 3. 测试程序………………………………………………………………………………………31 3.1 一般测试程序标准……………………………………………………………………31 3.1.1 标准化测试程序…………………………………………………………………31 3.1.2 测试仪器………………………………………………………………………31 3.1.3 通过/失败标准的制定…………………………………………………………31 3.1.4 可选的测试条件………………………………………………………………32 3.1.4.1 等效测试条件的计算…………………………………………………32

婴儿产品安全标准和测试要求 2010-4

婴儿产品安全标准和测试要求 2010-4
欧盟
EN 13209-2:2005 (SAFT CARRIER - 软制背带) EN 13209-1:2004 (FRAMED BACK CARRIERS - 框架背带)
如果是斜挎式背带,无特定 标准,可参考以上标准进行 测试。
6.背带
主要测试内容
化学测试 防火测试 一般安全要求 腿孔测试 锁定机构测试 稳定性测试 强度测试 动态疲劳测试 标签、纸箱和说明书
欧洲标准化委员会(CEN) 成员国有:奥地利, 比利时, 保加利亚, 塞浦路斯, 捷克, 丹麦, 爱沙尼亚, 芬兰, 法国, 德国, 希腊, 匈牙利, 冰岛, 爱尔兰, 意大利, 拉脱维亚, 立 陶宛, 卢森堡公国, 马耳他, 荷兰, 挪威, 波兰, 葡萄牙, 罗马尼亚, 斯洛 伐克, 斯洛文尼亚, 西班牙, 瑞典, 瑞士,(大不列颠)联合王国.
澳大利亚
AS 4684:2009 - 除化学、束缚系统、稳定性、轮子&文字信息以外,需满足ASTM F404/EN 1一标准。
4.儿童餐椅
主要测试内容 化学测试 防火测试 一般安全要求 锁定机构测试 稳定性测试 强度测试 束缚系统 标签、纸箱和说明书
5.学步车
美国
ASTM F977-09 & 16 CFR 1500.18(a)(6) & 16 CFR 1500.86(a)(4) (INFANT WALKER - 学步车)(后者为 强制性法规)
ASTM F2012-08 (STATIONARY ACTIVITY CENTERS - 固 定活动中心)
标准尺寸儿童床 ASTM F1169-07
CPSC 16 CFR 1508
婴儿弹乐椅
ASTM F2167-05b

翻译---中青版典范英语第9级第4册《布莱克.丹》

翻译---中青版典范英语第9级第4册《布莱克.丹》

But he's in an old folk's home now.'
The dog trembled and looked up at me with his big, soft eyes.
'Please, Mum, please, Dad.
Please, please, please —'
'Shut up a minute, Stevie.' Dad waved me to be quiet.
There was more than one dog out there!
Other dogs were howling now: 'Oowoow-oow!'
Terrible, lonely howls like children lost in the night and crying for their mums.
Then he asked the forester: 'What'll happen to this dog if we don't take it?'
007
The forester shrugged. 'Well, I don't know who else will want it. It's past its best. It's not winning races any more. Old Billy was going to get rid of it anyway.'
Remember, I showed it to you? That tunnel with the iron grill over the front? Don't go in there. Right? Don't even think about it.' I said: 'OK, Dad.' I wasn't planning to go into the forest. No way. But it wasn't old lead mines I was scared of. 'Bye, Dad.' 019 Black Dan and I went running out of the house together. Now, I'm not a wimp. I mean, not many things scare me. Except getting a whiskery kiss from my great-gran.

AS 2159-2009 Piling Design and Construction

AS 2159-2009 Piling Design and Construction

AS 2159—2009Australian Standard ® Piling—Design and installationAS 2159—2009 s e d b y H A T C H A S S O C I A T E S o n 30 N o v 2009This Australian Standard® was prepared by Committee CE-018, Piling. It was approved onbehalf of the Council of Standards Australia on 19 June 2009.This Standard was published on 4 November 2009.The following are represented on Committee CE-018:• Australian Building Codes Board•Australian Geomechanics Society• AUSTROADS• Concrete Institute of Australia • Engineers Australia• Monash University• Piling and Foundation Specialists Federation • University of SydneyThis Standard was issued in draft form for comment as DR 08180.Standards Australia wishes to acknowledge the participation of the expert individuals thatcontributed to the development of this Standard through their representation on theCommittee and through the public comment period.Keeping Standards up-to-dateAustralian Standards® are living documents that reflect progress in science, technology andsystems. To maintain their currency, all Standards are periodically reviewed, and new editionsare published. Between editions, amendments may be issued.Standards may also be withdrawn. It is important that readers assure themselves they areusing a current Standard, which should include any amendments that may have beenpublished since the Standard was published.Detailed information about Australian Standards, drafts, amendments and new projects canbe found by visiting w w .auStandards Australia welcomes suggestions for improvements, and encourages readers tonotify us immediately of any apparent inaccuracies or ambiguities. Contact us via email atmail@.au , or write to Standards Australia, GPO Box 476, Sydney, NSW 2001.s e d b y H A T C H A S S O C I A T E S o n 30 N o v 2009AS 2159—2009Australian Standard ®Piling—Design and installationOriginated as AS 2159—1978.Third edition 2009. COPYRIGHT© Standards AustraliaAll rights are reserved. No part of this work may be reproduced or copied in any form or byany means, electronic or mechanical, includ ing photocopying, without the writtenpermission of the publisher.s e d b y H A T C H A S S O C I A T E S o n 30 N o v 2009AS 2159—2009 2PREFACEThis Standard was pre pare d by the Standards Australia Committe e CE-018, Piling, tosupersede AS 2159—1995.The objective of this Standard is to provide requirements for design and installation of pilesfor supporting structur e s. Th e obj e ct of this r e vision is to align with updat e dAS 1170 Standards and reflect changes in practice since the previous edition.Major changes to the previous edition are as follows:(a) Revision of the overall Standard.(b) Re vision of the se tting of stre ngth re duction factors, that is, the se le ction of the‘safety’ level appropriate to the installation being designed.(c)Revision of the negative skin friction requirements. (d) Revision of durability requirements to assist designers to achieve predicted life.(e ) Include re quire me nts for ne we r pile type s and installation me thods including ste e lscrew piles, jacking, screwing and screwed cast in place.(f)Requirement for some testing to be ‘normative’. (g) Inclusion of new types of test including rapid pile testing.The te rms ‘normative ’ and ‘informative ’ have be e n use d in this Standard to de fine theapplication of the appendix to which they apply. A ‘normative’ appendix is an integral partof a Standard, whereas an ‘informative’ appendix is only for information and guidance.Statements expressed in mandatory terms in notes to tables are deemed to be requirementsof this Standard.Notes to the text contain information and guidance and are not considered to be an integralpart of the Standard.s e d b y H A T C H A S S O C I A T E S o n 30 N o v 20093 AS 2159—2009CONTENTSPageFOREWORD (5)SECTION 1 SCOPE AND GENERAL1.1 SCOPE (6)1.2 NORMATIVE REFERENCES (6)1.3 DEFINITIONS (7)1.4 NOTATION (10)1.5 CLASSIFICATION OF PILES (13)SECTION 2 SITE INVESTIGATION2.1 GENERAL (15)2.2 INFORMATION REQUIRED (15)SECTION 3 DESIGN REQUIREMENTS AND PROCEDURES3.1 OBJECTIVE OF PILE DESIGN (16)3.2 GENERAL DESIGN REQUIREMENTS (16)3.3 ACTIONS AND COMBINATIONS FOR STRENGTH AND SERVICEABILITYDESIGN (17)SECTION 4 GEOTECHNICAL DESIGN4.1 GENERAL (20)4.2 ASSESSMENT OF GEOTECHNICAL PARAMETERS (20)4.3 GENERAL PRINCIPLES OF GEOTECHNICAL STRENGTH DESIGN (21)4.4 DESIGN REQUIREMENTS FOR STRENGTH (24)4.5 GENERAL PRINCIPLES OF GEOTECHNICAL DESIGN FORSERVICEABILITY (29)4.6 DESIGN REQUIREMENTS FOR SERVICEABILITY (29)SECTION 5 STRUCTURAL DESIGN5.1 SCOPE OF SECTION (32)5.2 GENERAL PRINCIPLES OF STRUCTURAL STRENGTH DESIGN (32)5.3 CONCRETE AND GROUT PILES (33)5.4 STEEL PILES (36)5.5 COMPOSITE STEEL AND CONCRETE PILES (36)5.6 TIMBER PILES (37)SECTION 6 DURABILITY DESIGN6.1 GENERAL (38)6.2 GENERAL PRINCIPLES OF DURABILITY DESIGN (38)6.3 ACID SULFATE SOILS (38)6.4 DESIGN FOR DURABILITY OF CONCRETE PILES (39)6.5 DESIGN FOR DURABILITY OF STEEL PILES (42)6.6 DESIGN FOR DURABILITY OF TIMBER PILES (45)SECTION 7 MATERIALS AND CONSTRUCTION REQUIREMENTS7.1 GENERAL (47)7.2 TOLERANCES AND DEFECTS (47)s e d b y H A T C H A S S O C I A T E S o n 30 N o v 2009AS 2159—2009 4Page7.3 DISPLACEMENT PILES—PREFORMED (48)7.4 DISPLACEMENT PILES—DRIVEN CAST IN PLACE (52)7.5 DISPLACEMENT PILES—SCREWED CAST IN PLACE (53)7.6 NON-DISPLACEMENT PILES (54)7.7 RECORDS OF DATA (57)SECTION 8 TESTING8.1 SCOPE (60)8.2 GENERAL REQUIREMENTS (60)8.3 PILE LOAD TESTING (62)8.4 STATIC LOAD TESTING (65)8.5 HIGH-STRAIN DYNAMIC PILE TESTING (67)8.6 BI-DIRECTIONAL LOAD TESTING (68)8.7 RAPID LOAD TESTING (69)8.8 INTEGRITY TESTING (69)APPENDICESA STATIC LOAD TEST (71)B HIGH-STRAIN DYNAMIC PILE TESTING (78)C RAPID PILE TESTING (81)D INTEGRITY TESTING (85)E LIMIT STATES—SYMBOLS AND DEFINITIONS (89)BIBLIOGRAPHY (90)s e d b y H A T C H A S S O C I A T E S o n 30 N o v 20095 AS 2159—2009FOREWORDDecisions in pile design are based on design formulae, empirical and practical experience,and the accumulated records of a large number of applications of proprietary systems (bothsuccessful and otherwise). As such, there is a great need for flexibility, experience,engineering judgement and commonsense in designing and constructing a piled footingsystem. In a real sense, these requirements are in conflict with the need to make unqualifiedmandatory statements and, as a result, many of the stipulations of this Standard are shortand simple when, in other cases, extensive arrays of multiple choices are provided. Whereapplicable, explanatory notes are added to some clauses in this Standard and additionalcommentary is provided.s e d b y H A T C H A S S O C I A T E S o n 30 N o v 2009AS 2159—2009 6STANDARDS AUSTRALIAAustralian StandardPiling—Design and installationS E C T I O N 1 S C O P E A N D G E N E R A L1.1 SCOPEThis Standard sets out minimum requirements for the design, c onstruc tion and testing ofpiled footings for c ivil engineering and building struc tures on land or immediate inshorelocations. It does not extend to offshore (deepwater) construction.NOTES:1 AS 5100 series should be considered for the design of footings for road bridges.2 Where the strength o r serviceability o f an existing structure is to be evaluated, the generalprinciples o f this Standard sho uld be applied. The actual pro perties o f the materials in thestructure should be used.3 The durability requirements are appropriate for structures with design life within ±20% of thetarget design life.1.2 NORMATIVE REFERENCESThe normative documents referenced in this Standard are the following:NOTE: Documents referenced for informative purposes are listed in the Bibliography.AS1012Methods of testing concrete (all Parts) 1163Structural steel hollow sections 1170Structural design actions 1170.4 Part 4: Earthquake actions in Australia1289 Methods of testing soils for engineering purposes 1289.6.3.1 Part 6.3.1: Soil strength and c onsolidation tests—Determination of the penetration resistance of a soil—Standard penetration test (SPT) 1289.6.5.1 Part 6.5.1: Soil strength and c onsolidation tests—Determination of the static cone penetration resistance of a soil—Field test using a mechanical and electrical cone or friction-cone penetrometer 1379 Specification and supply of concrete 1450 Steel tubes for mechanical purposes 1554 Stru c tural steel welding 1554.1 Part 1: Welding of steel structures 1579 Arc-welded steel pipes and fittings for water and waste-water 1604 Specification for preservative treatment 1604.1 Part 1: Sawn and round timber 1720 Timber stru c tures 1720.1 Part 1: Design methods s e d b y H A T C H A S S O C I A T E S o n 30 N o v 20097 AS 2159—2009AS2758 Aggregates and rock for engineering purposes2758.1 Part 1: Concrete aggregates2832Cathodic protection of metals 2832.2Part 2: Compact buried structures 2832.3 Part 3: Fixed immersed structures3600 Concrete structures3818 Timber—Heavy structural products—Visually graded3818.3 Part 3: Piles3972 Portland and blended cements4100 Steel structures5100 Bridge design5100.5 Part 5: Concrete5100.6 Part 6: Steel and composite constructionAS/NZS1170Structural design actions 1170.0Part 0: General principles 1594Hot-rolled steel flat products 3678 Structural steel—Hot-rolled plates, floorplates and slabs3679 Structural steel3679.1 Part 1: Hot-rolled bars and sections3679.2 Part 2: Welded I sections4671 Steel reinforcing materialsASTMC 566-97 Standard Test Method for Total Evaporable Moisture Content of Aggregate byDrying1.3 DEFINITIONSFor the purpose of this Standard, the definitions below apply.1.3.1 Bored cast in place pileA pile, with or without a liner, formed by excavating or boring a hole in the ground andsubsequently filling it with plain or reinforced concrete.1.3.2 Cased pile A pile formed in the ground by installing a liner and partially or wholly filling it with plain or reinforced concrete after excavation. 1.3.3 Cone penetration test (CPT) A test in accordance with AS 1289.6.5.1, to determine the penetration resistance of a soil. 1.3.4 Continuous flight auger pile (CFA) A pile formed in the ground by drilling with a hollow flight auger that is subsequently and progressively withdrawn, with the cavity below the auger tip being gradually filled with concrete or cement grout injected under pressure. 1.3.5 Design action s e d b y H A T C H A S S O C I A T E S o n 30 N o v 2009AS 2159—2009 81.3.6 Design action effect (E d )Action effect computed from the design values of the actions or design loads.1.3.7 Design geotechnical strength (R d,g )The product of the design ultimate geotechnical strength (R d,ug ) and the geotechnical strength reduction factor (φg ).1.3.8 Design lifePeriod of time during which a structure or a structural element, when designed, is assumed to perform for its intended purpose with expected maintenance but without major structural repair being necessary.1.3.9 Design serviceability load (E ds )The load on a pile corresponding to the serviceability limit state.1.3.10 Design structural strength (R d,s )The product of the design ultimate structural strength (R d,us ) and the structural strength reduction factor (φs ).1.3.11 Design ultimate geotechnical strength (R d,ug )An estimate of the ultimate geotechnical strength assessed using calculations in accordance with Section 4 of this Standard.1.3.12 Design ultimate structural strength (R d,us )The limit state at which static equilibrium is lost, or at which structural elements fail.NOTE: The design ultimate structural strength may be assessed using calculations in accordance with Section 5 of this Standard.1.3.13 Driven cast in place pileA pile formed by driving a liner, which is either permanent or temporary, and filling with plain or reinforced concrete.1.3.14 Driven preformed pileA prefabricated pile installed in the ground by driving.1.3.15 DurabilityAbility of a structure or a structural element to maintain adequate performance for a given time under expected actions and environmental influences.1.3.16 End-bearing pileA pile where the major component of the resistance of the pile is contributed by the force developed at the base of the pile. 1.3.17 Footing A part of a structure in direct contact with and transmitting load to the supporting foundation. 1.3.18 Foundation The soil, subsoil or rock, whether built-up or natural, upon which a structure is supported. NOTE: The term ‘foundation’ is commonly used to mean both the footing and the ground supporting the footing. 1.3.19 Friction pile s e d b y H A T C H A S S O C I A T E S o n 30 N o v 20091.3.20 Ground anchorA tendon anchored into the ground by bond and used to provide a reaction for test loading piles.1.3.21 Large displacement pilesPreformed or cast in place piles, generally with a solid cross-section dimension of at least 300 mm, installed by driving, screwing, pushing, vibrating or similar methods, which cause a displacement such that significant stresses are induced in the surrounding soils, which may increase the load capacity of the pile and cause displacement of the surrounding soils. 1.3.22 Limit stateCondition for which a system is designed, and beyond which it ceases to fulfil its intended function and becomes unfit for use.NOTE: There are recognized limit states, e.g., for fire, serviceability, stability and strength.1.3.23 PileA structural member that is driven, screwed, jacked, vibrated, drilled or otherwise installed in the ground so as to transmit loads to the underlying soil or rock and provide a foundation for structure. 1.3.24 Pile groupNumber of piles installed in close proximity and usually having a common pile cap. 1.3.25 Pile head Top of a pile. 1.3.26 Pile heaveDisplacement (usually vertical) of a pile caused by the driving, or by external ground movements, of piles in close proximity. 1.3.27 Raking pileA pile installed at an angle to the vertical.1.3.28 Serviceability limit state (SLS), serviceabilityA limit state beyond which specified service criteria are no longer met, such as unacceptably large displacements, vibrations, cracking, spalling and other local damage. 1.3.29 SetPermanent penetration of a driven pile or liner per blow of the hammer.1.3.30 Small displacement pilesPreformed or cast in place piles, generally with a hollow cross-section or a solid cross-section dimension less than 300 mm, installed by driving, screwing, pushing, vibrating or similar methods, which cause a small displacement such that significant stresses or displacements are not induced in the surrounding soils. 1.3.31 Standard penetration test (SPT)A test in accordance with AS 1289.6.3.1, to determine the penetration resistance of a soil. 1.3.32 Steel screw pilesPreformed small displacement piles installed by rotating a steel pipe, which has one or more spiral flights (helices) welded to it.s e d b y H A T C H A S S O C I A T E S o n 30 N o v 20091.3.33 Temporary compressionThe temporary pile-head deflection during a hammer blow, comprising elastic deflection of the pile cushion, the pile and the soil. 1.3.34 Test pilePile subjected to a loading test with the primary purpose of establishing the load deformation characteristics, and/or the ultimate structural strength of the pile, and/or the ultimate geotechnical strength of the pile/soil system. 1.3.35 Test ultimate geotechnical strength (R t,ug )An estimate of the ultimate geotechnical strength assessed from a load test carried out in accordance with Section 8 of this Standard. 1.3.36 Toe The base of the pile.1.3.37 Ultimate geotechnical strength (R ug )The resistance developed by an axially or laterally loaded pile or pile group at which static equilibrium is lost or at which the supporting ground fails. 1.4 NOTATIONThe symbols used in this Standard are listed below. Unless a contrary indication appears elsewhere, the symbols used in this Standard shall be as defined below. The notations in Clause 3.3, relating to load and combinations in AS 1170.4, have not been incorporated in this table.TABLE 1.1 NOTATIONSymbol Term Text referenceA b Plan area of pile baseClauses 4.4.1, 4.4.2 bA ′ Net area of pile base resisting uplift, i.e., the differencebetween cross-sectional areas of the pile base and the pile shaft Clause 4.4.2 A g Area of the pile cross-section Clause 5.3.3(b)ARR Average risk rating for overall designClause 4.3.2, Table 4.3.2 (C) A s Surface area of pile in intimate contact with soil Clauses 4.4.1, 4.4.2 A scCross-sectional area of compression reinforcement Clause 5.3.3(b)c Pile wave speed Paragraph C2.2, Appendix C d Pile diameterClause 5.6.3.2, Table 8.4.3.1 d b Diameter of longitudinal steel Clause 5.3.7 d t Pile base (toe) diameter Tables 8.4.3.1, 8.5.2 D d Dowel diameterClause 5.6.3.2 D Overall minimum width of pile in plane of bending Clause 5.2.2(b) EAverage Young’s modulus of pileTables 8.4.3.1, 8.5.2(continued )s e d b y H A T C H A S S O C I A T E S o n 30 N o v 2009TABLE 1.1 (continued)Symbol Term Text referenceE dDesign action effectClauses 1.3.6, 3.2.2(b),5.4.2.3, 3.2.2(d), 4.3.1, 5.2.1, 8.3.3.4, Paragraph B8,Appendix B, Tables 8.3.3.2, 8.3.3.4 and E1, Appendix E E ds Design serviceability loadClauses 1.3.9, 4.6.3(a), Paragraph B8, Appendix B, Tables 8.3.3.2, 8.3.3.3, 8.4.3.1, 8.5.2 and E1, Appendix EF eh Bending moments, shear forces and axial actions induced by heave due to unloading of ground due to excavation Clauses 3.3.1.2(d), 3.3.2(b) F em Bending moments, shear forces and axial actions induced by lateral ground movementsClauses 3.3.1.2(c), 3.3.2(b) F es Compressive and tensile actions in the pile induced by vertical ground movementsClauses 3.3.1.2(b), 3.3.2(b) F nfActions due to negative frictionClauses 3.3.1.2(a), 3.3.2(b), 4.6.3, Tables 8.3.3.3, 8.4.3.1 and E1, Appendix E f b Ultimate base pressure for compression pile Clause 4.4.1 f bt Ultimate base pressure for uplift pile Clause 4.4.2 c f ′ Characteristic concrete strengthTable 6.4.3 cmf ′ Characteristic strength of concrete at relevant age Clause 7.3.3.1(a), Table 7.3.3.1 f m,s Average skin friction for condition of full mobilization—Compression pileClause 4.4.1 f m,st Average skin friction for condition of full mobilization—Tension pileClause 4.4.2f sy Yield stress for reinforcement in concrete piles Clauses 7.3.3.1(b), 7.3.2.g Acceleration due to gravity (9.8 m/s 2) Paragraph C5.4, Appendix C h Depth to cut-offClause 7.2.1(b)IRR Individual risk rating for risk factor Clause 4.3.2, Tables 4.3.2(A), 4.3.2(B)kConcrete placement factor Clause 5.2.1, 5.3.2, 5.3.6 K Testing benefit factorClause 4.3.1 l 1 Minimum edge distance to head of pileClause 5.6.3.2 L nf Length of the test pile in contact with ground expected to undergo long-term settlement Tables 8.4.3.1, 8.5.2 L Pile lengthTables 8.4.3.1, 8.5.2,Paragraph C2.3, Appendix C M d Design bending moment Clause 5.2.2 N d Design axial loadClause 5.2.2(b) pPercentage of total piles tested that meet the specified acceptance criteriaClause 4.3.1(continued )s e d b y H A T C H A S S O C I A T E S o n 30 N o v 2009TABLE 1.1 (continued)Symbol Term Text referenceP gMaximum test load for assessment of geotechnical ultimate limit state R t,ugClauses 8.3.3.1, 8.3.3.2,8.3.3.4, 8.5.2, Paragraph A3.1, Appendix A, Paragraph B1, Appendix B, Tables 8.4.3.1, 8.5.2, A1, A2, Appendix A p o Total overburden pressure at base level Clause 4.4.1 P max Pile jacking installation forceClause 7.3.4.1P sMaximum test load for assessment of pile performance at serviceability limit state = E dsClauses 8.3.3.1, 8.3.3.2, Paragraph B1, Appendix B, Tables 8.3.3.2, 8.3.3.3, 8.4.3.1, 8.5.2, A1, A2, A3, Appendix A, B1, Appendix B P uMaximum test load for assessment of design geotechnical ultimate limit stateClauses 8.3.3.1, 8.3.3.2,Paragraph A3.1, Appendix A and Paragraph B1,Appendix B Tables 8.3.3.2, 8.3.3.3, 8.4.2, 8.4.3.1, A1, Appendix AR d,g Design geotechnical strength of pileClauses 1.3.7, 3.2.2(c), 3.2.2(d), 4.3.1, Table E1, Appendix ER d,s Design structural strength of pileClauses 1.3.10, 3.2.2(c), 3.2.2(d), 5.2.1, 5.4.2.3, Table E1, Appendix E R t,ugUltimate geotechnical strength of a pile as assessed from a load test carried out in accordance with Section 8 of this Code Clauses 1.3.35, 8.4.2.2, 8.4.3.5, Tables 8.3.3.2, 8.3.3.3, E1, Appendix E R ugUltimate geotechnical strength of pile. This is estimated either by calculation (R d,ug ) or by test (R t,ug ) Clauses 1.3.37, 7.3.4.1, Tables 8.3.3.2, 8.4.2, E1, Appendix ER us Ultimate structural strength of pileClauses 5.2.1, 5.3.1, 5.3.2, Table E1, Appendix E R d,ugDesign ultimate geotechnical strength of pile (ultimate load capacity)Clauses 1.3.7, 1.3.11, 4.3.1, 4.3.3, 4.4.2, 4.4.4, 8.2.4, Table E1, Appendix E R d,g,c Design ultimate geotechnical strength of combined pile and raft foundationClause 4.4.4, Table E1, Appendix ER d,us Design ultimate structural strength of pileClause 1.3.10, 1.3.12, R d,ug,s Design ultimate geotechnical strength of shallow or raft footing, for the net area in contact with the supporting groundClause 4.4.4, Table E1, Appendix ER d,ug,szDesign ultimate geotechnical strength of pile in stable zone, i.e., the soil strata not subject to externally imposed ground settlementsClause 4.6.3, Table E1, Appendix E S u Ultimate value of various actions appropriate for particular combinations Clause 3.3.2(b) W Weight of pileClauses 4.4.1, 4.4.2w i Weighting factor for individual risk ratings Clause 4.3.2, Tables 4.3.2(A) γCoefficient of jacked pressureClause 7.3.4.1s e d b y H A T C H A S S O C I A T E S o n 30 N o v 2009TABLE 1.1 (continued)Symbol Term Text referenceδ Pile movementsClause 3.2.3φgGeotechnical strength reduction factor for single piles or pilegroupsClauses 4.3.1, 4.4.4, 4.6.3, 8.3.3.4, Paragraph B8, Appendix B, Table 8.3.3.2 φgb Basic geotechnical strength reduction factor given in Clause 4.3.2Clauses 4.3.1, 4.3.2 φgs Geotechnical strength reduction factor for the shallow or raft footingClause 4.4.4φs Structural strength reduction factor for single piles or pile groupsClauses 1.3.10, 5.2.1, 5.3.1, 5.3.4, 5.3.5, 5.4.2.3 φtfIntrinsic test factorClause 4.3.11.5 CLASSIFICATION OF PILES 1.5.1 GeneralThe classification of pile types used in this Standard is illustrated in Figure 1.5. Pile typesare broadly classified into ‘displacement’ and ‘non-displacement’ piles and further subdivided on the basis of the method of pile installation and formation. 1.5.2 Displacement pilesDisplacement piles are defined as those that displace the ground through which they are being installed. To operate as a displacement pile, the displaced volume shall approximate the pile volume.Displacement piles may be installed by hammering, pushing, screwing, vibrating or other means to force them into the ground.Displacement piles may be one of the following: (a)Preformed Solid and hollow sections that are installed in the ground and left in position. Such piles may be extended by splicing on additional lengths of piling. Preformed piles may be fabricated from— (i)concrete, reinforced or prestressed; (ii) steel—H Section, tube and other sections; (iii) timber; or(iv) a combination of concrete, steel or timber sections. (b)Driven cast in place Pile formed in situ by driving a tubular liner to form a void, which is then wholly or partially filled with concrete or grout. The liner may be either— (i)permanent —made of concrete or steel with open or closed ends of constant or tapered section; or(ii) temporary —steel tube extracted during concreting or grouting, with or withoutan expanded base. (c)Screwed cast in place Piles formed in situ by screwing a threaded tube into the ground with concrete placement as the screw head is withdrawn.s e d b y H A T C H A S S O C I A T E S o n 30 N o v 20091.5.3 Non-displacement piles 1.5.3.1 GeneralPiles formed in situ by removing soil, using either rotary drilling, percussion, reverse circulation, grabbing, chiselling and mechanical or hand excavation methods, to form a void, which is then filled with concrete or grout. During removal of the soil, the sides of the excavated void may or may not be supported. 1.5.3.2 SupportedThe support may be either— (a) permanent —using steel, concrete or other liners; or (b)temporary —using— (i)steel, concrete or other liners or timber shoring; (ii) drilling fluids; or (iii) continuous flight augers. 1.5.3.3 UnsupportedPiles in which the ground is left exposed during excavation.1.5.4 Partial displacement, post-grouted and preloaded non-displacement piles Various techniques, such as partial displacement augers, post-grouting of the shaft or base and preloading the base of non-displacement piles, are used to improve the performance of non-displacement piles.Soil and rock displaced during installationSoil and rock removed before or duringinstallationLarge displacementSmall displacementSteelScrewOpen tubeOther sections H section PreformedCast in placePermanentlinerScrewedDrivenTemporar y linerConcreteTimberCompositeConcrete shellClosed steel tubeReinforcedPrestressedSuppor tedUnsuppor tedTemporar y Suppor tShoring or liners Drilling fluid Soil on continuousflight augerDisplacement pilesNon-displacement pilesPermanent Suppor tSteel linerConcrete linerOtherFIGURE 1.5 CLASSIFICATION OF PILE TYPESs e d b y H A T C H A S S O C I A T E S o n 30 N o v 2009S E C T I O N 2 S I T E I N V E S T I G A T I O N2.1 GENERALFor any site on which it is proposed to install piles, site investigation shall be carried out toprovide sufficient information to fulfil the requirements of Clause 2.2. When planning the site investigation, existing relevant information shall be taken into account.NOTE: The intention of this Section is to ensure that adequate information is available for design and construction.2.2 INFORMATION REQUIREDAppropriate site investigations shall provide information on geotechnical conditions according to AS 1726, as follows: (a) The geotechnical design of piles.(b) Assessment of geotechnical conditions for pile construction or installation. (c)Some additional site-specific aspects, including— (i)potential for ground heave—damage to adjacent structures or neighbouring piles;(ii) vibration effects—potential for damage to adjacent structures; (iii) expansive soil problems;(iv) potential difficulties with pile cap construction; (v)groundwater conditions; (vi) negative friction effects;(vii) near-surface conditions or lateral load design, if relevant;(viii) possible obstructions to installation, e.g., boulders or old footings or piles; (ix) potential for slope instability; (x)effects of excavation or scour; (xi) effects of contaminated sites;(xii) an assessment of the site surface for the provision of a safe work platform forpiling equipment;(xiii) potential for acid sulfate soils; and(xiv) potential for weak or compressible layers, or caverns below the pile base,including soils below lava flows. (d)Assessment of the potential effects of site conditions on pile durability.NOTE: The site investigation should obtain information on all materials that might influence the strength and serviceability performance of the structure. Due account should be taken of the range of foundation options that might apply. This should include testing of the soil and groundwater for aggressive agents, including sulphate, chloride and pH, to ensure appropriate exposure classification in regard to durability.s e d b y H A T C H A S S O C I A T E S o n 30 N o v 2009。

AS5045-ASST;AS5045-ASSU;AS5045 PB;AS5045 DB V2;AS5045 AB;中文规格书,Datasheet资料

AS5045-ASST;AS5045-ASSU;AS5045 PB;AS5045 DB V2;AS5045 AB;中文规格书,Datasheet资料

1 General DescriptionThe AS5045 is a contactless magnetic rotary encoder for accurate angular measurement over a full turn of 360°. It is a system-on-chip, combining integrated Hall elements, analog front end and digital signal processing in a single device.To measure the angle, only a simple two-pole magnet, rotating over the center of the chip, is required. The magnet may be placed above or below the IC.The absolute angle measurement provides instant indication of the magnet’s angular position with a resolution of 0.0879° = 4096 positions per revolution. This digital data is available as a serial bit stream and as a PWM signal.An internal voltage regulator allows the AS5045 to operate at either 3.3 V or 5 V supplies.2 BenefitsComplete system-on-chipFlexible system solution provides absolute andPWM outputs simultaneously Ideal for applications in harsh environments due tocontactless position sensing No calibration required3 Key FeaturesContactless high resolution rotational positionencoding over a full turn of 360 degrees Two digital 12bit absolute outputs:- Serial interface and- Pulse width modulated (PWM) output User programmable zero positionFailure detection mode for magnet placementmonitoring and loss of power supply “red-yellow-green” indicators display placement ofmagnet in Z-axis Serial read-out of multiple interconnected AS5045devices using Daisy Chain mode Tolerant to magnet misalignment and airgapvariations Wide temperature range: - 40°C to + 125°CSmall Pb-free package: SSOP 16 (5.3mm x 6.2mm)4 ApplicationsIndustrial applications:- Contactless rotary position sensing - Robotics Automotive applications:- Steering wheel position sensing - Transmission gearbox encoder - Headlight position control - Torque sensing- Valve position sensing Replacement of high end potentiometersFigure 1. Typical Arrangement of AS5045 and MagnetAS504512 Bit Programmable Magnetic Rotary Encoder Data SheetTable of Contents1General Description (1)2Benefits (1)3Key Features (1)4Applications (1)5Pinout (4)5.1Pin Configuration (4)5.2Pin Description (4)6Electrical Characteristics (5)6.1AS5045 Differences to AS5040 (5)6.2Absolute Maximum Ratings (non operating) (6)6.3Operating Conditions (6)6.4DC Characteristics for Digital Inputs and Outputs (7)6.4.1CMOS Schmitt-Trigger Inputs: CLK, CSn. (CSn = internal Pull-up) (7)6.4.2CMOS / Program Input: Prog (7)6.4.3CMOS Output Open Drain: MagINCn, MagDECn (7)6.4.4CMOS Output: PWM (7)6.4.5Tristate CMOS Output: DO (8)6.5Magnetic Input Specification (8)6.6Electrical System Specifications (9)6.7Timing Characteristics (10)6.7.1Synchronous Serial Interface (SSI) (10)6.7.2Pulse Width Modulation Output (11)6.8Programming Conditions (11)7Functional Description (12)8Mode Input Pin (13)8.1Synchronous Serial Interface (SSI) (13)8.1.1Data Content (14)8.1.2Z-axis Range Indication (Push Button Feature, Red/Yellow/Green Indicator) (14)8.2Daisy Chain Mode (15)9Pulse Width Modulation (PWM) Output (16)9.1Changing the PWM Frequency (17)10Analog Output (17)11Programming the AS5045 (18)11.1Zero Position Programming (18)11.2Repeated OTP Programming (18)11.3Non-permanent Programming (19)11.4Analog Readback Mode (20)12Alignment Mode (21)13 3.3V / 5V Operation (22)14Choosing the Proper Magnet (23)14.1Physical Placement of the Magnet (24)15Simulation Modeling (25)16Failure Diagnostics (26)16.1Magnetic Field Strength Diagnosis (26)16.2Power Supply Failure Detection (26)17Angular Output Tolerances (26)17.1Accuracy (26)17.2Transition Noise (28)17.3High Speed Operation (28)17.3.1Sampling Rate (28)17.4Propagation Delays (29)17.4.1Angular Error Caused by Propagation Delay (29)17.5Internal Timing Tolerance (29)17.6Temperature (30)17.6.1Magnetic Temperature Coefficient (30)17.7Accuracy over Temperature (30)17.7.1Timing Tolerance over Temperature (30)18Package Drawings and Markings (31)19Ordering Information (31)20Recommended PCB Footprint (32)5 Pinout5.1 Pin ConfigurationFigure 2. Pin Configuration SSOP165.2 Pin DescriptionTable 1 shows the description of each pin of the standard SSOP16 package (Shrink Small Outline Package, 16 leads, body size: 5.3mm x 6.2mmm; see Figure 2).Pins 7, 15 and 16 supply pins, pins 3, 4, 5, 6, 13 and 14 are for internal use and must not be connected.Pins 1 and 2 MagINCn and MagDECn are the magnetic field change indicators (magnetic field strength increase or decrease through variation of the distance between the magnet and the device). These outputs can be used to detect the valid magnetic field range. Furthermore those indicators can also be used for contact-less push-button functionality.Pin 6 Mode allows switching between filtered (slow) and unfiltered (fast mode). This pin must be tied to VSS or VDD5V, and must not be switched after power up. See chapter 8 Mode Input Pin.Pin 8 Prog is used to program the zero-position into the OTP (see chapter 11.1 Zero Position Programming).This pin is also used as digital input to shift serial data through the device in Daisy Chain configuration, (see chapter 8.2 Daisy Chain Mode).Pin 11 Chip Select (CSn; active low) selects a device within a network of AS5045 encoders and initiates serial data transfer. A logic high at CSn puts the data output pin (DO) to tri-state and terminates serial data transfer. This pin is also used for alignment mode (Figure 14) and programming mode (Figure 10).Pin 12 PWM allows a single wire output of the 10-bit absolute position value. The value is encoded into a pulse width modulated signal with 1µs pulse width per step (1µs to 4096µs over a full turn). By using an external low pass filter, the digital PWM signal is converted into an analog voltage, making a direct replacement of potentiometers possible.Table 1. Pin DescriptionPin Symbol Type Description1MagINCn DO_OD Magnet Field Mag nitude INC rease; active low, indicates a distance reduction between the magnet and the device surface. See Table 52MagDECn DO_OD Magnet Field Mag nitude DEC rease; active low, indicates a distance increase between the device and the magnet. See Table 53 NC - Must be left unconnected4 NC - Must be left unconnectedPin Symbol Type Description 5 NC - Must be left unconnected6Mode - Select between slow (low, VSS) and fast (high, VDD5V) mode. Internal pull-down resistor.7 VSS S Negative Supply Voltage (GND)8Prog_DI DI_PD OTP Prog ramming Input and Data Input for Daisy Chain mode. Internal pull-down resistor (~74kΩ). Connect to VSS if not used9 DO DO_TD ata O utput of Synchronous Serial Interface10 CLK DI,ST Cl oc k Input of Synchronous Serial Interface; Schmitt-Trigger input11 CSn DI_PU,STC hip S elect, active low; Schmitt-Trigger input, internal pull-up resistor (~50kΩ)12 PWM DO P ulse W idth M odulation of approx. 244Hz; 1µs/step (opt. 122Hz; 2µs/step)13 NC - Must be left unconnected14 NC - Must be left unconnected15VDD3V3 S 3V-Regulator Output, internally regulated from VDD5V. Connect to VDD5V for 3V supply voltage. Do not load externally.16 VDD5V S Positive Supply Voltage, 3.0 to 5.5 VDO_OD digital output open drain S supply pinDO digital output DI digital inputDI_PD digital input pull-down DO_T digital output /tri-stateDI_PU digital input pull-up ST Schmitt-Trigger input6 Electrical Characteristics6.1 AS5045 Differences to AS5040All parameters are according to AS5040 datasheet except for the parameters shown below: Building Block AS5045 AS5040Resolution 12bits, 0.088°/step. 10bit, 0.35°/stepData length Read: 18bits(12bits data + 6 bits status)OTP write: 18 bits(12bits zero position + 6 bits mode selection) Read: 16bits(10bits data + 6 bits status)OTP write: 16 bits(10bits zero position + 6 bits mode selection)Incremental encoder Not usedPin 3: not usedPin 4:not usedQuadrature, step/direction and BLDC motorcommutation modesPin 3:incremental output A_LSB_UPin 4:incremental output B_DIR_VPins 1 and 2 MagINCn, MagDECn: same feature asAS5040, additional OTP option for red-yellow-green magnetic range MagINCn, MagDECn indicate in-range or out-of-range magnetic field plus movement of magnet in z-axisPin 6 MODE pin, switch between fast and slowmodePin 6:Index outputPin 12 PWM output: frequency selectable by OTP:1µs / step, 4096 steps per revolution,f=244Hz 2µs/ step, 4096 steps perrevolution, f=122Hz PWM output:1µs / step, 1024 steps per revolution, 976Hz PWM frequencySampling frequency Selectable by MODE input pin:2.5kHz, 10kHzFixed at 10kHz @10bit resolutionBuilding Block AS5045AS5040 Propagation delay 384µs (slow mode) 96µs (fast mode)48µs Transition noise (rms; 1sigma) 0.03 degrees max. (slow mode) 0.06 degrees max. (fast mode)0.12 degreesOTP programming options Zero position, rotational direction, PWMdisable, 2 Magnetic Field indicator modes, 2 PWM frequenciesZero position, rotational direction, incremental modes, index bit width6.2 Absolute Maximum Ratings (non operating)Stresses beyond those listed under “Absolute Maximum Ratings“ may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under “Operating Conditions” is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ParameterSymbol Min Max Unit Note DC supply voltage at pin VDD5V VDD5V -0.3 7 V DC supply voltage at pin VDD3V3 VDD3V35VInput pin voltageV in -0.3VDD5V+0.3 V Except VDD3V3 Input current (latchup immunity) I scr -100 100 mA Norm: JEDEC 78Electrostatic discharge ESD ± 2 kV Norm: MIL 883 E method 3015 Storage temperature T strg-55125°CMin – 67°F ; Max +257°FBody temperature (Lead-free package)T Body 260°C t=20 to 40s,Norm: IPC/JEDEC J-Std-020 Lead finish 100% Sn “matte tin” Humidity non-condensing H585%6.3 Operating ConditionsParameterSymbol Min Typ Max UnitNoteAmbient temperature T amb -40125 °C -40°F…+257°FSupply currentI supp 1621 mA Supply voltage at pin VDD5V Voltage regulator output voltage at pin VDD3V3VDD5V VDD3V3 4.53.0 5.03.3 5.5 3.6 V 5V operationSupply voltage at pin VDD5V Supply voltage at pin VDD3V3 VDD5V VDD3V33.03.03.33.33.6 3.6V3.3V operation(pin VDD5V and VDD3V3 connected)6.4 DC Characteristics for Digital Inputs and Outputs6.4.1 CMOS Schmitt-Trigger Inputs: CLK, CSn. (CSn = internal Pull-up)(operating conditions: T amb = -40 to +125°C, VDD5V = 3.0-3.6V (3V operation) VDD5V = 4.5-5.5V (5V operation) unless otherwise noted) ParameterSymbol Min Max Unit NoteHigh level input voltage V IH 0.7 * VDD5VV Normal operation Low level input voltage V IL0.3 * VDD5VVSchmitt Trigger hysteresis V Ion- V Ioff 1V-1 1 CLK only Input leakage current Pull-up low level input current I LEAK I iL-30 -100µA µA CSn only, VDD5V: 5.0V6.4.2 CMOS / Program Input: Prog(operating conditions: T amb = -40 to +125°C, VDD5V = 3.0-3.6V (3V operation) VDD5V = 4.5-5.5V (5V operation)unless otherwise noted) ParameterSymbol Min Max Unit Note High level input voltage VIH 0.7 * VDD5VVDD5VVHigh level input voltage VPROG See Programming ConditionsV During programming Low level input voltage VIL 0.3 * VDD5VVHigh level input current IiL30100µAVDD5V: 5.5V6.4.3 CMOS Output Open Drain: MagINCn, MagDECn(operating conditions: T amb = -40 to +125°C, VDD5V = 3.0-3.6V (3V operation) VDD5V = 4.5-5.5V (5V operation)unless otherwise noted) ParameterSymbolMinMax UnitNote Low level output voltage V OL VSS+0.4 V Output currentI O4 2mAVDD5V: 4.5V VDD5V: 3VOpen drain leakage current I OZ 1 µA6.4.4 CMOS Output: PWM(operating conditions: T amb = -40 to +125°C, VDD5V = 3.0-3.6V (3V operation) VDD5V = 4.5-5.5V (5V operation)unless otherwise noted) ParameterSymbolMinMax UnitNoteHigh level output voltage V OH VDD5V-0.5 V Low level output voltage V OL VSS+0.4 V Output current I O4 2mA mAVDD5V: 4.5V VDD5V: 3V6.4.5 Tristate CMOS Output: DO(operating conditions: T amb = -40 to +125°C, VDD5V = 3.0-3.6V (3V operation) VDD5V = 4.5-5.5V (5V operation) unless otherwise noted) ParameterSymbolMinMax UnitNoteHigh level output voltage V OH VDD5V –0.5VLow level output voltage V OL VSS+0.4 VOutput currentI O4 2mAmAVDD5V: 4.5V VDD5V: 3VTri-state leakage current I OZ 1 µA6.5 Magnetic Input Specification(operating conditions: T amb = -40 to +125°C, VDD5V = 3.0-3.6V (3V operation) VDD5V = 4.5-5.5V (5V operation)unless otherwise noted)Two-pole cylindrical diametrically magnetised source: ParameterSymbolMinTypMaxUnitNoteDiameter d mag 4 6 mm Thickness t mag 2.5 mm Recommended magnet: Ø 6mm x 2.5mm forcylindrical magnets Magnetic input fieldamplitude B pk 4575 mTRequired vertical component of the magnetic field strength on the die’s surface, measured along a concentric circle with a radius of 1.1mm Magnetic offset B off ± 10mT Constant magnetic stray field Field non-linearity5 %Including offset gradient2.44146 rpm @ 4096 positions/rev.; fast modeInput frequency (rotational speed of magnet)f mag_abs0.61Hz36.6rpm @ 4096 positions/rev.; slow mode Displacement radiusDisp0.25mmMax. offset between defined device center and magnet axis (see Figure 18) Eccentricity Ecc 100µm Eccentricity of magnet center to rotational axis-0.12NdFeB (Neodymium Iron Boron) Recommended magnetmaterial andtemperature drift -0.035%/KSmCo (Samarium Cobalt)6.6 Electrical System Specifications(operating conditions: T amb = -40 to +125°C, VDD5V = 3.0~3.6V (3V operation) VDD5V = 4.5~5.5V (5V operation) unless otherwise noted) ParameterSymbolMinTypMaxUnitNoteResolution RES 12 bit 0.088 deg Integral non-linearity (optimum)INL opt± 0.5 deg Maximum error with respect to the best line fit. Centered magnet without calibration, T amb =25 °C. Integral non-linearity (optimum)INL temp± 0.9 degMaximum error with respect to the best line fit. Centered magnetwithout calibration, T amb = -40 to +125°CIntegral non-linearity INL ± 1.4 degBest line fit =(Err max – Err min ) / 2Over displacement tolerance with 6mm diameter magnet, without calibration,T amb = -40 to +125°C Differential non-linearity DNL ±0.044 deg 12bit, no missing codes 0.06 1 sigma, fast mode (MODE = 1)Transition noiseTN0.03deg RMS1 sigma, slow mode (MODE=0 or open)Power-on reset thresholds On voltage; 300mV typ. hysteresisOff voltage; 300mV typ. hysteresisV on V off 1.37 1.08 2.2 1.9 2.9 2.6VDC supply voltage 3.3V (VDD3V3)DC supply voltage 3.3V (VDD3V3)20Fast mode (Mode = 1); until status bit OCF = 1Power-up timet PwrUp80msSlow mode (Mode = 0 or open); until OCF = 196Fast mode (MODE=1)System propagation delay absolute output : delay of ADC, DSP and absolute interfacet delay384µsSlow mode (MODE=0 or open) 2.48 2.61 2.74T amb = 25°C, slow mode (MODE=0 or open)Internal sampling rate for absolute output:f S2.35 2.61 2.87 kHzT amb = -40 to +125°C, slow mode (MODE=0 or open) 9.90 10.42 10.94T amb = 25°C, fast mode (MODE = 1)Internal sampling rate forabsolute outputf S9.38 10.42 11.46kHz T amb = -40 to +125°C, : fast mode (MODE = 1)Read-out frequency CLK1MHz Max. clock frequency to read out serial dataFigure 3. Integral and Differential Non-linearity (example)Integral Non-Linearity (INL) is the maximum deviation between actual position and indicated position. Differential Non-Linearity (DNL) is the maximum deviation of the step length from one position to the next. Transition Noise (TN) is the repeatability of an indicated position6.7 Timing Characteristics6.7.1Synchronous Serial Interface (SSI)(operating conditions: T amb = -40 to +125°C, VDD5V = 3.0~3.6V (3V operation) VDD5V = 4.5~5.5V (5V operation) unless otherwise noted) ParameterSymbol MinTypMaxUnitNoteData output activated (logic high)t DO active 100 nsTime between falling edge of CSn and dataoutput activated First data shifted to output registert CLK FE500 nsTime between falling edge of CSn and firstfalling edge of CLKStart of data output T CLK / 2 500nsRising edge of CLK shifts out one bit at a timeData output valid t DO valid357 375 394 nsTime between rising edge of CLK and dataoutput validData output tristate t DO tristate100 nsAfter the last bit DO changes back to“tristate”Pulse width of CSn t CSn 500ns CSn = high; To initiate read-out of next angular position Read-out frequencyf CLK>01MHzClock frequency to read out serial data分销商库存信息:AMSAS5045-ASST AS5045-ASSU AS5045 PB AS5045 DB V2AS5045 AB。

(API标准)ASTM D4485-09

(API标准)ASTM D4485-09

Designation:D4485–09An American National Standard Standard Specification forPerformance of Engine Oils1This standard is issued under thefixed designation D4485;the number immediately following the designation indicates the year oforiginal adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.Asuperscript epsilon(´)indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.INTRODUCTIONThis specification covers all the currently active American Petroleum Institute(API)engine oil performance categories that have been defined in accordance with the ASTM consensus process.Thereare organizations with specifications not subject to the ASTM consensus process,such as the International Lubricant Standardization and Approval Committee(ILSAC),American PetroleumInstitute(API–SM Specification),and the Association des Constructeurs Europeans d’Automobiles (ACEA).Certain of these specifications,which have been defined primarily by the use of currentASTM test methods,have also been included in the Appendix of this document for information.In the ASTM system,a specific API designation is assigned to each category.The system isopen-ended,that is,new designations are assigned for use with new categories as each new set of oil performance characteristics are defined.Oil categories may be referenced by engine builders inmaking lubricant recommendations,and used by lubricant suppliers and customers in identifyingproducts for specific applications.Where applicable,candidate oil programs are conducted in accordance with the American Chemistry Council(ACC)Petroleum Additives Product Approval Codeof Practice.Other service categories not shown in this document have historically been used to describe engineoil performance(SA,SB,SC,SD,SE,SF,SG and CA,CB,CC,CD,CD-II,CE)(see3.1.2).SA isnot included because it does not have specified engine performance requirements.SG is not includedbecause it was a category that could not be licensed for use in the API Service Symbol after Dec.31,1995.The others are not included because they are based on test methods for which engine parts,testfuel,or reference oils,or a combination thereof,are no longer available.Also,the ASTM5-Car andSequence VI Procedures are obsolete and have been deleted from the category Energy Conserving andEnergy Conserving II(defined by Sequence VI).Information on excluded older categories andobsolete test requirements can be found in SAE J183.1.Scope1.1This specification covers engine oils for light-duty and heavy-duty internal combustion engines used under a variety of operating conditions in automobiles,trucks,vans,buses,and off-highway farm,industrial,and construction equipment. 1.2This specification is not intended to cover engine oil applications such as outboard motors,snowmobiles,lawn mowers,motorcycles,railroad locomotives,or oceangoing vessels.1.3This specification is based on engine test results that generally have been correlated with results obtained on refer-ence oils in actual service engines operating with gasoline or diesel fuel.As it pertains to the API SL engine oil category,it is based on engine test results that generally have been correlated with results obtained on reference oils run in gasoline engine Sequence Tests that defined engine oil catego-ries prior to2000.It should be recognized that not all aspects of engine oil performance are evaluated by the engine tests in this specification.In addition,when assessing oil performance, it is desirable that the oil be evaluated under actual operating conditions.1.4This specification includes bench and chemical tests that help evaluate some aspects of engine oil performance not covered by the engine tests in this specification.1This specification is under the jurisdiction of ASTM Committee D02onPetroleum Products and Lubricants and is the direct responsibility of SubcommitteeD02.B0on Automotive Lubricants.Current edition approved April15,2009.Published May2009.Originallyapproved st previous edition approved in2008as D4485–08.Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.1.5The test procedures referred to in this specification that are not yet standards are listed in Table 1.1.6The values stated in SI units are to be regarded as standard.No other units of measurement are included in this standard.1.6.1Exceptions —The roller follower shaft wear in Test Method D 5966is in mils.Appendix X2descriptions are verbatim API language,which contains a few non-SI units.2.Referenced Documents 2.1ASTM Standards:2D 92Test Method for Flash and Fire Points by Cleveland Open Cup TesterD 93Test Methods for Flash Point by Pensky-Martens Closed Cup TesterD 130Test Method for Corrosiveness to Copper from Petroleum Products by Copper Strip TestD 874Test Method for Sulfated Ash from Lubricating Oils and AdditivesD 892Test Method for Foaming Characteristics of Lubri-cating OilsD 2622Test Method for Sulfur in Petroleum Products by Wavelength Dispersive X-ray Fluorescence Spectrometry D 2887Test Method for Boiling Range Distribution of Petroleum Fractions by Gas ChromatographyD 3244Practice for Utilization of Test Data to Determine Conformance with SpecificationsD 4171Specification for Fuel System Icing InhibitorsD 4683Test Method for Measuring Viscosity at High Shear Rate and High Temperature by Tapered Bearing Simulator D 4684Test Method for Determination of Yield Stress and Apparent Viscosity of Engine Oils at Low Temperature D 4951Test Method for Determination of Additive Ele-ments in Lubricating Oils by Inductively Coupled Plasma Atomic Emission SpectrometryD 5119Test Method for Evaluation of Automotive Engine Oils in the CRC L-38Spark-Ignition Engine 3D 5133Test Method for Low Temperature,Low Shear Rate,Viscosity/Temperature Dependence of Lubricating Oils Using a Temperature-Scanning TechniqueD 5185Test Method for Determination of Additive Ele-ments,Wear Metals,and Contaminants in Used Lubricat-ing Oils and Determination of Selected Elements in Base Oils by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES)D 5290Test Method for Measurement of Oil Consumption,Piston Deposits,and Wear in a Heavy-Duty High-Speed Diesel Engine—NTC-400Procedure 3D 5293Test Method for Apparent Viscosity of Engine Oils and Base Stocks Between −5and −35°C Using Cold-Cranking SimulatorD 5302Test Method for Evaluation of Automotive Engine Oils for Inhibition of Deposit Formation and Wear in a Spark-Ignition Internal Combustion Engine Fueled with Gasoline and Operated Under Low-Temperature,Light-Duty Conditions 3D 5480Test Method for Engine Oil V olatility by Gas Chromatography 3D 5481Test Method for Measuring Apparent Viscosity at High-Temperature and High-Shear Rate by Multicell Cap-illary ViscometerD 5533Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIE,Spark-Ignition Engine 3D 5800Test Method for Evaporation Loss of Lubricating Oils by the Noack MethodD 5844Test Method for Evaluation of Automotive Engine Oils for Inhibition of Rusting (Sequence IID)3D 5862Test Method for Evaluation of Engine Oils in Two-Stroke Cycle Turbo-Supercharged 6V92TA Diesel EngineD 5966Test Method for Evaluation of Engine Oils for Roller Follower Wear in Light-Duty Diesel EngineD 5967Test Method for Evaluation of Diesel Engine Oils in T-8Diesel EngineD 5968Test Method for Evaluation of Corrosiveness of Diesel Engine Oil at 121°CD 6082Test Method for High Temperature Foaming Char-acteristics of Lubricating OilsD 6202Test Method for Automotive Engine Oils on the Fuel Economy of Passenger Cars and Light-Duty Trucks in the Sequence VIA Spark Ignition EngineD 6278Test Method for Shear Stability of Polymer Con-taining Fluids Using a European Diesel Injector Apparatus D 6335Test Method for Determination of High Tempera-ture Deposits by Thermo-Oxidation Engine Oil Simulation TestD 6417Test Method for Estimation of Engine Oil V olatility by Capillary Gas ChromatographyD 6483Test Method for Evaluation of Diesel Engine Oils in T-9Diesel EngineD 6557Test Method for Evaluation of Rust Preventive Characteristics of Automotive Engine OilsD 6593Test Method for Evaluation of Automotive Engine Oils for Inhibition of Deposit Formation in a Spark-Ignition Internal Combustion Engine Fueled with Gasoline2For referenced ASTM standards,visit the ASTM website,,or contact ASTM Customer Service at service@.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTM website.3Withdrawn.TABLE 1Test ProceduresTest Procedure ASTM Publications A T-6RR:D02–1219B T-7RR:D02–1220CISM under development D ISB under development E C13under development FAResearch Reports are available from ASTM International Headquarters.Request by Research Report No.BMulticylinder Engine Test Procedure for the Evaluation of Lubricants-Mack T-6.CMulticylinder Engine Test Procedure for the Evaluation of Lubricants-Mack T-7.DMulticylinder Engine Test Procedure for the Evaluation of Lubricants-Cummins ISM.EMulticylinder Engine Test Procedure for the Evaluation of Lubricants-Cummins ISB.FMulticylinder Engine Test Procedure for the Evaluation of Lubricants-CaterpillarC13.and Operated Under Low-Temperature,Light-Duty Con-ditionsD6594Test Method for Evaluation of Corrosiveness of Diesel Engine Oil at135°CD6618Test Method for Evaluation of Engine Oils in Diesel Four-Stroke Cycle Supercharged1M-PC Single Cylinder Oil Test EngineD6681Test Method for Evaluation of Engine Oils in a High Speed,Single-Cylinder Diesel Engine—Caterpillar 1P Test ProcedureD6709Test Method for Evaluation of Automotive Engine Oils in the Sequence VIII Spark-Ignition Engine(CLR Oil Test Engine)D6750Test Methods for Evaluation of Engine Oils in a High-Speed,Single-Cylinder Diesel Engine—1K Proce-dure(0.4%Fuel Sulfur)and1N Procedure(0.04%Fuel Sulfur)D6794Test Method for Measuring the Effect on Filterabil-ity of Engine Oils After Treatment with Various Amounts of Water and a Long(6-h)Heating TimeD6795Test Method for Measuring the Effect on Filterabil-ity of Engine Oils After Treatment with Water and Dry Ice and a Short(30-min)Heating TimeD6837Test Method for Measurement of Effects of Auto-motive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIB Spark Ignition EngineD6838Test Method for Cummins M11High Soot TestD6891Test Method for Evaluation of Automotive Engine Oils in the Sequence IV A Spark-Ignition EngineD6894Test Method for Evaluation of Aeration Resistance of Engine Oils in Direct-Injected Turbocharged Automo-tive Diesel EngineD6896Test Method for Determination of Yield Stress and Apparent Viscosity of Used Engine Oils at Low Tempera-tureD6922Test Method for Determination of Homogeneity and Miscibility in Automotive Engine OilsD6923Test Method for Evaluation of Engine Oils in a High Speed,Single-Cylinder Diesel Engine—Caterpillar 1R Test ProcedureD6975Test Method for Cummins M11EGR TestD6984Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIF,Spark-Ignition EngineD6987/D6987M Test Method for Evaluation of Diesel Engine Oils in T-10Exhaust Gas Recirculation Diesel EngineD7097Test Method for Determination of Moderately High Temperature Piston Deposits by Thermo-Oxidation Engine Oil Simulation Test—TEOST MHTD7109Test Method for Shear Stability of Polymer Con-taining Fluids Using a European Diesel Injector Apparatus at30and90CyclesD7156Test Method for Evaluation of Diesel Engine Oils in the T-11Exhaust Gas Recirculation Diesel EngineD7216Test Method for Determining Automotive Engine Oil Compatibility with Typical Seal ElastomersD7320Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIG,Spark-Ignition EngineD7422Test Method for Evaluation of Diesel Engine Oils in the T-12Exhaust Gas Recirculation Diesel EngineE29Practice for Using Significant Digits in Test Data to Determine Conformance with SpecificationsE178Practice for Dealing With Outlying Observations 2.2Society of Automotive Engineers Standards:4SAE J183Engine Oil Performance and Engine Service ClassificationSAE J300Engine Oil ClassificationSAE J1423Passenger Car and Light-Duty Truck Energy-Conserving Engine Oil ClassificationSAE J2643Standard Reference Elastomers(SRE)for Char-acterizing the Effects on Vulcanized Rubber2.3American Petroleum Institute Publication:5API1509Engine Oil Licensing and Certification System (EOLCS)2.4Government Standard:6DOD CID A-A-52039A(SAE5W-30,10W-30,and15W-40)2.5American Chemical Council Code:7ACC Petroleum Additives Product Approval Code of Practice3.Terminology3.1Definitions:3.1.1automotive,adj—descriptive of equipment associated with self-propelled machinery,usually vehicles driven by internal combustion engines.3.1.2category,n—in engine oils,a designation such as SH, SJ,SL,SM,CF-4,CF,CF-2,CG-4,CH-4,CI-4,CJ-4,Energy Conserving,and so forth,for a given level of performance in specified engine and bench tests.3.1.3classification,n—in engine oils,the systematic ar-rangement into categories in accordance with different levels of performance in specified engine and bench tests.3.1.4engine oil,n—a liquid that reduces friction and wear between the moving parts within an engine,and also serves asa coolant.3.1.4.1Discussion—It can contain additives to enhance certain properties.Inhibition of engine rusting,deposit forma-tion,valve train wear,oil oxidation,and foaming are examples.3.1.5heavy duty,adj—in internal combustion engine op-eration,characterized by average speeds,power output,and internal temperatures that are generally close to the potential maximums.3.1.6heavy-duty engine,n—in internal combustion engine types,one that is designed to allow operation continuous at or close to its peak output.4Available from Society of Automotive Engineers(SAE),400Commonwealth Dr.,Warrendale,PA15096–0001.5Available from American Petroleum Institute(API),1220L.St.,NW,Wash-ington,DC20005-4070,.6Available from ernment Printing Office Superintendent of Documents, 732N.Capitol St.,NW,Mail Stop:SDE,Washington,DC20401.7Available from American Chemical Council,1300Wilson Blvd.,Arlington,V A22209.3.1.6.1Discussion —This type of engine is typically in-stalled in large trucks and buses as well as farm,industrial,and construction equipment.3.1.7light-duty ,adj —in internal combustion engine opera-tion ,characterized by average speeds,power output,and internal temperatures that are generally much lower than the potential maximums.3.1.8light-duty engine ,n —in internal combustion engine types ,one that is designed to be normally operated at substan-tially less than its peak output.3.1.8.1Discussion —This type of engine is typically in-stalled in automobiles and small trucks,vans,and buses.3.1.9lugging ,adj —in internal combustion engine opera-tion ,characterized by a combined mode of relatively low-speed and high-power output.3.2Definitions of Terms Specific to This Standard:3.2.1C category ,n —the group of engine oils that are intended primarily for use in diesel and certain gasoline-powered vehicles.3.2.2Energy Conserving category ,n —the group of engine oils that have demonstrated fuel economy benefits and are intended primarily for use in automotive gasoline engine applications,such as passenger cars,light-duty trucks,and vans.3.2.3S category ,n —the group of engine oils that are intended primarily for use in automotive gasoline engine applications,such as passenger cars,light-duty trucks,and vans.4.Performance Classification4.1Automotive engine oils are classified in three general arrangements,as defined in 3.2;that is,S,C,and Energy Conserving.These arrangements are further divided into cat-egories with performance measured as follows:4.1.1SH —Oil meeting the performance requirements mea-sured in the following gasoline engine tests and bench tests:4.1.1.1Test Method D 5844,the Sequence IID gasoline engine test,has been correlated with vehicles used in short-trip service prior to 1978,4,8particularly with regard to rusting.(An alternative is Test Method D 6557,the Ball Rust Test.)4.1.1.2Test Method D 5533,the Sequence IIIE gasoline engine test,has been correlated with vehicles used in high-temperature service prior to 1988,9particularly with regard to oil thickening and valve train wear.(Alternatives are Test Method D 6984,the Sequence IIIF test,or Test Method D 7320,the Sequence IIIG test.)4.1.1.3Test Method D 5302,the Sequence VE gasoline engine test,has been correlated with vehicles used in stop-and-go service prior to 1988,10particularly with regard to sludge and valve train wear.(An alternative is the combination of Test Method D 6593,the Sequence VG test,and Test Method D 6891,the Sequence IV A test.)4.1.1.4Test Method D 5119,the L-38gasoline engine test,is used to measure copper-lead bearing weight loss under high-temperature operating conditions.(An alternative is Test Method D 6709,the Sequence VIII test.)(1)Test Method D 5119(or Test Method D 6709)is also used to determine the ability of an oil to resist permanent viscosity loss due to shearing in an engine.4.1.1.5In addition to passing performance in the engine tests,specific viscosity grades shall also meet bench test requirements (see Table 2),which are discussed in the follow-ing subsections:(1)The volatility of engine oils relates to engine oil con-sumption.(2)Test Method D 6795,the Engine Oil Filterability Test (EOFT)screens for the formation of precipitates that can cause oil filter plugging.(3)Phosphorus compounds can cause glazing of automotive catalysts and exhaust gas oxygen sensors and,thereby,deacti-vate them.Control of the phosphorus level in the engine oil may reduce this tendency.(4)The flash point can indicate if residual solvents and low-boiling fractions remain in the finished oil.(5)Foaming in engine oil can cause valve lifter collapse and a loss of lubrication due to the presence of air in the oil.Test Methods D 892and D 6082empirically rate the foaming tendency and stability of oils.(6)Test Method D 6922,the H and M Test indicates the compatibility of an oil with standard test oils.4.1.1.6Licensing of the API SH category requires that candidate oils meet the performance requirements in this specification,and that the oils be tested in accordance with the protocols described in the ACC Petroleum Additives Product Approval Code of Practice .The methodology detailed in the ACC Code will help ensure that an engine oil meets its intended performance specification.(See Appendix X3for more information.)4.1.2SJ —Oil meeting the performance requirements mea-sured in the following gasoline engine tests and bench tests:4.1.2.1Test Method D 5844,the Sequence IID,gasoline engine test has been correlated with vehicles used in short-trip service prior to 1978,particularly with regard to rusting.(An alternative is Test Method D 6557,the Ball Rust Test.)4.1.2.2Test Method D 5533,the Sequence IIIE gasoline engine test,has been correlated with vehicles used in high-temperature service prior to 1988,particularly with regard to oil thickening and valve train wear.(Alternatives are Test Method D 6984,the Sequence IIIF test,or Test Method D 7320,the Sequence IIIG test.)4.1.2.3Test Method D 5302,the Sequence VE gasoline engine test,has been correlated with vehicles used in stop-and-go service prior to 1988,particularly with regard to sludge and valve train wear.(An alternative is the combination of Test Method D 6593,the Sequence VG test,and Test Method D 6891,the Sequence IV A test.)4.1.2.4Test Method D 5119,the L-38gasoline engine test,is used to measure copper-lead bearing weight loss under high-temperature operating conditions.(An alternative is Test Method D 6709,the Sequence VIII test.)8Available from ASTM International in STP 3151(Part 1).Also available from the Society of Automotive Engineers as Technical Paper No.780931.9Supporting data have been filed at ASTM International Headquarters and may be obtained by requesting Research Report RR:D02–1225.10Supporting data have been filed at ASTM International Headquarters and may be obtained by requesting Research Report RR:D02–1226.TABLE2S Engine Oil CategoriesAPI SH CategoryEngine Test Method Rated or Measured Parameter Primary Performance CriteriaD5844A,B(Sequence IID)Average engine rust rating,C minNumber stuck lifters8.5 noneor D6557A(Ball Rust Test)Average gray value,min100 D5533B,D(Sequence IIIE)Hours to375%kinematic viscosityincrease at40°C,min64Average engine sludge rating,E min9.2Average piston skirt varnish rating,F min8.9Average oil ring land deposit rating,F min 3.5Lifter sticking noneScuffing and wearCam or lifter scuffing noneCam plus lifter wear,µmAverage,max30Maximum,max64Ring sticking(oil-related G)none or D6984(Sequence IIIF)D Kinematic viscosity,%increase at40°C,max325HAverage piston skirt varnish rating,F min8.5IWeighted piston deposit rating,J min 3.2IScreened average cam-plus-lifter wear,µm,max20I,KHot stuck rings none I or D7320(Sequence IIIG)L Kinematic viscosity,%increase at40°C,max150Weighted piston deposit rating,M min 3.5Cam-plus-lifter wear avg,µm,max60Hot stuck rings none D5302B,N(Sequence VE)Average engine sludge rating,E min9.0Rocker arm cover sludge rating,E min7.0Average piston skirt varnish rating,F min 6.5Average engine varnish rating,F min 5.0Oil ring clogging,%reportOil screen clogging,%,max20.0Compression ring sticking(hot stuck)noneCam wear,µmAverage,max127Maximum,max380 or D6891(Sequence IVA)N Average cam wear,µm O120 plus,D6593N(Sequence VG)Average engine sludge rating,E min7.8Rocker arm cover sludge rating,E min8.0Average piston skirt varnish rating,F min7.5Average engine varnish rating,P min8.9Oil screen clogging,%,max20Hot stuck compression rings noneD5119Q(L-38)Bearing weight loss,mg,maxShear stability 40 Ror D6709Q(Sequence VIII)Bearing weight loss,mg,maxShear stability 26.4RBench Test and Measured Parameter(effective January1,1992)Viscosity Grade Performance Criteria SSAE5W-30SAE10W-30SAE15W-40Test Method D5800volatility loss,%max T252018 Test Method D2887volatility loss at371°C,%max T201715 Test Method D6795(EOFT),%flow reduction,max5050NR U Test Method D4951or D5185,mass fraction phosphorus%,max0.120.12NR Test Method D4951or D5185,mass fraction phosphorus%,min(all viscosity grades)(unless valid passing Test Method D5302results are obtained)0.060.060.06Test Method D92flash point,°C,min V200205215 Test Method D93flash point,°C,min V185190200 Test Method D892foaming tendency(Option A)Sequence I,max,foaming/settling W10/010/010/0 Sequence II,max,foaming/settling W50/050/050/0 Sequence III,max,foaming/settling W10/010/010/0 Test Method D6082(optional blending required)report X report X report X Test Method D6922homogeneity and miscibility Y Y YAPI SJ CategoryEngine Test Method Rated or Measured Parameter Primary Performance CriteriaD5844A,B(Sequence IID)Average engine rust rating,C minNumber stuck lifters8.5 noneor D6557A(Ball Rust Test)Average gray value,min100 D5533B,D(Sequence IIIE)Hours to375%kinematic viscosity increase at40°C,min64API SJ CategoryEngine Test Method Rated or Measured Parameter Primary Performance CriteriaAverage engine sludge rating,E min9.2Average piston skirt varnish rating,F min8.9Average oil ring land deposit rating,F min 3.5Lifter sticking noneScuffing and wearCam or lifter scuffing noneCam plus lifter wear,µmAverage,max30Maximum,max64Ring sticking(oil-related)G noneor D6984(SequenceIIIF)DKinematic viscosity,%increase at40°C,max325HAverage piston skirt varnish rating,F min8.5IWeighted piston deposit rating,J min 3.2IScreened average cam-plus–lifter wear,µm,max20I,KHot stuck rings none Ior D7320(SequenceIIIG)LKinematic viscosity,%increase at40°C,max150Weighted piston deposit rating,M min 3.5Cam-plus-lifter wear avg,µm,max60Hot stuck rings noneD5302B,N(Sequence VE)Average engine sludge rating,E min9.0Rocker arm cover sludge rating,E min7.0Average piston skirt varnish rating,F min 6.5Average engine varnish rating,F min 5.0Oil ring clogging,%reportOil screen clogging,%,max20.0Compression ring sticking(hot stuck)noneCam wear,µmAverage,max127Maximum,max380or D6891(SequenceIVA)NAverage cam wear,µm O120plus,D6593N Average engine sludge rating,E min7.8 (Sequence VG)Rocker arm cover sludge rating,E min8.0Average piston skirt varnish rating,F min7.5Average engine varnish rating,P min8.9Oil screen clogging,%,max20Hot stuck compression rings noneD5119Q(L-38)Bearing weight loss,mg,maxShear stability 40 Ror D6709Q(SequenceVIII)Bearing weight loss,mg,max26.4Shear stability RBench Test and Measured ParameterViscosity Grade Performance CriteriaSAE0W-20,SAE5W-20,SAE5W-30,SAE10W-30All OthersTest Method D5800volatility loss,%max Z2220AA Test Method D6417volatility loss at371°C,%max Z1715AA Test Method D5480volatility loss at371°C,%max Z1715AA Test Method D6795(EOFT),%flow reduction,max5050 Test Method D6794(EOWTT),%flow reduction,maxwith0.6%H20report report with1.0%H20report report with2.0%H20report report with3.0%H20report report Test Method D4951or D5185,mass fraction phosphorus,%,max0.10AB NR U Test Method D4951or D5185,mass fraction phosphorus,%,min(unless valid passing Test Method D5302results are obtained)0.060.06 Test Method D92flash point,°C,min V200NR U Test Method D93flash point,°C,min V185NR U Test Method D892foaming tendency(Option A)Sequence I,max,foaming/settling AC10/010/0 Sequence II,max,foaming/settling AC50/050/0 Sequence III,max,foaming/settling AC10/010/0 Test Method D6082(optional blending required)Static foam,max,tendency/stability200/50AD200/50AD Test Method D6922homogeneity and miscibility Y YBench Test and Measured ParameterViscosity Grade Performance CriteriaSAE0W-20,SAE5W-20,SAE5W-30,SAE10W-30All OthersTest Method D6335High temperature deposits(TEOST33),deposit wt,mg,max6060 Test Method D5133Gelation Index,max12NR UAPI SL CategoryEngine Test Method Rated or Measured Parameter Primary Performance Criteria D6984(Sequence IIIF)Kinematic viscosity,%increase at40°C,max275Average piston skirt varnish rating,F min9.0Weighted piston deposit rating,J min 4.0Screened average cam-plus-lifter wear,µm,max20KHot Stuck Rings noneLow temperature viscosity performance AE report or D7320(Sequence IIIG)L Kinematic viscosity,%increase at40°C,max150Weighted piston deposit rating,M min 3.5Cam-plus-lifter wear avg,µm,max60Hot stuck rings noneLow temperature viscosity performance AF report D6891(Sequence IVA)Cam wear average,µm,O max120D5302B Cam wear average,µm,max127(Sequence VE AG)Cam wear max,µm,max380D6593(Sequence VG)Average engine sludge rating,E min7.8Rocker arm cover sludge rating,E min8.0Average piston skirt varnish rating,F min7.5Average engine varnish rating,P min8.9Oil screen clogging,%,max20Hot stuck Compression rings noneCold stuck rings reportOil screen debris,%reportOil ring clogging,%report D6709Bearing weight loss,mg,max26.4(Sequence VIII)Shear stability RBench Test and Measured Parameter Performance Criteria Test Method D6557(Ball Rust Test),average gray value,min100Test Method D5800volatility loss,%max15Test Method D6417volatility loss at371°C,%max10D6795(EOFT),%flow reduction,max50D6794(EOWTT),%flow reduction,maxWith0.6%H2O50With1.0%H2O50With2.0%H2O50With3.0%H2O50Test Method D4951or D5185,mass fraction phosphorus%,max AH0.10ABTest Method D4951or D5185,mass fraction phosphorus%,min(unless valid passing Test Method D5302results are obtained)0.06Test Method D892foaming tendency(Option A)Sequence I,max,foaming/settling AC10/0Sequence II,max,foaming/settling AC50/0Sequence III,max,foaming/settling AC10/0Test Method D6082(optional blending required)static foam max,tendency/stability100/0ADTest Method D6922homogeneity and miscibility YTest Method D7097high temperature deposits(TEOST MHT-4),deposit wt,mg,max45Test Method D5133(Gelation Index),max AH12AIA Demonstrate passing performance in either Test Method D5844or D6557.B Monitoring of this test method was discontinued in June20,2001.Valid test results shall predate the end of the last calibration period for the test stand in which this test method was conducted.C CRC Rust Rating Manual No.7,available from Coordinating Research Council,219Perimeter Center Pkwy.,Atlanta,GA30346.D Demonstrate passing performance in either Test Method D5533or D6984.However,an oil passing Test Method D6984and containing less than0.08%mass phosphorus in the form of ZDDP shall also pass the wear limits in Test Method D5302(see also footnote L).E CRC Sludge Rating Manual No.12,available from Coordinating Research Council,219Perimeter Center Pkwy.,Atlanta,GA30346.F CRC Varnish Rating Manual No.14,available from Coordinating Research Council,219Perimeter Center Pkwy.,Atlanta,GA30346.G An oil-related stuck ring occurs on a piston with an individual oil ring land deposit rating<2.6.H Determine at60h.I Determine at80h.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AS4684-2009澳洲标准高脚椅——安全要求High Chairs—Safety Requirements此澳洲标准由儿童家俱安全要求CS-003技术委员会编写。

澳洲标准委员会在2009年6月25日认可。

此标准在2009年8月11日公布。

以下为CS-003参与编写者:澳洲工商会澳洲竟争及消费者委员会澳洲产业集团澳洲零售协会澳洲商业家具行业协会维多利亚消费事务局消协组织CHOICE澳洲消费者协会卫生部(南澳大利亚)旅游部门、公平交易和葡萄酒产业发展,昆士兰家俱技术澳洲婴幼儿护理产品协会NSW公平交易办公室威斯密德儿童医院此标准起草号为DR05503.澳大利亚标准希望承认专家个人参与对标准的发展贡献通过他们在委员会的表现和通过公众评审期。

标准保持更新标准是变化着的文件,它反映出科学,技术和系统的进步。

为使其能继续使用,所有的标准都会定期回审,新版本会公布。

在编纂过程中,会不断修订。

条款也可能被废弃。

读者必须要保证他们所使用是的正在使用中的标准,它包含标准公布后所有修订条款。

详细信息可以通过访问.au网站浏览关于澳洲标准,草稿,修订和新发布的标准。

澳洲标准欢迎改进的建议,鼓励读者及时通知我们如有任何明显的错误或含糊不清的描述。

联系我们可以通过email邮箱地址:mail@.au或写到如下地址:GPO Box 476,Sydney,NSW2001AS4684-2009澳洲标准高脚椅——安全要求High chair——Safety requirements以AS4689-2009初次出版AS4684-2009前言此标准由澳大利亚/新西兰儿童家具安全要求委员会CS-003的澳大利亚成员准备。

经过与这两个国家的相关利益者沟通后,澳大利亚和新西兰标准协会决定将此标准发展为澳大利亚的标准而不是澳大利亚/新西兰标准。

符合此标准并不保证一定能符合ASTM F404,ISO9221的第1和第2部分以及EN14988第1和第2部分,反之亦然。

此标准的附加要求中包含了关于束缚系统的胯带特定位置要求。

术语“harness”和“restraint”可互换使用,均指一组围绕躯干并通过肩膀的带集成子并能为在高椅中的儿童提供保持力的安全系统。

此标准的目的是为管理当局提供基本的安全要求,在国内使用儿童高椅的情形,在餐厅、托儿所和某些机构中,同时为生产商提供了功能耐久性、稳定性和执行这些标准以符合安全要求,其目的是为了减少死亡的可能性和儿童在使用高椅时导致的伤害,但是不限于跌出和勒杀危险。

束缚系统的要求是为了减少使用高椅的相应伤害,预防儿童站立或滑出安全带和跌出或滑出高椅。

胯带的使用是为了预防儿童将一条腿通过座椅将其两条腿放入相同的一边脚开口而导致从安全带中滑出。

术语“normative”(标准)在此标准中的使用是定义附录的适用性。

附录的标准也是此标准的一个不可或缺的组成部分。

目录1.范围 (6)2.参考文件 (6)3.定义 (6)4.高脚椅符合性要求 (7)5.特定元素的迁移 (7)6.被安全带维持的乘坐者保持 (7)7.稳定性 (9)8.轮子或滑轮 (9)9.包装和标签信息 (9)10.标识 (11)附录A.胯带束缚系统的位置测试 (13)B.束缚系统和束缚系统固接强度的测定 (15)C.稳定性测试方法 (20)澳大利亚标准高椅——安全要求1、范围此标准指定针对独立高椅的安全要求。

这些要求包括设计、结构、性能、标识和标记。

此标准适用于可转换成矮椅(low chairs)的高椅和斜躺椅(reclining chair)。

当高椅可转变成其他的形式时,这些额外的功能要求并不被此标准所覆盖。

此标准并不能应对由于年长的小孩与高椅中的小孩互动而可能导致意外和伤害以及由于被超过3岁龄的人滥用和误用而造成的意外和伤害。

2、参考文件以下标准在此标准中被参考使用AS/NZS ISO标准部分8124玩具安全8124.3第三部分:特定元素的迁移ISO部分9221家具——儿童高脚椅9221-1第一部分:安全要求9221-2第二部分:测试方法ASTM部分F404高椅的消费者安全规范EN部分14988儿童高脚椅14988-1第一部分:安全要求14988-2第二部分:测试方法3、定义为达成标准目的以下定义适用:3.1快速释放机制(Quick-release mechanism)一个固定的机制,当在一个方向施加一个力时可以将机制释放。

3.2结构性失败(Structural failure)明显的破裂或预防性操作失败或影响此标准的或相关适用标准的安全性要求。

这些可能是第四章节中所定义的ISO,EN或ASTM标准。

4、高椅的符合性要求除了本标准的第5、6、7、、8、9和10章节外,高椅应该至少符合以下标准之一:(a)ISO9221,第1部分和第2部分(b)ASTM F404(c)EN14988,第1部分和第2部分如果以上任一标准的某条要求和本标准的要求相互冲突而矛盾时,应遵照本标准要求。

5、特定元素的迁移所有的物料和涂层如果能被束缚在高椅中的儿童用嘴接触而能吸吮、舔舐、放入嘴中或用手握住,则根据AS/NZS ISO8124.3进行测试时,必须满足迁移元素的最大可接受水平。

6、束缚系统中小孩的保持力6.1一般要求以下要求和建议适用:(a)高椅应该有一套完整的且永久地附接的束缚系统,能调整以放置儿童站立或从高椅中滑出。

此安全带应能调整以适应高椅设计时的小孩乘坐者范围。

束缚系统的类别是5点式安全带或全尺寸安全带。

可以参考图1和图2给出的参考图例。

(b)当儿童正确放置后,安全带应能将儿童束缚在设计的座位或斜躺的位置。

备注:在ASTM F404标准里,此安全束缚系统部分将取代章节题目为“Restraint System”和“Passive Crotch Restraint”及其相应的测试要求。

(c)任何安全束缚系统的扣具装置不得含有快速释放装置(quick-release),且应是能预防将扣具从安全束缚系统中移除的结构。

6.2腰带腰带的宽度最小尺寸为20mm。

腰带及其配件应固牢于高椅骨架上,无论是直接固牢还是通过座椅固接,如果通过座椅固接则该座椅应固接到高椅上,且当拉动束缚系统时座椅不能被拉离高椅的骨架。

6.3肩带肩带的宽度最小尺寸为15mm且需符合以下之一:(a)肩带在座椅靠背上的连接点之间的内侧最大距离为150mm(b)肩带应能附接到一个可调节的带子,该带子是与前腰带合并而能包围儿童躯干。

肩带以这样一种形式与带子相接即带子不会从小孩的肩膀脱落,该带子与儿童后背相邻。

备注:此意图是预防肩带滑落儿童的肩膀但是允许朝前移动。

固接点固接点固接点固接点固接点固接点固接点固接点固接点固接点图1——5点式安全带系统举例肩带腰带固胯带固接点通过扣具松紧调节固接点固接点可滑动调节带固接点图2——全尺寸的安全带系统举例6.4胯带胯带的宽度最小尺寸为20mm。

根据附录A进行测试时,测试夹具必须触及胯带系统。

如果胯带系统是一根带子,则一端应与腰带相连接另一端需与座椅固接。

假如是全身式安全带(body harness),则胯带的一端与前腰带相连接,其余端固接到后腰带或座椅。

6.5乘坐者(小孩)保持——安全束缚系统的性能根据附录B进行测试时,安全束缚系统上的所有零件应没有明显的结构性失败,腰带和肩带及胯带不应出现松动,且所有的带子调节滑移量不能超过6mm。

7、稳定性测试根据附录C进行测试,高椅不能翻倒。

高椅应在所有可能的使用配置下和所有提供的配件安装下进行,或者在制造商推荐的最可能减小稳定的状态下进行测试。

8、车轮或滑轮如果提供了车轮或滑轮,限于以下之一:(a)两个车轮(b)两个滑轮(c)两个车轮,均有刹车,以及两个滑轮(d)四个车轮,至少有两个有刹车9、包装和标签信息9.1一般要求如果意图给消费者打开的包装,应构思成减少来自扣件的伤害在打开包装的过程中。

9.2柔软的塑料包装9.2.1大包装柔软的塑料包装以口袋形式或形成包装袋,当从包装里取出后可以形成袋子,而袋子具有一个周长达到或超过350mm且深度达到或超过130mm,这两个尺寸均是将袋子取出后拉伸展开后测量的完全展开尺寸,则包装袋应满足以下之一:(a)穿孔尺寸至少直径5mm,或其他相当面积的形状的孔,以便当使用一个正方形的测试治具沿每条边进行测量150mm时,放置在任意位置时,测试模板能完全覆盖至少一个孔;(b)构成袋子的塑胶薄膜厚度至少38μm或更大,且附有清晰易读的类似以下的警告标签:WARNING:TO AVOID DANGER OF SUFFOCATION TO BABIES AND CHILDREN DISPOSE OF THIS BAG IMMEDIATELY.(警告:为避免对婴儿和儿童造成窒息危险请立即销毁此袋)。

注意:1.此章节的目的是为了保证以下之一:(a)应有足够数量的孔在柔软的包装袋上,预防窒息的可能性;或(b)如果包装袋没有足够数量的孔,则窒息危险应以高亮的警告形式出现在包装袋上。

(塑料袋上最小数量也是要求到能减少塑料覆盖儿童面部的可能性,消除窒息危险。

见9.2.2的备注说明。

)2.参考9.2.1(b)的警告提示,警告标签上的字句仅仅是例子。

允许使用其他字句,比如“CAUTION”代替“WARNING”。

警告标签上额外的信息,以下或类似的陈述可能被包含:“Tie into knots or shred plastics before storing for recycling or disposing in rubbish bins.Do not burn plastics.”(在存放用作循环使用或处理到垃圾箱之前将塑料袋打结或撕裂。

请勿焚烧塑料袋)9.2.2小包装柔软的包装是以袋子的形式存在或形成包装,当从包装中移除,它能形成袋子,该袋子有或者能形成有开口周长小于350mm和/或深度小于130mm,而此两个数据均是在完全拉伸展开的状态下测量得到的,建议包装袋由厚度达到或超过19μm塑料材料制成。

备注:最小厚度19μm的建议是因为,塑料薄膜越薄越有盖住比如儿童面部轮廓的趋势。

更进一步,薄塑料经常引起静电,使塑料粘附于皮肤。

因此,即使包装可能相对较小还是有可能存在窒息的危险。

9.3印刷的说明印刷的说明书应提供高椅的有关安全使用,操作和维护。

说明书可以是英文的,但是不禁止使用额外的语言或使用示意图。

备注:1.在说明书中使用简单的语言是很重要的。

2.制造商制作陈述性文字以描述符合此澳大利亚标准在产品上、包装或促销材料上,建议其符合性是被验证过的。

安全使用说明书应包括以下:(a)警告规定于条款10.1(e)中;(b)使用安全束缚系统的警告和连同示意图的使用说明应清晰指示正确调节和安装方法;(c)组装、安装、调节、折叠盒存储高椅的说明连同示意图;(d)建议在平坦表面,均匀和水平的地面使用高椅,不能提升高椅到任何结构或桌面使用;(e)为减少伤害风险,建议在远离家具、墙面、热表面和液体、窗边绳子和电线使用高椅,安置高椅在远离家具当高椅不是移除餐盘后作为桌子使用时。

相关文档
最新文档