2020考研数学线性代数六大重要知识点
考研数学线性代数必考的知识点
考研数学线性代数必考的知识点考研数学线性代数必考的知识点漫长的学习生涯中,大家最熟悉的就是知识点吧?知识点就是一些常考的内容,或者考试经常出题的地方。
还在苦恼没有知识点总结吗?以下是店铺帮大家整理的考研数学线性代数必考的知识点,供大家参考借鉴,希望可以帮助到有需要的朋友。
考研数学线性代数必考的知识点篇1考研数学线性代数必考的重点一、行列式与矩阵第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。
行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算二、向量与线性方程组向量与线性方程组是整个线性代数部分的核心内容。
相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节。
向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。
复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。
三、特征值与特征向量相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。
其原因是解决相关题目要用到线代中的大量内容——既有行列式、矩阵又有线性方程组和线性相关,“牵一发而动全身”。
四、二次型本章所讲的内容从根本上讲是第五章《特征值和特征向量》的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵A存在正交矩阵Q使得A可以相似对角化”,其过程就是上一章相似对角化在为实对称矩阵时的应用。
考研数学概率以大纲为本夯实基础从考试的角度,大家看看历年真题就发现比较明显的规律:概率的题型相对固定,哪考大题哪考小题非常清楚。
概率常考大题的地方是:随机变量函数的分布,多维分布(边缘分布和条件分布),矩估计和极大似然估计。
其它知识点考小题,如随机事件与概率,数字特征等。
从学科的角度,概率的知识结构与线性代数不同,不是网状知识结构,而是躺倒的树形结构。
第一章随机事件与概率是基础知识,在此基础上可以讨论随机变量,这就是第二章的内容。
数学考研必备知识点线性代数的重点章节解析
数学考研必备知识点线性代数的重点章节解析一、引言线性代数是数学中的一个重要分支,广泛应用于各个领域的科学研究和工程实践中。
作为数学考研的一门必备知识,掌握线性代数的重点章节非常关键。
本文将对数学考研必备知识点线性代数的重点章节进行解析,帮助考生全面理解和掌握这些内容。
二、向量空间向量空间是线性代数的基础,包括向量的加法、数乘和向量空间的性质等。
重点章节有:1. 线性相关性与线性无关性:讨论向量组的线性相关性与线性无关性,以及线性相关性的判定方法。
2. 向量空间的维数:介绍向量空间的维数概念及其性质,以及维数的计算方法。
3. 基与坐标:介绍向量空间的一组基及其坐标表示方法,以及基的变换与坐标的变换关系。
三、线性映射与线性变换线性映射与线性变换是线性代数的重要内容,涉及到线性变换的性质、线性变换的表示矩阵和线性映射的核与像等。
重点章节有:1. 线性变换与矩阵:介绍线性变换的定义和性质,并探究线性变换的代数表示——矩阵。
2. 线性变换的核与像:讨论线性变换的核与像的概念,以及它们的性质和计算方法。
3. 线性变换的合成与逆变换:研究线性变换的合成和逆变换的概念与性质,以及相应的计算方法。
四、特征值与特征向量特征值与特征向量是线性代数中的重要概念,用于研究线性变换的本质特性。
重点章节有:1. 特征值与特征向量的定义:介绍特征值与特征向量的定义及其性质。
2. 特征值与特征向量的计算:探究特征值与特征向量的计算方法和求解步骤。
3. 对角化与相似矩阵:讨论矩阵的对角化概念及其条件,以及相似矩阵的性质和计算方法。
五、内积空间与正交变换内积空间与正交变换是线性代数的重要分支,包括内积空间的定义与性质、正交变换的概念与性质等。
重点章节有:1. 内积空间的定义与性质:介绍内积空间的定义和性质,包括内积的性质和内积空间的几何解释。
2. 正交向量与正交子空间:研究正交向量和正交子空间的概念、性质及其计算方法。
3. 正交变换与正交矩阵:探究正交变换的定义和性质,以及正交变换的矩阵表示——正交矩阵。
线性代数的重点知识点总结
线性代数的重点知识点总结线性代数是数学中的一个重要分支,它研究向量空间和线性变换的性质。
在数学、物理、计算机科学等领域中,线性代数都有着广泛的应用。
本文将总结线性代数的一些重点知识点,帮助读者更好地理解和应用线性代数。
1. 向量和矩阵向量是线性代数中的基本概念,它表示空间中的一点或者一个方向。
向量可以表示为一个有序的数列,也可以表示为一个列矩阵。
矩阵是由多个向量按照一定规则排列而成的矩形阵列。
矩阵可以进行加法、减法和数乘等运算。
矩阵的转置、逆矩阵和行列式等概念也是线性代数中的重要内容。
2. 线性方程组线性方程组是线性代数中的一个重要问题,它可以表示为多个线性方程的组合。
线性方程组的求解可以通过消元法、矩阵的逆等方法进行。
当线性方程组有唯一解时,称为可逆方程组;当线性方程组无解或者有无穷多解时,称为不可逆方程组。
3. 向量空间和子空间向量空间是线性代数中的一个核心概念,它包含了所有满足线性组合和封闭性的向量的集合。
子空间是向量空间中的一个子集,它也满足线性组合和封闭性的性质。
子空间可以通过一组线性无关的向量来生成,这组向量称为子空间的基。
子空间的维度等于基向量的个数。
4. 线性变换线性变换是线性代数中的一个重要概念,它是指一个向量空间到另一个向量空间的映射,并且保持向量空间的线性性质。
线性变换可以用矩阵表示,矩阵的每一列表示线性变换后的基向量。
线性变换有很多重要的性质,比如保持向量的线性组合、保持向量的线性无关性等。
5. 特征值和特征向量特征值和特征向量是线性代数中的一个重要概念,它们描述了线性变换对向量的影响。
特征向量是指在线性变换下保持方向不变或者仅仅改变长度的向量,特征值是特征向量对应的标量。
特征值和特征向量可以通过求解线性方程组来得到。
6. 内积和正交性内积是线性代数中的一个重要概念,它表示两个向量之间的夹角和长度的关系。
内积可以用来判断向量是否相互垂直或者平行,还可以用来计算向量的长度和夹角。
考研数学线性代数重点整理
考研数学线性代数重点整理一、矢量空间矢量空间是线性代数的基础概念,它描述了一组对象(称为矢量)的性质及其之间的运算规则。
以下是矢量空间的一些重要性质和定义:1. 定义:矢量空间是满足以下8个条件的集合V,其中两个运算(加法和乘法)满足特定的性质。
2. 加法:对于任意的矢量u和v,它们的和u+v也是V中的一个矢量。
3. 加法交换律:对于任意的矢量u和v,有u+v = v+u。
4. 加法结合律:对于任意的矢量u、v和w,有(u+v)+w = u+(v+w)。
5. 加法单位元:存在一个称为零矢量的特殊矢量0,对于任意的矢量v,有v+0 = 0+v = v。
6. 加法逆元:对于任意的矢量v,存在一个称为负矢量的特殊矢量-u,使得v+(-u) = (-u)+v = 0。
7. 乘法定义:对于任意的矢量v和实数c,cv也是V中的一个矢量。
8. 乘法分配律:对于任意的矢量v和实数c和d,有c(dv) = (cd)v。
9. 乘法单位元:对于任意的矢量v,有1v = v。
二、矩阵与线性方程组矩阵是线性代数中另一个重要的概念,它可以用来表示线性方程组和线性变换。
以下是与矩阵和线性方程组相关的一些重要内容:1. 矩阵定义:将数按矩形排列成的矩形数表称为矩阵,其中行数和列数分别称为矩阵的行数和列数。
2. 矩阵运算:矩阵之间可以进行加法和乘法的运算,具体规则如下:- 矩阵加法:对应位置元素相加。
- 矩阵乘法:设A是一个m×n矩阵,B是一个n×p矩阵,那么它们的乘积AB是一个m×p矩阵,乘法规则为A的行乘以B的列。
3. 线性方程组:线性方程组是一组线性方程的集合,矩阵可以用来表示和求解线性方程组。
对于一个m×n矩阵A、一个n×1矩阵X和一个m×1矩阵B,线性方程组可以表示为AX=B。
4. 线性方程组的解:根据矩阵的性质,可以通过高斯消元法、矩阵求逆等方法求解线性方程组。
线性代数考研知识点总结
线性代数考研知识点总结线性代数是数学的一个重要分支,它研究向量空间及其上的线性变换。
在计算机科学、物理学、工程学等领域中,线性代数都有着广泛的应用。
在考研中,线性代数是一个必考的科目,以下是线性代数考研的一些重要知识点总结。
1. 向量空间:向量空间是线性代数的基础概念,它包括一组向量和一些满足特定条件的运算规则。
向量空间中的向量可以进行加法和数乘运算,满足交换律、结合律和分配律。
2. 向量的线性相关性和线性无关性:如果向量可以通过线性组合表示为另一组向量的形式,那么这组向量就是线性相关的;如果向量不满足线性相关的条件,那么它们就是线性无关的。
3. 矩阵:矩阵是线性代数中的另一个重要概念,它是一个由数字排列成的矩形阵列。
矩阵可以用于表示线性变换、解线性方程组等。
常见的矩阵类型有方阵、对称矩阵、对角矩阵、单位矩阵等。
4. 行列式:行列式是一个用于刻画矩阵性质的重要工具。
行列式可以用来计算线性变换的缩放因子,判断矩阵是否可逆,以及计算矩阵的逆等。
5. 矩阵的相似和对角化:两个矩阵A和B,如果存在一个非奇异矩阵P,使得PAP^(-1)=B,那么矩阵A和B就是相似的。
相似的矩阵有着相同的特征值和特征向量。
对角化是指将一个矩阵通过相似变换变成对角矩阵的过程。
6. 线性变换:线性变换是指一个向量空间到另一个向量空间的映射,它满足线性性质。
线性变换可以用矩阵表示,相应的矩阵称为线性变换的矩阵表示。
线性变换可以进行合成、求逆等操作。
7. 内积空间:内积空间是一个带有内积运算的向量空间。
内积运算满足对称性、线性性、正定性等性质。
内积空间可以用来定义向量的长度、夹角、正交性等概念。
8. 特征值和特征向量:对于一个线性变换,如果存在一个非零向量使得线性变换作用在该向量上等于该向量的某个常数倍,那么这个常数就是该线性变换的特征值,而对应的非零向量就是特征向量。
特征值和特征向量可以用来分析矩阵的性质,求解线性方程组等。
9. 奇异值分解:奇异值分解是矩阵分解的一种常用方法,它将一个矩阵分解为三个矩阵的乘积,其中一个矩阵是正交矩阵,另两个矩阵是对角矩阵。
2020年考研数学线性代数知识点
2020年考研数学线性代数知识点第一章行列式
1、行列式的定义
2、行列式的性质
3、特殊行列式的值
4、行列式展开定理
5、抽象行列式的计算
第二章矩阵
1、矩阵的定义及线性运算
2、乘法
3、矩阵方幂
4、转置
5、逆矩阵的概念和性质
6、伴随矩阵
7、分块矩阵及其运算
8、矩阵的初等变换与初等矩阵
9、矩阵的等价
10、矩阵的秩
第三章向量
1、向量的概念及其运算
2、向量的线性组合与线性表出
3、等价向量组
4、向量组的线性相关与线性无关
5、极大线性无关组与向量组的秩
6、内积与施密特正交化
7、n维向量空间(数学一)
第四章线性方程组
1、线性方程组的克莱姆法则
2、齐次线性方程组有非零解的判定条件
3、非齐次线性方程组有解的判定条件
4、线性方程组解的结构
第五章矩阵的特征值和特征向量
1、矩阵的特征值和特征向量的概念和性质
2、相似矩阵的概念及性质
3、矩阵的相似对角化
4、实对称矩阵的特征值、特征向量及其相似对角矩阵第六章二次型
1、二次型及其矩阵表示
2、合同变换与合同矩阵
3、二次型的秩
4、二次型的标准型和规范型
5、惯性定理
6、用正交变换和配方法化二次型为标准型
7、正定二次型及其判定
数学的学习是比较有难度的,大家平时的学习中,大家要积累跟多的解题思路,这样自己在考试时遇到难题就能迎刃而解。
完整版线性代数知识点总结
完整版线性代数知识点总结线性代数是数学的一个分支,研究向量空间及其上的线性变换。
它在各个领域中都有广泛的应用,包括物理学、计算机科学、工程学等。
以下是线性代数的一些重要知识点总结:1.向量和向量空间:向量是有方向和大小的量,可以用来表示力、速度、位移等。
向量空间是向量的集合,具有加法和标量乘法运算,同时满足一定的性质。
2.线性方程组和矩阵:线性方程组是一组线性方程的集合,研究其解的性质和求解方法。
矩阵是一个由数构成的矩形数组,可以用来表示线性方程组中的系数和常数。
3.矩阵的运算:包括矩阵的加法、减法和乘法运算。
矩阵乘法是一种重要的运算,可以用来表示线性变换和复合变换。
4.行列式和特征值:行列式是一个标量,表示矩阵的一些性质,如可逆性和面积/体积的变换。
特征值是矩阵对应的线性变换中特殊的值,表示该变换在一些方向上的伸缩程度。
5.向量的内积和正交性:向量的内积是一种二元运算,可以用来表示向量之间的夹角和长度。
正交向量是指内积为零的向量,可以用来表示正交补空间等概念。
6.向量的投影和正交分解:向量的投影是一个向量在另一个向量上的投影,可以用来表示向量的分解。
正交分解是将一个向量分解为与另一个向量正交和平行的两个向量之和。
7.线性变换和线性映射:线性变换是指保持向量加法和标量乘法运算的变换。
线性映射是向量空间之间的函数,具有保持线性运算的性质。
8.特征值和特征向量:特征值和特征向量是线性变换或矩阵中一个重要的概念,用于描述变换的性质和方向。
9.正交矩阵和对称矩阵:正交矩阵是一个方阵,其列向量组成的矩阵是正交的。
对称矩阵是一个方阵,其转置等于自身。
10.奇异值分解:奇异值分解(SVD)是一种矩阵的分解方法,用来将一个矩阵分解为三个矩阵的乘积。
SVD在数据压缩、图像处理和机器学习等领域有广泛的应用。
11.最小二乘法:最小二乘法是一种数学优化方法,用来找到一条曲线或超平面,使得这些数据点到该曲线或超平面的距离平方和最小。
2020考研考研线性代数知识点归类
2020考研考研线性代数知识点归类内容和微分方程有异曲同工之妙,记忆的内容比较多,但比较简单。
小编整理了相关内容,希望能帮助到您。
2020考研考研线性代数知识点归类01特点与难点1、特点前面是基础,后面是应用。
这句话有三层意思⑴、前面的内容学好,后面内容才看得懂。
⑵、前面内容不会单独考,70%会结合后面内容考查,所以题目综合性强。
⑶、前面内容需要记忆,类似于泰勒公式,类似于求导公式,但是不同于泰勒公式的是,可以通过理解记忆。
2、难点⑴、没有一本好的辅导书。
①刚刚说过,前面的内容可以通过理解记忆,但是辅导书不讲深层原因,而是直接罗列出来。
比如:行列式性质②大部分考研难度的题目都具有一定综合性,编者不好编辑例题。
比如:行列式内容中,抽象行列式涉及矩阵内容(此时矩阵还没有学习)矩阵内容中秩的相关概念需要用向量和方程组的知识理解(此时向量还没有学习)⑵、网课老师深浅把握不好张宇:线性代数讲得深!他可以把深层次原因讲出来,但是作为新手,你会质疑老师的能力!李永乐:讲的细致,风格恰好与张宇相反。
杨超:同李永乐⑶、某些概念理解有困难这部分原因是两部分造成的:①没有理解前面某些概念。
②由于题目综合性强,练的题目少。
把这三个难点联系在一起,你们有没有发现?线性代数复习进入了一个死循环前期复习没有涉及后面的知识点做题少、不能够通过做题加深概念后面知识点理解困难做题少、不能够通过做题加深概念。
所以,堂主下面写的内容对你们有三个帮助帮助1:知道哪些习题是综合性题目,哪些知识点是为后面做铺垫。
帮助2:让你们对线性代数有一个系统的了解。
帮助3:帮助你们梳理知识点,避免盲目的学习!02各章知识点总结【行列式】1、行列式本质就是一个数2、行列式概念、逆序数考研:小题,无法联系其他知识点,当场解决。
3、二阶、三阶行列式具体性计算考研:不会单独出题,常常结合伴随矩阵、可逆矩阵考察。
4、余子式和代数余子式考研:代数余子式的正负是一个易错点,了解代数余子式才能学习行列式展开定理。
考研数学线性代数必背知识点
反对称矩阵 A = A 。
0 0 0 0 1 0 3 0 (A ) * 0 03 0 01 0 0* * *对称矩阵 A = A 。
考研数学知识点-线性代数第一讲 基本知识二.矩阵和向量1.线性运算与转置① A + B = B + A② (A + B ) + C = A + (B + C )③ c (A + B ) = cA + cB (c + d )A = cA + dA④ c (dA ) = (cd )A⑤ cA = 0 ™ c = 0 或 A = 0 。
向量组的线性组合〈 1 ,〈 2 ,⊄ ,〈 s ,T 三.矩阵的初等变换,阶梯形矩阵 ♣初等行变换 初等变换分 ♦ ♥初等列变换 三类初等行变换 ①交换两行的上下位置 A B ②用非零常数 c 乘某一行。
③把一行的倍数加到另一行上(倍加变换) 阶梯形矩阵 转置 c 1〈 1 + c 2〈 2 + ⊄ + c s 〈 s 。
A 的转置 A T (或 A 2 )4 1 0 1 0 2 0 0 25 2 0 0 1 2 1 4 3 T T= A①如果有零行,则都在下面。
②各非零行的第一个非 0 元素的列号自上而下严格 (A ± B )T = A T ± B T单调上升。
或各行左边连续出现的 0 的个数自上而下严格单调 (cA )T = c (A T )。
上升,直到全为 0 。
台角:各非零行第一个非 0 元素所在位置。
简单阶梯形矩阵: 3. n 阶矩阵3.台角位置的元素都为 1 n 行、 n 列的矩阵。
对角线,其上元素的行标、列标相等 a 11 , a 22 ,⊄对角矩阵 0 * 00 0 *4.台角正上方的元素都为 0。
每个矩阵都可用初等行变换化为阶梯形矩阵和简单 阶梯形矩阵。
如果 A 是一个 n 阶矩阵 A 是阶梯形矩阵 ® A 是上三角矩阵,反之不一定, 数量矩阵 0 3 0 = 3E0 0 3单位矩阵 0 1 0 E 或I0 0 1如 0 0 1 0 1 0 是上三角,但非阶梯形 0 0 1 四.线性方程组的矩阵消元法 用同解变换化简方程再求解 上(下)三角矩阵 0 * *0 0 *T 1 三种同解变换: ①交换两个方程的上下位置。
考研线性代数终极总结
考研线性代数终极总结线性代数是研究向量空间及其线性变换的数学分支。
它是数学基础科学和高级工程科学的重要学科,在理论和应用上都有着广泛的应用。
准备考研的同学们需要牢固掌握线性代数的基本概念和重要定理,下面是线性代数的终极总结。
一、向量空间1.向量空间的基本定义和性质2.子空间及其判定3.维数、基、坐标和表示定理4.线性方程组的解空间二、线性变换1.线性变换的定义和性质2.矩阵的线性变换3.线性变换的矩阵表示和基变换4.线性变换的像空间与核空间5.线性变换的特征值和特征向量6.对角化和相似变换三、线性方程组1.线性方程组的表示和解的存在唯一性2.线性方程组解的结构和基础解系3.矩阵的秩与线性方程组解的个数4.线性方程组的常见解法四、矩阵1.矩阵的运算和性质2.矩阵的特征值和特征向量3.矩阵的标准形式4.矩阵的相似性质和相抵性质五、二次型1.二次型的定义和性质2.二次型的标准形式3.正定、负定和不定二次型4.合同变换与矩阵的合同性质六、特征值问题1.特征值问题的引入和相关概念2.特征值问题的求解方法3.特征值问题的应用七、奇异值分解1.奇异值分解的定义和性质2.奇异值分解的计算和应用八、线性变换的标准形式1.线性变换的标准形式的引入和相关性质2.线性变换的标准形式的计算和应用九、行列式1.行列式的定义和性质2.行列式的性质及计算方法3.克莱姆法则及其推广以上是线性代数的终极总结,考研学习线性代数需要掌握这些重要概念和定理,通过大量的练习和习题,加深对知识点的理解和记忆。
在考试中,要善于分析题目,熟练运用线性代数的知识,灵活解决问题。
希望同学们能够在考研线性代数的复习中取得好的成绩!。
《线性代数》知识点_归纳整理
《线性代数》知识点_归纳整理线性代数是数学的一个重要分支,研究向量空间及其上的线性映射、线性方程组和矩阵等基本概念和性质。
它在数学、物理、工程、计算机科学等领域都有广泛的应用。
下面将对线性代数的一些重要知识点进行归纳整理。
1.向量空间:向量空间是线性代数的核心概念,它是一组向量的集合,满足加法和数乘运算的封闭性、结合律、交换律和分配律等性质。
向量空间的例子包括实数空间R^n、矩阵空间M(m,n)等。
2.线性映射:线性映射是指一个向量空间到另一个向量空间的映射,满足保持加法和数乘运算的性质。
线性映射可以表示为矩阵乘法的形式,其中矩阵的每一列对应于一个基向量在映射后的值。
3.线性方程组:线性方程组是由一组线性方程组成的方程组,其中每个方程都是关于未知数的线性表达式。
解线性方程组的方法包括高斯消元法、矩阵求逆法和克拉默法则等。
4.矩阵:矩阵是由数按矩形排列成的数组,是线性代数的重要工具。
矩阵可以表示线性映射、线性方程组和向量空间的基等。
矩阵的运算包括加法、数乘、矩阵乘法和转置等。
5.行列式:行列式是一个标量,它由矩阵的元素按一定规则计算得到。
行列式可以用于判断方阵的可逆性、计算线性映射的缩放因子和求解线性方程组等。
6.特征值和特征向量:特征值和特征向量是矩阵的重要性质。
特征值是一个标量,特征向量是一个非零向量,它们满足A*v=lambda*v的关系式,其中A是矩阵,v是特征向量,lambda是特征值。
特征值和特征向量可以用于矩阵的对角化和矩阵的谱分解等。
7.正交性:正交性是指向量之间的垂直关系。
在内积空间中,如果两个向量的内积为零,则它们是正交的。
正交向量组和正交矩阵是线性代数中常见的概念,它们在解线性方程组和进行特征值分解等方面具有重要作用。
8.线性相关性和线性无关性:线性相关性和线性无关性是向量组的重要性质。
如果一个向量可以由其他向量线性表示,则称这个向量与其他向量线性相关;如果一个向量不能由其他向量线性表示,则称这个向量与其他向量线性无关。
考研数学线性代数六大重点笔记+常考题型
考研数学线代 6 大部分重点及常考题型一、行列式行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式。
如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现。
所以要熟练掌握行列式常用的计算方法。
1.重点内容:行列式计算(1)降阶法这是计算行列式的主要方法,即用展开定理将行列式降阶。
但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开。
(2)特殊的行列式有三角行列式、范德蒙行列式、行和或列和相等的行列式、三线型行列式、爪型行列式等等,必须熟练掌握相应的计算方法。
2.常见题型(1)数字型行列式的计算(2)抽象行列式的计算(3)含参数的行列式的计算(4)代数余子式的线性组合二、矩阵矩阵是线性代数的核心,是后续各章的基础。
矩阵的概念、运算及理论贯穿线性代数的始终。
这部分考点较多。
涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题。
有些性质得证明必须能自己推导。
这几年还经常出现有关初等变换与初等矩阵的命题。
1.重点内容:(1)矩阵的运算(2)伴随矩阵(3)可逆矩阵(4)初等变换和初等矩阵(5)矩阵的秩2.常见题型:(1)计算方阵的幂(2)与伴随矩阵相关联的命题(3)有关初等变换的命题(4)有关逆矩阵的计算与证明(5)解矩阵方程(2013 年和 2014 年连续出大题,要重视)(6)矩阵秩的计算和证明三、向量向量部分既是重点又是难点,由于n 维向量的抽象性及在逻辑推理上的较高要求,导致考生在学习理解上的困难。
考生至少要梳理清楚知识点之间的关系,最好能独立证明相关结论。
1.重点内容:(1)向量的线性表示线性表示经常和方程组结合考察,特点,表面问一个向量可否由一组向量线性表示,其实本质需要转换成方程组的内容来解决,经常结合出大题。
2020考研数学:线性代数各章节考点总结
2020考研数学:线性代数各章节考点总结摘要:暑期过半,你的数学复习的怎么样了呢?为大家整理了2020考研线性代数各章节考点总结,供大家参考。
一、第一章行列式本章的重点是行列式的计算,主要有两种类型的题目:数值型行列式的计算和抽象型行列式的计算。
数值型行列式的计算不会以单独题目的形式考查,但是在解决线性方程组求解问题以及特征值与特征向量的问题时均涉及到数值型行列式的计算;而抽象型行列式的计算问题会以填空题的形式展现,在历年考研真题中可以找到有关抽象型行列式的计算问题。
因此,广大考生在复习期间行列式这块要做到利用行列式的性质及展开定理熟练的、准确的计算出数值型行列式的值,不论是高阶的还是低阶的都要会计算;另外还要会综合后面的知识会计算简单的抽象行列式的值。
二、第二章矩阵本章需要重点掌握的基本概念有可逆矩阵、伴随矩阵、分块矩阵和初等矩阵,可逆阵与伴随矩阵的相关性质也很重要,也是需要考生掌握的。
除了这些就是矩阵的基本运算,可以将矩阵的运算分为两个层次:1、矩阵的符号运算2、具体矩阵的数值运算矩阵的符号运算就是利用相关矩阵的性质对给出的矩阵等式进行化简,而具体矩阵的数值运算主要指矩阵的乘法运算、求逆运算等。
三、第三章向量本章的重点有:1、向量组的线性相关性证明、线性表出等问题,解决此类问题的关键在于深刻理解向量组的线性相关性概念,掌握线性相关性的几个相关定理,另外还要注意推证过程中逻辑的正确性,还要善于使用反证法。
2、向量组的极大无关组、等价向量组、向量组及矩阵秩的概念,以及它们之间的相互关系。
要求会用矩阵的初等变换求向量组的极大线性无关组以及向量组或者矩阵的秩。
四、第四章线性方程组本章的重点是利用向量这个工具解决线性方程组解的判定及解的结构问题。
题目基本没有难度,但是考生在复习的时候要注意将向量与线性方程组两章的知识内容联系起来,学会融会贯通。
五、第五章特征值与特征向量本章的基本要求有三点:1、要会求特征值、特征向量对于具体给定的数值型矩阵,一般方法是通过特征方程∣E-A∣=0求出特征值,然后通过求解齐次线性方程组(E-A)=0的非零解得出对应特征值的特征向量;而对于抽象的矩阵来说,在求特征值时主要考虑利用定义A=,另外还要注意特征值与特征向量的性质及其应用。
考研数学中的线性代数知识点总结
考研数学中的线性代数知识点总结在考研数学中,线性代数是一个重要的知识领域。
掌握线性代数的基本概念和方法对于考研数学的学习至关重要。
本文将对考研数学中的线性代数知识点进行总结,并分析其在考试中的应用。
**1. 矩阵与向量**矩阵和向量是线性代数的基础概念之一。
矩阵是由数域上的元素排成的矩形阵列,向量是一个包含有限个数目元素的组合。
在考研数学中,矩阵和向量常常用于表示线性方程组、线性变换等问题。
**2. 矩阵运算**矩阵具有加法、数乘和乘法等运算。
加法和数乘是矩阵的基本运算,而矩阵乘法是一种重要的组合运算,它具有结合律和分配律。
在考研数学中,矩阵运算常常用于求解线性方程组、矩阵的特征值与特征向量等问题。
**3. 行列式**行列式是矩阵的一个重要性质,它可以用于判断矩阵是否可逆、计算线性变换的缩放因子等。
行列式的性质包括交换行列式的两行(列)、某一行列乘以一个非零常数等,这些性质在求解行列式的值时十分实用。
**4. 线性方程组**线性方程组是线性代数的核心内容之一,它可以用矩阵和向量的形式表示。
求解线性方程组的方法包括高斯消元法、矩阵的初等变换法等,这些方法在考研数学中经常会用到。
**5. 特征值与特征向量**特征值与特征向量是矩阵的一个重要性质,它们可以用于描述线性变换的特征。
求解特征值与特征向量可以通过求解矩阵的特征方程组来实现,在考研数学中,特征值与特征向量常常用于矩阵的对角化等问题。
**6. 矩阵的对角化**矩阵的对角化是线性代数中的一个重要概念,它可以将一个矩阵转化为对角矩阵的形式。
对角化的条件是矩阵具有线性无关的特征向量,通过对角化可以简化矩阵的运算,提高求解问题的效率。
**7. 线性空间与子空间**线性空间是线性代数的一个重要概念,它可以用来描述向量的集合。
线性空间具有加法和数乘等运算,子空间是线性空间的一个重要概念,它可以用来描述线性方程组的解空间等。
**8. 线性变换与矩阵表示**线性变换是线性代数中的一个核心概念,它可以用矩阵来表示。
线性代数知识点全面总结
线性代数知识点全面总结线性代数是一门重要的数学学科,它研究的是向量空间、线性映射和线性方程组等基本概念及其相互关系。
线性代数在数学、物理、计算机科学、经济学等各个领域都有广泛的应用。
下面是线性代数的一些重要知识点的全面总结:1. 向量空间(Vector Space)向量空间由一组满足一些性质的向量组成。
向量空间的定义要求满足加法和数量乘法封闭性、零向量存在性、加法逆元存在性等性质。
在向量空间中,还可以定义线性组合、线性相关性、线性无关性等概念。
2. 矩阵(Matrix)矩阵是由一组数按照一个确定的规律排列成的矩形阵列。
矩阵的加法、数量乘法等运算满足线性运算的性质。
矩阵可以表示线性方程组、线性映射等。
3. 线性映射(Linear Mapping)线性映射是指将一个向量空间的元素映射到另一个向量空间的元素,并保持向量空间的加法和数量乘法运算。
线性映射可以用矩阵表示,并且具有一些重要的性质,比如保持零向量、保持加法和数量乘法等。
4. 线性方程组(Linear System)线性方程组是一组线性方程的集合。
线性方程组可以用矩阵和向量表示,形式为Ax=b,其中A是系数矩阵,x是未知向量,b是常数向量。
线性方程组的求解可以使用消元法、矩阵求逆等方法。
5. 特征值和特征向量(Eigenvalues and Eigenvectors)特征值和特征向量是线性映射中的重要概念。
对于一个线性映射,如果存在一个非零向量x,使得线性映射作用于x的结果等于x乘以一个常数λ(即f(x)=λx),那么λ就是这个线性映射的特征值,x就是对应的特征向量。
6. 内积空间(Inner Product Space)内积空间是向量空间中引入内积运算的概念。
内积可以用来度量向量的夹角和长度,并且可以定义向量的正交性、正交投影等概念。
内积空间可以是实数域或复数域上的。
7. 正交性和正交基(Orthogonality and Orthogonal Basis)正交性是指向量之间的夹角为直角。
线性代数重要知识点总结
线性代数重要知识点总结线性代数是数学中的一个重要分支,它研究向量、向量空间以及线性变换等概念。
在科学、工程、计算机科学等领域中都广泛应用线性代数的知识。
下面是线性代数的一些重要知识点的总结。
1.向量:向量是表示大小和方向的量,可以用有序数组表示。
向量的加法和数乘运算满足交换律、结合律和分配律。
2.向量空间:向量空间是一组向量的集合,在其中向量可以进行加法和数乘运算。
向量空间必须满足闭合性、加法逆元、加法交换律、加法结合律、数乘结合律和数乘分配律等性质。
3.线性相关与线性无关:向量组中的向量可以是线性相关的,也可以是线性无关的。
线性相关表示一些向量可以由其他向量线性表示出来,而线性无关表示所有向量不能通过线性组合得到零向量。
4.矩阵:矩阵是二维数组,也可以看作是向量的扩展。
矩阵的加法和数乘运算满足交换律、结合律和分配律。
5.矩阵乘法:矩阵乘法是矩阵之间的一种运算,前提是第一个矩阵的列数等于第二个矩阵的行数。
矩阵乘法满足结合律,但不满足交换律。
6.线性方程组:线性方程组是一组线性方程的集合。
可以使用矩阵的形式表示线性方程组,通过高斯消元法或矩阵求逆等方法求解线性方程组。
7.特征值与特征向量:在线性代数中,对于一个n维向量,如果它乘以一个n×n的矩阵后,仍然保持方向不变(可能会变长或变短),那么这个向量称为这个矩阵的特征向量,而乘以矩阵后的长度变化倍数称为特征值。
8.内积与外积:内积是向量之间的一种运算,满足交换律和分配律,内积为一个标量。
外积是向量之间的一种运算,满足反对称性和分配律,外积为一个向量。
9.正交与正交子空间:正交指的是两个向量的内积为零,正交子空间是由正交向量组成的向量空间。
10.线性变换:线性变换是将一个向量空间映射到另一个向量空间的变换,保持向量空间的线性运算性质。
11.特征值分解:矩阵的特征值分解是将一个矩阵分解为特征值和特征向量的乘积的形式。
12.奇异值分解:矩阵的奇异值分解是将一个矩阵分解为奇异值和左右奇异向量的乘积的形式。
2020年考研数学线性代数重要考点总结
考研数学线性代数重要考点总结众所周知,考研数学是最能拉开差距的一门学科,数学线性代数包含有很多知识点,我们需要掌握好重要考点。
为大家精心准备了考研数学线性代数的考点指南,欢迎大家前来阅读。
线性代数主要包含行列式、矩阵、向量、线性方程组、矩阵的特征值与特征向量、二次型六章内容。
按照章节,我们总结出线性代数必须掌握的六大考点。
一是行列式部分,强化概念性质,熟练行列式的求法。
在这里我们需要明确下面几条:行列式对应的是一个数值,是一个实数,明确这一点可以帮助我们检查一些疏漏的低级错误;行列式的计算方法中常用的是定义法,比较重要的是加边法,数学归纳法,降阶法,利用行列式的性质对行列式进行恒等变形,化简之后再按行或列展开。
另外范德蒙行列式也是需要掌握的;行列式的考查方式分为低阶的数字型矩阵和高阶抽象行列式的计算、含参数的行列式的计算等。
二是矩阵部分,重视矩阵运算,掌握矩阵秩的应用。
通过历年真题分类统计与考点分布,矩阵部分的重点考点集中在逆矩阵、伴随矩阵及矩阵方程,其内容包括伴随矩阵的定义、性质、行列式、逆矩阵、秩,在课堂辅导的时候会重点强调.此外,伴随矩阵的矩阵方程以及矩阵与行列式的结合也是需要同学们熟练掌握的细节。
涉及秩的应用,包含矩阵的秩与向量组的秩之间的关系,矩阵等价与向量组等价,对矩阵的秩与方程组的解之间关系的分析,备考需要在理解概念的基础上,系统地进行归纳总结,并做习题加以巩固。
三是向量部分,理解相关无关概念,灵活进行判定。
向量组的线性相关问题是向量部分的重中之重,也是考研线性代数每年必出的考点。
如何掌握这部分内容呢?首先在于对定义概念的理解,然后就是分析判定的重点,即:看是否存在一组全为零的或者有非零解的实数对。
基础线性相关问题也会涉及类似的题型:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。
考研数学线性代数必考的知识点
考研数学线性代数必考的知识点考研数学线性代数是考研数学中的重要一部分,是以线性代数为基础的高等数学课程。
线性代数在科学与工程中有着广泛的应用,而考研数学线性代数的知识点主要包括矩阵、行列式、线性方程组、特征值与特征向量、线性空间和线性变换等内容。
一、矩阵1.矩阵的基本运算:矩阵的加减法、数乘、乘法及其性质;2.矩阵的转置、对称与反对称矩阵、单位矩阵;3.矩阵的秩:元素型和行列型定义、秩的性质和计算方法;4.矩阵的逆:可逆矩阵与非奇异矩阵、矩阵的逆的存在性和计算方法;5.矩阵的秩公式和分块矩阵。
二、行列式1.行列式的定义:n阶行列式的定义、性质和计算方法;2.行列式的性质:行列式的性质和性质导出的定理;3.方阵的行列式的计算:按行(列)展开、对角线法则、拉普拉斯展开;4.计算商工差、计算行列式的特殊方法;5.行列式的应用:方阵可逆的判定、线性方程组的解的存在性与唯一性、向量线性相关与线性无关的判定。
三、线性方程组1.线性方程组的线性组合与线性相关性;2.齐次方程组与非齐次方程组的概念;3.齐次线性方程组的基础解系与通解;4.线性方程组的求解方法:初等变换法、高斯消元法、矩阵法;5.线性方程组的解的判别准则:齐次线性方程组有非零解的充分必要条件、非齐次线性方程组有解的充分必要条件。
四、特征值与特征向量1.特征值与特征向量的定义;2.特征值与特征向量的性质:特征值的性质、特征向量的性质;3.对角化与相似矩阵:矩阵的相似与相似矩阵的性质;4.对称矩阵的主轴定理和谱定理;5.特征值与特征向量的计算方法。
五、线性空间与线性变换1.线性空间的定义和性质;2.线性子空间的定义和性质;3.线性相关与线性无关性质的判定;4.线性空间的基与维数的概念;5.线性变换的定义和性质:线性变换的线性性质、线性变换的像与核。
以上就是考研数学线性代数必考的主要知识点。
掌握了这些知识点,可以帮助考生有效准备考研数学线性代数的复习和应对考试,为取得良好成绩打下坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020考研数学线性代数六大重要知识点
出国留学考研网为大家提供2016考研数学线性代数六大重要知
识点,更多考研资讯请关注我们网站的更新!
2016考研数学线性代数六大重要知识点
一、行列式部分,强化概念性质,熟练行列式的求法
行列式对应的是一个数值,是一个实数,明确这一点可以帮助我们检查一些疏漏的低级错误;行列式的计算方法中常用的是定义法,
比较重要的是加边法,数学归纳法,降阶法,利用行列式的性质对
行列式进行恒等变形,化简之后再按行或列展开。
另外范德蒙行列
式也是需要掌握的;行列式的考查方式分为低阶的数字型矩阵和高阶
抽象行列式的计算、含参数的行列式的计算等。
二、矩阵部分,重视矩阵运算,掌握矩阵秩的应用
通过历年真题分类统计与考点分布,矩阵部分的重点考点集中在逆矩阵、伴随矩阵及矩阵方程,其内容包括伴随矩阵的定义、性质、行列式、逆矩阵、秩,在课堂辅导的时候会重点强调.此外,伴随矩
阵的矩阵方程以及矩阵与行列式的结合也是需要同学们熟练掌握的
细节。
涉及秩的应用,包含矩阵的秩与向量组的秩之间的关系,矩
阵等价与向量组等价,对矩阵的秩与方程组的解之间关系的分析,
备考需要在理解概念的基础上,系统地进行归纳总结,并做习题加
以巩固。
三、向量部分,理解相关无关概念,灵活进行判定
向量组的线性相关问题是向量部分的重中之重,也是考研线性代数每年必出的考点。
如何掌握这部分内容呢?首先在于对定义概念的
理解,然后就是分析判定的重点,即:看是否存在一组全为零的或
者有非零解的实数对。
基础线性相关问题也会涉及类似的题型:判
定向量组的线性相关性、向量组线性相关性的证明、判定一个向量
能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关
秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。
四、线性方程组部分,判断解的个数,明确通解的求解思路
线性方程组解的情况,主要涵盖了齐次线性方程组有非零解、非齐次线性方程组解的判定及解的结构、齐次线性方程组基础解系的
求解与证明以及带参数的线性方程组的解的情况。
为了使考生牢固
掌握线性方程组的求解问题,博研堂专家对含参数的方程通解的求
解思路进行了整理,希望对考研同学有所帮助。
通解的求法有两种,若为齐次线性方程组,首先求解方程组的矩阵对应的行列式的值,
在特征值为零和不为零的情况下分别进行讨论,为零说明有解,带
入增广矩阵化简整理;不为零则有唯一解直接求出即可。
若为非齐次
方程组,则按照对增广矩阵的讨论进行求解。
五、矩阵的特征值与特征向量部分,理解概念方法,掌握矩阵
对角化的求解
矩阵的特征值、特征向量部分可划分为三给我板块:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似
对角化。
相关题型有:数值矩阵的特征值和特征向量的求法、抽象
矩阵特征值和特征向量的求法、判定矩阵的相似对角化、有关实对
称矩阵的问题。
六、二次型部分,熟悉正定矩阵的判别,了解规范性和惯性定
理
二次型矩阵是二次型问题的一个基础,且大部分都可以转化为它的实对称矩阵的问题来处理。
另外二次型及其矩阵表示,二次型的
秩和标准形等概念、二次型的规范形和惯性定理也是填空选择题中
的不可或缺的部分,二次型的标准化与矩阵对角化紧密相连,要会
用配方法、正交变换化二次型为标准形;掌握二次型正定性的判别方
法等等。