热交换器规格计算表

合集下载

热交换器计算示例-精

热交换器计算示例-精

《热交换器计算示例》2.6 管壳式热交换器[例2.2] 试对固定管板的管壳式煤油冷却器进行传热计算、结构计算和阻力计算。

在该热交换器中,要求将14 t/h的T-1煤油由140 ℃冷却到40 ℃,冷却水的进、出口水温为30 ℃和40 ℃,煤油的工作表压力为0.1 MPa,水的工作表压力为0.3 MPa。

[解]由已知条件,选用两台〈1-2〉型管壳式热交换器串联工作,水的结垢性强,工作压力也较高,故使其在管程流动,而煤油的温度、压力均不高,且较洁净,在壳程流动也是合适的,计算过程和结果列于表2.11中。

表2.11 例2.2计算表格3.1 螺旋板式热交换器[例3.1] 试设计一台螺旋板式热交换器,将质量流量3 000kg/h的煤油从t′1= 140℃冷却到t″1=40℃。

冷却水入口温度t′2=30 ℃,冷却水量为M2=15 m3/h。

[解]①煤油的热物性参数值煤油平均温度按卡路里温度计算,即t1m=t″1+F c (t′1-t″1)=40+0.3(140-40)=70℃。

查得煤油在70℃时物性参数值:黏度μ1=10.0×10-4kg/(m·s),导热系数λ1=0.14 W/(m·℃),比热c p1=2.22×103J/(kg·℃),密度ρ1=825 kg/m3。

②传热量QQ=M1 c p1 (t′1-t″1)=3 000×2.22×103×(140-40)=666 000×103J/h③冷却水出口温度t″2由Q=M2 c p2 (t″2-t′2),得t″2=QM2c p2+t′2=666 000×10315×994×4.18×103+30=40.6℃④冷却水的热物性参数值冷却水的平均温度t2m=t′2+t″22=35.3℃,冷却水在该温度下的热物性参数值为:黏度μ2=7.22×10-4kg/(m·s),导热系数λ2=0.627 W/(m·℃),比热c p2=4.18×103J/(kg·℃),密度ρ2=994 kg/m3。

热交换器计算及设计

热交换器计算及设计
校核性热力计算
针对现成的热交换器,目的在于确定流体的出 口温度,并了解该换热器在各种工况下的性能 变化,判断能否完成非设计工况下的换热任务
热交换器热力计算核心参数
传热面积 &传热量
热流体出 冷流体入 口温度 口温度
热流体入 口温度
冷流体出 口温度
热力计算的核心在于寻找上面五个物理量之间的关系
换热器设计基本关系式
制糖造纸工业中的蒸发器等等 化工、航天、机械制造、食品、医药行业中。。
凝汽式燃煤电厂生产过程
凝汽部分换热过程
低压加热器
除氧器换热过程
高压加热器
省煤器
过热器
空预器
对换热器的基本要求
满足工艺要求,热交换强度高,热损失小 工艺结构在工作温度压力下不易遭到破坏,
制造简单,维修方便,运行可靠 设备紧凑(对于航天、余热利用、大型设
按照传送热量的方法:间壁式、混合 式、蓄热式(回热式)、流体耦合间 接式等
按照流动方向的分类
a. 顺流 b. 逆流 c. 交叉流(错流) d. 总趋势为逆流的四次
错流 e. 总趋势为顺流的四次
错流 f. 混流式:先顺后逆平
行流 g. 混流式:先逆后顺的
串联混和流
按照热量传输方式划分
间壁式换热器 冷流体和热流体之
该类型热交换器的管子常用直管(蛇管)或螺旋弯管(盘 管)组成传热面,将管子沉浸在液体的容器或池内
多用于液体预热器、蒸发器或气体冷却、冷凝 管外液体中的传热以自然对流方式进行,传热系数低,体
积大,但是结构简单、制造、修理、清洗方便。
沉浸蛇管换热
管式热交换器类型
-喷淋式热交换器
该类型热交换器将冷却水 直接喷淋到管子外表面使 管内的热流体冷却或冷凝

换热器设计计算

换热器设计计算

污垢热阻的大致数值
流体种类
水(u<1m/s, t<50℃) 海水 河水 井水 蒸馏水
锅炉给水 未处理的凉水塔用水 经处理的凉水塔用水 多泥沙的水
盐水
污垢热阻 m2·℃/W
0.0001 0.0006 0.00058 0.0001 0.00026 0.00058 0.00026 0.0006 0.0004
校核性热计算 针对现成的换热器,其目的在于确定流体 的出 口温度
因此: 设计型——已知任务设备 操作型——已知一定设备预测、调节结果
1、设计型计算的命题
给定生产任务:ṁ1,T1T2(or ṁ2,t1t2) 选择工艺条件:t1,t2 计算目的:换热器传热面积A(管子规格,根数);ṁ2 特点:结果的非唯一性。
换热器设计计算
5.1 换热器类型
换热器类型 按结构分为
间壁式
套管式 交 壳 板叉 管 式流 式(换管热壳器式)管 管 板翅 束 翅式 式 式
螺旋板式
夹套式
混合式
蓄热式
按用途分为:加热器、冷却器、冷凝器、蒸发器、再沸器
蓄热器(蓄能器)
(一)间壁式换热器 一、套管式换热器
二 、管壳式换热器
2、设计计算公式:
质量衡算:ṁ1
ṁ2
ṁn = ?
dn = ?
热量衡算: Q = ṁ1Cp1(T1 - T2) = ṁ2Cp2(t2 - t1)
传热速率式: Q = KAtm
注意: 计算单位要统一
➢ 热量:由于温差的存在会导致能量的交换。 该交换过程称为热交换或热传递。 热量的国际单位:焦耳(J)或常用单位:卡(cal)。 换算关系:1cal=4.19J
(对数平均数)
Δt1 Δt2 ln Δt1

化工原理课程设计--年处理7万吨乙醇的换热器设计

化工原理课程设计--年处理7万吨乙醇的换热器设计

化工原理课程设计说明书课题名称:年处理7万吨乙醇的换热器设计目录摘要 (1)Abstract (2)第一章设计内容 (3)1.1概述 (3)1.2固定管板式换热器的优缺点 (4)1.3固定管板式换热器的构成及结构特点 (4)1.4固定管板式换热器的结构原理 (4)第二章设计计算 (5)2.1确定设计方案 (5)2.2确定物性数据 (5)2.3初选总传热系数 (7)2.4计算传热面积 (8)2.5工艺结构尺寸 (8)第三章换热器核算 (14)3.1面积核算 (14)3.2压降核算 (16)附表及符号说明 (20)设计小结与致谢 (21)参考文献 (22)摘要换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。

换热器是实现化工生产过程中热量交换和传递不可缺少的设备。

在石油、化工、轻工、制药、能源等工业生产中,常常用作把低温流体加热或者把高温流体冷却,把液体汽化成蒸汽或者把蒸汽冷凝成液体。

根据统计,热交换器的吨位约占整个工艺设备的20%有的甚至高达30%,其重要性可想而知。

我们这次课程设计的任务是设计一套固定管板式换热器。

乙醇为热流体,水为冷流体。

乙醇进口温度为C70,出口温度为在这次设计过程包括设计方案的确定,设计计算(总传热系数选择传热面积及其工艺尺寸的计算),然后进行面积与压降核算经过反复核算最终确定出了换热器的各个参数。

面积裕度为24.7%符合面积裕度范围(15%-25%),管程压降为2028.6pa<105pa,壳程压降为5722pa<105pa 符合设计要求。

紧接着我们开始编写说明书,用CAD画换热器装配图。

最终完成满足要求的设计方案。

关键词:固定管板式换热器设计AbstractThe heat exchanger is part of thermal fluid heat transfer to the cold fluid equipment, also called heat exchanger. Heat exchanger is the realization of chemical processes of heat exchange and transmission of essential equipment the petroleum, chemical industry, light industry, pharmaceuticals, energy and other industrial production, often used for the cryogenic fluid heating or cooling the high temperature fluid, the liquid vaporized into steam or the steam is condensed into liquid. According to statistics, heat exchanger tonnage about the entire process equipment 20%, some even as high as 30%, one can imagine the importance.We this course design task is to design a set of fixed tube plate heat exchanger Ethanol as the hot fluid, water as cooling fluid. Ethanol inlet temperature, outlet temperature in determining this design process including design, design calculation (calculation of heat transfer area and the process of selection of size of the total heat transfer coefficient and pressure drop), and then the area of accounting after repeated accounting Area of margin of 24.7% compliance area margin range (15%-25%), pipe pressure drop is 2028.6pa<105pa, pressure shell of 5722pa<105pa meets the design requirements. eventually determine the various parameters of the heat exchanger. Then, we heat exchanger assembly drawing with CAD. Finally completed to meet the requirements of the design scheme.Keywords: fixed tube sheet heat exchanger design第一章 设计内容1.1概述目前固定管板式换热器产品达到了一个成熟阶段,凭借其高效、节能、环保的优势,在各行业领域中被频繁使用, 并被用以替换原有管壳式和翅片式换热器,取得了很好的效果。

管壳式热交换器计算

管壳式热交换器计算

列管式换热器的设计计算列管式(管壳式)换热器的设计计算1.流体流径的选择哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例)(1) 不洁净和易结垢的流体宜走管内,以便于清洗管子。

(2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。

(3) 压强高的流体宜走管内,以免壳体受压。

(4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。

(5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。

(6) 需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。

(7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。

在选择流体流径时,上述各点常不能同时兼顾,应视具体情况抓住主要矛盾,例如首先考虑流体的压强、防腐蚀及清洗等要求,然后再校核对流传热系数和压强降,以便作出较恰当的选择。

2. 流体流速的选择增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积。

但是流速增加,又使流体阻力增大,动力消耗就增多。

所以适宜的流速要通过经济衡算才能定出。

此外,在选择流速时,还需考虑结构上的要求。

例如,选择高的流速,使管子的数目减少,对一定的传热面积,不得不采用较长的管子或增加程数。

管子太长不易清洗,且一般管长都有一定的标准;单程变为多程使平均温度差下降。

这些也是选择流速时应予考虑的问题。

3. 流体两端温度的确定若换热器中冷、热流体的温度都由工艺条件所规定,就不存在确定流体两端温度的问题。

若其中一个流体仅已知进口温度,则出口温度应由设计者来确定。

例如用冷水冷却某热流体,冷水的进口温度可以根据当地的气温条件作出估计,而换热器出口的冷水温度,便需要根据经济衡算来决定。

管壳式换热器设计 课程设计

管壳式换热器设计 课程设计

河南理工大学课程设计管壳式换热器设计学院:机械与动力工程学院专业:热能与动力工程专业班级:11-02班学号:姓名:指导老师:小组成员:目录第一章设计任务书 (2)第二章管壳式换热器简介 (3)第三章设计方法及设计步骤 (5)第四章工艺计算 (6)4.1 物性参数的确定 (6)4.2核算换热器传热面积 (7)4.2.1传热量及平均温差 (7)4.2.2估算传热面积 (9)第五章管壳式换热器结构计算 (11)5.1换热管计算及排布方式 (11)5.2壳体内径的估算 (13)5.3进出口连接管直径的计算 (14)5.4折流板 (14)第六章换热系数的计算 (20)6.1管程换热系数 (20)6.2 壳程换热系数 (20)第七章需用传热面积 (23)第八章流动阻力计算 (25)8.1 管程阻力计算 (25)8.2 壳程阻力计算 (26)总结 (28)第一章设计任务书煤油冷却的管壳式换热器设计:设计用冷却水将煤油由140℃冷却冷却到40℃的管壳式换热器,其处理能力为10t/h,且允许压强降不大于100kPa。

设计任务及操作条件1、设备形式:管壳式换热器2、操作条件(1)煤油:入口温度140℃,出口温度40℃(2)冷却水介质:入口温度26℃,出口温度40℃第二章管壳式换热器简介管壳式换热器是在石油化工行业中应用最广泛的换热器。

纵然各种板式换热器的竞争力不断上升,管壳式换热器依然在换热器市场中占主导地位。

目前各国为提高这类换热器性能进行的研究主要是强化传热,提高对苛刻的工艺条件和各类腐蚀介质适应性材料的开发以及向着高温、高压、大型化方向发展所作的结构改进。

强化传热的主要途径有提高传热系数、扩大传热面积和增大传热温差等方式,其中提高传热系数是强化传热的重点,主要是通过强化管程传热和壳程传热两个方面得以实现。

目前,管壳式换热器强化传热方法主要有:采用改变传热元件本身的表面形状及表面处理方法,以获得粗糙的表面和扩展表面;用添加内物的方法以增加流体本身的绕流;将传热管表面制成多孔状,使气泡核心的数量大幅度增加,从而提高总传热系数并增加其抗污垢能力;改变管束支撑形式以获得良好的流动分布,充分利用传热面积。

换热站计算说明书

换热站计算说明书

换热站计算说明书The Standardization Office was revised on the afternoon of December 13, 2020河北建筑工程学院毕业设计计算说明书系别:能环学院专业:建筑环境与设备工程班级:建环 121姓名:任少朋学号: 2012305127起迄日期:16年02月21日 ~ 16年06月15日设计(论文)地点:河北建筑工程学院指导教师:贾玉贵职称:副教授 2016 年 06 月 15 日摘要随着人们生活水平的提高,集中供热被越来越多地采用,采用集中供暖可以减少能量的浪费,提高供热效率,减少环境污染,利于管理.同时采用集中供热可提高供热质量,提高人们的生活质量。

本题目是以张家口市桥西区恒峰热力有限公司集中供热系统M13号热力站供热区域的工程设计、改造为需用背景的实际工程。

本工程为张家口市桥西区集中供热工程张家口市检察院换热站,属于原有燃煤锅炉房改造工程。

供热区域总建筑面积:110000m2,总热负荷:约6400kw。

本次设计主要有工程概述、热负荷计算、供热方案确定、管道水力计算、系统原理图和平面布置图绘制、设备及附件的选择计算的内容。

除上述内容外,在计算说明书中尚需包括如下一些曲线:供回水温度随室外温度变化曲线,调节曲线。

本次设计要求使用CAD绘出图纸,其中包括设计施工说明、主要设备附件材料表,换热站设备平面布置图、换热站管道平面布置图、换热站流程图及相关剖面图等。

在换热站设计合理,安装质量符合标准和操作维修良好的条件下,换热站能够顺利地运行,对于采暖用户,在非采暖期停止运行期内,可以维修并且排除各种隐患,以满足在采暖期内正常运行的要求。

关键词:供热负荷设备选择计算及布置换热站系统运行板式换热器目录摘要 (1)第一章设计概况 (4)1.1设计题目 (4)1.2设计原始资料 (4)1.2.1 设计地区气象资料 (4)1.2.2 设计参数资料 (4)第二章换热站方案的确定 (5)2.1换热站位置的确定 (5)2.2换热站建筑平面图的确定 (5)2.3换热站方案确定 (5)2.4供热管道的平面布置类型 (5)2.5管道的布置和敷设 (6)2.6换热站负荷的计算 (6)第三章换热站设备的选取 (7)3.1换热器简介 (7)3.1.1换热器概述 (7)3.1.2换热器的分类 (7)3.2换热器的选取 (9)3.2.1换热器类型的选取 (9)3.2.2换热器选型计算 (9)3.3换热站内管道的水力计算 (10)3.4循环水泵的选择 (11)3.4.1循环水泵需满足的条件 (11)3.4.2循环水泵选择 (11)3.5补水泵的选择 (12)3.5.1补水泵需该满足的条件 (12)3.5.2补水泵的选择 (12)3.6补水箱的选择 (14)3.7除污器的选择 (14)3.8钠离子交换器的选择 (14)3.9分集水器的选择 (15)第四章设备管道的防腐保温 (15)4.1 保温材料的选择原则及保温结构 (15)4.2保温材料选材计算 (16)第五章质调节 (17)参考文献 (22)致谢 (22)第一章设计概况1.1设计题目张家口市桥西区集中供热工程M13号热力站工艺设计二次网改造及供热系统运行模式分析1.2 设计原始资料1.2.1 设计地区气象资料1、建筑物修建地区:河北省长张家口市2、该工程的供热区域总建筑面积:110000m2,供需范围有十六中学校区、市检察院办公区和住宅区等,供热半径:500m,最大建筑高度:36m。

单壳程双管程管壳式换热器设计

单壳程双管程管壳式换热器设计

本科生通用题目:单壳程双管程管壳式换热器设计(立式)专业:应用化学班级:0703班姓名:肖黎鸿成绩:导师签字:2010年7月11日题目:单壳程双管程管壳式换热器设计(立式)参数:要求要求每位学生在设计的过程中,充分发挥自己的独立工作能力及创造能力,在设计过程中必须做到:(1)及时了解有关资料,做好准备工作,充分发挥自己的主观能动性和创造性。

(2)认真计算和制图,保证计算正确和图纸质量。

(3)按预定计划循序完成任务。

日程安排:1.准备阶段(1天)2.设计计算阶段(3天)3.绘图阶段(4天)4.编写设计说明书(2天)目录1.绪论 (1)2.设计计算 (2)2.1管子数n的计算 (2)2.2管子排列方式,管间距的确定 (2)2.3壳体直径的确定 (2)2.4壳体厚度的计算 (2)2.5壳体液压试验应力校核 (3)2.6分程隔板的选择 (3)2.7封头的选择 (3)2.8法兰,管板的选择 (4)2.9垫片尺寸的确定 (5)2.10管子拉脱力的计算 (5)2.11是否安装膨胀节的计算 (6)2.12折流板设计 (7)2.13拉杆设计 (8)2.14开孔补强 (8)2.15支座 (9)3.设计评述 (10)4.参考文献 (11)附:设计结果一览表 (12)1.绪论热交换器,通常又称作换热器,是化工﹑炼油和食品及其他工业部门的通用设备,在生产中占有重要作用。

化工生产中,换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用甚为广泛。

换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可以分为三大类,及间壁式、混合式和蓄热式。

三类换热器中,间壁式换热器应用最多。

本次设计的管壳式换热器就属于间壁式换热器的一种。

立式固定管板式换热器示意图2.设计计算2.1管子数n 的计算选25 ×2.5的无缝钢管,材质20号钢,管长1.5m 。

因为F =πd 均Ln ,所以根均1045.10225.011=⨯⨯==ππL d F n2.2管子排列方式,管间距的确定本设计物料:管程氮气,壳程水,循环水工作温度90℃较高,不易结垢。

GBT 151-2014 热交换器讲解

GBT 151-2014 热交换器讲解
热交换器
戴季煌
热交换器2015.01
第一部分GB151-2014
1.修改了标准名称,扩大了标准适用范围:
1.1提出了热交换器的通用要求,也就是适用于其他结构型式热交换器。并对安装、使用等提出要求。
1.2规定了其他结构型式的热交换器所依据的标准。
2.范围:
GB151-201X《热交换器》规定公称直径范围(DN≤4000mm,原为2600mm)、公称压力(PN≤35MPa)及压力和直径乘积范围(PN×DN≤2.7×104,原为1.75×104)。并且管板计算公式推导过程的许多简化假定不符合。也给制造带来困难。TEMA控制壳体壁厚3〞(76mm)、双头螺柱最大直径为4〞(102mm)。
管板、平盖可采用堆焊或爆炸复合结构,当管程压力不是真空状态时,平盖亦可采用衬层结构。
9.2.1堆焊结构
用堆焊制作的管板与平盖,其覆层与基层的结合是最好的,但堆焊的加工难度大,中间检验、最终检验及热处理的要求高,堆焊一般有手工堆焊和带极堆焊两种方法。
(1)管板堆焊结构:其覆层完全可计入管板的有效厚度(以许用应力比值折算),与换热管连接采用强度焊时,有充分的能力来承受换热管的轴向剪切载荷。
例约定项目中晶间腐蚀试验,若介质易产生晶间腐蚀,钢管的材料要求,在设计文件中必须明确要求钢管在出厂检验时必须通过晶间腐蚀检验。
3)无缝和有缝不锈钢换热管订货技术条件
在NB/T47019.5-2011规定了GB13296《锅炉、热交换器用不锈钢无缝钢管》和GB/T24593《锅炉和热交换器用奥氏体不锈钢焊接钢管》用作换热管时的订货技术条件。
剪切强度≥210MPa
1级,结合率100%
剪切强度≥210MPa
3级,2010
《压力容器用爆炸焊接复合板 第2部分:镍—钢复合板》

板式热交换器做蒸发器时的计算

板式热交换器做蒸发器时的计算

板换参数OHC30热负荷8.2单片换热面积0.03计算循环水量单通道横截面积 2.33E-04质量流量kg/s0.390848431407.054当量直径0.0044体积流量m3/s0.00039095 1.407406流程长度0.306板厚0.0005初选R22物性初选水流速0.112压力497990流道数 1.50E+01蒸发温度0取整 1.50E+01气态液态换热面积0.87密度21.2291281.5通道中水流速 1.12E-01比容0.0471053750.000780336制冷机侧压降汽化热205.5流态判别比热0.73897 1.1692制冷剂平均干度0.5导热系数0.00940750.094743液相流速 5.89E-03 2.12E+01动力粘度pa*s0.0000113630.00021598气相流速 3.56E-01 1.28E+03运动粘度 5.35E-07 1.69E-07液相雷诺数 1.54E+02普朗克数0.8926 2.6654气相雷诺数 2.92E+03水物性表面张力 1.17E-02C11定性温度9.5fl 2.48E-01密度999.75fv 2.73E-02比热 4.196(pf)l 1.53E+00导热系数0.57911(pf)v 1.02E+01动力粘度pa*s0.0013249普朗克数9.5998马丁尼利参数X 3.88E-01运动粘度 1.33E-06摩阻分液相系数平方 3.60E+01制冷机侧压降pk 6.89E+01对数平均温差9.276水侧雷诺数 3.72E+02设水侧壁温 6.5R22侧壁温6壁温下普朗克数10.617壁温下压力602590水侧怒塞尔数26.18977974马丁尼利参数0.11121164水侧换热系数aw3446.991669压力损失系数270.682793开方16.4524403水侧EU 4.20E+02F12.0905202水侧压降pw 5.26E+03系数2 2.63E+03S1每个流道凝液量 6.34E+00温度差t6冷凝负荷 5.98E+01压差p104600冷凝雷诺数 3.26E+01池沸腾换热系数 1.53E+03冷凝换热系数ac1808.94911313.6477154两相强制对流换热系水污垢热阻8.60E-06不锈钢导热系数16.3换热系数 1.55E+03传热系数K1025.05321水侧壁面温度校核 6.66E+006.23E+00实际换热面积0.862395938面积差值0.88173674片数 3.10E+01。

板翅散热器性能计算报告

板翅散热器性能计算报告

空气—水热交换器性能计算报告前言:空气-水热交换器利用风扇驱动环境空气来冷却系统内的乙二醇-水混合液。

根据GE公司提供的参数,本文计算了该板翅式热交换器(结构尺寸最大为879mm ×460mm×58mm)的换热性能和流阻。

1 技术参数和技术要求1.1 技术参数要求热交换器热边出口温度60℃,冷边空气入口温度取45℃。

热边:乙二醇-水混合液,t1//=60℃ G1=37.85L/min(10gpm)冷边:环境空气,t2/=45℃ G2=0.85m3/s(1800ft3/min)1.2 技术要求换热量Q≥11kW,热边流阻不大于8.72kPa, 冷边流阻不大于74.7Pa。

2 计算数学模型分析该热交换器的计算,实际上是在结构尺寸基本给定情况下的校核计算。

根据已知的资料,该热交换器为热边两流程、冷边单流程纯叉流热交换器,去掉必要的结构尺寸,其芯体尺寸为750×396×58,如图1(a)所示。

这可看作是两个完全相同,热容比C*相等的的单程叉流热交换器芯体的组合,可折算为一个如图1(b)所示芯体进行计算。

L 1=1500mm L2=58mm Ln=198mm 隔板厚度δZU=0.4mm,热边封条宽度B1=4mm,冷边封条宽度B2=6mm。

图1 芯体示意图3 设计计算设计计算由热交换器的热力性能计算和流体阻力计算两部分组成。

3.1 热力性能计算热边(乙二醇-水混合液边)采用矩形锯齿形波纹板,波纹板的结构示意图见图2a,数据如下:b 1=3.5mm h1=3mm 切开长度ls=5mm δ1=0.15mm图2a 矩形锯齿波纹板示意图冷边(空气边)采用百叶窗式波纹板,波纹板的结构示意图见图2b,数据如下:p=4.7mm 2l0=9.3mm δ2=0.10mm百叶窗节距lp =1.1mm 百叶窗高度lh=0.54mm 百叶窗长度lj=7mm图2b 百叶窗式波纹板示意图计算热边层数N 1、冷边层数N 2由热交换器芯体结构可知,冷边层数N 2要比热边层数N 1多一层,即N 2=N 1+1,取隔板厚度为δZU =0.4mm ,(h 1+2×δZU )N 1+2l 0N 2=L n(3+2×0.4)N 1+9.3(N 1+1)=198 N 1=14 N 2=15则实际L n /=(3+2×0.4)×14+9.3×15=192.7 3.1.1 计算当量直径d e乙二醇-水边de 1:X 1=b 1-δ1=3.5-0.15=3.35mm Y 1=h 1-δ1=3-0.15=2.85mm则 d e1=2X 1Y 1/(X 1+Y 1)=2×3.35×2.85/(3.35+2.85) =3.080×10-3m 空气边d e2:21波高实长l =()2222027.43.9212221⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+P l =4.796mm则 d e2=4(Pl 0-2l δ2)/(P+4l )=4×(4.7×4.65-2×4.796×0.10)/(4.7+4×4.796) =3.499×10-3m 3.1.2 计算流体流通面积F fF 1f =N 1X 1Y 1(L 2-2×B 1)/b 1 (应考虑热边封条宽度) =14×3.35×2.85×(58-2×4)/3.5 =0.1910×10-2m 2F 2f =N 2(L 1-2×B 2)(2l 0-4l δL /P ) (应考虑冷边封条宽度) =15×(1500-2×6)(9.3-4×4.796×0.10/4.7) =0.1985m 23.1.3 计算迎风面积F yF 1y =L 2×L n /=58×192.7=0.0112m 2 F 2y =L 1×L n /=1500×192.7=0.2891m 23.1.4 计算孔度σσ1=F1f/F1y=0.1910×10-2/0.0112=0.171σ2=F2f/F2y=0.1983/0.2891=0.6873.1.5 共用主传热面积FzuF zu =2N1L1L2=2×14×1500×58=2.436m23.1.6 定性温度tf根据公式Q=Gm ·Cp·(t1/-t1//),其中:Q-要求的换热量,kcal/hGm-介质质量流量,kg/sCp-介质定压比热,kcal/(kg·℃)计算后取t1/=65℃ t2//=57℃则 tf1=(t1/+t1//)/2=62.5℃tf2=(t2/+t2//)/2=51℃3.1.7 查物性参数乙二醇-水边空气边C P1=0.8066kcal/(kg·℃) CP2=0.240kcal/(kg·℃)λ1=0.3975kcal/(m·h·℃)λ2=2.436×10-2kcal/(m·h·℃)ρ1=1.0325kg/L ρ2=1.0897kg/m3μ1=1.5255×10-4kg·s/m2μ2=2.005×10-6kg·s/m2Pr2=0.69783.1.8 水当量W,热容比C*,假设效率ηW 1=G1CP1=37.85L/min/60×1.0325kg/L×0.8066kcal/(kg·℃) =0.5254kcal/(s·℃)W 2=G2CP2=0.85m3/s×1.0897kg/m3×0.240kcal/(kg·℃) =0.2223kcal/(s·℃)C*=Wmin /Wmax=0.2223/0.5254 =0.4231则热交换器假设效率η0=456560652223.05254.0'2'1"1'1min1--⨯=--⋅ttttWW=0.59093.1.9 质量流速ωω1=G1/F1f=(37.85L/min×1.0325kg/L)/(60×0.1910×10-2m2) =341.01kg/m2·sω2=G2/F2f=0.85m3/s×1.0897kg/m3/(0.1985m2) =4.669kg/(m2·s)3.1.10 计算雷诺数Re、普郎特数PrRe1=ω1de1/(μ1g)=341.01kg/(m2.s)×3.080×10-3m/(1.5255×10-4kg.s/m2×9.81m/s2) =701.84Re2=ω2de2/(μ2g)=4.669kg/(m2.s)×3.50×10-3m/(2.005×10-6kg.s/m2×9.81m/s2) =830.82Pr1=μ1gCP1/λ1=(1.5255×10-4×9.81×0.8066)×3600/0.3975 =10.933.1.11 计算放热系数α和摩擦因子f乙二醇-水边为矩形锯齿形波纹板,根据资料[2]P173,对于Re≤1000,其准则方程适用于式(6-65)、(6-66):l 1/de1=1.623 a1*=b1/h1=1.167 de1=3.080 Re1=701.84f 1=7.661(l1/de1)-0.384a1*-0.092Re1-0.712=7.661×1.623-0.384×1.167-0.092×701.84-0.712 =0.0590j 1=0.483(l 1/de 1)-0.162a 1*-0.184Re 1-0.536=0.483×1.623-0.162×1.167-0.184×701.84-0.536 =0.0129则 α1=j 1ω1C P1/Pr 10.67 =0.0129×341.01×0.8066×3600/10.930.67=2581.17kcal/(m 2·h ·℃)空气边为百叶窗式波纹板,根据资料[3]P166,Davenport 公式:f 2=5.47Re 2P -0.72l h 0.37(l 2)0.23l P 0.2(ll j 2)0.89 (适用条件:70<Re 2=830.82<1000)=5.47×261.12-0.72×0.540.37×(2×4.796)0.23×1.10.2×(796.427⨯)0.89=0.1026j 2=0.249Re 2P -0.42l h 0.33()l 20.26(ll j 2)1.1 (适用条件:300<Re 2=830.82<4000==0.249×261.12-0.42×0.540.33×(2×4.796)0.26×(796.427⨯)1.1=0.0250式中Re 2P 以百叶窗的节距l P 为特征长度,即以l P 为当量直径:Re 2P =ω2l P /(μ2g)=4.669kg/(m 2.s)×1.1×10-3m/(2.005×10-6kg.s/m 2×9.81m/s 2) =261.12由努谢尔特数公式Nu=λαed 及柯尔朋(Colburn )公式j=Re Pr 31-Nu 得α2=313231222226978.082.8300250.010499.310436.2Pr Re d ----⨯⨯⨯⨯=∙j e λ =128.10kcal/(m 2·h ·℃)3.1.12 计算肋片效率乙二醇-水边为矩形锯齿形波纹板,计算m 时需考虑波纹板边缘暴露面积,由资料[2]P154式(6-15)(6-16):m 1=⎪⎭⎫ ⎝⎛+⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛+-215.011015.018017.258121231111l f δδλα =443.77m -1l 1=3/2-0.15=1.35mmm 1l 1=473.77×1.35×10-3=0.599η1L =th(m 1l 1)/m 1l 1=th(0.659)/0.659=0.895空气边为百叶窗式波纹板,由资料[2]P154式(6-15)(6-16):m 2=3221010.018010.12822-⨯⨯⨯=δλαf =119.30m -1l 2=4.796-0.10=4.696mm m 2l 2=119.30×4.696×10-3=0.560η2L =th(m 2l 2)/m 2l 2=th(0.560)/0.560=0.907 3.1.13 肋片有效传热面积F LF 1L =2N 1(L 2-2B 1)L 1Y 1η1L /b 1 (应考虑冷边封条宽度) =2×14×(58-2×4)×1500×2.85×0.895/3.5 =1.5305m 2F 2L =N 2[(L 1-2B2)4lL 2×2/P]η2L (应考虑冷边封条宽度) =15×[58×(1500-2×6)×4×4.796×2/4.7]×0.907 =9.5852m 23.1.14 总有效传热面积F eF 1e =F zu +F 1L=2.436+1.5305=3.9665m 2 F 2e =F zu +F 2L=2.436+9.5852=12.0212m 2 3.1.15 计算KF 值,NTU 值 KF=0212.1210.1289665.317.25810212.1210.1289665.317.258122112211⨯+⨯⨯⨯⨯=+e e e e F F F F αααα=1338.58kcal/(h ·℃)NTU=KF/W min=1338.58kcal/(h ·℃)/(0.2223kcal/s ·℃×3600) =1.6733.1.16 计算效率η两边流体均不混合,按资料[2]P161式(6-35)计算ηi 值:ηi =1-exp {NTU 0.22[exp (-C *NTU 0.78)-1]/ C *}=1-exp {1.6730.22[exp (-0.4231×1.6730.78)-1]/0.4231} =0.71063.1.17 散热性能分析本文计算的效率值(0.7106)大于假设效率(0.5909)。

GBT 151-2014 热交换器讲解

GBT 151-2014 热交换器讲解
9.3有色金属
9.3.1铝及铝合金
(1)设计参数:p≤16MPa,含镁量大于或等于3%的铝和铝合金,-269℃≤t≤65℃,其他牌号的铝和铝合金,-269℃≤t≤200℃;
(2)在低温下,具有良好的塑性和韧性;
(3)有良好的成型及焊接性能;
(4)铝和空气中的氧迅速生成Al2O3薄膜,故在空气和许多化工介质中有着良好的耐蚀性。
0.05~0.5
0.5~1.5
>1.5
6.3腐蚀裕量的考虑原则
6.3.1各元件受到的腐蚀程度不同时,可采用不同的腐蚀裕量。
6.3.2考虑两面腐蚀的元件:管板、浮头法兰、球冠形封头、分程隔板。
6.3.3考虑内表面腐蚀的元件:管箱平盖、凸形封头、管箱、壳体、容器法兰和管法兰的内径面上。
6.3.4管板和平盖上开槽时:当腐蚀裕量大于槽深时,要加上两者的差值。
(7)用于制造压力容器壳体时,应在退火状态下使用。
9.3.4镍和镍合金
(1)设计参数:p≤35MPa;
(2)有良好的低温性能,可用到-269℃;
(3)具有良好的耐腐蚀性能;
(4)具有良好的成型性能。
(5)用于制造压力容器受压元件时,应在退火或者固溶状态下使用。
9.3.5锆及锆合金
(1)设计参数:p≤35MPa;
5.设计参数
5.1压力
5.1.1压差设计
同时受管、壳程压力作用的元件,当能保证制造、开停工、及维修时都能达到按规定压差进行管、壳程同时升、降压和装有安全装置时,方可按元件承受的压差设计。
5.1.2真空设计
真空侧的设计压力,应按GB150的规定,当元件一侧受真空作用,另一侧受非真空作用时,其设计压力应为两侧设计压力之和,即为最苛刻的压力组合。
剪切强度≥140MPa

(完整版)换气器热量及面积计算公式

(完整版)换气器热量及面积计算公式

(完整版)换气器热量及面积计算公式1. 引言本文档旨在介绍换气器热量及面积的计算公式。

换气器是工业领域中常用的设备,其主要功能是实现空气的热交换和通风。

热量和面积的计算是设计换气器的重要步骤,能够帮助工程师准确地选取合适的换气器尺寸。

2. 热量计算公式换气器的热量计算公式基于传热原理和设计参数。

以下是常用的热量计算公式:2.1 传热功率计算公式传热功率(Q)是换气器的基本参数,表示单位时间内的热量传递量。

传热功率的计算公式如下:Q = A * U * ΔTm其中,Q为传热功率(单位为瓦特,W),A为换气器的有效传热面积(单位为平方米,m^2),U为换气器的传热系数(单位为瓦特/平方米·摄氏度,W/m^2·°C),ΔTm为介质的平均温差(单位为摄氏度,°C)。

2.2 传热系数计算公式传热系数(U)是换气器的另一个重要参数,表示单位面积的换热能力。

传热系数的计算公式如下:U = 1 / (1 / h₁ + δ / λ + 1 / h₂)其中,h₁和h₂分别为流体一和流体二的对流换热系数(单位为瓦特/平方米·摄氏度,W/m^2·°C),δ为换气器的金属板层厚度(单位为米,m),λ为金属板层的导热系数(单位为瓦特/米·摄氏度,W/m·°C)。

3. 面积计算公式换气器的面积计算公式基于热量传递的需求和传热效率。

以下是常用的面积计算公式:3.1 面积计算公式一面积计算公式一适用于单一介质的换气器,该公式如下:A = Q / (U * ΔTm)其中,A为换气器的有效传热面积(单位为平方米,m^2),Q为传热功率(单位为瓦特,W),U为换气器的传热系数(单位为瓦特/平方米·摄氏度,W/m^2·°C),ΔTm为介质的平均温差(单位为摄氏度,°C)。

3.2 面积计算公式二面积计算公式二适用于复杂介质的换气器,该公式如下:A₂ = Q / (U₂ * ΔTm₂)其中,A₂为换气器的有效传热面积(单位为平方米,m^2),Q为传热功率(单位为瓦特,W),U₂为复杂介质换热系数(单位为瓦特/平方米·摄氏度,W/m^2·°C),ΔTm₂为介质的平均温差(单位为摄氏度,°C)。

化工课程设计--用水冷却煤油产品的多程列管式换热器设计

化工课程设计--用水冷却煤油产品的多程列管式换热器设计

化工原理课程设计设计书专业年级 2011级应用化学小组成员指导教师日期 2014-5-27目录目录…………………………………………………第一章设计任务书 (1)第二章概述 (2)第三章结构设计与说明 (4)第四章换热器的设计计算 (5)第五章总结 (16)第六章参考文献 (18)第一章设计任务书一、设计名称用水冷却煤油产品的多程列管式换热器设计二、设计任务使煤油从140℃冷却到40℃,压力1bar(100kpa) ,冷却剂为水,水压力为3bar(300kpa),处理量为10t/h。

三、设计任务1 合理的参数选择和结构设计2 传热计算和压降计算:设计计算和校核计算四、设计说明书内容1 传热面积2 管程设计包括:总管数、程数、管程总体阻力校核3 壳体直径4 结构设计包括流体壁厚5 主要进出口管径的确定包括:冷热流体的进出口管五、设计进度1 设计动员,下达设计任务书 0.5天2 搜集资料,阅读教材,拟定设计进度 1.5天3 设计计算(包括电算,编写说明书草稿) 5-6天4 绘图 3-4天5 整理,抄写说明书 2天第二章概述化工生产中,无论是化学过程还是物理过程,几乎都需要热量的引入和导出.例如在绝大多数化学反应过程和物理过程都是在一定温度下进行的,为了使物系达到并保持指定的温度,就要预先对物料进行加热或冷却,并在很多过程进行时,也要及时取走过程放出的热量或补充过程吸收的热量.工业上用于传热过程的基本设备称为换热器.在化工生产中,最常见的是两流体间的热交换.而且多是间壁式换热,两流体不接触,不混合.冷热两流体在传热是被固体壁面(传热面)所隔开,两流体分别在壁画两侧流动.典型的换热器有套管式换热器和列管式换热器. 列管式换热器是目前化工及酒精生产上应用最广的一种换热器。

它主要由壳体、管板、换热管、封头、折流挡板等组成。

所需材质,可分别采用普通碳钢、紫铜、或不锈钢制作。

列管式换热器种类很多,目前广泛使用的按其温差补偿结构来分,主要有以下几种:浮头式换热器、固定式换热器、U形管换热器、填料函式换热器等1 浮头式换热器浮头式换热器两端的管板,一端不与壳体相连,该端称浮头。

换热器的设计说明书

换热器的设计说明书

换热器的设计1.1 换热器概述换热器是化工、石油、动力、食品及其它许多任务业部门的通用设备,在生产中占有重要地位。

换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。

在三类换热器中,间壁式换热器应用最多。

换热器随着换热目的的不同,具体可分为加热器、冷却器、蒸发器、冷凝器,再沸器和热交换器等。

由于使用条件的不同,换热设备又有各种各样的形式和结构。

换热器选型时需要考虑的因素是多方面的,主要有:①热负荷及流量大小;②流体的性质;③温度、压力及允许压降的范围;④对清洗、维修的要求;⑤设备结构、材料、尺寸、重量;⑥价格、使用安全性和寿命;按照换热面积的形状和结构进行分类可分为管型、板型和其它型式的换热器。

其中,管型换热器中的管壳式换热器因制造容易、生产成本低、处理量大、适应高温高压等优点,应用最为广泛。

管型换热器主要有以下几种形式:(1)固定管板式换热器:当冷热流体温差不大时,可采用固定管板的结构型式,这种换热器的特点是结构简单,制造成本低。

但由于壳程不易清洗或检修,管外物料应是比较清洁、不易结垢的。

对于温差较大而壳体承受压力较低时,可在壳体壁上安装膨胀节以减少温差应力。

(2)浮头式换热器:两端管板只有一端与壳体以法兰实行固定连接,称为固定端。

另一端管板不与壳体连接而可相对滑动,称为浮头端。

因此,管束的热膨胀不受壳体的约束,检修和清洗时只要将整个管束抽出即可。

适用于冷热流体温差较大,壳程介质腐蚀性强、易结垢的情况。

(3)U形管式换热器换:热效率高,传热面积大。

结构较浮头简单,但是管程不易清洗,且每根管流程不同,不均匀。

表1-1 换热器特点一览表在过程工业中,由于管壳式换热器具有制造容易,生产成本低,选材范围广,清洗方便,适应性强,处理量大,工作可靠,且能适应高温高压等众多优点,管壳式换热器被使用最多。

工业中使用的换热器超过90%都是管壳式换热器,在工业过程热量传递中是应用最为广泛的一种换热器。

换热器的设计方案(doc 28页)

换热器的设计方案(doc 28页)

设计题目:换热器的设计学院化学化工学院班级化工**姓名张子健学号000000000指导教师:***日期:2010.9.12列管式换热器设计任务书一设计题目:煤油冷却器的设计(3组:21- )二设计任务及操作条件1.处理能力:18万吨/年煤油2.设备形式:列管式换热器3.操作条件(1)煤油:入口温度110℃,出口温度35℃(2)冷却介质:自来水,入口温度25℃,出口温度40℃(3)允许压强降:不大于100kPa(4)煤油定性温度下的物性数据:密度825kg/m3,黏度7.15×10-4Pa.s,比热容2.22kJ/(kg.℃),导热系数0.14W/(m.℃)(5)每年按330天计,每天24小时连续运行三选择适宜的列管式换热器并进行核算3.1 传热计算3.2 管、壳程流体阻力计算3.3管板厚度计算3.4 U形膨胀节计算3.5 管束振动3.6 管壳式换热器零部件结构目录1.概述 (4)2.设计标准 (6)3.方案设计和拟订 (6)4.设计计算 (9)4.1确定设计方案 (9)4.1.1 选择换热器的类型 (9)4.1.2 流动空间及流速的测定 (9)4.2确定物性数据 (9)4.3计算总传热系数 (10)4.3.1 热流量 (10)4.3.2 平均传热温差 (11)4.3.3 冷却水用量 (11)4.3.4 总传热系数K (11)4.4计算传热面积 (12)4.5工艺结构尺寸 (12)4.5.1 管径和管内流速 (12)4.5.2 管程数和传热管数 (12)4.5.3平均传热温差校正及壳程数 (13)4.5.4 传热管排列和分程方法 (13)4.5.5 壳体内径 (13)4.5.6 折流板 (14)4.5.7 接管 (14)4.6换热器核算 (15)4.6.1 热量核算 (15)4.6.1.1 壳程对流传热系数 (15)4.6.1.2 管程对流传热系数 (15)4.6.1.3 传热系数K (16)4.6.1.4 传热面积S (16)4.6.2 换热器内流体的流动阻力 (17)4.6.2.1 管程流动阻力 (17)4.6.2.2 壳程阻力 (17)4.6.2.3 换热器主要结构尺寸和计算结果 (19)5.设计小结 (20)6.参考文献 (22)7.附图表 (23)8.符号说明 (25)1.概述在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。

《热交换器原理与设计》管壳式热交换器设计 2.2-2.3

《热交换器原理与设计》管壳式热交换器设计 2.2-2.3
流路D 折流板和壳体内壁间存在一定间隙所形成的漏流。 特点 漏流
温度发生畸变
28
流路E
多管程,安置分程隔板而使壳程形成了不为管子所 占据的通道,若用来形成多管程的隔板设置在主横 向流的方向上它将会造成一股或多股旁路
特点
设置挡管
贝尔法
内容: 理想管束的传热因子
校正
错流通过理想管束
换器结构参数 操作条件 29
ls——折流板间距; d0——管子外径; s——管间距;
sn——与流向垂直的管间距。 As,Ab,Ac之间的关系
As Ab Ac
As——为保证流速所需要的流通截面积
Ab——流体在缺口处的流通截面积
AC—两折流板间错流的流通截面积
14
(3)盘环形折流板
环板圆孔处的流通面积a1
盘板的流通面积a2
a1 a2 a3
三、壳程流通截面积的计算
内容: 确定纵向隔板或折流板的数目与尺寸。
纵向隔板
As M s / sws
式中:
AS′——为壳程流通截面积,m2; Ms——壳程流体的质量流量,Kg/s;
ρs——壳程流体的密度,Kg/m3
ws——壳程流体的流速,m/s;
8
纵向隔板长度确定的基本原则: 流体在纵向隔板转弯时的流速
Dw


2
nt
4 Ab
1 Fc d0

Ds
11、折流板数目
Nb

l ls
1
如果进出口段板间距不等于ls,则
Nb

l
ls,i ls,o ls

1
35
式中
ls,i ,——进口段从折流板到管板的距离。 ls,o——出口段从折流板到管板的距离
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档