通信电子线路实验

合集下载

通信电子线路实验报告 浙江工业大学

通信电子线路实验报告 浙江工业大学

通信电子线路实验报告金艳霞通信1202 201203110210 实验一高频谐振功率放大器一、实验目的1、进一步理解谐振功率放大器的工作原理及负载阻抗和激励信号电压变化对其工作状态的影响。

2、掌握谐振功率放大器的调谐特性和负载特性。

二、实验内容1、调试谐振功放电路特性,观察各点输出波形。

2、改变输入信号大小,观察谐振功率放大器的放大特性。

3、改变负载电阻值,观察谐振功率放大器的负载特性三、实验仪器1、BT-3频率特性测试仪(选项)一台2、高频电压表(选项)一台3、20MHz双踪模拟示波器一台4、万用表一块5、调试工具一套四、实验原理1、电路的基本原理利用选频网络作为负载回路的功率放大器称为谐振功率放大器,这是无线电发射机中的重要组成部分。

根据放大器电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型的功率放大器。

电流导通角θ愈小,放大器的效率η愈高。

如甲类功放的θ=180,效率η最高也只能达到50%,而丙类功放的θ< 90º,效率η可达到80%,甲类功率放大器适合作为中间级或输出功率较小的末级功率放大器。

丙类功率放大器通常作为末级功放以获得较大的输出功率和较高的效率。

图3-1为由两级功率放大器组成的高频功率放大器电路,其中晶体管Q1组成甲类功率放大器,晶体管Q2组成丙类谐振功率放大器,这两种功率放大器的应用十分广泛。

五、实验步骤1、按下开关KE1,调节WE1,使QE1的发射极电压VE=2.2V (即使ICQ=7mA,通过测量P5与G两焊点之间的电压,见图0-2所示)。

2、连接JE2、JE3、JE4、JE5。

3、使用BT—3型频率特性测试仪,调整TE1、TE2,使得TE1初级与CE7,TE2初级与CE4谐振均在10.7MHz,同时测试整个功放单元的幅频特性曲线,使峰值在10.7MHz处(如果没有BT-3型频率特性测试仪,则这一步不作要求)。

4、从INE1处输入10.7MHz的载波信号(此信号由高频信号源提供,参考高频信号源的使用),信号大小为VP-P=250mV左右。

《通信电子线路》实验报告-高频功率放大器

《通信电子线路》实验报告-高频功率放大器

《通信电子线路》实验报告实验名称:高频功率放大器学院:专业班级:姓名:学号:联系方式指导教师:一、实验环境Multisim 14.0二、实验目的1、进一步了解Multisim仿真步骤,熟练操作获取波形2、仿真验证高频功率放大器原理,观察高频功率放大器工作在过压、临界、和欠压状态的波形三、实验原理和设计高频功率放大器工作在三极管截止区,导通角小于90度,属于丙类放大器。

故三极管输出波形为尖顶余弦脉冲序列(临界或欠压)或是凹顶余弦脉冲序列(过压),信号经过选频网络后,能够恢复指定频率的波形信号。

原理图如图2.1所示。

图2.1输出电流Ic和Vce 关系曲线,如图2.2图2.2四、实验步骤1,按照原理图连接电路。

2,计算电路谐振频率,画出幅频响应和相频响应。

3,选择合适的电源电压值,使三极管发射结反偏,集电结反偏。

4,调节基极偏置电压源、信号源幅度、并联回路电阻值和集电极电源,观察输出电压Vc 、输出电流ic波形,判断电路状态五、实验结果及分析1、并联谐振回路的幅频响应和相频响应,如图4.1所示图4.1并联谐振回路谐振频率为11.56MHz,与电路参数计算相吻合。

其0.707带宽为15.65MHz2、输入信号改为f= 11,56MHz,计算频谱如图4.2.1所示图4.2.1输出信号频谱如图4.2.2所示图4.2.23、观察时域波形。

调节参数Vbb= 0.7V反偏,Vi = 0.9Vrms,Vcc = 10V,波形如图4.3.1所示图4.3.1根据三极管特性,发射极反偏时,电流信号Ib需克服Vbb和Vbz才能导通,所以Ib和Ic应为尖顶余弦脉冲。

但是仿真出波形为完整余弦脉冲,不符合理论。

可能的原因有,三极管导通电压参数与理论值差异较大,发射结反偏程度低。

三极管模型不符合实际特性,无截止区。

调节Vbm,使Vi = 1.0V,其余参数不变,观察时域波形,如图4.3.2输出电压Vc产生失真,可能因放大倍数等参数不合适导致。

通信电子线路实验报告

通信电子线路实验报告

通信电子线路实验报告一、调频解调电路实验实验内容:1.将拨动开关JP8置于1、2之间,接通“调频信号的解调电路”的直流电压。

2.用信号源产生一个FM信号,参数为:载波频率f c=6.5MHz,调制频偏Freq DIV=0.5MHz,调制信号频率fΩ=10kHz。

3.将FM信号加到P18端,将拨动开关JP3置于1、2之间(把音频输出与功放输入相连接),拨动开关JP9置于1、2之间,用示波器观察P19的波形。

4.调节FM信号的各个参数,观察P19波形的变化。

二、高频小信号谐振放大器一、实验内容1.将拨动开关JP11 置于1~2之间,接通“小信号谐振放大器”的直流电压+12V;2.小信号谐振放大器静态工作点的调整:调节电位器W1,使BG1 集电极电流Ic1约为1.5mA左右(通过测量P3 点的电压来确定电流IC1);3.从P1端接入6.5MHZ的正弦信号,幅度约为50mV 左右;4.用示波器观察比较P2端的波形,应有不失真的放大波形;5.选IST-B“频率键控”(18号)功能,并设始频为5.0MHZ,频率间隔为100KHz,按IST-B 键盘光标键,随着信号频率的变化,应能观察到P2 信号输出波形从小到大,再从大到小的变化。

并记录谐振点的频率。

6.选IST-B“频响测试”(13 号)功能,并设置参数:始频为5.5MHZ,频率间隔为100KHZ,N=20,S=1ms。

P1为输入点,P2为输出点,P2点接示波器探头(X10档),做一次频响测试,并记录测试结果。

(P1、P2 点各有一个测量孔,用于插接IST-B 的探头)7.P2点接示波器探头(X1档)步骤同六再做一次频响测试,并记录测试结果。

8.将拨动开关JP1 置于2、3 使谐振回路并接电阻R8 重复实验6。

比较接与不接R8两种情况下频响曲线有何区别。

二、实验结果及分析1、实验中幅度-频率数据记录:2、实验中用IST -B “频响测试”功能测得的频响波形如下:3、实验结果分析通过MATLAB ,利用采样点频率及对应的电压值描绘出频响曲线图,如下分析:(1)从图中我们可以看出:小信号谐振放大器在谐振频率两侧呈现的是衰减的趋势,由于谐振回路中电感品质因数Q 有限,因此频响并不关于谐振点呈现重中心对称的结论。

通信电子线路实验指导书(8个实验)

通信电子线路实验指导书(8个实验)

目录第一章高频IV型实验系统介绍 (1)一、高频IV型实验系统概述 (1)二、实验箱箱体结构 (1)三、箱体各组成部分说明 (2)四、高频模块介绍及实验说明 (4)五、高频电路实验要求 (4)第二章高频电路实验部分 (6)实验一单调谐回路谐振放大器 (6)实验二高频功率放大器 (10)实验三正弦波振荡器 (15)实验四振幅调制器 (21)实验五变容二极管调频器与相位鉴频器实验 (26)实验六混频器实验 (35)实验七检波器实验 (40)实验八调频发射、接收系统实验 (46)第一章 高频IV 型实验系统介绍一、高频IV 型实验系统概述本系统由实验箱体和外接实验模块两部分组成,其中外接模块采用插拔式结构设计,便于功能的扩展。

箱体上带有一个最高频率1MHz 的低频信号源、最高频率10MHz 的高频信号源、语音与麦克风模块和电源引出端,可进行部分数字电路和模拟电路实验。

而插上选配的高频模块,则可进行相应的高频实验。

二、实验箱箱体结构箱体平面结构如图1所示,主要由以下几部分组成:● 扬声器● 高频信号源、低频信号源区 ● 电源输出区扬声器 麦克风电源输出低频信号源外接实验模块高频信号源模块电源座图1 GP-IV 实验箱平面布局图●外接实验模块区●实验模块电源座区三、箱体各组成部分说明1.电源输出区电源接通时,电源输出区电源指示灯亮2.扬声器和麦克风其输入输出为汉字标示3.直流电压输出区:系统的电源为220V交流输入,5路直流输出:±5V/2A,±12V/0.5A,-8V/0.5A。

在本区内设有这5组直流电压的输出接口,以方便使用。

4.高频信号源、低频信号源高低频信号源均采用DDS芯片输出正弦波、三角波、方波三种波形的信号,峰峰值最大可达6V,同时幅值、偏移可调。

1).操作:●频率设置键“MENU”:第一次按下此键,数码管第一位开始闪烁,即进入了“频率设置”状态,此时功能键“NEXT”、“ADD”有效;第二次按下此键,退出“频率设置”状态,功能键“NEXT”“ADD”无效。

《通信电子线路》实验指导书

《通信电子线路》实验指导书

《通信电⼦线路》实验指导书实验⼀、⾼频⼩信号放⼤器实验⼀、实验⽬的1、了解谐振回路的幅频特性分析——通频带与选择性。

2、了解信号源内阻及负载对谐振回路的影响,并掌握频带的展宽。

3、掌握放⼤器的动态范围及其测试⽅法。

⼆、主要实验仪器与设备1、⾼频电⼦线路综合实验箱(TKGP系列);2、扫频仪;3、⾼频信号发⽣器;4、双踪⽰波器。

三、实验原理1、⼩信号调谐放⼤器基本原理⾼频⼩信号放⼤器电路是构成⽆线电设备的主要电路,它的作⽤是⼤信道中的⾼频⼩信号。

为使放⼤信号不失真,放⼤器必须⼯作在线性范围内,例如⽆线电接收机中的⾼放电路,都是典型的⾼频窄带⼩信号放⼤电路。

窄带放⼤电路中,被放⼤信号的频带宽度⼩于或远⼩于它的中⼼频率。

如在调幅接收机的中放电路中,带宽为9KHz,中⼼频率为465KHz,相对带宽Δf/f0约为百分之⼏。

因此,⾼频⼩信号放⼤电路的基本类型是选频放⼤电路,选频放⼤电路以选频器作为线性放⼤器的负载,或作为放⼤器与负载之间的匹配器。

它主要由放⼤器与选频回路两部分构成。

⽤于放⼤的有源器件可以是半导体三极管,也可以是场效应管,电⼦管或者是集成运算放⼤器。

⽤于调谐的选频器件可以是LC谐振回路,也可以是晶体滤波器,陶瓷滤波器,LC集中滤波器,声表⾯波滤波器等。

本实验⽤三极管作为放⼤器件,LC 谐振回路作为选频器。

在分析时,主要⽤如下参数衡量电路的技术指标:中⼼频率、增益、噪声系数、灵敏度、通频带与选择性。

单调谐放⼤电路⼀般采⽤LC回路作为选频器的放⼤电路,它只有⼀个LC回路,调谐在⼀个频率上,并通过变压器耦合输出,图1-1为该电路原理图。

1f中⼼频率为f0+带宽为Δf=f2-f1图1-1、单调谐放⼤电路为了改善调谐电路的频率特性,通常采⽤双调谐放⼤电路,其电路如图1-2所⽰。

双调谐放⼤电路是由两个彼此耦合的单调谐放⼤回路所组成。

它们的谐振频率应调在同⼀个中⼼频率上。

两种常见的耦合回路是:1)两个单调谐回路通过互感M耦合,如图1-2(a)所⽰,称为互感耦合双调谐振回路;2)两个单调谐回路通过电容耦合,如图1-2(b)所⽰,称为电容耦合双调谐回路。

通信电子线路实验报告

通信电子线路实验报告

中南大学《通信电子线路》实验报告学院信息科学与工程学院题目调制与解调实验学号专业班级姓名指导教师实验一振幅调制器一、实验目的:1.掌握用集成模拟乘法器实现全载波调幅和抑止载波双边带调幅的方法。

2.研究已调波与调制信号及载波信号的关系。

3.掌握调幅系数测量与计算的方法。

4.通过实验对比全载波调幅和抑止载波双边带调幅的波形。

二、实验内容:1.调测模拟乘法器MC1496正常工作时的静态值。

2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。

3.实现抑止载波的双边带调幅波。

三、基本原理幅度调制就是载波的振幅(包络)受调制信号的控制作周期性的变化。

变化的周期与调制信号周期相同。

即振幅变化与调制信号的振幅成正比。

通常称高频信号为载波信号。

本实验中载波是由晶体振荡产生的10MHZ高频信号。

1KHZ的低频信号为调制信号。

振幅调制器即为产生调幅信号的装置。

在本实验中采用集成模拟乘法器MC1496来完成调幅作用,图2-1为1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。

D、V7、V8为差动放大器V5与V6的恒流源。

进行调幅时,载波信号加在V1-V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接1KΩ电位器,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集电极(即引出脚⑹、⑿之间)输出。

图2-1 MC1496内部电路图用1496集成电路构成的调幅器电路图如图2-2所示,图中VR8用来调节引出脚①、④之间的平衡,VR7用来调节⑤脚的偏置。

器件采用双电源供电方式(+12V,-9V),电阻R29、R30、R31、R32、R52为器件提供静态偏置电压,保证器件内部的各个晶体管工作在放大状态。

《通信电子线路》实验教案

《通信电子线路》实验教案

实验一 函数信号发生实验一、实验目的1、了解单片集成函数信号发生器ICL8038的功能及特点。

2、掌握ICL8038的应用方法。

二、实验仪器与设备TKGP 系列高频电子线路实验箱; 双踪示波器; 频率计; 交流毫伏表。

三、实验原理(一)、ICL8038内部框图介绍ICL8038是单片集成函数信号发生器,其内部框图如图1-1所示。

它由恒流源I 2和I 1、电压比较器A 和B 、触发器、缓冲器和三角波变正弦波电路等组成。

图1-1 ICL8038原理图外接电容C 可由两个恒流源充电和放电,电压比较器A 、B 的阀值分别为总电源电压(指EE CC U U )的2/3和1/3。

恒流源I 2和I 1的大小可I 2>I 1。

当触发器的输出为低电平时,恒流源I 2断开,恒流源I 1给C 充电,它的两端电压u c 随时间线性上升,当达到电源电压的2/3时,电压比较器A 的输出电压发生跳变,使触发器输出由低电平变为高电平,恒流源I 2接通,由于I 2>I 1 (设I 2=2I 1),I 2将加到C 上进行反充电,相当于C 由一个净电流I 放电,C 两端的电压u c 又转为直线下降。

当它下降到电源电压的1/3时,电压比较器B 输出电压便发生跳变,使触发器的输出由高电平跳变为原来的低电平,恒流源I 2断开,I 1再给C 充电,┅┅如此周而复始,产生振荡。

若调整电路,使I 2=2I 1,则触发器输出为方波,经反相缓冲器由引脚9输出方波信号。

C 上的电压u c ,上升与下降时间相等(呈三角形),经电压跟随器从引脚3输出三角波信号。

将三角波变为正弦波是经过一个非线性网络(正弦波变换器)而得以实现,在这个非线性网络中,当三角波电位向两端顶点摆动时,网络提供的交流通路阻抗会减小,这样就使三角波的两端变为平滑的正弦波,从引脚2输出。

1、ICL8038引脚功能图2、实验电路原理图如图1-3所示。

图1-3 ICL8038实验电路图其中K1为输出频段选择波段开关,K2为输出信号选择开关,电位器W1为输出频率细调电位器,电位器W2调节方波占空比;电位器W3、W4调节正弦波的非线性失真。

通信电子电路实验报告

通信电子电路实验报告

一、实验目的1. 了解通信电子电路的基本组成和工作原理。

2. 掌握通信电子电路的基本实验技能和操作方法。

3. 培养分析问题和解决问题的能力。

二、实验仪器与设备1. 信号发生器2. 示波器3. 数字万用表4. 通信电子电路实验板5. 连接线三、实验原理通信电子电路是现代通信系统中的核心组成部分,其主要功能是将信号进行调制、放大、解调等处理,以实现信号的传输。

本实验主要涉及以下通信电子电路:1. 模拟调制解调电路:将模拟信号进行调制和解调,实现信号的传输。

2. 数字调制解调电路:将数字信号进行调制和解调,实现信号的传输。

3. 放大电路:对信号进行放大,提高信号的传输质量。

四、实验内容1. 模拟调制解调电路实验(1)实验目的:掌握模拟调制解调电路的原理和操作方法。

(2)实验步骤:① 按照实验电路图连接实验板。

② 将信号发生器输出的信号接入调制电路的输入端。

③ 使用示波器观察调制电路的输出波形。

④ 改变调制电路的参数,观察输出波形的变化。

⑤ 将调制电路的输出信号接入解调电路的输入端。

⑥ 使用示波器观察解调电路的输出波形。

⑦ 改变解调电路的参数,观察输出波形的变化。

2. 数字调制解调电路实验(1)实验目的:掌握数字调制解调电路的原理和操作方法。

(2)实验步骤:① 按照实验电路图连接实验板。

② 将信号发生器输出的信号接入调制电路的输入端。

③ 使用示波器观察调制电路的输出波形。

④ 改变调制电路的参数,观察输出波形的变化。

⑤ 将调制电路的输出信号接入解调电路的输入端。

⑥ 使用示波器观察解调电路的输出波形。

⑦ 改变解调电路的参数,观察输出波形的变化。

3. 放大电路实验(1)实验目的:掌握放大电路的原理和操作方法。

(2)实验步骤:① 按照实验电路图连接实验板。

② 将信号发生器输出的信号接入放大电路的输入端。

③ 使用示波器观察放大电路的输出波形。

④ 改变放大电路的参数,观察输出波形的变化。

⑤ 使用数字万用表测量放大电路的增益。

通信电子线路实习报告

通信电子线路实习报告

通信电子线路实习报告通信电子线路实习报告姓名:学号:同组者:巢楚颉,曾高,胡超,刘诗荣指导老师:*代玲莉AM调幅电路设计与制作一.实验目的:实验目的:掌握通信电子电路的实际开发所要掌握技术,培养其动手能力,观察能力,分析和解决实际问题的能力,巩固、加深理论课知识,增加感性认识,进一步加深对通信电子电路应用的理解,提高对电路制造调试能力和系统设计能力。

提高对常见电路故障的分析和判断能;培养学生严肃认真、实事求是的科学态度,理论联系实际的工作作风和辩证思维能力。

二.实验仪器:实验仪器:芯片MC1496信号源低频和高频信号发生器双踪示波器电路板,电阻,电容,电源,引线以及焊接电路所需工具等若干三.实验原理:实验原理:幅度调制是正弦波或脉冲序列的幅度随调制信号线形变化的过程,标准调幅信号可用下式表示:其中Ac为外加直流,f(t)表示调制信号.在AM调幅中,输出已调信号的包络与输入调制信号成正比,基于此我们采用控制输入调制信号的幅度来改变调制度ma,使其可在10%~100%之间程控调节,步进量10%.本系统中采用的是模拟乘法器MC1496来实现调制器的设计,MC1496中包含了由带双电流源的标准差动放大器驱动的四个高位放大器输出集电极交叉耦合,产生了两个输入电压的全波平衡调制乘积现象,也就是说输出信号是一个常数乘以两个输入信号的乘积,即为V0=KV1V2.使用模拟乘法器比较容易实现调幅。

调制质量高。

实验原理图如下所示:图1AM调幅电路原理图四.实验内容和步骤:实验内容和步骤:(1).在计算机上利用Protel99se软件按照原理图进行画图,并标记好各个元器件的数值和正负极性等。

(2).再次利用Protel99se软件对所做的原理图进行自动排列顺序,以求排列好的PCB电路图美观流畅,如果排列好的PCB图不够理想,则可以手动进行排列整齐,封装好的PCB原理图如下图所示:图2封装好的PCB原理图(3).对照封装好的PCB原理图,利用焊接工具将各元器件一次焊接在电路板上,再次对照原路图,检查是否连接正确和有无焊接技术上的错误。

通信电子线路大型实验报告 zjut 浙江工业大学

通信电子线路大型实验报告 zjut 浙江工业大学

9. 实验总结
9 / 10
ቤተ መጻሕፍቲ ባይዱ
通过本次通信电子线路大型实验,我学习收获了很多。 首先,这是一个调频发射系统,在理论层面上用到了通信原理中调频的相关知识。频率 调制, 是一种高效的抗干扰性强的调制方式, 无线话筒采用该方式能够实现有效可靠的信号 发射与传输;其次,之前学习的高频电子线路课程、模拟电子技术课程的相关知识得到了实 际应用。本次实验中,用到了低频三极管信号放大、射极跟随器、电容反馈式三端振荡器、 高频功放等具体的电路;再者,利用实际元器件按照原理图搭电路,也是一大全新学习点, 需要考虑的问题很多,比如合理的线路布局、背面的焊接、高频部分电感效应问题。 在实验过程中,我们也碰到一些问题。在电路焊接成功、静态工作点正确的情况下,依 然无法实现高频振荡。 经老师指导和自己的仔细检查, 发现振荡电路部分的一个陶瓷电容值 有误,即使用了不正确的电容。低频部分的一个电解电容极性焊接反了,随后发现并做了调 整。 实验是动手实践的过程, 理论只有与实际相结合, 才能发挥知识的无穷力量。 本次实验, 既是对我理论知识的检验, 也是动手能力的考验。 自己剖析, 能力尚待提高, 学习之路不止。
3. 系统原理分析
3.1 调频系统的组成 与调幅系统相比, 调频系统具有较强的抗干扰能力和较高的效率, 所以它在无线通信、 广播电视、遥控遥测等方面获得了广泛的应用。图 1(a)和(b)所示为典型的调频发射与 接收系统的组成框图:
高频振荡 与 频率调制
缓冲 隔离
倍频
功率 激励
高频 功放
音频放大
调制信号 (a)
微型麦克风将采集来的语音信号转换成电压信号输入电路,R15 为麦克风偏置电阻,用 来确定麦克风的静态工作点。C16 电容用来稳定放大器,同时起到低通滤波的作用。R16、 R17、R18、R19、R20 为三极管 9013 的偏置电阻。C17 为旁路电容,三极管静态工作时,其 不起任何作用。当输入交流信号时,R19 被其短路。C14、C15 接地,起到滤波的作用。C18 为隔离电容。 理论上,该部分能对输入的语音信号放大 10 倍左右。被放大后的语音信号,就是调频 系统的基带信号。 4.2 高频振荡与频率调制 调频系统中,需要一个频率高的信号作为载波。载波的频率将被基带信号所控制,携带 有基带信号的全部信息。在通信领域的众多调制方式中,频率调制具有很强的抗干扰性,用 在对信号质量要求较高的近远距离信号传输中。本实验高频载波的产生和调频功能由图 4 的电路完成。

通信电子线路课程设计实验报告

通信电子线路课程设计实验报告

《通信电子线路课程设计》课程实验报告一、实验目的巩固理论知识,提高实际动手能力和分析能力,掌握调频发射整机电路的设计与调试方法,以及高频电路调试中常见故障的分析与排除;学会如何将高频单元电路组合起来实现满足工程实际要求的整机电路的设计与调试技术。

二、实验仪器1)直流稳压电源一台;2)数字万用表一台;3)示波器(≥100MHz)一台;4)调频收音机(87~108MHz)一台;5)电烙铁、镊子、斜口钳。

三、系统原理分析图1 小功率调频无线话筒的系统框图图2 振荡部分高频等效电路四、电路原理分析1.音频放大低频放大,由三极管实现功能。

理论上该部分能对输入的语音信号放大10 倍左右,被放大后的语音信号就是调频系统的基带信号。

微型麦克风将采集的语音信号转换成电压信号输入电路,R15 微麦克风偏置电阻,用来确定麦克风的静态工作点。

C16 用来稳定放大器,同时起到低通滤波的作用。

R16、R17、R18、R19、R20 为三极管9013 的偏置电阻。

C17 为旁路电容,三极管静态工作时,不起任何作用。

当输入交流信号时,R19 被C17 短路,C14、C15 接地起到滤波作用。

C18 为隔离电容。

图 2 音频放大模块原理图2.高频振荡与频率调制调频系统中,用一个频率较高的信号作为载波。

载波的频率将被基带信号所控制,携带基带信号的全部信息。

此处采用电容三端式振荡器,加了变容二极管Cx1 和反馈网络,外接电源后只要有一个微小的开关扰动就能产生自激振荡,最终输出频率为几十M 的正弦波。

通过调节可调电感L1,可逐渐改变正弦波的频率直至达到期望值。

图 3 高频振荡模块原理图3.缓冲隔离与高频功放缓冲高频振荡部分输出的信号,同时隔离前后级电路。

此处采用的是射极跟随器,三极管T2 9018 的静态工作点由偏置电阻R7、R8、R9 确定。

此处同样设置了一个简单的模拟滤波电路,由C12、C13、L4 构成,C9 为隔离电容。

图4 缓冲隔离模块原理图高频振荡电路输出的调制信号幅值一般较小,而话筒天线传输出去的信号是在无线信道中传播的,必然存在一定程度上的幅值衰减,所以必须在震荡电路之后添加一个高频功率放大器。

通信电子线路Multisim仿真实验报告

通信电子线路Multisim仿真实验报告

通信电子线路实验报告Multisim调制电路仿真目录一、综述 (1)二、实验内容 (2)1.常规调幅AM (2)(1)基本理论 (2)(2)Multisim电路仿真图 (3)(3)结论: (6)2.双边带调制DSB (6)(1)基本理论 (6)(2)Multisim电路仿真图 (7)3.单边带调制SSB (8)(1)工作原理 (8)(2)Multisim电路仿真图 (9)4.调频电路FM (10)(1)工作原理 (10)(2)Multisim电路仿真图 (10)5.调相电路PM (11)(1)工作原理 (11)(2)Multisim电路仿真图 (12)三、实验感想 (12)一、综述基带信号是原始的电信号,一般是指基本的信号波形,在数字通信调制技术中则指相应的电脉冲。

在无线遥测遥控系统和无线电技术中调制就是用基带信号控制高频载波的参数(振幅、频率和相位),使这些参数随基带信号变化。

用来控制高频载波参数的基带信号称为调制信号。

未调制的高频电振荡称为载波(可以是正弦波,也可以是非正弦波,如方波、脉冲序列等)。

调制方式按照调制信号的性质分为模拟调制和数字调制两类;按照载波的形式分为连续波调制和脉冲调制两类。

模拟调制有调幅(AM)、调频(FM)和调相(PM)。

数字调制有振幅键控(ASK)、移频键控(FSK)、移相键控(PSK)和差分移相键控 (DPSK)等。

脉冲调制有脉幅调制(PAM)、脉宽调制(PDM)、脉频调制(PFM)、脉位调制(PPM)、脉码调制(PCM)和增量调制(ΔM)。

⑴调幅(AM):用调制信号控制载波的振幅,使载波的振幅随着调制信号变化。

已调波称为调幅波。

调幅波的频率仍是载波频率,调幅波包络的形状反映调制信号的波形。

调幅系统实现简单,但抗干扰性差,传输时信号容易失真。

⑵调频(FM):用调制信号控制载波的振荡频率,使载波的频率随着调制信号变化。

已调波称为调频波。

调频波的振幅保持不变,调频波的瞬时频率偏离载波频率的量与调制信号的瞬时值成比例。

通信电子线路仿真实验

通信电子线路仿真实验

通信电子线路仿真实验一、基本原理振幅调制方式是用传递的低频信号去控制作为传送载体的高频振荡波(称为载波)的幅度,是已调波的幅度随调制信号的大小线性变化,而保持载波的角频率不变。

在振幅调制中,根据所输出已调波信号频谱分量的不同,分为普通调幅(AM)、抑制载波的双边带调幅(DSB)、抑制载波的单边带调幅(SSB)等。

AM 的载波振幅随调制信号大小线性变化。

DSB是在普通调幅的基础上抑制掉不携带有用信息的载波,保留携带有用信息的两个边带。

SSB是在双边带调幅的基础上,去掉一个边带,只传输一个边带的调制方式。

它们的主要区别是产生的方法和频谱的结构不同。

二、.实验要求:1.用乘法器和加法器设计普通振幅调制电路和双边带调制电路;2.观察普通波中Ma对波形的影响;3.实现双边带调制与Ma=1波形的比较;4.观察双边带波形的变化;5.振幅检波,从波形中观察失真。

三、实验仿真及分析:1.用乘法器和加法器设计普通振幅调制电路和双边带调制电路(1)AM 信号的数学表达式AM 信号是载波信号振幅在0m V 上下按输入调制信号规律变化的一种调幅信号,表达式如下:[]t w t u Ec t v c o cos )()(Ω+=(1)由表达式(1)可知,在数学上,调幅电路的组成模型可由一个相加器和一个相乘器组成,如图1所示。

t c u ( Ec设调制信号为:)(t u Ω=M c U E Ω+cos t Ω载波电压为:cM t c U u =)(cos t w c上两式相乘为普通振幅调制信号:M C t s U E u +=()(cos t Ω)t w U c cM cos=C cM E U (+t w t U c M cos )cos ΩΩ=t w t M U c a cM cos )cos 1(Ω+=t w t M U c a S cos )cos 1(Ω+(2)式中,CM a E U M Ω=称为调幅系数(或调制指数) ,其中0<a M ≤1。

通信电路制作实验报告(3篇)

通信电路制作实验报告(3篇)

第1篇一、实验目的1. 理解通信电路的基本组成和工作原理。

2. 掌握通信电路中常用元件的性能和作用。

3. 学习通信电路的调试方法和故障排除技巧。

4. 提高实际操作能力和动手能力。

二、实验器材1. 通信电路实验箱2. 双踪示波器3. 函数信号发生器4. 信号源5. 测试仪6. 连接线7. 阻抗箱三、实验原理通信电路主要包括发送电路、接收电路和传输线路。

本实验主要涉及以下原理:1. 调制与解调:将信息信号转换成适合传输的信号(调制),在接收端再将信号还原为信息信号(解调)。

2. 放大与滤波:放大信号,增强信号强度,同时滤除干扰信号。

3. 编码与解码:将信息信号进行编码,以便于传输和识别,接收端再将编码信号解码为信息信号。

四、实验步骤1. 搭建通信电路:根据实验要求,搭建通信电路,包括发送电路、接收电路和传输线路。

2. 调试电路:调整电路参数,使电路工作在最佳状态。

3. 测试电路性能:使用测试仪测量电路的各项性能指标,如增益、带宽、信噪比等。

4. 分析实验结果:根据实验数据,分析电路性能,找出存在的问题,并提出改进措施。

五、实验内容1. 调制与解调实验:- 使用函数信号发生器产生基带信号。

- 使用调制电路将基带信号调制为高频信号。

- 使用解调电路将调制信号解调为基带信号。

- 比较调制前后信号的变化,验证调制和解调电路的工作原理。

2. 放大与滤波实验:- 使用信号源产生信号。

- 使用放大电路放大信号。

- 使用滤波电路滤除干扰信号。

- 测量放大和滤波后的信号强度,验证放大和滤波电路的工作原理。

3. 编码与解码实验:- 使用编码电路将信息信号编码。

- 使用解码电路将编码信号解码。

- 比较编码前后信号的变化,验证编码和解码电路的工作原理。

六、实验结果与分析1. 调制与解调实验:- 通过实验验证了调制和解调电路的工作原理。

- 发现调制后的信号频率较高,带宽较宽,有利于信号的传输。

- 解调后的信号与基带信号基本一致,说明解调电路能够有效还原信息信号。

通信电子线路实习报告

通信电子线路实习报告

本次通信电子线路实习旨在通过实际操作,加深对通信电子线路理论知识的理解,提高动手能力,培养解决实际问题的能力。

通过实习,期望能够掌握以下技能:1. 熟悉通信电子线路的基本原理和电路结构。

2. 能够独立进行电路的组装、调试和测试。

3. 学会使用基本的电子测试仪器,如示波器、信号发生器等。

4. 增强团队协作和沟通能力。

二、实习单位简介本次实习单位为我国某知名通信设备生产企业,公司主要从事通信设备的研发、生产和销售,拥有一支专业的技术团队。

三、实习内容1. 理论基础学习:实习初期,我们首先对通信电子线路的基本理论进行了深入学习,包括模拟信号与数字信号、滤波器、放大器、调制解调器等基本概念。

2. 电路组装与调试:在理论学习的指导下,我们开始进行电路组装。

实习过程中,我们组装了多种通信电子线路,如滤波器、放大器、调制解调器等。

在组装过程中,我们学会了如何正确选择元器件,如何焊接电路板,以及如何进行电路调试。

3. 测试与验证:组装完成后,我们使用示波器、信号发生器等仪器对电路进行测试和验证。

通过测试,我们验证了电路的性能是否符合设计要求,并对电路进行了必要的调整和优化。

4. 项目实践:在实习过程中,我们还参与了一个实际项目。

该项目涉及通信电子线路的设计和调试,我们负责其中一部分的设计和调试工作。

通过这个项目,我们深入了解了通信电子线路在实际应用中的设计和调试方法。

1. 理论知识方面:通过本次实习,我们对通信电子线路的理论知识有了更加深入的理解,掌握了通信电子线路的基本原理和电路结构。

2. 实践操作方面:在实习过程中,我们学会了如何组装、调试和测试通信电子线路,提高了动手能力。

3. 团队合作与沟通能力:在项目实践中,我们学会了如何与团队成员进行有效沟通,提高了团队合作能力。

4. 解决问题的能力:在实习过程中,我们遇到了各种问题,通过查阅资料、请教老师和团队成员,我们学会了如何分析和解决这些问题。

五、实习总结本次通信电子线路实习是一次非常有意义的学习经历。

通信电子线路实验报告

通信电子线路实验报告

一、实验目的1. 理解通信电子线路的基本原理和组成;2. 掌握通信电子线路实验仪器的使用方法;3. 通过实验验证通信电子线路理论知识的正确性;4. 培养实验操作能力和分析问题、解决问题的能力。

二、实验原理通信电子线路是研究信号在传输过程中,如何通过电子电路进行调制、解调、放大、滤波等处理的学科。

本实验主要涉及以下内容:1. 调制:将信息信号(基带信号)加载到高频载波上,以便于信号的传输;2. 解调:将调制后的信号还原为基带信号;3. 放大:提高信号强度,满足传输要求;4. 滤波:去除信号中的噪声,提高信号质量。

三、实验器材1. 通信电子线路实验箱;2. 双踪示波器;3. 高频信号发生器;4. 万用表;5. 长度可调同轴电缆。

四、实验内容1. 调制实验(1)实验目的:掌握调制原理和调制电路的设计方法。

(2)实验步骤:① 调制信号发生:使用示波器观察调制信号波形,确保其频率、幅度等参数符合要求;② 载波信号发生:使用高频信号发生器产生高频载波信号,频率与调制信号频率相同;③ 调制电路搭建:将调制信号和载波信号接入调制电路,观察调制后的信号波形;④ 分析调制效果:根据调制后的信号波形,分析调制深度、相位等参数,判断调制效果。

2. 解调实验(1)实验目的:掌握解调原理和解调电路的设计方法。

(2)实验步骤:① 解调信号发生:使用示波器观察解调信号波形,确保其频率、幅度等参数符合要求;② 解调电路搭建:将解调信号接入解调电路,观察解调后的信号波形;③ 分析解调效果:根据解调后的信号波形,分析解调深度、相位等参数,判断解调效果。

3. 放大实验(1)实验目的:掌握放大电路的设计方法,提高信号强度。

(2)实验步骤:① 放大信号发生:使用示波器观察放大信号波形,确保其频率、幅度等参数符合要求;② 放大电路搭建:将放大信号接入放大电路,观察放大后的信号波形;③ 分析放大效果:根据放大后的信号波形,分析放大倍数、频率响应等参数,判断放大效果。

通信电子线路六个必做实验(1)

通信电子线路六个必做实验(1)

通信电子线路六个必做实验(1)实验一高频小信号调谐放大器实验一、实验目的1.掌握小信号调谐放大器的基本工作原理;2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算;3.了解高频小信号放大器动态范围的测试方法;二、实验原理+12C13104J1W4100KC12R2315KTP3Q13DG6J5TH6C11104Q23DG6R154.7KR 5470C6104R16470C19104TP6C1510pT2T3+12C23104W3100KT1C2104TH2TH7J6 TH1J4C5104R2210K中周内电容C1C14中周内电容中周内电容R415K图1-1(a)单调谐小信号放大(一)单调谐放大器图1-1(b)双调谐小信号放大小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。

其实验单元电路如图1-1(a)所示。

该电路由晶体管Q1、选频回路T1二部分组成。

它不仅对高频小信号进行放大,而且还有一定的选频作用。

本实验中输入信号的频率fS=12MHz。

基极偏置电阻W3、R22、R4和射极电阻R5决定晶体管的静态工作点。

可变电阻W3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。

表征高频小信号调谐放大器的主要性能指标有谐振频率f0,谐振电压放大倍数Av0,放大器的通频带BW及选择性(通常用矩形系数Kr0.1来表示)等。

放大器各项性能指标及测量方法如下:1.谐振频率放大器的调谐回路谐振时所对应的频率f0称为放大器的谐振频率,对于图1-1(a)所示电路(也是以下各项指标所对应电路),f0的表达式为f012LC式中,L为调谐回路电感线圈的电感量;54C为调谐回路的总电容,C的表达式为22CCP1CoeP2Cie式中,Coe为晶体管的输出电容;Cie为晶体管的输入电容;P1为初级线圈抽头系数;P2为次级线圈抽头系数。

谐振频率f0的测量方法是:用扫频仪作为测量仪器,测出电路的幅频特性曲线,调变压器T的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f0。

通信电子线路实验报告

通信电子线路实验报告

通信电子线路实验报告通信电子线路实验报告概述:通信电子线路是现代通信系统中不可或缺的组成部分。

本实验旨在通过搭建和测试不同类型的通信电子线路,深入了解其原理和功能。

本报告将详细介绍实验过程、结果分析以及对通信电子线路的应用前景进行探讨。

实验一:放大器电路在本实验中,我们搭建了一个基本的放大器电路,通过输入信号的放大来实现信号传输。

我们使用了共射极放大器电路,该电路具有较高的电压增益和较低的输出电阻。

通过测量输入和输出信号的幅度,我们可以计算出电压增益。

实验结果表明,放大器电路能够有效地放大输入信号,从而提高信号的传输质量。

实验二:滤波器电路滤波器电路是通信电子线路中常用的组件,它可以通过选择性地通过或阻断特定频率的信号来实现信号的处理和调整。

我们搭建了一个RC低通滤波器电路,并通过改变电容和电阻的数值来调整滤波器的截止频率。

实验结果显示,滤波器电路能够有效地滤除高频杂波,使得输出信号更加纯净和稳定。

实验三:调制解调电路调制解调电路是现代通信系统中必不可少的部分,它能够将信息信号转换为适合传输的载波信号,并在接收端将载波信号还原为原始信息信号。

我们搭建了一个简单的调制解调电路,通过改变调制信号的幅度和频率来观察调制效果。

实验结果表明,调制解调电路能够有效地实现信号的传输和还原,为通信系统的正常运行提供了基础支持。

实验四:数字信号处理电路随着数字通信技术的发展,数字信号处理电路在通信系统中的作用日益重要。

我们搭建了一个简单的数字信号处理电路,通过数字滤波器对输入信号进行滤波和调整。

实验结果显示,数字信号处理电路能够有效地抑制噪声和干扰,提高信号的传输质量和可靠性。

应用前景:通信电子线路在现代通信系统中具有广泛的应用前景。

随着通信技术的不断发展,人们对通信电子线路的需求也越来越高。

通信电子线路的应用领域涵盖了移动通信、卫星通信、光纤通信等多个领域。

例如,在移动通信领域,通信电子线路可以实现无线信号的放大和调整,提高信号的传输距离和质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、实验步骤
1.观察MC3361二次混频实验: 利用振荡器与频率调制单元和平衡混频器单元,产
生载频为6.455MHZ频偏为15KHZ左右的FM信号,信号 振幅调到100mV,短路块J29短接在PH.IN 处,在J38 处(ZP.OUT)用示波器看输出信号波形,记下波形和 频率并与输入波形进行比较。若J38处无输出,可轻调 VR12、VR14电位器,直到有输出。改变输入信号幅 度,观察输出变化并记录。
(3) 改变输入信号频率,观察输出波形变化并进行分析。
注:若输出信号幅度较小,可将低放模块中的短路块J42短 接在J.P.IN处,从J44处可观察到放大后的低频信号。
产生载频为6.455MHZ频偏为15KHZ的FM信号的方法
(1)、将短路块J2连通到下横线处,即将音频调制信号加到 变容二极管上,同时将S2拨码开关“1”置于“ON”(即处 于LC振荡)。在J6(ZD.OU中心
实验三 调频波解调实验
一、实验目的:
1.掌握集成电路频率解调器的工作原理。 2.熟悉集成电路MC3361的基本功能与用法。 3.掌握MC3361用于频率解调的调试方法。
二、实验内容:
1.观察MC3361二次混频的波形。 2.用MC3361完成频率解调,观察不失真输出波形与哪 些因素有关。
2. 调频波解调实验
(1) 同实验步骤一条件,在J38处看到455KHZ中频调频信 号,将开关S9置于左端,在J39(J.P.OUT)观察鉴频输 出低频信号,此时可调节移相器CP4和电位器VR12以保 证输出信号波形最好,其中VR12改变输出信号幅度大 小。
(2) 加大、减小调制信号振幅,观察输出波形频偏变化并 进行分析。
(2)、将已调FM信号(J6)用短路线连接到平衡混频器的信 号输入端J47处。并且将J49的短路块连通在下横线处, 然后用示波器在J54(P.H.OUT)处观察FM波形。
相关文档
最新文档