有限元方法理论及其应用
计算电磁学中的有限元方法
计算电磁学中的有限元方法随着计算机技术的不断发展和应用,计算电磁学研究的范围和深度不断提高,其应用领域也越来越广泛。
有限元方法是计算电磁学研究中重要的数值分析方法之一,其可模拟复杂电磁场问题,有着广泛的应用。
本文将简要介绍计算电磁学中的有限元方法的一些基本原理和应用。
一、有限元法基本理论有限元方法是数值分析中一种重要的数学工具,其基本思想是将整个计算区域分割成若干个简单的单元,然后在每个单元内选取一个适当的基函数,通过求解基函数系数来表示数值解。
这种思想很容易扩展到计算电磁场问题上,因为电磁场分布可以被视为由一些小电磁场单元组成。
有限元方法的基本过程包括建立有限元模型、离散化、求解以及后处理。
其中建模是有限元方法中最重要的一个环节。
在建模过程中,首先需要选取合适的计算区域,并将其离散化为若干个小单元(如三角形、四边形等)。
然后,我们需要选取适当的基函数,并确定它们所对应的系数的初始值。
一旦有限元模型被建立,我们就可以进行求解了。
具体来说,有限元法的求解过程需要求解一个大规模的稀疏矩阵方程,其中系数矩阵和右侧向量都与电磁场有关。
这个过程需要借助计算机的优势,通过矩阵解法算法完成求解。
最后,我们通过后处理来获得我们需要的电磁场信息或工程参数,例如电势、磁场强度、感应电动势等。
二、有限元法应用领域有限元法在计算电磁学中广泛应用。
其应用范围涉及电机、变压器、电力电子、雷达、电磁兼容等多个领域。
有限元法可用于仿真复杂的电磁场分布问题,例如在电机设计中,有限元法可用于电机磁场分析、电机振动分析以及谐波分析等。
在电力电子领域中,有限元法可用于设计电感元件和变压器等。
另外,有限元法在雷达技术中也有着广泛的应用,可用于雷达天线设计和仿真。
三、有限元法的优缺点有限元法作为一种数值分析方法,具有一定优缺点。
有限元法的主要优点在于它具有很强的适应性和通用性,可用于模拟各种复杂的材料和几何形状。
此外,有限元法允许我们针对不同的模型选择不同的元素类型和元素尺寸,因此可以根据实际需求自由选择不同的模型。
有限元法及应用知识点总结
• 但是必须指出,无论是虚位移原理还是虚应力原理, 他们所依赖的几何方程和平衡方程都是基于小变形理 论的,他们不能直接应用于基于大变形理论的力学问 题。
4.最小位能原理和最小余能原理
• 明确:最小位能原理是建立在虚位移原理基础上 的,而最小余能原理建立在虚应力原理基础上。
在工程实际中较为重要的材料非线性问题有:非线性弹性 (包括分段线弹性)、弹塑性、粘塑性及蠕变等。
2)几何非线性问题
几何非线性问题是由于位移之间存在非线 性关系引起的。
当物体的位移较大时,应变与位移的关系 是非线性关系。研究这类问题一般都是假 定材料的应力和应变呈线性关系。它包括 大位移大应变及大位移小应变问题。如结 构的弹性屈曲问题属于大位移小应变问题, 橡胶部件形成过程为大应变问题。
• 最小位能原理是指在所有可能位移中,真实位移 使系统总位能取最小值。
• 总位能是指弹性体变形位能和外力位能之和。
• 最小余能原理是指在所有的应力中,真实应力使 系统的总余能取最小值。
• 总余能是指弹性体余能和外力余能总和。
4.最小位能原理和最小余能原理(续)
• 一般而言,利用最小位能原理求得位移近似解 的弹性变形能是精确解变形能的下界,即近似 的位移场在总体上偏小,也就是说结构的计算 模型显得偏于刚硬;而利用最小余能原理求得 的应力近似解的弹性余能是精确解余能的上界, 即近似的应力解在总体上偏大,结构的计算模 型偏于柔软。
平面单元划分原则(续)
• 3)划分单元的形状,一般均可取成三角形或 等参元。对于平直边界可取成矩形单元,有时 也可以将不同单元混合使用,但要注意,必须 节点与节点相连,切莫将节点与单元的边相连。 4)单元各边的长不要相差太大,否则将影响 求解精度。
有限元分析及应用课件
设置材料属性、单元类型等参数。
求解过程
刚度矩阵组装
根据每个小单元的刚度,组装成全局的刚度矩阵。
载荷向量构建
根据每个节点的外载荷,构建全局的载荷向量。
求解线性方程组
使用求解器(如雅可比法、高斯消元法等)求解线性方程组,得到节点的位移。
后处理
01
结果输出
将计算结果以图形、表格等形式输 出,便于观察和分析。
有限元分析广泛应用于工程领域,如结构力学、流体动力学、电磁场等领域,用于预测和优化结构的 性能。
有限元分析的基本原理
离散化
将连续的求解域离散化为有限 个小的单元,每个单元具有特
定的形状和属性。
数学建模
根据物理问题的性质,建立每 个单元的数学模型,包括节点 力和位移的关系、能量平衡等。
求解方程
通过建立和求解线性或非线性 方程组,得到每个节点的位移 和应力分布。
PART 05
有限元分析的工程应用实 例
桥梁结构分析
总结词
桥梁结构分析是有限元分析的重要应用之一,通过模拟桥梁在不同载荷下的响应,评估 其安全性和稳定性。
详细描述
桥梁结构分析主要关注桥梁在不同载荷(如车辆、风、地震等)下的应力、应变和位移 分布。通过有限元模型,工程师可以预测桥梁在不同工况下的行为,从而优化设计或进
刚性问题
刚性问题是有限元分析中的一种 特殊问题,主要表现在模型中某 些部分刚度过大,导致分析结果 失真
刚性问题通常出现在大变形或冲 击等动态分析中,由于模型中某 些部分刚度过高,导致变形量被 忽略或被放大。这可能导致分析 结果与实际情况严重不符。
解决方案:为避免刚性问题,可 以采用多种方法进行优化,如采 用更合适的材料模型、调整模型 中的参数设置、采用更精细的网 格等。同时,可以采用多种方法 对分析结果进行验证和校核,以 确保其准确性。
有限元法基本原理及应用第3章重庆大学龙雪峰
有限元原理及应用
第三章 弹性力学有限元法
• 3.单元分析 • 单元分析包括位移模式选择,单元力学分析两个内容。 • 位移模式也称位移函数或插值函数,在有限元位移法中是 以节点位移为基本未知量,再由这些节点位移插值得到单 元内任意一点的位移值。单元的位移模式一般采用多项式, 因为多项式计算简便,并且随着项数的增加,可以逼近任 何一段光滑的函数曲线。 • 单元力学分析 根据所选单元的节点数和单元材料性质, 应用弹性力学几何方程和物理方程得到单元刚度矩阵。由 于连续体离散化后假定力是通过节点在单元间传递的,因 此要利用插值函数把作用在单元上的体积力、面积力和集 中力按静力等效原则移到节点上。
Hale Waihona Puke 有限元原理及应用第三章 弹性力学有限元法
• 5.结果后处理和分析 • 求解线性方程组得到位移矢量后,由几何和物理关系可以 得到应变和应力。 • 由于应变(应力)来自位移的微分可能导致单元间应力不 连续,这会使应力计算误差较大,要在节点附近进行平均 化处理。 • 通过后处理还可得到位移、应变和应力的最大最小值及其 所在位臵以及主应力、主应变或其它定义的等效应力。 • 结果的输出可以应用图表、动画等各种方式。最后还要对 这些结果进行分析以指导工程设计、产品开发等等。
有限元原理及应用第三章弹性力学有限元法?如果挠度与板厚相比不再为小量如金属板当挠度如果挠度与板厚相比不再为小量如金属板当挠度ww与板厚tt的关系在范围内板的中面应变就不能忽略如图的关系在范围内板的中面应变就不能忽略如图35所示面内的两个自由度也要一并考虑所示面内的两个自由度也要一并考虑导致单元的每个节点上a四边形弯曲单元b三角形弯曲单元图34薄板弯曲单元导致单元的每个节点上就要有五个自由度此类单元一般称为薄板单元
有限元原理及应用
有限元方法的发展及应用
有限元方法的发展及应用1 有限元法介绍1.1 有限元法定义有限元法(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。
它是起源于20世纪50年代末60年代初兴起的应用数学、现代力学及计算机科学相互渗透、综合利用的边缘科学。
有限元法的基本思想是将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。
这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。
由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。
有限元法最初应用在工程科学技术中,用于模拟并且解决工程力学、热学、电磁学等物理问题。
1.2 有限元法优缺点有限元方法是目前解决科学和工程问题最有效的数值方法,与其它数值方法相比,它具有适用于任意几何形状和边界条件、材料和几何非线性问题、容易编程、成熟的大型商用软件较多等优点。
(1)概念浅显,容易掌握,可以在不同理论层面上建立起对有限元法的理解,既可以通过非常直观的物理解释来理解,也可以建立基于严格的数学理论分析。
(2)有很强的适用性,应用范围极其广泛。
它不仅能成功地处理线性弹性力学问题、费均质材料、各向异性材料、非线性应立-应变关系、大变形问题、动力学问题已及复杂非线性边界条件等问题,而且随着其基本理论和方法的逐步完善和改进,能成功地用来求解如热传导、流体力学、电磁场等领域的各类线性、非线性问题。
他几乎适用于求解所有的连续介质和场问题,以至于目前开始向纳米量级的分子动力学渗透。
(3)有限元法采用矩阵形式表达,便于编制计算机软件。
这样,不仅可以充分利用高速计算机所提供的方便,使问题得以快速求解,而且可以使求解问题的方法规范化、软件商业化,为有限元法推广和应用奠定了良好的基础。
有限元理论基础及应用
有限元理论基础及应用有限元理论是应用于工程计算领域的一种数值分析方法,它是通过将连续的结构或物体分割成有限数量的离散单元,然后在每个单元上进行近似计算,最终得到整个结构或物体的近似解。
有限元理论广泛应用于结构分析、流体力学、电磁场分析等领域,是工程计算的重要工具。
有限元理论的基础是有限元方法,它将连续的结构或物体以网格的形式划分成一系列有限的单元,通过在每个单元内进行节点位移或其他物理量的近似表示,建立起离散的数学模型。
在有限元方法中,常用的单元形状包括线元、三角形单元、四边形单元等。
每个单元的节点之间通过连接的方式形成整个结构的网格。
有限元理论的基本原理是将连续的物理问题转化为离散的代数问题,通过求解代数方程组得到数值结果。
其基本步骤包括:1.离散化:将连续的结构或物体划分为离散的单元,并在每个单元上建立近似解。
2.建立单元方程:根据结构或物体的本构关系、边界条件等,建立每个单元的方程。
3.组装:根据单元之间的连接方式,将每个单元的方程组装成整个结构或物体的方程。
4.边界条件处理:考虑边界条件对结构或物体的约束作用,修改方程。
5.求解代数方程组:将边界条件处理后的方程组进行求解,得到数值解。
有限元理论的应用非常广泛,主要包括:1.结构分析:有限元方法在结构力学领域的应用非常广泛,可以用于预测结构的应力、变形、疲劳寿命等。
例如,在建筑工程中,可以使用有限元方法对建筑结构进行静力分析,以确保结构的稳定性和安全性。
2.流体力学:有限元方法在流体力学领域的应用包括流体流动、传热、空气动力学等方面。
通过将流体分割成离散的单元,并建立流体的动量方程、能量方程等,可以模拟和预测流体的各种特性。
3.电磁场分析:有限元方法可以用于模拟和分析电磁场的分布、辐射、散射等现象。
在电子器件设计中,有限元方法可以用于预测电磁场的影响和优化设计。
此外,有限元方法还应用于声学、热力学、生物力学等领域。
它的优势包括模拟结果的准确性、适用于复杂几何形状和边界条件、计算速度较快等。
有限元法及应用课件
载荷
节点: 空间中的坐标位置,具有 一定相应,相互之间存在物理 作用。 单元: 节点间相互作用的媒介, 用一组节点相互作用的数值矩阵 描述(称为刚度或系数矩阵)。
载荷
有限元模型由一些简单形状的单元组成,单 元之间通过节点连接,并承受一定载荷。
14
对于一个具体的工程结构,单元的划分越小, 求解的结果就越精确,同时,其计算工作量也就越 大。 梯子的有限元模型不到100个方程;
34
3)非线性边界 在加工、密封、撞击等问题中,接触和摩擦 的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲 压成型、轧制成型、橡胶减振器、紧配合装配等, 当一个结构与另一个结构或外部边界相接触时通 常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种 非线性问题。
10
2.几个基本概念 1)单元(element) 将求解的工程结构看成是 由许多小的、彼此用点联结的 基本构件如杆、梁、板和壳组 成的,这些基本构件称为单元。 在有限元法中,单元用一 组节点间相互作用的数值和矩 阵(刚度系数矩阵)来描述。
11
单元具有以下特征:
每一个单元都有确定的方程来描述在一定载荷 下的响应; 模型中所有单元响应的“和”给出了设计的总 体响应; 单元中未知量的个数是有限的,因此称为“有
限单元”。
12
2)节点(node) 单元与单元之间的联结点,称为节点。在有 限元法中,节点就是空间中的坐标位置,它具有 物理特性,且存在相互物理作用。 3)有限元模型(node) 有限元模型真实系统理想化的数学抽象。由 一些形状简单的单元组成,单元之间通过节点连 接,并承受一定载荷。 每个单元的特性是通过一些线性方程式来描 述的。作为一个整体,所有单元的组合就形成了 整体结构的数学模型。
有限元方法理论及应用仿真
再创建如下 1/4 圆,如图 1.5 所示
图 1.5
16
有限元方法理论及应用
将两个面积进行布尔减运算,除去 1/4 圆,如图 1.6 所示
图 1.6
5)划分网格:采用自由网格划分,划分时选择三角形单元划分,如图 1.7 所示
图 1.7
17
有限元方法理论及应用
6)施加约束、载荷:对模型左端线约束 X 方向自由度,下端线约束 Y 方向自由 度,并在左端施加 q 1 106 N m 2 的均布载荷,如图 1.8 所示
max 2.97 MPa, max 0.5MPa 。
x y
对比分析分别采用 3 节点三角形单元和 8 节点四边形等参元计算孔边应力集 中可知,应用 8 节点四边形等参元计算得到的结果更符合我们理论分析的结果。 因此应用不同单元类型对数值实验精度有较大的影响。
实验体会与总结
在进行有限元分析的过程中,选取不同单元类型,对模型划分不同的网格密 度将对计算精度产生较大的影响。因此,我们一定要结合实际情况选取出最适合 的单元类型并划分合适的单元网格密度,这样才能得到符合我们要求的理论解。
有限元方法理论及应用
三、上机实验
实验题目
一个 200mm×200mm 平板,中心有一个直径 5mm 圆孔,左右两边受面内均匀 拉伸载荷 1MPa。 建立平面应力问题有限元模型,分别采用 3 节点三角形单元和 8 节点四边形等参元计算孔边应力集中,对两种单元的求解精度进行比较。注意优 化模型单元网格布局和网格密度过渡。撰写实验报告。
图 1.8
7)进行求解 选择 Solution>Solve>Current LS,开始计算 8)进行计算并进行后处理:显示 x 方向应力强度云图,如图 1.9 所示
有限元方法的发展及应用
有限元方法的发展及应用有限元方法的发展可以追溯到20世纪50年代,当时数学家、工程师和物理学家开始使用有限元方法来解决结构力学问题。
最早的有限元方法是基于简单的三角形或四边形划分网格,通过近似的方式将连续介质离散化为有限数量的元素。
然后,通过求解一个代数方程组来得到数值解。
这种方法由于计算量小、理论基础牢固而得到了广泛应用。
随着计算机科学的发展,有限元方法得到了更广泛的应用。
计算机技术的进步使得复杂的有限元模型能够被处理,并且计算速度得到了大幅提升。
有限元方法的应用也从最初的结构力学问题扩展到了流体力学、热传导、电磁场、生物医学工程等领域。
有限元方法在工程领域具有很大的应用潜力。
在结构工程中,有限元方法可以用于分析房屋、桥梁和建筑物等结构的强度和刚度。
在汽车工程中,有限元方法可以用于分析汽车的碰撞和安全性能。
在航空航天工程中,有限元方法可以用于分析飞机的气动力学特性和结构强度。
在电子工程和电力工程中,有限元方法可以用于分析电路和传输线的电磁场特性。
有限元方法的应用不仅限于工程领域,还涉及到了其他学科的研究。
在生物医学工程中,有限元方法可以用于模拟人体组织的生物力学行为,如骨骼系统、心脏和血管的应力分布等。
在地球科学中,有限元方法可以用于分析地下水流动、地震波传播和岩土工程等问题。
在物理学中,有限元方法可以用于分析电磁场、热传导和量子力学等问题。
总之,有限元方法的发展及其应用已经取得了巨大的成功。
它在工程、力学、物理和地球科学等领域中得到了广泛应用,并为实际工程问题的解决提供了有效的数值方法。
然而,有限元方法的进一步发展仍面临着一些挑战,需要继续改进算法和技术,以满足更加复杂和多样化的工程问题的需求。
有限元方法及应用_02基本理论
1 2
uT
L(u)
1 2
uT
L(u)
d
b.t.(
u,
u)
1 uT L(u)d b.t.( u,u)
2
伽辽金提法等效为
(u) 0
(u)
1 2
uT
L(u)
uT
f
d
b.t.(u)
sdustzhu
泛函的极值性
u 0
u
1m
CT
uC
u
uT
f
d
b.t.(u)
u uu
u u u u u 1 2 u
v1
v
Байду номын сангаас
v2
v
x
k
x
y
k
y
Q
d
q
v
k
n
q
d
0
sdustzhu
Ω vT Au dΩ+Γ v TB u dΓ 0
如果在微分算子A出现的最 高阶导数是n阶,则要求函数u 必须具有连续的n-1阶导数,即 函数应具有Cn-1连续性。
sdustzhu
微分方程的等效积分“弱”形式
2
1 2
2
u
1 2
1m
CT
u C
u d
sdustzhu
Ritz法
n
u u Niai Na i 1
a1
a1
a2
a2
+
an
an
0
a1
a
a2
0
an
sdustzhu
对于二次泛函
Ka p 0 a
1 aT Ka aT P 2
1 aT Ka 1 aT K a aT P
有限元法的发展现状及应用
有限元法的发展现状及应用1. 引言有限元法是一种数值计算方法,广泛应用于工程领域中的结构力学、流体力学、热传导等问题的求解。
它通过将复杂的连续介质问题离散化为有限个简单的子域,然后利用数值方法求解这些子域上的方程,最终得到整个问题的近似解。
自从有限元法在20世纪60年代初被提出以来,它得到了迅猛发展,并在各个领域中得到了广泛应用。
2. 有限元法的发展历程2.1 早期发展有限元法最早是由Courant于1943年提出,并在20世纪50年代由Turner等人进一步发展。
最初,有限元法主要应用于结构力学领域中简单结构的分析计算。
2.2 理论基础完善20世纪60年代以后,随着计算机技术和数值方法理论的进步,有限元法得到了进一步发展。
Galerkin方法、变分原理和能量原理等理论基础被广泛应用于有限元法中,为其提供了坚实的理论基础。
2.3 算法改进和扩展在20世纪70年代和80年代,有限元法的算法得到了进一步改进和扩展。
有限元法的自适应网格技术和自适应加密技术的引入,使得有限元法能够更加高效地处理复杂问题。
同时,有限元法也逐渐扩展到了流体力学、热传导、电磁场等领域。
3. 有限元法在结构力学中的应用3.1 静力分析有限元法在结构力学中最常见的应用是进行静力分析。
通过将结构离散化为有限个单元,然后利用数值方法求解每个单元上的平衡方程,最终得到整个结构的受力情况。
3.2 动力分析除了静力分析外,有限元法还可以进行动态分析。
通过求解结构振动问题,可以得到结构在外部激励下的响应情况。
这对于地震工程、机械振动等领域非常重要。
3.3 疲劳寿命预测疲劳寿命预测是工程中一个重要问题。
通过将材料疲劳损伤模型与有限元方法相结合,可以对材料在复杂载荷下的疲劳寿命进行预测,从而指导工程设计和使用。
4. 有限元法在流体力学中的应用4.1 流体流动分析有限元法在流体力学中的应用主要集中在流体流动分析。
通过将连续介质分割为有限个单元,然后求解每个单元上的Navier-Stokes方程,可以得到整个流场的解。
有限元法基本原理及应用教学设计
有限元法基本原理及应用教学设计一、引言有限元法作为结构力学、流体力学、热力学等学科中最常用的数值分析方法之一,已经广泛地用于工程领域。
本文将介绍有限元法的基本原理,并结合教学实践,提出一些应用场景下的教学方法。
二、有限元法基本原理有限元法是一种通过将连续体分割成一系列互相联系的单元,再在每个单元内进行局部近似的方法。
其基本步骤如下:1.确定问题的几何形状,将其离散化为有限数量的单元。
2.寻找适当的函数形式,用于单元内的场函数近似。
3.根据边界条件、本构关系等确定模型中所需的参数。
4.利用有限元法求解离散模型中的场函数,获得结果。
其中,第一步和第二步是离散化的过程,第三步是确定问题的物理参数,第四步是利用有限元方法来求解局部近似的结果。
三、教学设计3.1 教学目标通过本教学,学生应该能够:1.理解有限元法的基本原理。
2.能够根据问题特点选择有限元法模型,熟练掌握其求解方法。
3.能够独立地完成一定的有限元法计算,掌握基本的讨论和分析技巧。
3.2 教学内容教学内容的设计应该以让学生掌握有限元法的基本原理和中小型有限元法计算实验为主。
具体包括:1.有限元法基本概念和基本原理。
2.有限元法求解流程。
3.有限元法中力学问题的处理方法。
4.有限元法计算程序的操作实践及其调试过程。
3.3 教学方法教学方法应该根据教学目标和教学内容来选择。
具体而言,可以采用以下教学方法:1.讲授法:介绍有限元法的基本理论、公式、步骤等。
2.组织实践:每个学生都可以应用所学的有限元法计算流程,通过校内实践检验所得结果,加深学习效果。
3.讨论演示法:引导学生根据教材内容和实践结果展开讨论,举一反三,形成总结性的详细讨论分享现象,并进行比较,以及某些特殊情况的讨论。
4.自学法:学生在自习时间用充足的学习资料在当地的工程和计算机实验室研读,掌握有限元法的道理和方法。
3.4 教学评估教学评估应包括考试成绩和实际计算结果。
在学年末进行考试,考试的内容应该包括基本理论和实践的实际应用以及进行有限元法计算产生结果的分析。
有限元方法与应用
1943年,美国工程师Courant首次提出了将连续 体离散化的思想,被认为是有限元方法的萌芽。
此后,有限元方法不断发展,逐渐形成了完善的 理论体系和各种高效的数值计算方法。随着计算 机技术的进步,有限元方法的应用范围和计算规 模也不断扩大。
02
有限元方法的基本原理
有限元方法的数学基础
变分原理
有限元方法的数学基础之一是变分原理,它提供了求解微分方程的能量泛函极 小值问题的框架。通过将原始微分方程转化为等价的变分问题,可以找到满足 原方程的近似解。
有限元方法广泛应用于工程、物理、生物医学等领域,用于 解决各种实际问题,如结构分析、热传导、流体动力学等。
有限元方法的重要性
有限元方法提供了一种高效、精确的数值分析工具,能够处理复杂的几何形状、非 线性材料和边界条件等问题。
通过离散化,有限元方法可以将复杂问题分解为更小的子问题,便于使用计算机进 行数值计算,大大提高了计算效率和精度。
成为声学研究的重要工具。
04
有限元方法的实现
建模与前处理
建模
建立数学模型是有限元方法的第一步, 需要将实际问题抽象为数学问题,并 确定求解域和边界条件。
前处理
前处理阶段主要涉及将模型离散化为 有限个单元,并确定每个单元的节点 和参数。这一过程需要选择合适的单 元类型和网格划分技术,以确保求解 精度和稳定性。
详细描述
有限元方法在处理大规模问题时需要优化算法和计算 过程以提高计算效率。可以采用稀疏矩阵技术、并行 计算、GPU加速等技术来提高计算效率。
06
有限元方法的应用案例
案例一:桥梁结构的有限元分析
总结词
桥梁结构的有限元分析是有限元方法的重要应用之一 ,通过建立桥梁结构的有限元模型,可以模拟桥梁在 不同载荷条件下的变形、应力和稳定性,为桥梁设计 提供重要的参考依据。
工程中的有限元方法
工程中的有限元方法
有限元方法(Finite Element Method, FEM)是一种常见的工程分析方法,广泛应用于各种工程领域。
下面是其中一些常见的应用。
1. 结构力学分析:有限元方法在工程中最常见的应用之一是结构力学分析。
通过将结构分割成有限个小的单元,并在每个单元内使用简单的数学模型描述其行为,可以对结构进行力学性能的计算和预测。
这种方法可以用于分析各种类型的结构,如桥梁、航空器、建筑物等。
2. 热传导分析:有限元方法还可以应用于热传导问题的数值计算。
通过将热传导区域划分为有限个小的单元,并在每个单元内使用热传导方程进行模拟,可以计算和预测材料内部的温度分布和热流。
这种方法在热交换器设计、电子元器件散热等领域有广泛应用。
3. 流体力学分析:有限元方法也可以用于模拟和分析流体的运动和行为。
通过将流体域划分为有限个小的单元,并在每个单元内使用流体力学方程进行模拟,可以计算流体的速度、压力和流量。
这种方法在流体动力学、气动学和水动力学等领域有广泛应用。
4. 电磁场分析:有限元方法还可以用于模拟和分析电磁场的行为和效应。
通过将电磁场区域划分为有限个小的单元,并在每个单元内使用麦克斯韦方程组进行模拟,可以计算电场、磁场和电流。
这种方法在电力系统、电磁感应和电磁兼容
性等领域有广泛应用。
除了上述应用,有限元方法还可以用于声学和振动分析、优化设计、材料力学分析等各种工程问题的模拟和分析。
它有较强的灵活性和适应性,能够适用于各种复杂的工程情况,并且能够提供较为准确的数值解。
然而,它也需要充分的理论基础和严密的数值计算方法才能获得可靠的结果。
有限元法的发展现状及应用
有限元法的发展现状及应用一、本文概述有限元法,作为一种广泛应用于工程和科学领域的数值分析方法,自其诞生以来,已经经历了数十年的发展和完善。
本文旨在全面概述有限元法的发展现状及其在各个领域的应用。
我们将回顾有限元法的基本原理和历史背景,以便读者对其有一个清晰的认识。
接着,我们将重点介绍有限元法在不同领域的应用,包括土木工程、机械工程、航空航天、电子工程等。
我们还将探讨有限元法在发展过程中面临的挑战以及未来的发展趋势。
通过阅读本文,读者将对有限元法的现状和发展趋势有一个全面的了解,并能更好地理解该方法在工程和科学领域的重要性和应用价值。
二、有限元法的基本理论有限元法(Finite Element Method,FEM)是一种数值分析技术,广泛应用于工程和科学问题的求解。
其基本理论可以概括为离散化、单元分析、整体分析和数值求解四个主要步骤。
离散化是将连续的求解域划分为有限个互不重叠且相互连接的单元。
这些单元可以是三角形、四边形、四面体、六面体等,具体形状和大小取决于问题的特性和求解的精度要求。
离散化的过程实际上是将无限维的连续问题转化为有限维的离散问题。
单元分析是有限元法的核心步骤之一。
在单元分析中,首先需要对每个单元选择合适的近似函数(也称为形函数或插值函数)来描述单元内的未知量。
然后,根据问题的物理定律和边界条件,建立每个单元的有限元方程。
这些方程通常包括节点的平衡方程、协调方程和边界条件方程等。
整体分析是将所有单元的有限元方程按照一定的规则(如矩阵叠加法)组合成一个整体的有限元方程组。
这个方程组包含了所有节点的未知量,可以用来求解整个求解域内的未知量分布。
数值求解是有限元法的最后一步。
通过求解整体有限元方程组,可以得到所有节点的未知量值。
然后,利用插值函数,可以计算出整个求解域内的未知量分布。
还可以根据需要对计算结果进行后处理,如绘制云图、生成动画等,以便更直观地展示求解结果。
有限元法的基本理论具有通用性和灵活性,可以应用于各种复杂的工程和科学问题。
有限元分析及应用
应力边界条件
58
.
53
二维问题:应力边界条件
xlyxmX xylymY
59
.
54
圣维南原理(局部影响原理)
物体表面某一小面积上作用的外力,如果为一静力等
效的力系所代替,只能产生局部应力的改变,而在离
这一面积稍远处,其影响可以忽略不计。
60
.
55
61
.
56
62
.
57
均匀分布载荷作用 下的平板,应力分 布是均匀的。
工程领域中不断得到深入应用,现已遍及
宇航工业、核工业、机电、化工、建筑、
海洋等工业,是机械产品动、静、热特性
分析的重要手段。早在70年代初期就有人
给出结论:有限元法在产品结构设计中的
应用,使机电产品设计产生革命性的变化,
理论设计代替了经验类比设计。
5
.
5
有限元法的孕育过程及诞生和发展
牛顿(Newton)
-0 .0 2
-0 .0 0 1
-0 .0 4
-0 .0 0 2
-0 .0 6
-0 .0 0 3
0 .0 5 4
0 .0 5 6
0 .0 5 8
0 .0 6
X
-0 .0 8
-0 .1 0
0 .0 2
0 .0 4
0 .0 6
0 .0 8
0 .1
0 .1 2
X
29
.
27
30
.
28
受垂直载荷的托架
31
从M点到斜微分面abc的垂直距离dh(图中 未标出),是四面微分体的高。
56
.
51
设斜微分面的面积为dA,则其它三个微分
第一章概述 有限元法基本原理及应用课件
第一章 概述
有限元法的基本思想 有限元法的特点 有限元法的发展及其应用领域
1.1有限元法的基本思想
2.有限元法是一种应用已知求解未知的思想
在弹性力学领域,已经能用数学偏微分方程将问 题加以表达,但是运用解析方法求解这些方程有时会 很难甚至无法求解。而有限元法是应用人们对事物规 律的已有认识并结合研究对象的各种约束条件,组织 一个运用已知的参量和规律来求解未知问题的有机过 程。
西班牙的Onate E和波兰的Rojek J将DEM 和FEM结合解决地质 力学中的动态分析问题;
瑞典的Birgersson F和英国的Finnveden S针对FEM在频域中的 应用提出了SFEM 。
FEM也从分析比较向优化设计方向发展。印度Mahanty博士用 ANSYS对拖拉机前桥进行优化设计
物体的几何形状可以用大大小小的多种单元进行拼装,所以 有限元法可以分析包括各种特殊结构的复杂结构体。
单元之间材料性质可以有跳跃性的变化,所以能处理许多物 体内部带有间断性的复杂问题,以适应不连续的边界条件和载荷 条件。
三维实体的四面体单元划分
平面问题的四边形单元划分
1.2 有限元法的特点
7.适合计算机的高效计算
20世纪90年代以来,大批FEA系统纷纷向微机移植, 出现了基于各种微机版FEA系统。有限元法向流体力学、 温度场、电传导、磁场、渗流和声场等问题的求解计算 方面发展,并发展到求解一些交叉学科的问题。
1.3.1 有限元法的发展
3.有限元法的研究现状
美国的HeoFanis Strouboulis等人提出用GFEM 解决 分析域内含有大量孔洞特征的问题;比利时的Nguyen Dang Hung 和越南的Tran Thanh Ngoc 提出用HSM解 决实际开裂问题
有限元法理论及应用参考答案(推荐文档)
有限元法理论及应用大作业1、试简要阐述有限元理论分析的基本步骤主要有哪些?答:有限元分析的主要步骤主要有:(1)结构的离散化,即单元的划分;(2)单元分析,包括选择位移模式、根据几何方程建立应变与位移的关系、根据虚功原理建立节点力与节点位移的关系,最后得到单元刚度方程;(3)等效节点载荷计算;(4)整体分析,建立整体刚度方程;(5)引入约束,求解整体平衡方程。
2、有限元网格划分的基本原则是什么?指出图示网格划分中不合理的地方。
题2图答:一般选用三角形或四边形单元,在满足一定精度情况,尽可能少一些单元。
有限元划分网格的基本原则:1.拓扑正确性原则。
即单元间是靠单元顶点、或单元边、或单元面连接2.几何保持原则。
即网络划分后,单元的集合为原结构近似3.特性一致原则。
即材料相同,厚度相同4.单元形状优良原则。
单元边、角相差尽可能小5.密度可控原则。
即在保证一定精度的前提下,网格尽可能的稀疏一些。
(a)(b)中节点没有有效的连接,且(b)中单元边差相差很大。
(c)中没有考虑对称性,单元边差很大。
3、分别指出图示平面结构划分为什么单元?有多少个节点?多少个自由度?题3图答:(a )划分为杆单元, 8个节点,12个自由度。
(b )划分为平面梁单元,8个节点,15个自由度。
(c )平面四节点四边形单元,8个节点,13个自由度。
(d )平面三角形单元,29个节点,38个自由度。
4、什么是等参数单元?。
答:如果坐标变换和位移插值采用相同的节点,并且单元的形状变换函数与位移插值的形函数一样,则称这种变换为等参变换,这样的单元称为等参单元。
5、在平面三节点三角形单元中,能否选取如下的位移模式,为什么?(1).⎪⎩⎪⎨⎧++=++=26543221),(),(y x y x v yx y x u αααααα (2). ⎪⎩⎪⎨⎧++=++=2652423221),(),(yxy x y x v yxy x y x u αααααα 答:(1)不能,因为位移函数要满足几何各向同性,即单元的位移分布不应与人为选取的 坐标方位有关,即位移函数中的坐标x,y 应该是能够互换的。
有限元理论与方法
有限元理论与方法有限元法是一种数值计算方法,用于求解复杂物理问题的近似解。
它将连续问题离散化为离散问题,并通过求解离散问题来近似求解原问题。
有限元法广泛应用于结构力学、流体力学、电磁场等领域。
有限元法的理论基础是分片连续函数空间的降维表示。
它将求解区域分割成许多简单的有限元单元,例如三角形、四边形或立方体等。
每个单元内的解通过一组形函数进行近似表示,形函数通常是局部性质的,即只在该单元内非零。
通过建立形函数与解之间的关系,可以将原问题转化为求解离散问题。
在解离散问题时,有限元法通过构建代数方程组以及边界条件来获得解。
代数方程组通常通过对能量变分或Galerkin方法进行离散化得到。
通过求解代数方程组,可以获得有限元法的近似解。
有限元法具有许多优点。
首先,它适用于各种不规则的几何形状。
通过将问题的几何形状分割为简单的单元,可以处理复杂的几何形状。
其次,有限元法具有高自由度的适应性。
通过增加或减少单元的数量,可以调整有限元方法的精度。
此外,它还可以处理不同类型的物理现象。
通过选择适当的形函数,可以将有限元法应用于结构、流体、热力学等各种领域。
然而,有限元法也存在一些局限性。
首先,它是一种近似方法,因此在求解过程中可能引入误差。
在实际应用中,需要评估误差,并确保误差的控制在允许范围内。
其次,有限元法在处理大规模问题时可能需要大量的计算资源。
解决大规模问题可能需要并行计算或者使用高性能计算机。
此外,有限元法对网格质量和网格依赖性较为敏感,因此需要谨慎选择网格划分方法。
总的来说,有限元理论和方法是一种重要的数值计算方法,广泛应用于科学和工程领域。
它的理论基础是分片连续函数空间的降维表示,以及代数方程组的离散化求解。
有限元法具有适应各种几何形状、高自由度的特点,并可应用于各种物理现象。
然而,它也存在误差引入、计算资源需求大等局限性。
为了获得精确的解,需要在实际应用中合理选择方法和调整参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 课程论文:弹性力学有限元位移法原理(30分)撰写一篇论文,对有限元位移法的原理作一般性概括和论述。
要求论文论及但不限于下列内容:1)弹性力学有限元位移法的基本思想和数学、力学基础;2)有限元法求解的原理和过程,推导计算列式;对基本概念和矩阵符号进行解释和讨论;3)等参单元的概念、原理和应用。
1.1 对一维杆单元有限元形式的理解我对此提出了几点疑问:1)为什么边界条件u1=0,就要划去刚度矩阵[K]中对应的行列再解方程?2)为什么刚度矩阵[K]会奇异?3)为什么平衡方程本身是矛盾的,而加上边界条件u1=0之后就能解出一个唯一的近似解?4)为什么刚度矩阵[K]是对称的?下面我谈谈自己的理解:节点平衡方程是在u1不定的前提下,假设单元内位移都是线性变化推导出来的,由此u1相当于一个不确定的定值约束,再加上中间两个节点的连续性要求,系统实际上只有三个独立的自由度(广义坐标)。
对于第一个问题,其实刚度矩阵[K]中的元素不是一成不变的,相反它是伴随边界条件动态变化的。
当u1=0时由刚度矩阵的推导过程可以知道,刚度矩阵的第一行和第一列都会变为0,所以此时第一行和第一列对于求解方程是没有作用的。
对于第二个问题,由于系统自由度(广义坐标)只有三个,而我们的方程却列出了四个,显然这四个方程不可能线性无关,所以刚度矩阵奇异。
对于第三个问题,首先我们应该明确方程区别于等式,虽然左右两边都是用“=”连接,但是方程只在特殊条件下取得定解。
由于平衡方程是在没有约束的条件下推导出来的,显然它不可能满足等式要求。
宏观上看,系统在没有外部约束,而又施加有外力,显然系统会产生加速度而绝不会平衡。
所以平衡方程本身是矛盾的。
而加上边界条件之后,不但满足了平衡的前提,还改变了矩阵的结构和性质,所以有解。
但是,由于我们提前假设了位移线性变化,相当于人为对单元施加了额外约束,让位移按照我们假设的规律变化,所以得到的解是过刚的近似解。
但对于方程本身而言是精确解。
对于第四个问题,其力学的作用机理类似于作用力与反作用力,由于刚度矩阵不表征方向,所以其大小是相等的。
1.2 有限元法的思想有限元法是求解连续介质力学问题的数值方法,更一般意义是一种分析结构问题和连续场数学物理问题的数值方法。
有限元法的基本思想是离散化和分片插值。
即把连续的几何机构离散成有限个单元,并在每一个单元中设定有限个节点,从而将连续体看作仅在节点处相连接的一组单元的集合体,同时选定场函数的节点值作为基本未知量并在每一单元中假设一个近似插值函数以表示单元中场函数的分布规律,再建立用于求解节点未知量的有限元方程组,从而将一个连续域中的无限自由度问题转化为离散域中的有限自由度问题。
求解得到节点值后就可以通过设定的插值函数确定单元上以至个集合体上的场函数。
对每个单元,选取适当的插值函数,使得该函数在子域内部、在子域分界面上以及子域与外界面上都满足一定的条件。
单元组合体在已知外载荷作用下处于平衡状态时,列出一系列以节点、位移为未知量的线性方程组,利用计算机解出节点位移后,再用弹性力学的有关公式,计算出各单元的应力、应变,当各单元小到一定程度,那么它就代表连续体各处的真实情况。
1.3 有限元法的数学基础有限元法的数学基础是加权余量法和变分原理。
有限元法区别于有限差分法,即不是直接从问题的微分方程和相应的定解条件出发,而是从其等效的积分形式出发。
加权余量法是等效积分的一般形式,它适用于普遍的方程形式。
利用加权余量法的原理,可以建立多种近似解法,如配点法、最小二乘法、伽辽金法、力矩法等都属于这一类数值方法。
如果问题的方程具有某些特定的性质,则它等效积分形式的伽辽金法可以归结为某个泛函的变分。
相应的近似解实际上是求泛函的驻值问题。
里兹法就是属于这一类数值解法。
1.4 有限元法的力学基础一个弹性系统的所有可能位移中,满足平衡条件的位移(真实位移)使总势能取最小值。
也就是说,弹性力学中平衡问题的正确解(位移),其相应的系统总势能为一切满足位移边界条件和连续条件的位移构型对应的总势能中的最小者。
一个“系统”是指一个结构加上作用其上的力。
对于保守系统,系统总势能定义为:总势能 = 应变能-外力做功系统总势能是对应系统任何一个可能构型的由系统力学状态量(载荷、位移、应力、应变)决定的状态函数。
系统总势能用符号Πp表示,当载荷不变时,运用弹性力学的几何方程和物理方程,可以将它转化为系统位移场函数的泛函。
对于系统每一个“可能位移(场)”,系统有一个总势能(泛函)与之对应。
“可能位移”—— 满足内部连续性和位移边界条件的位移场。
瑞利-里兹法是针对连续系统从一族满足约束条件的假定解中利用泛函驻值条件求“最好”近似解的一种普遍适用方法。
其基本思想是:如果问题有相应的变分原理,就构造一族带有待定参量的试探函数(弹性力学中就是假定位移场),将其代入泛函表达式,泛函立刻成为多元函数,由驻值条件确定待定参量,就得到问题的近似解答。
从经典里兹法解弹性体变形和应力的原理和过程可以总结出该方法的重要特点:1)在求解域整体上假定位移场(试探函数);2)假定的位移场必须是可能位移(或称为许可位移,即满足连续性和边界几何约束条件)和简单的。
3)要得到收敛解,试探函数必须是完备的。
4)里兹解往往过刚,除非位移试探函数包含了精确解。
由于假定的位移模式往往给结构加上了约束,使结构不能按其要求的方式自由变形,从而刚化了结构。
1.5 有限元法求解的原理和过程,推导计算列式1.5.1 有限元分析的基本步骤有限元法的基本解题步骤如下:1)建立研究对象的近似模型2)将研究对象分割成有限数量的单元3)用标准方法对每一个单元提出一个近似解4)将所有单元按标准方法组合成一个与原有系统近似的系统5)用数值方法求解这个近似系统6)计算结果处理与结构验证1.5.2 一维杆的有限元分析下面以一维杆件的分析为例,研究有限元分析的求解原理和过程:图 1-11)单元描述L——杆长A——截面积E ——弹性模量单元上的力学量和基本=关系如下:——杆单元沿轴向位移分布——杆单元应变分布——杆单元应力分布 应变——位移关 (1-1) (1-2)2) 单元特性方程(刚度方程) ① 直接法导出杆单元特性采用材料力学基本知识对单元进行力学分析。
(1-3)(1-4) (1-5)杆内力(1-6) (1-7) 由于轴向变形模式下,可以直接写出杆单元刚度方程:(1-8) 写成符号形式:f = kd (1-9)因此杆单元的刚度矩阵为:(1-10)②公式法导出杆单元特性a)在单元上假设近似位移场对图1-1所示的杆单元,首先利用函数插值法构造以单元节点位移为未知量的简单多项式函数,作为单元上的假设位移分布函数。
插值过程如下。
考虑到杆单元只有2个沿轴向的未知节点位移分量,因此假设单元上位移函数为一次多项式:(1-11)将单元两个节点的坐标值0,L分别带入上式得到:对上面2个方程联立求解,得到节点位移表示的多项式系数:上两式带入式(1-11),整理得:(1-12)i,j的插值基函数,有限元法中称为形状函数,简称“形函数”。
单元位移模式(1-12)写成矩阵形式为(1-13)式中N称为单元的形函数矩阵。
b)单元应变和单元应力公式可由直杆的应变——位移方程(1-1)和单元位移模式(1-13)求出单元的应变分布和节点位移的关系:(1-14)式中:(1-15)由杆的应力——应变关系(1-2),得单元应力分布和单元节点位移的关系:(1-16)c)用虚功原理导出杆单元刚度方程变形体的虚位移:假想在变形体上发生的,满足位移连续性条件和协调性条件的微小、任意位移场。
虚功原理:变形体受力平衡时,若发生虚位移,则外力虚功等于变形体内的虚应变能。
根据虚功原理,上述节点力虚功等于虚应变能,因此有如下关系:(1-17)考虑到的任意性,从上式可以得到:(1-18)上式就是杆单元的刚度方程,杆单元的刚度矩阵为:(1-19)其导出原理和计算方法可以推广到其他类型的实体单元。
具体计算式如下:(1-20)与直接法得到的单元刚度矩阵(1-10)式相同。
1.6 等参单元的概念、原理和应用1.6.1 等参单元的概念及原理由于用较少形状规则的单元离散几何形状较为复杂的求解域常常会遇到困难。
为了克服单元几何方面的限制,使其成为任意四边形和任意六面体单元,就引入了等参元的概念。
等参元也就是运用了等参变换方法的单元,即采用相同的插值函数对单元的节点坐标和节点位移在单元上进行插值。
如图1-2为一个4节点任意四边形单元,单元有8个自由度。
将矩形单元放松为4节点任意四边形单元将带来许多好处。
但在建立单元位移模式时产生了新的问题:单元上没有一个如矩形单元中的简单直接的局部坐标系,而又不能直接用x,y坐标系下的双线性位移模式(位移沿边界二次变化,不协调)。
因此,需要在任意四边形单元上建立一种新的非正交局部坐标系ξ-η(如图1-2),使得每条边有一个局部坐标为常数(±1),则在ξ-η平面内,原任意四边形单元变为一个边长为2的正方形。
同时,该局部坐标系的建立在x-y平面上的任意四边形单元与ξ-η平面上的正方形之间形成了一个一一对应的映射关系。
图1-2 四节点任意四边形单元(a )及其母单元(b)称ξ-η平面内的正方形单元为基本单元或母单元,x -y 平面内的任意四边形单元称为实际单元或子单元。
显然,母单元节点对应不同的x ,y 坐标就可以得到不同大小、形状和方位的任意四边形实际单元。
建立了局部坐标系或映射后,我们只需要在ξ-η平面上的母单元中描述实际单元的位移模式和力学特性。
任意四边形单元在母单元中的位移模式(或者称为ξ-η坐标系下的位移模式)与矩形单元相同:11223344u N u N u N u N u =+++ 11223344v N v N v N v N v =+++其中,形函数为:1(1)(1)4i i i N ξξηη=++ (i=1,2,3,4) 当然,该位移模式关于x ,y 坐标不是双线性函数,位移沿单元边界线性变化,能保证单元的协调性。
为了得到上述映射的数学表达,引入对母单元节点上x ,y 坐标进行插值的思想,将母单元上每一点对应的x ,y 坐标看成是对节点坐标的插值,插值函数与位移插值中的形函数相同:4141i ii i ii x N x y N y ====∑∑这样就得到了一个事实上的映射,该映射是用母单元描述实际单元力学特性的桥梁。
由于该坐标变换式中采用了与位移插值相同的节点和参数(形函数),因此称为等参变换,所有采用等参变换的单元都称为等参单元。
1.6.2 等参单元的应用等参单元在有限元法的发展中占有重要的地位,由于它能使局部坐标系中形状规则的单元变换为总体坐标系内形状扭曲的单元,从而为求解域是任意形状的实际问题的求解提供了有效的单元形式。