数学模型的概念及分类
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学模型的概念及分类
2.1数学模型的概念
数学模型是指运用数学符号和公式来表达来研究对象系统的结构或过程的模型。系统工程力求采用数学模型是因为数学模型是定量化的基础,是科学实验的补充手段,是预测和决策的重要工具,是推进科技发展的依据。数学的抽象化、公理化的概念和方法,体系十分严谨。数学的丰富的想像力和思辨性,如弯曲的几何和非平直的空间结构,蕴含着普遍真理。数学模型既然是对所研究的实际对象的概括与简化,因此它不能等同于实际对象的本身,它必须舍弃实际对象的质的规定性,而是从量的关系上对实际对象作形式化的描述和刻画,在这一过程中常常略去实际对象的某些次要性质和因素,抓住其主要性质和因素,因此数学模型虽然能从某些数量关系上反映实际对象的原型,但这种反映仅仅是一种近似和模拟。
2.2数学模型的分类
常见的数学模型分类有以下几种:
按数学模型的功能可分为定量的和定性的。
按数学模型的目的可分为理论研究的,预期结果的和优化的。
按数学模型变量之间的关系可分为代数的,几何的和积分的。
按数学模型的结构可分为分析的,非分析的和图论的。
按数学模型所研究对象的特性可分为确定的和随机的,静态的和动态的,连续的和离散的,或线性的和非线性的。
按数学模型所用的数学方法可分为初等模型,微分方程模型,优化模型,控制论模型,逻辑模型,扩散模型,……
按数学模型研究对象的实际领域可分为人口模型,交通模型,生态模型,生理模型,经济模型,社会模型.,工程系统模型,……
按数学模型研究对象的了解程度可分为白箱模型,灰箱模型和黑箱模型等。
2.3数学模型的特点
第一,它是某事物为一种特殊目的而作的一个抽象化、简单化的数学结构,
这意味着扬弃、筛选,是舍弃次要因素,突出主要因素的主要结果;是事物的一种模拟,虽源于现实,但非实际的原型,而又高于现实。
第二,它是数学上的抽象,在数值上可以作为公式应用,可以推广到与原物
相近的一类问题。
第三,可以作为某事物的数学语言,可以译成算法语言,编写程序进入计算机第三,可以作为某事物的数学语言,可以译成算法语言,编写程序进入计算机。通常所谓的处理事物和过程的模型化方法,往往就是为之建立数学模型来处理。