数学建模-2001年的公交车调度问题

合集下载

国赛历届数学建模赛题题目与解题方法

国赛历届数学建模赛题题目与解题方法

历届数学建模题目浏览:1992--20091992年 (A) 施肥效果分析问题(北京理工大学:叶其孝)(B) 实验数据分解问题(华东理工大学:俞文此; 复旦大学:谭永基)1993年 (A) 非线性交调的频率设计问题(北京大学:谢衷洁)(B) 足球排名次问题(清华大学:蔡大用)1994年 (A) 逢山开路问题(西安电子科技大学:何大可)(B) 锁具装箱问题(复旦大学:谭永基,华东理工大学:俞文此)1995年 (A) 飞行管理问题(复旦大学:谭永基,华东理工大学:俞文此)(B) 天车与冶炼炉的作业调度问题(浙江大学:刘祥官,李吉鸾)1996年 (A) 最优捕鱼策略问题(北京师范大学:刘来福)(B) 节水洗衣机问题(重庆大学:付鹂)1997年 (A) 零件参数设计问题(清华大学:姜启源)(B) 截断切割问题(复旦大学:谭永基,华东理工大学:俞文此)1998年 (A) 投资的收益和风险问题(浙江大学:陈淑平)(B) 灾情巡视路线问题(上海海运学院:丁颂康)1999年 (A) 自动化车床管理问题(北京大学:孙山泽)(B) 钻井布局问题(郑州大学:林诒勋)1999年(C) 煤矸石堆积问题(太原理工大学:贾晓峰)(D) 钻井布局问题(郑州大学:林诒勋)2000年 (A) DNA序列分类问题(北京工业大学:孟大志)(B) 钢管订购和运输问题(武汉大学:费甫生)(C) 飞越北极问题(复旦大学:谭永基)(D) 空洞探测问题(东北电力学院:关信)2001年 (A) 血管的三维重建问题(浙江大学:汪国昭)(B) 公交车调度问题(清华大学:谭泽光)(C) 基金使用计划问题(东南大学:陈恩水)(D) 公交车调度问题(清华大学:谭泽光)2002年 (A) 车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此)(B) 彩票中的数学问题(解放军信息工程大学:韩中庚)(C) 车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此)(D) 赛程安排问题(清华大学:姜启源)2003年 (A) SARS的传播问题(组委会)(B) 露天矿生产的车辆安排问题(吉林大学:方沛辰)(C) SARS的传播问题(组委会)(D) 抢渡长江问题(华中农业大学:殷建肃)2004年 (A) 奥运会临时超市网点设计问题(北京工业大学:孟大志)(B) 电力市场的输电阻塞管理问题(浙江大学:刘康生)(C) 酒后开车问题(清华大学:姜启源)(D) 招聘公务员问题(解放军信息工程大学:韩中庚)2005年 (A) 长江水质的评价和预测问题(解放军信息工程大学:韩中庚)(B) DVD在线租赁问题(清华大学:谢金星等)(C) 雨量预报方法的评价问题(复旦大学:谭永基)(D) DVD在线租赁问题(清华大学:谢金星等)2006年 (A) 出版社的资源配置问题(北京工业大学:孟大志)(B) 艾滋病疗法的评价及疗效的预测问题(天津大学:边馥萍)(C) 易拉罐的优化设计问题(北京理工大学:叶其孝)(D) 煤矿瓦斯和煤尘的监测与控制问题(解放军信息工程大学:韩中庚)2007年 (A) 中国人口增长预测(B) 乘公交,看奥运(C) 手机“套餐”优惠几何(D) 体能测试时间安排2008年(A)数码相机定位,(B)高等教育学费标准探讨,(C)地面搜索,(D)NBA赛程的分析与评价2009年(A)制动器试验台的控制方法分析(B)眼科病床的合理安排(C)卫星和飞船的跟踪测控(D)会议筹备历年全国数学建模试题及解法归纳赛题解法93A非线性交调的频率设计拟合、规划93B足球队排名图论、层次分析、整数规划94A逢山开路图论、插值、动态规划94B锁具装箱问题图论、组合数学95A飞行管理问题非线性规划、线性规划95B天车与冶炼炉的作业调度动态规划、排队论、图论96A最优捕鱼策略微分方程、优化96B节水洗衣机非线性规划97A零件的参数设计非线性规划97B截断切割的最优排列随机模拟、图论98A一类投资组合问题多目标优化、非线性规划98B灾情巡视的最佳路线图论、组合优化99A自动化车床管理随机优化、计算机模拟99B钻井布局 0-1规划、图论00A DNA序列分类模式识别、Fisher判别、人工神经网络00B钢管订购和运输组合优化、运输问题01A血管三维重建曲线拟合、曲面重建赛题解法01B 公交车调度问题多目标规划02A车灯线光源的优化非线性规划02B彩票问题单目标决策03A SARS的传播微分方程、差分方程03B 露天矿生产的车辆安排整数规划、运输问题04A奥运会临时超市网点设计统计分析、数据处理、优化04B电力市场的输电阻塞管理数据拟合、优化05A长江水质的评价和预测预测评价、数据处理05B DVD在线租赁随机规划、整数规划06A出版社书号问题整数规划、数据处理、优化06B Hiv病毒问题线性规划、回归分析07A 人口问题微分方程、数据处理、优化07B 公交车问题多目标规划、动态规划、图论、0-1规划08A 照相机问题非线性方程组、优化08B 大学学费问题数据收集和处理、统计分析、回归分析赛题发展的特点:1. 对选手的计算机能力提出了更高的要求:赛题的解决依赖计算机,题目的数据较多,手工计算不能完成,如03B,某些问题需要使用计算机软件,01A。

数学建模-公交车调度问题

数学建模-公交车调度问题

第三篇公交车调度方案得优化模型2001年 B题公交车调度Array公共交通就是城市交通得重要组成部分,作好公交车得调度对于完善城市交通环境、改进市民出行状况、提高公交公司得经济与社会效益,都具有重要意义。

下面考虑一条公交线路上公交车得调度问题,其数据来自我国一座特大城市某条公交线路得客流调查与运营资料。

该条公交线路上行方向共14站,下行方向共13站,表3—1给出得就是典型得一个工作日两个运行方向各站上下车得乘客数量统计。

公交公司配给该线路同一型号得大客车,每辆标准载客100人,据统计客车在该线路上运行得平均速度为20公里/小时.运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。

试根据这些资料与要求,为该线路设计一个便于操作得全天(工作日)得公交车调度方案,包括两个起点站得发车时刻表;一共需要多少辆车;这个方案以怎样得程度照顾到了乘客与公交公司双方得利益;等等。

如何将这个调度问题抽象成一个明确、完整得数学模型,指出求解模型得方法;根据实际问题得要求,如果要设计更好得调度方案,应如何采集运营数据.公交车调度方案得优化模型*摘要:本文建立了公交车调度方案得优化模型,使公交公司在满足一定得社会效益与获得最大经济效益得前提下,给出了理想发车时刻表与最少车辆数。

并提供了关于采集运营数据得较好建议。

在模型Ⅰ中,对问题1建立了求最大客容量、车次数、发车时间间隔等模型,运用决策方法给出了各时段最大客容量数,再与车辆最大载客量比较,得出载完该时组乘客得最少车次数462次,从便于操作与发车密度考虑,给出了整分发车时刻表与需要得最少车辆数61辆。

模型Ⅱ建立模糊分析模型,结合层次分析求得模型Ⅰ带给公司与乘客双方日满意度为(0、941,0、811)根据双方满意度范围与程度,找出同时达到双方最优日满意度(0、8807,0、8807),且此时结果为474次50辆;从日共需车辆最少考虑,结果为484次45辆。

§2公交车问题数学建模原题

§2公交车问题数学建模原题

§2 公交车调度模型公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要的意义。

下面考虑一条公交线路上的公交车的调度问题,其数据来自于我国一个特大城市,某条公交线路上的客流调查和运营资料。

该条公交线路共上行共14站,下行方向共13站,下面给出的是一个典型工作日中两个运行方向的各个站上下车的乘客数量统计。

公交公司配给该线路同一型号的大客车,每辆的标准载客是100人,客车的平均运行速度是20公里/小时。

根据运营的要求,乘客候车的时间一般不要超过10分钟,早高峰时一般不要超过5分钟,而车辆的满载率120%,一般也不要低于50%试根据这些资料和要求,为该线路设计一个便于全天操作的公交车调度方案,包括两个起点站的发车时刻表;总共需要多少车:以怎样的程度照顾到了乘客和公交公司的利益等。

如何将这个调度问题抽象成一个明确的、完整的数学模型,指出求解模型的方法;根据实际问题的要求,如果设计成一个更好的调度方案,应如何采取运营数据。

站名 A13A12 A11 A10A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 站间距(公里) 1.6 0.5 10.732.041.262.291 1.20.4 1 1.03 0.53 5:00-6:00 上 37160 52 4376904883852645 45 11 0下 08 9 1320484581321824 25 85 57 6:00-7:00 上 1990376 333 256589594315622510176308 307 68 0下 099 105 164239588542800407208300 288 921 615 7:00-8:00 上 3626634 528 447948868523958904259465 454 99 0下 0205 227 272461105810971793801469560 636 1871 1459 8:00-9:00 上 2064322 305 235477549271486439157275 234 60 0下 0106 123 169300634621971440245339 408 1132 759 9:00-10:00 上 1186205 166 14728130417232426778143 162 36 0下 081 75 120181407411551250136187 233 774 483 10:00-11:00 上 923151 120 10821521411921220175123 112 26 0下 052 55 81136299280442178105153 167 532 385 11:00-12:00 上 957181 157 13325426413525326074138 117 30 0下 054 58 84131321291420196119159 153 534 340 12:00-13:00 上 873141 140 10821520412923222165103 112 26 0下 046 49 71111263256389164111134 148 488 333 13:00-14:00 上 779141 103 8418618510321117366108 97 23 0下 039 41 7010322119729713785113 116 384 263 14:00-15:00 上 625104 108 82162180901851704975 85 20 0下 036 39 47781891763391398097 120 383 239 15:00-16:00 上 635124 98 82152180801851504985 85 20 0下 036 39 578820919633912980107 110 353 229 16:00-17:00 上 1493299 240 199396404210428390120208 197 49 0下 080 85 135194450441731335157255 251 800 557 17:00-18:00 上 2011379 311 230497479296586508140250 259 61 0下 0110 118 171257694573957390253293 378 1228 793 18:00-19:00 上 691124 107 891671651082011945393 82 22 0下 045 48 8010823723139015089131 125 428 336 19:00-20:00 上 35064 55 4691855088892748 47 11 0下 022 23 3463116108196834864 66 204 139 20:00-21:00 上 30450 43 3672754077602238 37 9 0下 016 17 24388084143593446 47 160 117 21:00-22:00 上 20937 32 2653552947521628 27 6 0下 014 14 21337863125623040 41 128 92 22:00-23:00 上 19 3 3 2553551 3 2 1 0下 0 3 3 581817271279 9 32 21站名A0A2A3A4A5A6A7A8A9A10A11A12A13站间距(公里) 1.56 1 0.44 1.20.972.29 1.320.73 1 0.5 1.62 5:00-6:00 上 22 3 4 2443331 1 0 0下 0 2 1 1677534 2 3 9 6:00-7:00 上 795143 167 841511881091371304553 16 0下 070 40 401842051951479310975 108 271 7:00-8:00 上 2328380 427 224420455272343331126138 45 0下 0294 156 157710780849545374444265 373 958 8:00-9:00 上 2706374 492 224404532333345354120153 46 0下 0266 158 149756827856529367428237 376 1167 9:00-10:00 上 1556204 274 1252353081622031987699 27 0下 0157 100 80410511498336199276136 219 556 10:00-11:00 上 902147 183 821552061201501435059 18 0下 0103 59 5924634632019114718596 154 438 11:00-12:00 上 847130 132 671271501081041074148 15 0下 094 48 4819923825617512214368 128 346 12:00-13:00 上 70690 118 661051449295883440 12 0下 070 40 4017421520512710311965 98 261 13:00-14:00 上 77097 126 59102133971021043643 13 0下 075 43 431662102091369012760 115 309 14:00-15:00 上 839133 156 691301651011181204249 15 0下 084 48 4821923824615511215378 118 346 15:00-16:00 上 1110170 189 791691941411521665464 19 0下 0110 73 63253307341215136167102 144 425 16:00-17:00 上 1837260 330 14630540422927725395122 34 0下 0175 96 106459617549401266304162 269 784 17:00-18:00 上 3020474 587 248468649388432452157205 56 0下 0330 193 1947379341016606416494278 448 1249 18:00-19:00 上 1966350 399 204328471289335342122132 40 0下 0223 129 150635787690505304423246 320 1010 19:00-20:00 上 939130 165 881381871241431474856 17 0下 0113 59 5926630629020114715586 154 398 20:00-21:00 上 640107 126 6911215387102943643 13 0下 075 43 431862302191469012770 95 319 21:00-22:00 上 636110 128 561051448295983440 12 0下 073 41 4219024319213210712367 101 290 22:00-23:00 上 29443 51 2446583541421517 5 0下 035 20 20871089269476033 49 136。

B2001

B2001

B题公交车调度
公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。

下面考虑一条公交线路上公交车的调度问题,其数据来自我国一座特大城市某条公交线路的客流调查和运营资料。

该条公交线路上行方向共14站,下行方向共13站,第3-4页给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。

公交公司配给该线路同一型号的大客车,每辆标准载客100 人,据统计客车在该线路上运行的平均速度为20公里/小时。

运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。

试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。

如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。

Z=0
Z=1
Z=49 Z=50。

10444-数学建模-公交车的调度

10444-数学建模-公交车的调度

公交车的调度胡敏,郭鹏程,方少军 指导教员:刘卫华(学员旅十队)摘要: 本文就公交车调度问题,运用最优化方法,提出了两个数学模型。

第一个模型采用步长搜索法,以一分钟时间间隔为给定步长,考虑每个站的乘客候车情况,由此来确定是否需要发车。

第二个模型假设在一定的时间间隔内乘客流服从Possion 分布,公交车以等时间间距发出,高峰期和低峰期的发车情况不同且高峰期有加班车辆,提出了一个排队论动态最优化设计模型。

依据算法运行的结果给出了便于操作的全天(工作日)公交车调度方案,该方案需要车辆总数为62辆,上行方向应发车243班次,下行方向应发车238班次。

一、 问题的提出公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。

下面我们对一条公交线路上的公交车进行调度设计,所用的数据来自我国一座特大城市某条公交线路的客流调查和运营资料。

该条公交线路上行方向共14站,下行方向共13站,乘客数量统计表已知。

公交公司配给该线路同一型号的大客车,每辆标准载客100 人,据统计客车在该线路上运行的平均速度为20公里/小时。

运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过 120%,一般也不要低于50%。

现根据这些资料和要求,要为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;指出这个方案是以怎样的程度照顾到了乘客和公交公司双方的利益;等等。

最后将这个调度问题抽象成一个明确、完整的数学模型,指出求解它的方法;根据实际问题的要求确定应如何采集运营数据,才能满足设计更好的调度方案的需要。

二、 问题的分析问题要求在照顾乘客和公交公司双方利益的前提下,设计一个调度车辆的时刻表,可以看作是排队论中系统控制最优化问题。

在一般情形下,提高服务水平(即多派车)自然会减少乘客的候车时间(提高乘客的满意度),单个乘客的满意度可以用下面的公式来衡量:⎪⎪⎩⎪⎪⎨⎧--=高峰期平常551010)(t tt g 其中t 表示等待时间整体乘客的满意度可以用不超过最长等待时间的乘客数与总乘客数的比值来衡量,但同时会增加公交公司的成本使利润降低,此问题的最优化目标之一就是使候车时间以及公交公司的成本两者之和最小并达到这个水平上的最优服务。

数学建模-2001年的公交车调度问题

数学建模-2001年的公交车调度问题

第三篇公交车调度方案的优化模型2001年 B题公交车调度公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。

下面考虑一条公交线路上公交车的调度问题,其数据来自我国一座特大城市某条公交线路的客流调查和运营资料。

该条公交线路上行方向共14站,下行方向共13站,表3-1给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。

公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运行的平均速度为20公里/小时。

运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。

试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。

如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。

站名A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 站间距(公里) 1.6 0.5 1 0.73 2.04 1.26 2.29 1 1.2 0.4 1 1.03 0.53 5:00-6:00 上371 60 52 43 76 90 48 83 85 26 45 45 11 0 下0 8 9 13 20 48 45 81 32 18 24 25 85 57 6:00-7:00 上1990 376 333 256 589 594 315 622 510 176 308 307 68 0 下0 99 105 164 239 588 542 800 407 208 300 288 921 615 7:00-8:00 上3626 634 528 447 948 868 523 958 904 259 465 454 99 0 下0 205 227 272 461 1058 1097 1793 801 469 560 636 1871 1459 8:00-9:00 上2064 322 305 235 477 549 271 486 439 157 275 234 60 0 下0 106 123 169 300 634 621 971 440 245 339 408 1132 759 9:00-10:00 上1186 205 166 147 281 304 172 324 267 78 143 162 36 0 下0 81 75 120 181 407 411 551 250 136 187 233 774 483 10:00-11:00 上923 151 120 108 215 214 119 212 201 75 123 112 26 0 下0 52 55 81 136 299 280 442 178 105 153 167 532 385 11:00-12:00 上957 181 157 133 254 264 135 253 260 74 138 117 30 0 下0 54 58 84 131 321 291 420 196 119 159 153 534 340 12:00-13:00 上873 141 140 108 215 204 129 232 221 65 103 112 26 0 下0 46 49 71 111 263 256 389 164 111 134 148 488 333 13:00-14:00 上779 141 103 84 186 185 103 211 173 66 108 97 23 0 下0 39 41 70 103 221 197 297 137 85 113 116 384 263 14:00-15:00 上625 104 108 82 162 180 90 185 170 49 75 85 20 0 下0 36 39 47 78 189 176 339 139 80 97 120 383 239 15:00-16:00 上635 124 98 82 152 180 80 185 150 49 85 85 20 0 下0 36 39 57 88 209 196 339 129 80 107 110 353 22916:00-17:00 上1493 299 240 199 396 404 210 428 390 120 208 197 49 0 下0 80 85 135 194 450 441 731 335 157 255 251 800 557 17:00-18:00 上2011 379 311 230 497 479 296 586 508 140 250 259 61 0 下0 110 118 171 257 694 573 957 390 253 293 378 1228 793 18:00-19:00 上691 124 107 89 167 165 108 201 194 53 93 82 22 0 下0 45 48 80 108 237 231 390 150 89 131 125 428 336 19:00-20:00 上350 64 55 46 91 85 50 88 89 27 48 47 11 0 下0 22 23 34 63 116 108 196 83 48 64 66 204 139 20:00-21:00 上304 50 43 36 72 75 40 77 60 22 38 37 9 0 下0 16 17 24 38 80 84 143 59 34 46 47 160 117 21:00-22:00 上209 37 32 26 53 55 29 47 52 16 28 27 6 0 下0 14 14 21 33 78 63 125 62 30 40 41 128 92 22:00-23:00 上19 3 3 2 5 5 3 5 5 1 3 2 1 0 下0 3 3 5 8 18 17 27 12 7 9 9 32 21站名A0 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 站间距(公里) 1.56 1 0.44 1.2 0.97 2.29 1.3 2 0.73 1 0.5 1.62 5:00-6:00 上22 3 4 2 4 4 3 3 3 1 1 0 0 下0 2 1 1 6 7 7 5 3 4 2 3 9 6:00-7:00 上795 143 167 84 151 188 109 137 130 45 53 16 0 下0 70 40 40 184 205 195 147 93 109 75 108 271 7:00-8:00 上2328 380 427 224 420 455 272 343 331 126 138 45 0 下0 294 156 157 710 780 849 545 374 444 265 373 958 8:00-9:00 上2706 374 492 224 404 532 333 345 354 120 153 46 0 下0 266 158 149 756 827 856 529 367 428 237 376 1167 9:00-10:00 上1556 204 274 125 235 308 162 203 198 76 99 27 0 下0 157 100 80 410 511 498 336 199 276 136 219 556 10:00-11:00 上902 147 183 82 155 206 120 150 143 50 59 18 0 下0 103 59 59 246 346 320 191 147 185 96 154 438 11:00-12:00 上847 130 132 67 127 150 108 104 107 41 48 15 0 下0 94 48 48 199 238 256 175 122 143 68 128 346 12:00-13:00 上706 90 118 66 105 144 92 95 88 34 40 12 0 下0 70 40 40 174 215 205 127 103 119 65 98 261 13:00-14:00 上770 97 126 59 102 133 97 102 104 36 43 13 0 下0 75 43 43 166 210 209 136 90 127 60 115 309 14:00-15:00 上839 133 156 69 130 165 101 118 120 42 49 15 0 下0 84 48 48 219 238 246 155 112 153 78 118 346 15:00-16:00 上1110 170 189 79 169 194 141 152 166 54 64 19 0 下0 110 73 63 253 307 341 215 136 167 102 144 425 16:00-17:00 上1837 260 330 146 305 404 229 277 253 95 122 34 0 下0 175 96 106 459 617 549 401 266 304 162 269 784 17:00-18:00 上3020 474 587 248 468 649 388 432 452 157 205 56 0 下0 330 193 194 737 934 1016 606 416 494 278 448 1249 18:00-19:00 上1966 350 399 204 328 471 289 335 342 122 132 40 0 下0 223 129 150 635 787 690 505 304 423 246 320 1010 19:00-20:00 上939 130 165 88 138 187 124 143 147 48 56 17 0 下0 113 59 59 266 306 290 201 147 155 86 154 398 20:00-21:00 上640 107 126 69 112 153 87 102 94 36 43 13 0 下0 75 43 43 186 230 219 146 90 127 70 95 319 21:00-22:00 上636 110 128 56 105 144 82 95 98 34 40 12 0 下0 73 41 42 190 243 192 132 107 123 67 101 290 22:00-23:00 上294 43 51 24 46 58 35 41 42 15 17 5 0 下0 35 20 20 87 108 92 69 47 60 33 49 136公交车调度方案的优化模型*摘要:本文建立了公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益的前提下,给出了理想发车时刻表和最少车辆数。

2001年BD题《公交车调度》题目、论文、点评

2001年BD题《公交车调度》题目、论文、点评

2001年BD题《公交车调度》题目、论文、点评2001年B\\D题《公交车调度》题目、论文、点评公交车调度问题的研究董强刘超慧...本题为带软时间窗的单线路单车型的公交调度问题,针对其多目标、多变量的动态特点,我们为满足不同的实际需求建立多个目标规划模型:双车场模型和单车场模型。

双车场模型的主要目标是使运客能力与运输需求(实际客运量)达到最优匹配,单车场模型的主要目标是使乘客的平均不方便程度和公交公司的成本达最小,其目的都是为了兼顾乘客与公司双方的利益。

两个模型的主体都是采用时间步长法,模拟实际的运营过程,从而得出符合实际要求的调度方案:静态调度和动态调度方案。

公交车调度问题的研究.pdf (192.23 KB)公交车调度的规划数学模型薄立军要尉鹏本文根据有序样本聚类的Fisher算法,给出一种蜂值曲线的优化方法,通过该方法我们得出了上行客流峰值为5个,其峰值区间为5:00-6:00,6:00-9:00,9:00-16:00,16:00-18:00,18:00-23:00;下行客流峰值为5个,其峰值区间为:5:00-7:00,7:00-9:00,9:00-16:00,16:00-19:00,19:00-23:00。

然后,依据峰值区间建立确定发车间隔的算法Ⅰ模型和算法Ⅱ模型,对两种算法模型计算结果进行比较分析,得出结论:两个间隔高峰类时间段用算法Ⅰ进行求解,其余3个类时间段用算法Ⅱ进行求解。

在各个时间段结合处用光滑法进行优化处理,并以处理后的数据为基础制定出两个起点站的发车时刻表,并求出全线共需47辆车,乘客对方案的满意程度为98.2%,公交公司的满意程度为76.23%。

最后,运用随机服务系统的相关理论建立随机规划模型,给出概率灵敏度的误差分析,进而得出采集运营数据的较好方案。

公交车调度的规划数学模型.pdf (191.94 KB)公交车调度吕鹏张文夫本文利用多目标优化方法建立了公交车调度的数学模型。

公交车调度问题

公交车调度问题

公交车调度问题关于公交车的调度问题摘要:本文主要是研究公交车调度的最优策略问题。

我们建立了一个以公交车的利益为目标函数的优化模型,同时保证等车时间超过10 分钟(或者超过 5 分钟)的乘客人数在总的等车乘客数所占的比重小于一个事先给定的较小值。

首先,利用最小二乘法拟合出各站上(下)车人数的非参数分布函数,求解时先用一种简单方法估算出最小配车数43 辆。

然后依此为参照值,利用Maple 优化工具得到一个整体最优解:最小配车数为48 辆,并给出了在公交车载客量不同条件下的最优车辆调度方案,使得公司的收益得到最大,并且乘客等车的时间不宜过长,最后对整个模型进行了推广和评价,指出了有效改进方向。

关键词:公交车调度;优化模型;最小二乘法问题的重述:公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。

下面考虑一条公交线路上公交车的调度问题,其数据来自我国一座特大城市某条公交线路的客流调查和运营资料。

该条公交线路上行方向共14 站,下行方向共13 站,第3-4 页给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。

公交公司配给该线路同一型号的大客车,每辆标准载客100 人,据统计客车在该线路上运行的平均速度为20 公里/小时。

运营调度要求,乘客候车时间一般不要超过10 分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。

试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。

如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。

基本假设1)该公交路线不存在堵塞现象,且公共汽车之间依次行进,不存在超车现象。

数学建模-2001年的公交车调度问题教学内容

数学建模-2001年的公交车调度问题教学内容

数学建模-2001年的公交车调度问题第三篇公交车调度方案的优化模型2001年 B题公交车调度Array公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。

下面考虑一条公交线路上公交车的调度问题,其数据来自我国一座特大城市某条公交线路的客流调查和运营资料。

该条公交线路上行方向共14站,下行方向共13站,表3-1给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。

公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运行的平均速度为20公里/小时。

运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。

试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。

如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。

公交车调度方案的优化模型*摘要:本文建立了公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益的前提下,给出了理想发车时刻表和最少车辆数。

并提供了关于采集运营数据的较好建议。

在模型Ⅰ中,对问题1建立了求最大客容量、车次数、发车时间间隔等模型,运用决策方法给出了各时段最大客容量数,再与车辆最大载客量比较,得出载完该时组乘客的最少车次数462次,从便于操作和发车密度考虑,给出了整分发车时刻表和需要的最少车辆数61辆。

模型Ⅱ建立模糊分析模型,结合层次分析求得模型Ⅰ带给公司和乘客双方日满意度为(0.941,0.811)根据双方满意度范围和程度,找出同时达到双方最优日满意度(0.8807,0.8807),且此时结果为474次50辆;从日共需车辆最少考虑,结果为484次45辆。

车辆调度问题的数学模型-精选文档

车辆调度问题的数学模型-精选文档

车辆调度问题的数学模型车辆调度是公交公司、旅游公司、企事业单位等经常遇到的问题,在分析乘车人数、时间、地点等因素的基础上,如何购置车辆使得成本最低,如何合理安排车辆以满足乘客需要,如何使车辆运营费用最省,这些问题都可通过数学建模的方法加以解决.下面以某学校的车辆调度为例进行研究:1.在某次会议上,学校租车往返接送参会人员从A校区到B 校区.参会人员数量见附表1,车辆类型及费用见附表2,请你研究费用最省的租车方案.2.学校准备购买客车,组建交通车队以满足教师两校区间交通需求.假设各工作日教师每日乘车的需求是固定的(见附表3),欲购买的车型已确定(见附表4),两校区间车辆运行时间固定为平均行驶时间35分钟.若不考虑运营成本,请你确定购买方案,使总购价最省.附表1参会人员数量二、问题二模型的建立与求解1.问题分析由于两校区间车辆单程运行时间为35分钟,往返则需70分钟,因此,若不同校区之间的发车时间小于35分钟,或同一校区的发车时间小于70分钟的话,车辆是不能周转使用的,据此便可确定某一时段的乘车人数.通过观察A校区与B校区的18个发车时间,可以看出有两个乘车高峰时段,第一个高峰时段是早上7:30至8:15(即早高峰时段),乘车人数为188人.第二个高峰时段是下午17:15至17:45(即晚高峰时段),乘车人数为222人.从乘车人数看晚高峰时段要多于早高峰时段,而且晚高峰时段的发车时间较为分散,显然只要按晚高峰时段购买车辆,便可满足教师乘车需求.2.模型的建立与求解为建立模型的需要,我们将A校区的发车时间17:15,B校区的发车时间17:15,17:30,17:45依次按1,2,3,4编号.设xij为第i个发车时间点需购置的j型车的数量,(i=1,2,3,4;j=1,2,…,6),cj为购置(包括购置税10%)第j型车的单价,j=1,2,…,6.目标函数是使购车总费用最小.约束条件:满足晚高峰时段各个发车时间点的乘车需求.设z表示购车总费用,在不考虑运营成本的情况下,建立整数线性规划模型如下:minz=∑41i=1∑61jcjxij。

全国大学生数学建模竞赛题目B题

全国大学生数学建模竞赛题目B题

B 题公交车调度
公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民岀行状况、提高公交公司的经济和社会效益,都具有重要意义。

下面考虑一条公交线路上公交车的调度问题,其数据来自我国一座特大城市某条公交线路的客流调查和运营资料。

该条公交线路上行方向共14站,下行方向共13站,第3-4页给岀的是典型的一个工作日两个运行方向各
站上下车的乘客数量统计。

公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该
线路上运行的平均速度为20公里/小时。

运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般
不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。

试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点
站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。

如何将这个调度问题抽象成一个明确、完整的数学模型,指岀求解模型的方法;根据实际问题的要求, 如果要设计更好的调度方案,应如何采集运营数据。

数学建模的公交车调度问题

数学建模的公交车调度问题

第三篇公交车调度方案的优化模型2001年 B题公交车调度公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。

下面考虑一条公交线路上公交车的调度问题,其数据来自我国一座特大城市某条公交线路的客流调查和运营资料。

该条公交线路上行方向共14站,下行方向共13站,表3-1给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。

公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运行的平均速度为20公里/小时。

运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。

试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。

如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。

公交车调度方案的优化模型*摘要:本文建立了公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益的前提下,给出了理想发车时刻表和最少车辆数。

并提供了关于采集运营数据的较好建议。

在模型Ⅰ中,对问题1建立了求最大客容量、车次数、发车时间间隔等模型,运用决策方法给出了各时段最大客容量数,再与车辆最大载客量比较,得出载完该时组乘客的最少车次数462次,从便于操作和发车密度考虑,给出了整分发车时刻表和需要的最少车辆数61辆。

模型Ⅱ建立模糊分析模型,结合层次分析求得模型Ⅰ带给公司和乘客双方日满意度为(0.941,0.811)根据双方满意度范围和程度,找出同时达到双方最优日满意度(0.8807,0.8807),且此时结果为474次50辆;从日共需车辆最少考虑,结果为484次45辆。

公交车排班问题数学建模

公交车排班问题数学建模

公交车排班问题数学建模
公交车排班问题可以用数学建模来解决。

以下是建模步骤:
1. 确定时间段和班次:首先,需要确定公交车公司的营业时间段以及规划的班次数目。

2. 收集数据:收集历史乘客流量、不同时间段的平均载客量、行车路线、拐点等数据,以这些数据为基础进行排班计划。

3. 建立模型:根据收集到的数据建立排班数学模型,如线性规划模型或整数规划模型。

4. 优化计算:通过计算机模拟或数学优化软件,寻找最优排班方案。

5. 调整和验证:根据实际情况对模型进行调整和验证,不断优化排班计划。

需要注意的是,公交车排班问题还涉及车辆维护、司机轮换等因素,需要考虑多种因素进行综合优化。

因此,在建模过程中需要综合考虑各种变量和约束条件。

数学建模关于汽车调度方案

数学建模关于汽车调度方案

汽车租赁调度问题摘要本文针对我国汽车租赁与调度的问题进行分析和研究,主要采用线性规划优化问题来建立数学模型,合理运用lingo,matlab软件编程计算出最终结果。

根据附件提供的数据利用MATLAB计算各个代理点之间欧式距离、调度费用等数据,根据四个问题的题意确定合理的目标函数和约束条件,利用LINGO工具求解线性规划方程,从而实现汽车租赁的最优化调度,得到各个问题的全局最优解。

针对问题一,我们假设每天调度的车辆不再返回原代理点,利用MATLAB计算各代理点之间的转运费用,以尽量满足需求作为约束条件,建立总转运费用最低的数学模型,基于附件一和附件三所给的数据,我们通过matlab软件分析得到各个可供租赁的汽车代理点的位置分布图,如图1。

并且可以通过对附件1中数据的分析确定各个代理点之间的基本转进转出关系,其次,对汽车租赁公司各个代理点之间调配进行分析,并且建立模型,利用LINGO软件求最优解,得到未来四周的最优调度方案。

针对问题二,在问题一的基础上,从转运费用和短缺损失两个方面进行考虑,建立目标函数。

然后使二者之和最低,进一步求出目标函数的最小值。

同时,为了防止转运周折产生多余费用,只进行汽车的单向转入与转出,运用累加法算出相对最小转运费。

最后找到相对费用与短缺损失的最小值,从而得到满足调度的最优方案。

针对问题三,综合考虑公司获利、转运费用以及短缺损失等因素,在需求量大于拥有量时,对i代理点进行分析,利用规划模型求出i代理点转给j代理点一辆车所获得的利润。

再以此类推,分别求出转移一辆车至其余代理点所获得的利润。

最后取i代理点转给所有的转入代理点多获得的利润的最大值,即得到使公司获得利益最大化的调度方案。

针对问题四,从长远考虑,通过分析总的短缺损失、采购一辆新车运营8年的预计收益以及运营8年期间的维修保险费,判断是否购买新车。

其次通过比较10款汽车的成本以及8年期间的维修保险费用,确定如果需要购车,选择费用最低的第8款汽车。

2001年全国大学生数学建模竞赛题目B题

2001年全国大学生数学建模竞赛题目B题

B题公交车调度公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。

下面考虑一条公交线路上公交车的调度问题,其数据来自我国一座特大城市某条公交线路的客流调查和运营资料。

该条公交线路上行方向共14站,下行方向共13站,第3-4页给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。

公交公司配给该线路同一型号的大客车,每辆标准载客100 人,据统计客车在该线路上运行的平均速度为20公里/小时。

运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。

试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。

如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。

下0 70 40 40 174 215 205 127 103 119 65 98 261 13:00-14:00 上770 97 126 59 102 133 97 102 104 36 43 13 0 下0 75 43 43 166 210 209 136 90 127 60 115 309 14:00-15:00 上839 133 156 69 130 165 101 118 120 42 49 15 0 下0 84 48 48 219 238 246 155 112 153 78 118 346 15:00-16:00 上1110 170 189 79 169 194 141 152 166 54 64 19 0 下0 110 73 63 253 307 341 215 136 167 102 144 425 16:00-17:00 上1837 260 330 146 305 404 229 277 253 95 122 34 0 下0 175 96 106 459 617 549 401 266 304 162 269 784 17:00-18:00 上3020 474 587 248 468 649 388 432 452 157 205 56 0 下0 330 193 194 737 934 1016 606 416 494 278 448 1249 18:00-19:00 上1966 350 399 204 328 471 289 335 342 122 132 40 0 下0 223 129 150 635 787 690 505 304 423 246 320 1010 19:00-20:00 上939 130 165 88 138 187 124 143 147 48 56 17 0 下0 113 59 59 266 306 290 201 147 155 86 154 398 20:00-21:00 上640 107 126 69 112 153 87 102 94 36 43 13 0 下0 75 43 43 186 230 219 146 90 127 70 95 319 21:00-22:00 上636 110 128 56 105 144 82 95 98 34 40 12 0 下0 73 41 42 190 243 192 132 107 123 67 101 290 22:00-23:00 上294 43 51 24 46 58 35 41 42 15 17 5 0 下0 35 20 20 87 108 92 69 47 60 33 49 136。

公共自行车调度问题-数学建模论文

公共自行车调度问题-数学建模论文

目录一、问题引入..................................................................................................................................... - 3 -二、问题分析..................................................................................................................................... - 3 -2.1第一问分析................................................................................................................... - 4 -2.2第二问分析................................................................................................................... - 4 -2.3第三问分析................................................................................................................... - 4 -三、模型假设和符号说明................................................................................................................. - 5 -3.1模型假设....................................................................................................................... - 5 -3.2符号系统....................................................................................................................... - 6 -四、模型建立..................................................................................................................................... - 6 -4.1模型分类....................................................................................................................... - 6 -4.2 租赁点分配方案建模.................................................................................................. - 7 -4.3 调度车调度方案建模.................................................................................................. - 8 -4.3.1一辆调度车调度方案....................................................................................... - 8 -4.3.2多辆调度车调度方案....................................................................................... - 9 -4.4租赁点数目和位置的确定......................................................................................... - 11 -4.5 调度时间的模型........................................................................................................ - 12 -五、模型的求解............................................................................................................................. - 13 -5.0经纬度转换为横纵坐标............................................................................................. - 13 -5.1 求解最短路径............................................................................................................ - 13 -5.2 模型一次运行后的单车重分配求解........................................................................ - 14 -5.3 求解分配方案的预估—校正算法............................................................................ - 16 -5.4 求解调度方案的启发式算法.................................................................................... - 16 -5.4.1算法简介......................................................................................................... - 16 -5.4.2算法内容......................................................................................................... - 17 -5.4.3约束条件......................................................................................................... - 18 -5.4.4算法流程图..................................................................................................... - 19 -5.5租赁点位置................................................................................................................. - 20 -5.6计算结果..................................................................................................................... - 20 -5.6.1第一问结果..................................................................................................... - 20 -5.6.2第二问结果..................................................................................................... - 21 -5.6.3第三问结果..................................................................................................... - 23 -六、模型检验................................................................................................................................... - 26 -七、模型优缺点以及改进............................................................................................................... - 26 -7.1分配方案的优点......................................................................................................... - 27 -7.2调度方案的缺优点..................................................................................................... - 27 -7.3新增节点模型的优缺点............................................................................................. - 27 -7.4模型和算法的改进..................................................................................................... - 28 -7.4.1算法的改进..................................................................................................... - 28 -7.4.2模型的改进..................................................................................................... - 28 -八、参考文献................................................................................................................................... - 30 -附录................................................................................................................................................... - 30 -一、问题引入近年来,随着经济的发展,我国各级城市的机动车保有量都进入了持续高速增长时期,但由此所引发的道路拥堵、空气污染也引起了政府以及百姓的极大关注。

《独创》数学建模-公交车调度模型建立

《独创》数学建模-公交车调度模型建立

图 1 g13 t 函数图像(图的大小我注意)
5
对公交线路全天的上车乘客数的函数 g j t 求一阶导, g j ' t 则表示第 j 个公交车站
1.2
问题提出
本问题考虑一条公交线路上公交车的调度问题,其数据来自我国一座特大城市某条 公交线路的客流调查和运营资料。 该条公交线路上行方向共 14 站,下行方向共 13 站,第 3-4 页给出的是典型的一个 工作日两个运行方向各站上下车的乘客数量统计。 公交公司配给该线路同一型号的大客 车,每辆标准载客 100 人,据统计客车在该线路上运行的平均速度为 20 公里/小时。运 营调度要求,乘客候车时间一般不要超过 10 分钟,早高峰时一般不要超过 5 分钟,车 辆满载率不应超过 120%,一般也不要低于 50%。 试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调 度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照 顾到了乘客和公交公司双方的利益;等等。 如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实 际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。
2
一、 问题重述
1.1 问题背景
公共交通是城市交通的重要组成部分。城市的现代化,尤其是城市功能的完善,离 不开城市交通的优化和提高。近些年来,随着我国社会的发展和城市居民收入水平的提 高,家庭私人轿车在城市交通中逐渐占据了一定地位,但这并不会削弱和取代公共交通 的功能和作用。根据世界各国的经验,优良的公交服务对于减少城市的交通拥挤、环境 污染,提高交通资源的配置效益等方面都具有积极的作用。目前,我国仍有不少城市公 交服务还没有充分发挥作用,常常出现车辆拥挤与闲置等问题,其重要原因之一就是车 辆调度依赖主观经验, 缺少严密科学的设计。 作好公交车的调度对于完善城市交通环境、 改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三篇公交车调度方案的优化模型2001年 B题公交车调度公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。

下面考虑一条公交线路上公交车的调度问题,其数据来自我国一座特大城市某条公交线路的客流调查和运营资料。

该条公交线路上行方向共14站,下行方向共13站,表3-1给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。

公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运行的平均速度为20公里/小时。

运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。

试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。

如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。

站名A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0站间距(公里) 1.6 0.5 1 0.73 2.04 1.26 2.29 1 1.2 0.4 1 1.03 0.53 5:00-6:00 上371 60 52 43 76 90 48 83 85 26 45 45 11 0 下0 8 9 13 20 48 45 81 32 18 24 25 85 57 6:00-7:00 上1990 376 333 256 589 594 315 622 510 176 308 307 68 0 下0 99 105 164 239 588 542 800 407 208 300 288 921 615 7:00-8:00 上3626 634 528 447 948 868 523 958 904 259 465 454 99 0 下0 205 227 272 461 1058 1097 1793 801 469 560 636 1871 1459 8:00-9:00 上2064 322 305 235 477 549 271 486 439 157 275 234 60 0 下0 106 123 169 300 634 621 971 440 245 339 408 1132 759 9:00-10:00 上1186 205 166 147 281 304 172 324 267 78 143 162 36 0 下0 81 75 120 181 407 411 551 250 136 187 233 774 483 10:00-11:00 上923 151 120 108 215 214 119 212 201 75 123 112 26 0 下0 52 55 81 136 299 280 442 178 105 153 167 532 385 11:00-12:00 上957 181 157 133 254 264 135 253 260 74 138 117 30 0 下0 54 58 84 131 321 291 420 196 119 159 153 534 340 12:00-13:00 上873 141 140 108 215 204 129 232 221 65 103 112 26 0 下0 46 49 71 111 263 256 389 164 111 134 148 488 333 13:00-14:00 上779 141 103 84 186 185 103 211 173 66 108 97 23 0 下0 39 41 70 103 221 197 297 137 85 113 116 384 263 14:00-15:00 上625 104 108 82 162 180 90 185 170 49 75 85 20 0 下0 36 39 47 78 189 176 339 139 80 97 120 383 239 15:00-16:00 上635 124 98 82 152 180 80 185 150 49 85 85 20 0下0 35 20 20 87 108 92 69 47 60 33 49 136公交车调度方案的优化模型*摘要:本文建立了公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益的前提下,给出了理想发车时刻表和最少车辆数。

并提供了关于采集运营数据的较好建议。

在模型Ⅰ中,对问题1建立了求最大客容量、车次数、发车时间间隔等模型,运用决策方法给出了各时段最大客容量数,再与车辆最大载客量比较,得出载完该时组乘客的最少车次数462次,从便于操作和发车密度考虑,给出了整分发车时刻表和需要的最少车辆数61辆。

模型Ⅱ建立模糊分析模型,结合层次分析求得模型Ⅰ带给公司和乘客双方日满意度为(0.941,0.811)根据双方满意度围和程度,找出同时达到双方最优日满意度(0.8807,0.8807),且此时结果为474次50辆;从日共需车辆最少考虑,结果为484次45辆。

对问题2,建立了综合效益目标模型及线性规划法求解。

对问题3,数据采集方法是遵照前门进中门出的规律,运用两个自动记录机对上下车乘客数记录和自动报站机(加报时间信息)作录音结合,给出准确的各项数据,返站后结合日期储存到公司总调度室。

关键词:公交调度;模糊优化法;层次分析;满意度*本文获2001年全国一等奖。

队员:叶云,周迎春,齐欢,指导教师:朱家明等。

§1 问题的重述一、问题的基本背景公交公司制定公交车调度方案,要考虑公交车、车站和乘客三方面因素。

我国某特大城市某条公交线路情况,一个工作日两个运营方向各个站上下车的乘客数量统计见表3-1。

二、运营及调度要求1.公交线路上行方向共14站,下行方向共13站;2.公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运营的平均速度为20公里/小时。

车辆满载率不应超过120%,一般也不低于50%;3.乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟。

三、要求的具体问题1.试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益,等等;2.如何将这个调度问题抽象成一个明确完整的数学模型,并指出求解方法;3.据实际问题的要求,如果要设计好更好的调度方案,应如何采集运营数据。

3.2 问题的分析本问题的难点是同时考虑到完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益等诸多因素。

如果仅考虑提高公交公司的经济效益,则只要提高公交车的满载率,运用数据分析法可方便地给出它的最佳调度方案;如果仅考虑方便乘客出行,只要增加车辆数的次数,运用统计方法同样可以方便地给出它的最佳调度方案,显然这两种方案是对立的。

于是我们将此题分成两个方面,分别考虑到:⑴公交公司的经济效益,记为公司的满意度;⑵乘客的等待时间和乘车的舒适度,记为乘客的满意度。

显然公交公司的满意度取决于每一趟车的满载率,且满载率越高,公交公司的满意度越高;乘客的满意度取决于乘客等待的时间和乘车的舒适度,而乘客等待时间取决于车辆的班次,班次越多等待时间越少,满意度越高;乘客的舒适度取决于是否超载,超载人数越少,乘客越满意。

很明显可以知道公交公司的满意度与乘客的满意度相互矛盾,所以我们需要在这两个因素中找出一个合理的匹配关系,使得双方的满意度达到最好。

3.3 模型的假设1.道路:交通情况、路面状况良好,无交通堵塞和车辆损坏等意外情况;2.公交车:发车间隔取整分钟,行进中彼此赶不上且不超车,到达终点站后调头变为始发车; 3.乘客:在每时段到达车站的人数可看作是负指数分布,乘客乘车是按照排队的先后有序原则乘车,且不用在两辆车的间隔等待太久;4.数据:“人数统计表”中的数据来源准确、可信、稳定、科学; 5.票价:乘车票价为定值,不因乘车远近而改变。

3.4 定义与符号说明序号 符号 意义1 ijk a上或下行第j 时段第k 站上车人数; 2 ijk b 上或下行第j 时段第k 站下车人数;3 ij l上或下行第j 时段最大客容量; 4 ij k上或下行时第j 时段平均载客量;5 C 日所需总车次;6 ij c 上或下行第j 时段的车次;7 ij s上或下行第j 时段平均发车时差; 8 ijp 上或下行第j 时段平均载客量; 9 ij t上或下行的平均发车时间间隔; 10 gi m上或下行时公交公司日平均满意度; 11 ci m上或下行时乘客整体日平均满意度;12 gij m 上或下行时公交公司各时段的满意度; 13 cij m 上或下行时乘客各时段的满意度;14Q日所需车辆数。

注:(表示上行运动(),表示下行运动(),18,3,2,1 ,=j 。

3.5 模型的建立与求解3.5.1 模型Ⅰ:相关量及车辆数的确定模型对问题1为设计便于操作的公交车调度方案,根据表3-1给出的一个工作日两个运营方向各个站上下车的乘客数量统计,假设各时段车辆平均足够载完在相等时间到达的乘客,乘客也只能乘坐该路车而没有太大的不满,我们要设计两个起点站的发车时刻表,计算需要的车辆数,首先可建立以下各模型来求相关量。

1.相关量⑴上下行各时间段最大客容量:建立模型如下{}{}⎪⎪⎩⎪⎪⎨⎧==-==-=∑∑==13,2,12max14,2,11max 11 ,,n i b a m i b a l n k ijkijk m k ijk ijk ij运用模型和表3-1中的上下车乘客数,算出上下行各时间段最大客容量如下: 上行:716,2943,5018,2705,1528,1193,1355,1200,1040,881,871,2133,2722,897,464,410,275,19;图3-1 (1)上行各时间段最大客容量 图3-1 (2)下行各时间段最大客容量⑵车次数:因为座位数为100的客车满载率在50%和120%之间,即12050≤≤ij k ,在满足客车满载率和载完各时段所有乘客前提下,由模型:∑∑===21181i j ijcC ,⎪⎪⎩⎪⎪⎨⎧∈∉+⎥⎦⎤⎢⎣⎡=++Z l l Z l l c ij ij ijij ij120,120120,1120(其中Z +是正整数) 可计算每个时段的详细车次数如下:上行:6,25,42,23,13,10,12,10,9,8,8,18,24,8,4,4,3,4;下行:3,9,23,27,16,10,9,7,8,9,11,19,31,21,10,7,7,4。

相关文档
最新文档