遥感重要知识点总结

合集下载

遥感导论重要知识点

遥感导论重要知识点

第一章绪论1遥感侠义:运用探测仪器;不与探测目标相接触;从远处把目标的电磁波特性记录下来;通过分析;揭示出物体的特征性质及其变化的综合性探测技术2遥感系统包括:被测目标的信息特征;信息的获取;信息的传输与记录;信息的处理;信息的应用3遥感的特点①大面积的同步观测②时效性③数据的综合性和可比性④经济性⑤局限性第二章电磁辐射与地物光谱特征1电磁波共性:①在真空中都以光速传播;传播速度都是相同的②遵守同一反射;折射;干涉;衍射及偏振定律③电磁波铺区段的界限是渐变的5电磁波性质:①是横波②在真空以光速传播③满足频率×波长=光速;能量=普朗克常数×频率④电磁波具有波粒二相性162电磁波:由振源发出的电磁振荡在空中的传播;是电磁振荡在空间传播; 3电磁波谱:按电磁波在真空中传播的波长或频率;递增或递减排列就构成了~..P154可见光波段对遥感有重要意义5辐射通量:单位时间内通过某一面积的辐射能量..辐射通量是波长的函数..总辐射通量是各普段辐射通量之和或辐射辐射通量的积分值6辐射通量密度:单位时间内通过单位面积的辐射能量7辐照度:被辐射的物体表面单位面积上的辐射通量8辐射出射度:辐射源物体表面单位面积上的辐射通量9绝对黑体朗伯源:如果一个物体对于任何波长的电磁辐射都全部吸收;则这个物体是绝对黑体..10绝对黑体不仅有最大的吸收率;也具有最大的发射率;却丝毫不存在反射11黑体辐射规律:①辐射通量密度随波长变化连续;每条曲线只有一个最大值②温度越高;辐射通量密度也越大;不同温度曲线不相交③随着温度增加;辐射最大值所对应的波长移向短波方向第二节太阳辐射及大气对太阳辐射的影响1太阳常数:指不受大气影响;在距太阳一个天文单位内;垂直于太阳光辐射方向上;单位面积单位时间黑体所接收的太阳辐射能量.. 太阳常数的变化不会超过1%2太阳光谱的特征①太阳辐射的光谱是连续光谱;但是有许多费吸收线②辐射特性与绝对黑体的辐射特性基本相同③太阳辐射从近紫外到中红外这一波段区间能量最集中而且相对来说最稳定;太阳强度变化最小3太阳光谱特征对遥感的启示:1被动遥感主要利用可见光;红外等稳定辐射;使太阳活动对遥感的影响降到最小2由于大气的影响;需要对遥感影像进行矫正4散射:辐射在传播过程中遇到小微粒而使传播方向发生改变;并向各个方向散开;5散射使原来传播方向上的辐射强度减弱;而增加其他方向上的辐射;但通过二次影响增加了信号中的噪声成分;造成遥感图像的质量下降6散射现象的实质:电磁波在传输过程中遇到大气微粒而产生的一种衍射现象7常见的大气散射及其特点1瑞丽散射:大气中粒子的直径比波长小得多时发生的散射..主要由大气中的分子和原子引起特点:辐射强度与波长的四次方成反比;波长越长;散射越弱..解释:蓝天;朝霞;夕阳主要发生在:可见光和近红外波段2米氏散射:大气中粒子的直径与辐射的波长相当时发生的散射.. 主要由大气中的微粒引起特点:辐射强度与波长的二次方程反比..云雾对红外线的散射主要是米氏散射..潮湿天气米氏散射影响大主要发生在:近紫外到红外都有影响3无选择性散射:大气中的粒子直径比波长大的多是发生的散射特点:散射强度与波长无关;即在符合无条件性散射的条件的波段中;任何波长的散射强度都相同解释:云雾白色主要发生在:可见光对微博来说;微波属于瑞丽散射的类型;辐射强度与波长四次方成反比;波长越长散射强度越小..所以;只有微波可能有最小辐射;最大辐射;被称为具有穿云透雾的能力8折射:电磁波穿过大气层时出现传播方向的改变..大气的折射率与大气密度相关;密度越大;折射率越大..离地面越高;空气越稀薄;折射越小9大气窗口:通常把电磁波通过大气层时较少被反射、吸收或散射的;透过率较高的波段称为大气窗口10地球辐射的分段特性波段名称可见光与近红外中红外远红外波长0.3~2.5um 2.6~6um >6um辐射特性地表反射太阳辐射为主地表辐射太阳辐地表物体自身辐射为射和自身的热辐射11发射波谱曲线:温度一定时;物体的比辐射率随波长变化..表示这种变化的曲线称物体的发射波谱曲线12地物的反射波谱:地物反射率随波长的变化规律;地物反射波普曲线:地物反射波普曲线除随不同地物反射率不同外;同种地物在不同内部结构和外部条件下形态表现反射率不同..13影响太阳光谱变化的主要因素1太阳位置2传感器位置3地理位置4地物本身变异5时间和季节的变化第三章遥感成像原理与遥感图像特征1遥感平台:是搭载传感器的工具;根据运载工具的类型可分为航天平台高度在150KM之上;航空平台百米至十余千米不等;地面平台0~50米的范围内2气象卫星特点1轨道;气象卫星的轨道分为两种低轨和高轨;低轨就是近极低太阳同步轨道;简称极地轨道..南北向绕极地运转..与太阳同步.. 高轨是指地球同步轨道;卫星公转角速度和地球自转角速度相等..称作地球同步卫星或静止气象卫星2短周期重复观测3成像面积大;有利于获得宏观同步信息;减少数据处理容量4资料来源连续;时效性强;成本低3气象卫星的应用1天气分析和气象预报2气候研究和气候变迁的研究3资源环境其他领域3.2摄影成像1数字摄影根据探测波长的不同可以分为近紫外摄影;可我见光摄影;红外摄影;多光谱摄影2摄影机分为:分幅式和全景式3扫描成像:是依靠探测原件和扫描镜对目标地物以瞬时视场为单位;进行的逐点逐行取样;以得到目标地物电磁辐射特性信息;形成一定谱段的图像.. 探测波段包括:紫外;红外;可见光;微波..成像方式1光/机扫描成像2固体扫描成像3高光谱成像光谱扫描4微波遥感:通过微波传感器获取从目标地物发射或反射的微波辐射;经过判读处理来识别地物的技术5微波遥感的特点1能全天候;全天时工作2对某些地物具有特殊的波段特征3对冰雪森林土壤有一定穿透力4对海洋遥感有特殊意义:海绵动态变化的观测5分辨率较低;但特征明显6中心投影的透视规律1地面物体是一个点;在中心投影上仍是一个点..如果有几个点同在同一投影线上;他的影像便重叠成一个点2与相面平行的直线;在中心投影上仍是一条直线;与地面目标的形状基本一样..平面上的曲线在地图投影上仍是一个曲线3水平面上的一个投影仍是一平面;垂直面的投影位于投影中心时呈一直线;在其他位置时;其侧面投影呈不规则的梯形7中心投影的像点位移:在中心投影的胶片上;地形的起伏;除引起胶片比例尺变化外;还会引起平面上的点位在相片位置上的移动;这种现象称为像点位移中心投影的像点位移规律:①位移量与地形高差h成正比;即高差越大引起的像点位移量也越大②位移量与像主点的距离r成正比..即距主点越远的像点位移量越大..像片中心部分位移量较小;③位移量与摄影高度成反比;即摄影高度越大;因地表起伏引起的位移量越小8遥感图像的特征:几何特征..物理特征;时间特征9遥感图像的分辨率分为:1空间分辨率:指像素所代表的地面范围的大小;即扫描仪的瞬时视场;或地面物体能分辨的最小单位..2光谱分辨率:指传感器在接收目标辐射的波谱时能分辨的最小波长间隔..时隔越小;分辨率越高3辐射分辨率:指传感器接收波谱信号时;能分辨的最小辐射度差..4时间分辨率:指对同一地点进行遥感采样的时间间隔;即采样的时间频率;也称重访周期第四章遥感图像处理10.38~0;76um波段能够引起人的视觉2严格来讲;只有能够被眼睛感觉到的;并产生视觉现象的辐射才是可见光辐射或可见光;简称光3亮度对比:视场中对象与背景的亮度差与背景亮度之比4颜色对比:在视场中;相邻区域的不用颜色的相互影响5白色光源亮度很高时看到的是白色;亮度很低看到的是发暗发灰;无亮度则看到黑色6颜色的性质由明度;色调;饱和度来描述..明度是人眼对光源或物体明亮程度的感觉;色调;是色彩彼此相互区分的特征;饱和度;是色彩纯洁的程度7黑白色只用明度来描述;不用色调;饱和度描述8互补色:两种颜色混合产生白色或灰色;这两种颜色就称为互补色..如黄和蓝;红和青;绿和品红9三原色:若三种颜色其中的任一种都不能由其余两种颜色混合相加产生;这三种颜色按一定比例混合;可以形成各种色调的颜色;则称之为三原色.. 加法三原色.;红绿蓝10颜色的减法原则:白色光线先后通过两块滤光片的过程就是~~11减法三原色;即加法三原色的补色;即黄;品红;青色..颜色相加相减原理第二节数字图像的校正1数字图像:能够被计算器存储;处理和使用的图像..数字图像常用数组和矩阵来表示2光学图像又称作模拟量;模拟图像又称作数字量;他们之间的转换称模/数转换;记作A/D转换;反之称为数模转换;记作转换.. 数字量与模拟量的本质区别在于模拟量是连续变量而数字量是离散变量3矩阵中的每一元素代表图像中的一个像元4数字图像中的像元值可以是整型;实型和字节型..字节最常用5辐射强度在图像上就是亮度值灰度值;该值主要受两个物理量影响1太阳辐射照射到地面的辐射强度2地物的光谱反射率..6辐射畸变:当太阳辐射相同时;图像上像元亮度值的差异直接反应地物目标光谱反射率的差异..实际测量时;辐射强度值受到影响发生改变;这一改变的部分就是需要矫正的地方;即为~~6引起辐射畸变有两个原因1传感器仪器本身产生的误差2大气对辐射的影响7直方图最小值去除法:首先确定图像上确实有辐射量度或反射亮度应为零的地区;校正时将每一波段;每个像元的亮度都减去本波段的最小值..使图像亮度动态范围得到改善;对比度增强;从而提高了图像质量7直方图的特点:1一副图像只能对应一个直方图;一副直方图可对应多幅图像2可强有力的变现图像反差与反射率8直方图的作用:每一幅影像都可以求出其像元亮度值的直方图..观察直方图的形态可以粗略的分析影像的质量9当遥感图像在几何位置上发生了变化;产生诸如行列不均匀;像元大小与地面大小对应不准确;地物形状不规则变化等畸变时;说明遥感影像发生了几何畸变10遥感影像畸变的原因1遥感平台位置和运动状态变化的影响2地势起伏的影响3地球表面曲率的影响4大气折射的影响5地球自转的影响11为了确定矫正后图像上每点的亮度值;有三种方法:最近邻法;双向线性内插法;三次卷积内插法最近邻法优点:简单易用计算量小;在几何位置上精度为﹢—0.5像元:缺点:处理后图像的亮度具有不连续性;从而影响精度双向线性内插法优点:与最近邻法相比精度明显提高;缺点:计算量增加;会对图像起平滑作用;从而使对比度明显的分界线变得模糊三次卷积内插法优点:计算较简单;有一定的亮度采样精度:缺点:图像略变模糊第三节数字图像增强1图像增强处理的主要方法:对比度扩展;空间滤波;图像运算;多光谱变换1对比度变化的方法:①线性变换为了改善图像的对比度;在运算过程中有一个变换函数..如果变换函数是线性的或分段线性的;这种变换就是~~分段线性变换:为了更好的调节图像的对比度;需要在一些亮度的段拉伸;而在另一些亮度段压缩;这种变换称为~~②非线性变换当变换函数是非线性时..常用的有指数变换和对数变换指数变换的意义:在亮度值较高的部分扩大亮度间隔;属于拉伸;在亮度值较低的部分缩小亮度间隔;属于压缩.. 对数变换的意义:在亮度值较低的部分拉伸;在亮度值较高的部分压缩.. 2空间滤波:是以实现重点突出图像上的某些特征为目的;如边缘;纹理等通过像元与其周围相邻像元的关系;采用空间域中的邻域处理方法..属于一种几何增强处理;包括平滑和锐化3图像卷积运算:是在空间域上对图像做局部检测的运算;以实现平滑和锐化的目的.. 二维的卷积运算是在图像中使用模版来实现运算的4平滑:图像中出现某些亮度变化过大的区域;或出现不该有的亮点时采用平滑的方法可以减小变化;使亮度平缓或去掉不必要的“噪声”点..有均值平滑和中值平滑两种5锐化作用:①突出图像的边缘;线状目标或某些亮度变化率大的部分②通过锐化直接提取出需要的信息6数字图像彩色变换的方法:单波段色彩变换;多波段色彩变换;HLS变换7假彩色合成:根据加发彩色合成原理;选择遥感影像的某三个波段;分别赋予红绿蓝三种颜色;就可以合成彩色影像..由于原色的选择与原来遥感波段代表的真实颜色不同;因此生成的合成色不是地物真实的颜色;这种合成即为~~8标准假彩色合成:绿波段赋蓝;红波段赋绿;红外波段赋红的合成方案9图像运算差值运算作用:1有利于目标与背景反差较小的信息提取2常用于研究同一地区不同时相的动态变化3突出边缘或线状地物10比值运算作用:1可以检测波段的斜率信息并加以扩展;以突出不同波段间地物光谱的差异;提高对比度2去除地形影响3还有其他多方面的作用;比如研究浅海区的水下地形;土地富水性差异;等第五章遥感图像目视解译与制图1遥感图象目视解译的概念:专业人员;通过直接观察或借助辅助判读仪器在遥感图像上获取特定目标地物信息的过程2遥感图像计算机解译的概念:以计算机系统为支撑环境;利用模式识别技术或与人工智能技术相结合;根据遥感图像中目标地物的各种影像特征;结合专家知识库中目标地物的解译经验和成像规律等知识进行分析和推理;实现对遥感图像的理解;完成对遥感图像的解译3TK遥感图像目标地物识别特征:色调;颜色;阴影;形状;纹理;大小;位置;图型;相关布局4TK遥感图像摄影像片的种类:可见光黑白全色像片;黑白红外像片;彩色像片;彩红外像片;多波段摄影像片;热红外摄影像片5直接判读标志:能够直接反映和表现目标地物信息的遥感图像的各种特征简介解译标志:能够间接反映和表现目标地物信息的遥感图像的各种特征;借助它可以推断与某地属性相关的其他现象6水体和植被在彩虹外和黑白红外即近红外波段像片上的色调特征:7遥感扫描影像特征:1宏观综合概括性强2信息量丰富..遥感影像采用多波段记录地表各种地物的电磁波信息;含有多波段;且每个波段都提供了丰富的信息3动态观测;时效性强8遥感影像的主要解译方法:遥感影像的判读要遵守“先图外;后图内;先整体;后局部;勤对比;多分析”的原则1“先图外;后图内”是指遥感扫描影像判读时;首先要了解影像图框外提供的信息;然后再对影像判读2判读时遵循“先集体;后局部”的原则;做整体的观察;了解各种地理要素在空间上的练习;综合分析目标地物与周围环境的关系3由于多光谱扫描影像可以同时获取多个波段的扫描图像;因此;要“勤对比;多分析”..多个波段对比;不同时相对比;不同地物对比9微波影像的应用:1海洋环境调查2地质制图和非金属矿产资源调查3洪水动态监测与评估4地貌研究和地图测绘5军事侦查10微波影像的判读方法:1由已知到未知的方法2对微波影像进行投影纠正3对微波影像进行立体观察;获取不同地形或高差11目标解译方法1直接判读法..根据遥感影像目视判读直接标志直接确定目标地物属性与范围2对比分析法..此方法包括同类地物对比分析法;空间对比分析法;时相动态对比法3信息复合法..利用透明专题图或者透明地形图与遥感图像重合;根据专题图或地形图提供的多种辅助信息;识别图像上目标地物4综合推理法..综合考虑遥感图像多种解译特征;结核生活常识;分析推断目标地物5地理相关分析法..借助专业知识分析推断12遥感图象目视解译步骤1目视解译准备工作阶段..明确任务;搜集资料2初步解译与判读区的野外考察3室内详细判读4野外验证与补判5目视解译成果的转绘与制图13遥感影像地图的概念:是一种以遥感影像和一定的地图符号来表现制图对象地理空间分布和环境状况的地图与普通地图相比的特点一丰富的地面信息二内容层次分明三图面清晰易读14遥感影像制图的特点:一丰富的信息量二直观形象性三具有一定数学基础四现势性强15计算机辅助遥感制图:在计算机系统支持下;根据地图制图原理;应用数字图像处理技术和数字地图编辑加工技术;实现遥感图像地图制作和成果表现的技术方法一般过程:1遥感影像信息选取与数字化2地理基础底图的选取与数字化3遥感影像几何纠正与图像处理4遥感影像镶嵌与地理基础底图拼接5地理基础地图与遥感影像复合6符号注记图层生成7影像地图图面配置8遥感影像地图制作与印刷第六章遥感数字图像计算机解译1遥感图像计算机解译:以遥感数字图像为研究对象;在密计算机系统支持下;综合运用地学分析;遥感图像处理;地理信息系统;模式识别与人工智能技术;实现地学专题信息的智能化获取2遥感图像计算机解译的难度:一遥感图像从遥远的高空成像;成像过程受干扰较大二遥感影像信息量丰富;与一般图像相比;内容非常拥挤;三遥感图像的地域性;季节性和不同成像方式更增加了计算机对遥感图像进行解译的难度3在遥感图像分类过程中;常使用距离系数和相关系数来衡量相似度.. 度量空间中的距离常用以下方法1绝对值距离2欧氏距离3马克距离4均值向量的混合距离TK4监督分类与非监督分类的区别:1根本区别:是否利用训练场地来获取先验的类别知识;训练场地的选择是监督分类的关键2非监督分类不需要跟多的先验知识;它根据地物的光谱统计特性进行分类非监督分类方法简单;且分类具有一定的精度..当光谱特征分类能够和唯一的地物类型相一致时;可取得较好的分类效果..当两个地物类型对应的光谱特征类差异很小时;非监督分类效果不如监督分类好5监督分类的基本思想:根据训练场地提供的样本选择特征参数;建立判别函数;对待分类点进行分类6监督分类的常用方法:一最小距离分类法二多级切割分类法三特征曲线窗口法四最大似然比分类发TK7分级集群法的分类过程:一确定评价各样本相似程度所采用的指标;二初定分类总数n 三计算样本间的距离:根据距离最近的原则判定样本归并到不同类别..四归并后的类别作为新类;与剩余的类别重新组合;然后再计算并更正其距离8遥感图像解译专家系统:是模式识别与人工智能技术相结合的产物..它用于模式识别方法获取地物多种特征;为专家系统解译遥感图像提供证据;同时应用人工智能技术;运用遥感图像解译专家的经验和方法;模拟遥感图像目视解译的思维过程;进行遥感图像解译系统组成:第一部分:图像处理与特征提取子系统..功能:遥感图像滤波;增强大气矫正;几何精校正;正射纠正..每个目标地物的位置数据和属性特征数据通过系统接口存储在遥感数据库内第二部分:遥感图像解译知识获取系统功能:知识获取、将专家知识通过系统接口送入遥感图像解译专家系统中;存储在知识库中第三部分:侠义的遥感图像解译系统功能:提出假设..利用地物多种特征作为证据;进行推理验证;实现遥感图像解译1探测水体界限近红外波段悬浮物近红外;可见光水温热红外水污染①水体污染物浓度大;与背景水色有较大差异时;在可见光波段识别②水体高度富营养化;受到严重的有机污染;色调较亮;近红外波段③水体受热污染;热红外波段④其他情况;如油溢污染..紫外波段;近红外波段2植被遥感可以使用近红外;红光波段;计算植被指数3大面积农作物遥感估产包括三方面的内容步骤①农作物的识别与种植面积估算..可以根据作物的色调;图形结构等差异最大的时相的遥感影像和特定的地理位置等的特征;将其与其他植物分开②长势监测..利用高时相分辨率的卫星影像对作物生长的全过程进行动态观测③建立农作物的估产模式4主要的植被指数:比值植被指数;归一化~;差值~;正交~5遥感植被解译的主要应用①植被制图..应用遥感图像进行植被的分类制图;尤其是大范围的植被制图;是非常有效而且节约人力物力的工作②城市绿化调查与生态环境评价③草场资源调查④林业资源调查6土壤的光谱特征:①浅颜色的土壤具有较高的反射率②在干燥条件下同样物质组成的细胞颗粒的土壤;表面比较平滑;有较高的反射率、较粗的颗粒有较低的反射率③有机质含量高;反射率低④土壤水分含量增加;使反射率下降..⑤土壤表面有植被覆盖时..若覆盖率小于15%;光谱反射特征与裸土相似..植被覆盖度在15%~70%时表现为土壤和植被的混合光谱;植被覆盖度大于70%时;基本表现为植被的光谱特征7高光谱遥感:在电磁波谱的可见光;近红外;中红外和热红外波段范围内;获得许多非常窄的光谱连续的影像数据与一般遥感主要区别:①高光谱遥感的成像光谱仪可以分离成几十甚至数百个很窄的波段来接受信息②每个波段宽度仅小于10nm③所有波段排列在一起能组成一条连续的完整的光谱曲线④光谱的辐射范围从可见光到热红外的全部电磁辐射波谱范围。

遥感专业必会知识点总结

遥感专业必会知识点总结

遥感专业必会知识点总结遥感技术的基本原理是通过感测器(如光电传感器、微波传感器等)对地球表面或大气进行监测,收集返回的电磁辐射信号,然后利用数字图像处理方法将其转化为数字图像,通过图像处理技术分析、解译和提取目标地物的信息。

由于遥感技术具有成本低、周期短、覆盖面广等特点,因此其在资源调查、环境监测等领域有着独特的优势。

以下将从遥感技术的基础原理、遥感图像的获取、遥感图像的处理和分析方法等方面,对遥感专业必会的知识点进行总结。

一、遥感技术的基础原理1. 电磁辐射与地球观测地球表面和大气等物体都会产生电磁辐射,包括可见光、红外线、微波等各种波段的辐射。

遥感技术利用的核心是通过感测器捕获和记录这些辐射信号,然后将其转化为数字图像。

2. 传感器的工作原理传感器是遥感技术的核心设备,其工作原理是通过接收地面或大气发射的电磁波,然后将其转化为电信号,并记录下来供后续处理分析。

3. 遥感平台的选择及参数设置选择合适的遥感平台和传感器对于获取高质量的遥感图像至关重要,需要考虑到分辨率、光谱范围、观测角度等参数,以保证获取到的图像能够满足实际需求。

4. 遥感图像的地理坐标系统遥感图像需要具有地理坐标系统以便进行地理信息系统(GIS)中的空间分析和地图制作,常用的地理坐标系统包括经纬度坐标系统、投影坐标系统等。

二、遥感图像的获取1. 遥感图像的获取方式遥感图像的获取方式主要包括航拍和卫星遥感两种,航拍是通过飞机或者无人机等载具进行空中摄影,而卫星遥感则是通过卫星搭载的传感器以及遥感平台对地面进行拍摄。

2. 遥感图像的光谱特性遥感图像的光谱范围可以通过调整传感器的波段来获取不同波段的图像,其中可见光、红外光、紫外光等不同波段的图像可以提供丰富的地物信息。

3. 遥感图像的分辨率遥感图像的分辨率是指图像中能够识别的最小物体大小,分辨率越高则图像的细节信息越丰富。

一般来说,遥感图像的分辨率可以分为空间分辨率、光谱分辨率、时间分辨率、辐射分辨率等。

卫星遥感知识点总结

卫星遥感知识点总结

卫星遥感知识点总结一、遥感基础知识1.1 遥感概念遥感是指在地面之外或大气层以上以电磁波为媒介,对地球进行全面、快捷、准确的观测和探测。

通过记录和测量被观测对象所发的电磁波,并将这些信息转换为有用的图像或数据,可用于获取目标地表特征信息的一种技术手段。

1.2 遥感的分类遥感根据平台可分为卫星遥感、航空遥感和地面遥感;根据波段可分为光学遥感、红外遥感、微波遥感等;根据应用可分为地质勘查、农业监测、城市规划、环境监测等。

1.3 遥感原理遥感技术的原理是基于地球表面上的物质通过电磁波的相互作用而得到信息。

地球表面物体吸收、反射、传播、发射电磁辐射,通过传感器记录地表物体所发的不同波段的辐射,再将辐射能转换为图像或数据。

1.4 遥感的应用卫星遥感技术在农业、林业、水资源、城市规划、环境保护等领域有着广泛的应用。

能够及时获取地表的相关信息,为决策提供数据支持,有助于资源的合理开发和保护。

二、卫星遥感技术2.1 卫星遥感的发展历程20世纪60年代,美国、苏联相继发射了世界上第一颗卫星——斯普特尼克1号和美国的“探险者”1号,标志着卫星遥感时代的开始。

80年代末至90年代初,陆续有多国和地区的公司和机构相继建造了多颗卫星发射到轨道上。

21世纪以来,卫星遥感技术进一步发展,传感器技术和数据处理技术不断提升,空间分辨率和时间分辨率不断增加。

2.2 卫星遥感的传感器卫星遥感传感器可分为光学成像传感器和微波雷达传感器。

光学传感器可以通过记录目标发射的电磁波的反射、散射等现象获取目标地的图像信息;微波雷达传感器可以穿透云层、大气层以及夜晚获得目标地的图像信息。

2.3 遥感数据的获取与处理卫星遥感数据获取有定点定时和遥感巡天两种方式。

定点定时是在特定时间和地点采集数据;遥感巡天是卫星在低轨道上向地面成条带式扫描,记录一幅幅图像,以获取一片大地全景图。

2.4 遥感图像的解译遥感图像的解译是指在数字图像上进行人工信息提取,根据地物的形状、大小、纹理、颜色等特征,识别出地物类别,并提供地物的相关信息。

遥感知识点

遥感知识点

一、遥感的概念1、遥感(Remote Sensing):不接触地物,从远处把目标地物的电磁波特征记录下来,通过分析揭示地物的特征性质及其变化的综合性探测技术。

2、遥感的定义广义遥感——无接触的远距离探测狭义遥感——不与探测目标接触,记录目标的电磁波特性遥感不同于遥测(telemetry)和遥控(remote control),但需要综合运用遥测和遥控技术。

3、几个重要的概念传感器:又名遥感器,是指远距离感测地物环境辐射或反射电磁波的仪器。

遥感平台:遥感中搭载传感器的工具称为遥感平台,按高度可分为地面平台、航空平台、航天平台。

二、遥感技术的特点宏观性、综合性、多波段性(全天候)、多时相性(动态分析)三、遥感的分类按照遥感的工作平台分类:地面遥感、航空遥感、航天遥感。

按照探测电磁波的工作波段分类:可见光遥感、红外遥感、微波遥感等。

按照遥感应用的目的分类:环境遥感、农业遥感、林业遥感、地质遥感等按照资料的记录方式:成像方式、非成像方式按照传感器工作方式分类:主动遥感、被动遥感四、遥感技术系统1、定义:是一个从地面到空中直至空间;从信息收集、存储、传输处理到分析判读、应用的完整技术系统。

包括被测目标的信息特征、信息的获取、信息的记录与传输、信息的处理和信息的应用五大部分2、遥感技术系统的组成遥感试验:对电磁波特性、信息获取、传输和处理技术的试验。

遥感信息获取:中心工作。

遥感平台和传感器。

信息的记录与传输:遥感信息处理:处理的原因遥感信息应用四、遥感技术系统1、遥感发展概况与展望Remote Sensing 的提出:美国学者布鲁伊特于1960年提出,1961年正式通过。

遥感发展的三个阶段:萌芽阶段、航空遥感阶段、航天遥感阶段(气球、风筝、信鸽姿态不定,均不是理想的遥感平台)航空遥感阶段1903年航天遥感阶段1957年2、我国遥感发展概况50年代航空摄影和应用工作。

60年代,航空摄影工作初具规模,应用范围不断扩大。

遥感原理知识点梳理

遥感原理知识点梳理

遥感原理知识点梳理第一章绪论1.遥感于1960年由美国地理学家pruitt普鲁伊特提出2.广义遥感(梅安新教授提出):一切无接触远距离探测(实际工作中,只有电磁波探测属于遥感范畴)(电磁波是遥感技术的基础)3.狭义遥感(电磁波遥感):从不同高度平台,使用各种传感器接收来自地球表层的电磁波信息(数据采集)并进行加工处理(数据处理分析),从而对不同地物进行远距离探测与识别(处理结果应用)的技术。

4.遥感平台:地面,航空,航天5.传感器:接收、记录物体反射或发射的电磁波特征的仪器。

6.遥感技术系统:从地面到空中乃至空间,从信息采集、存储、处理到判读分析与运用的完整技术体系。

可以分为:(1)空间信息采集系统-采集遥感信息(2)地面接收与预处理系统-接收、处理(必要的辐射与几何校正)与分发遥感数据(针对星载传感器建立地面接收系统)(3)地面实况调查系统(遥感技术系统的基础):获取遥感信息之前:通过测定地物反射光谱确定所需传感器类型与波段获取遥感信息的同时:采集地表,大气等有关参数(遥感信息处理运用的辅助)遥感数据处理结果的检验(4)信息分析与运用系统,主要包括:遥感信息的选择技术、遥感信息的处理技术、专题信息提取技术、参数量算与反演技术、制图技术7.遥感分类:按工作平台:地面,航空,航天、(航宇)按探测电磁波工作波段:紫外,可见光,近红外,热红外,微波,多波段等按应用目的(探测目标):大气,极地,海洋,陆地,外层空间等按资料的记录方式:成像,非成像按传感器工作方式:主动(主动发射与接收电磁波),被动(被动接收电磁波(可见光,近红外,热红外))8.遥感的特点:(1)宏观性与同步性(2)时效性与动态性(3)多波段性(4)综合性与可比性(5)经济性(6)局限性(误差,用途等)9.传感器:扫描仪,摄影机,摄像仪,雷达,高度计,微波辐射计,扫描仪等10.1957年苏联成功发射第一颗人造卫星(斯普特尼克一号)1970年我国发射东方红一号第二章电磁辐射与地物波谱特征2.1电磁波与电磁波谱1.电磁波(横波):由变化的电场和变化的磁场交替产生,以有限的速度由近及远在空间中传播。

遥感技术知识点

遥感技术知识点

遥感技术知识点遥感技术是指通过卫星、飞机等远距离传感器获取地球信息的技术。

它在地质勘探、环境保护、农业生产等领域都有着广泛的应用。

本文将介绍一些遥感技术的知识点。

1. 遥感数据的分类遥感数据主要分为光学遥感数据和微波遥感数据两大类。

光学遥感数据是利用传感器对地面反射、辐射的光信号进行测量和记录,包括高光谱、超光谱和激光雷达数据等。

微波遥感数据则是利用微波传感器对地面的微波信号进行探测,包括合成孔径雷达(SAR)数据等。

2. 遥感影像的解译遥感影像解译是指根据遥感数据获取信息的过程。

主要包括目视解译、数字图像处理和专题信息提取三大步骤。

目视解译是指通过人眼直接观察遥感影像,数字图像处理则是指通过计算机处理遥感影像数据,专题信息提取是指根据需求提取具体的信息内容。

3. 遥感技术在环境监测中的应用遥感技术在环境监测中有着广泛的应用。

通过遥感数据获取城市扩张、植被覆盖、土地利用等信息,可以为环境监测和保护提供重要的参考依据。

另外,遥感技术还可以监测大气、海洋等环境要素,为环境科学研究提供数据支持。

4. 遥感技术在农业生产中的应用遥感技术在农业生产中也有着广泛的应用。

农业遥感可以监测农田的植被生长情况、病虫害发生情况等,为农民提供科学的种植管理建议。

同时,遥感技术还可以监测农田的土壤墒情、水分状况等,为精准农业的发展提供支持。

5. 遥感技术的发展趋势随着科技的不断发展,遥感技术也在不断创新和完善。

未来,随着高分辨率遥感卫星的发射、遥感数据处理技术的提升,遥感技术将在农业、环境、城市规划等领域得到更广泛的应用。

同时,遥感技术与人工智能、大数据等领域的结合也将带来更多的可能性。

综上所述,遥感技术作为一种重要的信息获取手段,对于环境监测、农业生产等领域有着重要的意义。

通过不断的学习和研究,我们可以更好地利用遥感技术,服务于社会发展和人类福祉。

遥感原理与应用各章节知识点总结

遥感原理与应用各章节知识点总结

遥感原理与应用各章节知识点总结
遥感原理与应用各章节知识点总结如下:
1. 遥感定义:遥感是指通过非接触的方式,远距离感知目标物体的基本属性,包括位置、形状、大小、方向、表面温度等。

2. 电磁波谱:遥感的工作基础是电磁波谱,包括可见光、红外线、微波等不同波段的电磁波。

不同的物体对不同波段的电磁波有不同的反射和吸收特性,因此通过测量这些特性,可以反演出物体的基本属性。

3. 传感器:传感器是遥感的“眼睛”,它能够接收和记录电磁波谱中特定波段的信息。

常见的传感器包括光学相机、红外扫描仪、微波雷达等。

4. 数据处理:数据处理是遥感中非常重要的环节,它包括预处理、增强、变换和分析等步骤。

通过这些步骤,可以将原始的遥感数据进行处理,提取出有用的信息,并对这些信息进行解释和识别。

5. 应用领域:遥感的应用领域非常广泛,包括资源调查、环境保护、城市规划、交通管理、气象监测、灾害预警等。

6. 发展趋势:随着科技的不断发展,遥感技术也在不断进步和完善。

未来的遥感技术将更加注重智能化、自动化和实时化,同时也会更加注重多源数据的融合和综合应用。

以上是遥感原理与应用各章节知识点总结,如需获取更具体的内容,建议查阅相关教材或权威资料。

遥感领域知识点总结

遥感领域知识点总结

遥感领域知识点总结一、遥感技术简介遥感技术是利用各种感知设备(如卫星、飞机、无人机等)获取地球表面信息的一种技术手段。

遥感技术的主要特点是不需要直接接触被观测对象,能够实现全天候、全天时、全地域的地表信息获取。

在遥感技术的发展过程中,主要包括了光学遥感、微波遥感、红外遥感、激光雷达遥感等多种技术手段。

光学遥感是利用可见光、红外线、紫外线等电磁辐射进行地表信息获取的一种遥感手段。

光学遥感技术可以分为近景遥感和遥驾遥感两种,近景遥感通常使用相机、摄像机等设备,适用于地面观测;遥感遥感则是通过卫星、飞机等平台获取远距离地表信息的一种手段。

微波遥感利用微波波段的电磁辐射进行地表信息获取,主要适用于云雾天气下的地表观测。

微波遥感技术可以提供地表土壤湿度、植被覆盖、冰雪覆盖等信息,对于农业、水资源、气象等领域具有重要意义。

红外遥感是利用红外线波段进行地表信息获取的一种遥感手段。

红外遥感技术可以提供地表温度、火灾监测、环境变化等信息,对于环境保护、自然灾害监测等领域具有重要意义。

激光雷达遥感利用激光雷达进行地表信息获取,具有高精度、高分辨率的优势,主要适用于地形测量、建筑测绘、城市规划等领域。

二、遥感数据解译遥感数据解译是指利用遥感图像对地表信息进行识别、提取、分析的过程。

遥感数据解译的主要步骤包括数据准备、预处理、信息提取、信息分析等。

数据准备包括获取遥感数据、进行数据格式转换、数据配准等工作。

预处理是指对遥感图像进行大气校正、辐射校正、几何校正等处理,以保证图像质量。

信息提取是指根据遥感图像特征,对地表信息进行分类、识别等工作。

信息分析是指对提取的地表信息进行统计分析、空间分析等工作,从而获取有用的地表信息。

遥感数据解译主要涉及的技术包括像元分类、遥感图像分析、遥感信息系统等。

像元分类是指将遥感图像像元按其特征进行分类,常用的分类方法包括最大似然法、支持向量机、人工神经网络等。

遥感图像分析是指对遥感图像进行特征提取、目标识别等工作,主要涉及的技术包括纹理分析、形状分析、光谱分析等。

遥感概论知识点总结

遥感概论知识点总结

遥感概论知识点总结一、遥感的基本概念遥感是通过对地球表面进行观测和测量,获取地球表面各种信息的技术。

遥感可以利用航空器、卫星等平台来进行观测和测量,通过获取的遥感数据,可以对地球的各种现象和特征进行监测和分析。

遥感技术的应用范围非常广泛,可以在农业、水资源、土地利用、环境保护、城市规划等领域发挥重要作用。

二、遥感的原理遥感的原理主要是通过传感器对地球表面进行观测和测量,获取各种遥感数据。

传感器可以利用电磁波、红外线、微波等方式对地球表面进行观测,不同的传感器可以获取到不同波段的数据,从而获取到地球表面的不同信息。

遥感数据可以分为光学遥感数据和雷达遥感数据两种类型,其中光学遥感数据主要是通过对可见光、红外线等光谱的捕捉,获取地球表面的图像信息,而雷达遥感数据则是通过微波的回波信息获取地球表面的各种信息。

通过对遥感数据的处理和分析,可以获取到地球表面的各种信息,包括地形、地物、植被、水域、土壤等。

三、遥感的分类遥感可以根据传感器的工作原理和数据类型进行分类,主要可以分为光学遥感和雷达遥感两种类型。

光学遥感主要是利用可见光和红外线等光学波段进行观测和测量,可以获取地球表面的图像信息,包括地形、地物、植被、水域等。

光学遥感主要利用航空摄影、卫星摄影等方式获取数据,可以在农业、林业、地质勘探等领域得到应用。

雷达遥感则是利用雷达传感器对地球表面进行观测和测量,可以在夜间和恶劣天气下进行观测,可以获取地球表面的高度、形状、液体含量等信息,广泛应用于地质勘探、环境监测等领域。

四、遥感数据的获取遥感数据的获取主要是通过航空摄影、卫星摄影等方式进行观测和测量。

航空摄影是利用航空器进行大范围、高分辨率的遥感观测和测量,可以获取地球表面的高分辨率图像信息,适用于小范围的地面观测。

而卫星摄影则是利用卫星平台进行大范围、中低分辨率的遥感观测和测量,可以获取地球表面的宽幅图像信息,适用于大范围的地面观测。

通过这些方式获取的遥感数据可以在地质勘探、农业监测、城市规划等方面得到应用。

遥感知识点归纳总结

遥感知识点归纳总结

遥感知识点归纳总结一、遥感的基本概念1. 遥感是通过利用飞机、卫星等远距离获取地球表面信息的技术手段。

2. 遥感的基本原理是利用传感器感知地面目标发射的辐射能量,将其转换成数字信号或电信号,再利用数据处理技术进行图像重建和信息提取。

二、遥感的分类1. 根据传感器的工作原理和辐射波段的不同,遥感可以分为被动遥感和主动遥感。

2. 根据传感器所在的平台不同,遥感可分为航空遥感和卫星遥感。

3. 根据获取的数据类型不同,遥感可以分为光学遥感、微波遥感、红外遥感等。

三、遥感数据的特点1. 遥感数据具有多波段、全天候、高时空分辨率、连续性等特点。

2. 遥感数据可以用于地貌测绘、资源调查、环境监测、灾害预警等领域。

3. 遥感数据处理的基本步骤包括数据采集、数据预处理、数据解译和数据应用。

四、遥感数据的应用1. 遥感数据可以用于农业资源管理,包括农田监测、农作物遥感调查、粮食产量预测等。

2. 遥感数据可以用于城市规划和建设,包括城市地形测绘、土地利用变化监测、城市扩张分析等。

3. 遥感数据可以用于环境监测和保护,包括森林火灾监测、水质检测、环境污染监测等。

4. 遥感数据可以用于自然资源勘查,包括矿产资源调查、水资源调查、土地资源调查等。

五、遥感数据处理的基本方法1. 遥感影像预处理包括几何校正、辐射定标和大气校正等;2. 遥感数据解译可以采用目视解译、数字图像处理、人工智能等方法;3. 遥感数据处理中涉及到的技术包括遥感数据库管理、遥感模型构建、遥感影像融合等。

六、遥感技术的发展趋势1. 遥感技术在高分辨率、高灵敏度、多波段、3D等方面有了长足的进步,使得遥感在精准农业、城市规划等领域得到更广泛的应用。

2. 遥感技术与无人机、机器视觉、机器学习等新兴技术的结合,将使得遥感技术在自动化、智能化方面更加成熟。

3. 遥感技术在环境监测、自然灾害预警等领域的应用将更加广泛,对于人类社会的可持续发展将发挥更大作用。

遥感概论复习重点

遥感概论复习重点

遥感概论复习重点遥感概论是地球科学和环境科学中的重要学科之一,主要研究地球表面信息的获取、处理和应用。

以下是遥感概论复习的重点内容。

一、遥感基础知识1.遥感的定义、特点和应用范围;2.遥感数据的分类、图像解译的基本步骤;3.遥感的数据源、传感器和平台;4.遥感数据的光谱特征和光谱反射率;5.遥感数据的空间、光谱和时间分辨率。

二、遥感图像解译1.遥感图像解译的基本概念和步骤;2.遥感图像的特征提取方法;3.遥感图像分类方法和常用分类算法;4.遥感图像解译中的误差源和误差评价方法;5.遥感图像的应用领域和典型应用案例。

三、遥感技术的发展和应用1.遥感技术的发展历程和主要进展;2.遥感技术在农业、林业、环境监测、城市规划等领域的应用;3.遥感技术在气象、地质灾害监测、资源调查和管理中的应用;4.遥感技术在国土调查、地理信息系统、地理空间数据处理中的应用。

四、遥感数据处理和分析1.遥感数据的获取和预处理技术;2.遥感图像的增强和滤波处理方法;3.遥感数据的特征提取和信息提取方法;4.遥感数据的数学模型和解析技术;5.遥感数据的多光谱、高光谱和合成孔径雷达处理方法。

五、遥感与地理信息系统(GIS)的集成应用1.遥感与GIS的概念、关系和集成模式;2.遥感数据在GIS中的应用和分析方法;3.遥感数据与GIS数据的转换和交互;4.遥感数据与GIS空间分析的集成方法;5.遥感与GIS的应用案例和未来发展方向。

六、遥感应用中的伦理和社会问题1.遥感数据的隐私和安全问题;2.遥感数据在环境保护和资源管理中的伦理问题;3.遥感数据的使用和共享政策问题;4.遥感数据在社会冲突和隐患管理中的道德问题;5.遥感数据的技术限制和社会影响问题。

以上内容是遥感概论复习的重点,通过对这些知识点的深入学习和理解,可以帮助学生全面掌握遥感概论的基本理论和应用技术,为进一步深入研究和应用遥感技术打下坚实的基础。

遥感导论知识点整理

遥感导论知识点整理

遥感导论知识点整理1、遥感概念广义:泛指一切无接触的远距离探测,包括对地磁场、力场、机械波(声波、地震波)等的探测。

遥感定义:是从远处探测感知物体,也就是不直接接触物体,从远处通过探测仪器接收来自目标底物的电磁波信息,经过对信息的处理,判别出目标地物的属性。

2、遥感系统组成包括:被测目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用。

3、传感器一般由信息收集、探测系统、信息处理和信息输出4部分组成。

4、传感器是收集、量测和记录遥远目标的信息仪器,是遥感技术系统的核心。

5、遥感的特点:大面积的同步观测、时效性、数据的综合性和可比性、经济性、局限性。

6、遥感的数据类型:按平台分为地面遥感、航空遥感、航天遥感数据;按电磁波段分可见光遥感、红外遥感、微波遥感、紫外遥感数据;按传感器的工作方式分主动遥感、被动遥感数据。

7、电磁波谱:按照电磁波在真空中传播的波长或频率进行递增/递减排列形成的一个连续谱带。

8、遥感机理:遥感是利用传感器主动或被动地接受地面目标反射或发射的电磁波,通过电磁波所传递的信息来识别目标,从而达到探测目标地物的目的。

9、大气发生的散射主要有三种:瑞利散射(d<<λ)、米氏散射(d≈λ)、非选择性散射(d>>λ)。

10、自然辐射源是被动遥感的辐射源包括太阳辐射、地球辐射。

11、地球辐射:地球表面和大气电磁辐射的总称。

12、地球辐射是被动遥感中传递地物信息的载体。

13、人工辐射源是主动式遥感的辐射源。

14、地物波谱:地物的电磁波响应特性随电磁波长改变而变化的规律,称为地表物体波谱,简称地物波谱。

15、大气窗口:通常把电磁波通过大气层时较少被反射、吸收或散射的,透过率较高的波段称为大气窗口。

16、反射率:地物的反射能量与入射总能量的比,即ρ=(Pρ/p0)×100%。

表征物体对电磁波谱的反射能力。

17、地物反射类型根据地表目标物体表面性质的不同分为镜面反射、漫反射、实际物体的反射三种类型。

遥感影像有关知识点总结

遥感影像有关知识点总结

遥感影像有关知识点总结一、遥感影像的基础知识1. 遥感影像的定义遥感影像是指通过无人载具(如卫星、飞机、无人机等)对地面进行观测和测量,获取地面信息的影像数据。

遥感影像可以分为光学遥感影像、雷达遥感影像等。

2. 遥感影像的波段遥感影像的波段是指影像中所使用的波段范围。

在光学遥感中,常见的波段包括可见光、红外线、近红外线等。

而在雷达遥感中,波段主要包括X波段、C波段、S波段等。

3. 遥感影像的分辨率遥感影像的分辨率是指影像中能够分辨的最小物体的大小。

分辨率可以分为空间分辨率、光谱分辨率和时间分辨率,其中空间分辨率最为重要,它决定了遥感影像能够显示的地面细节。

4. 遥感影像的分类根据遥感影像所使用的波段和传感器类型,遥感影像可以分为多种类型,如全色影像、多光谱影像、高光谱影像、雷达影像等。

二、遥感影像的采集和处理1. 遥感影像的获取遥感影像的获取主要通过卫星、飞机、无人机等载具进行观测和测量,然后将采集的数据进行处理,得到遥感影像。

2. 遥感影像的预处理遥感影像在获得后,需要进行预处理来提高影像质量。

预处理包括辐射校正、几何校正、大气校正等环节,以确保影像能够准确地反映地面信息。

3. 遥感影像的特征提取特征提取是指利用计算机算法从遥感影像中提取地物信息的过程。

常用的特征提取方法包括阈值分割、区域生长、边缘检测等。

4. 遥感影像的分类遥感影像的分类是指将影像中的像元根据其光谱特征和空间信息分为不同的类别。

常用的分类方法包括最大似然分类、支持向量机分类、人工神经网络分类等。

5. 遥感影像的地物识别地物识别是指对遥感影像进行解译,识别影像中的地物类型。

常见的地物识别包括植被识别、水体识别、建筑物识别等。

6. 遥感影像的信息提取信息提取是指利用遥感影像获取地面信息,如地表覆盖类型、地面高程等。

信息提取可以借助数字高程模型、地物识别技术等手段。

三、遥感影像的应用1. 环境监测遥感影像可以用来监测大气污染、土壤侵蚀、植被覆盖等环境变化,为环境保护和治理提供数据支持。

遥感测量知识点梳理总结

遥感测量知识点梳理总结

遥感测量知识点梳理总结一、遥感概念及发展历史1.1 遥感概念遥感是指利用卫星、航空器、船只等自然物体之外的传感器和设备,对地球表面的物体和环境进行观测、测量、探测和监测。

遥感技术是一种无需与被观测物体接触的测量技术,因此被广泛应用于地球科学领域。

1.2 遥感发展历史遥感技术最早可以追溯到19世纪,当时的军事领域开始利用气球、飞艇和飞机拍摄地面敌军的照片。

到了20世纪,随着航空和航天技术的发展,遥感技术开始得到更广泛的应用。

1972年美国NASA发射了第一颗陆地观测卫星LANDSAT-1,标志着陆地遥感观测进入了卫星时代。

此后,遥感技术不断发展,成为地球科学领域不可或缺的工具之一。

二、遥感测量基础知识2.1 电磁波谱电磁波谱是指电磁波的频率范围,包括广泛的无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线等。

在遥感技术中,不同波段的电磁波具有不同的特性和应用,因此了解电磁波谱是遥感测量的基础知识。

2.2 传感器遥感传感器是指用于探测、记录和测量地球表面各种信息的设备,可分为主动传感器和被动传感器两种。

主动传感器是指主动发射电磁波,然后接收返回的信号,如雷达;被动传感器是指接收地面物体自然发射出的电磁波,如光学传感器。

传感器的选择和使用对遥感数据的质量和应用具有重要影响。

2.3 遥感平台遥感平台是指用于携带、部署遥感传感器的航空器或卫星。

航空平台主要包括飞艇、飞机、直升机和无人机等;卫星平台主要包括低轨道卫星、地球同步卫星和地球静止卫星等。

不同的平台具有不同的观测能力和适用范围,可以根据具体任务和需求进行选择。

2.4 遥感数据遥感数据是指由遥感平台获取的地球表面信息,包括图像、光谱数据和雷达数据等。

根据观测波段和分辨率的不同,遥感数据可以提供地表特征、土地覆盖、地形地貌、气候变化等各种信息。

遥感数据的获取和处理是遥感测量的核心内容之一。

三、遥感测量方法3.1 遥感图像处理遥感图像处理是指对遥感数据进行预处理、增强、分类和解译等操作,以提取和分析地表信息。

遥感基础学习知识原理与应用知识点

遥感基础学习知识原理与应用知识点

遥感基础学习知识原理与应用知识点一、遥感的基本概念与分类1.遥感的定义:遥感是指通过遥远距离采集并记录地球表面信息的科学技术。

2.遥感的分类:按照遥感的数据类型可分为光学遥感、微波遥感和热红外遥感;按照数据获取平台可分为航空遥感和卫星遥感。

二、遥感的基本原理1.辐射传输原理:地球表面物体受到太阳辐射照射后,会发生反射、散射和吸收,这些辐射经过大气层的传输和变化后达到遥感仪器,形成遥感数据。

2.遥感数据的获取原理:通过遥感仪器记录地球表面物体的辐射或能量信息,如通过遥感卫星的光学传感器记录地球表面反射光谱。

3.遥感数据的处理原理:遥感数据需要经过预处理、解译和分析等过程,以提取有价值的信息。

三、遥感的主要技术与方法1.遥感图像解译:通过对遥感图像进行目视或计算机辅助解译,识别和判读地表物体。

2.遥感数字化:遥感图像通过扫描或数字相机获取,然后通过数字化处理,得到数字图像。

3.遥感分类:将遥感图像中的地表物体划分成不同的类别或类型,如土地利用分类、植被类型分类等。

4.遥感定量分析:通过对遥感图像进行数学模型和算法的分析,提取地表物体的数量信息,如土地覆盖变化分析、物质迁移分析等。

5.遥感辅助决策:通过利用遥感图像数据进行地表资源调查、规划设计和决策支持等。

四、典型遥感应用领域1.地质勘探与矿产资源:通过遥感技术可以探测到地下的地质信息和矿产资源分布情况。

2.土地利用与土地覆盖:通过遥感图像可以对土地利用类型进行分类和监测,了解土地利用变化和土地覆盖的动态变化情况。

3.植被监测与农业信息提取:通过遥感技术可以获取到植被的生长状况、植被类型和叶面积指数等信息,对农业生产进行监测和评估。

4.城市规划与环境监测:通过遥感技术可以获取到城市的用地分布、建筑物高度和环境污染等信息,对城市规划和环境保护进行监测和分析。

5.自然灾害监测与评估:通过遥感技术可以实时获取地震、火灾、洪水等自然灾害的信息,进行监测和评估,为应急救灾提供支持。

遥感原理与应用知识点总结

遥感原理与应用知识点总结

遥感原理与应用知识点总结遥感原理与应用是地理信息科学和地球科学领域中的重要学科,主要涉及利用遥感技术获取地球表面信息的方法、原理和应用。

以下是遥感原理与应用的重要知识点总结:1、遥感定义:遥感是指通过非接触传感器,从远处获取地球表面各类信息的技术。

2、电磁波谱:遥感技术主要利用电磁波谱中的可见光、红外线、微波等波段,不同波段的信息携带的地面信息不同。

3、辐射与反射:遥感传感器接收到的辐射包括目标物体的自身辐射和反射太阳光。

反射率是物体反射能量与入射能量之比,是遥感影像分析的重要参数。

4、分辨率:分辨率是遥感影像中能够识别的最小细节,可分为空间分辨率、光谱分辨率和时间分辨率。

5、图像增强:通过图像处理技术,对遥感影像进行色彩调整、滤波、边缘增强等操作,以提高影像的可读性和目标物体的识别精度。

6、图像分类:基于遥感影像的像素值和特征,利用计算机视觉和图像处理技术进行自动或半自动的分类,得到专题图层。

7、动态监测:遥感技术可以对同一地区不同时相的影像进行对比分析,发现地表信息的动态变化,如土地利用变化、环境污染监测等。

8、应用领域:遥感技术在环境保护、城市规划、资源调查、灾害监测、全球变化研究等领域有广泛应用。

9、遥感数据融合:将不同来源的遥感数据融合在一起,可以提高遥感影像的质量和精度,为应用提供更加准确可靠的数据支持。

10、3S技术:遥感(Remote Sensing)、地理信息系统(Geographic Information System)和全球定位系统(Global Positioning System)的结合,可以实现空间数据的快速获取、处理和应用。

以上知识点是遥感原理与应用学科的核心内容,理解和掌握这些知识点有助于更好地应用遥感技术解决实际问题。

同时,随着遥感技术的发展,新的理论和方法不断涌现,需要不断学习和更新知识。

除了上述知识点外,遥感原理与应用还包括许多其他重要内容。

例如,传感器设计和制造涉及的技术和标准,遥感数据的预处理和后处理方法,以及遥感应用中涉及的法规和政策等。

遥感概论期末复习知识点(完整)

遥感概论期末复习知识点(完整)

遥感概论期末复习知识点一遥感的定义遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的科学及综合性探测技术。

二遥感的基本原理自然界的任何物体本身都具有发射、吸收、反射以及折射电磁波的能力,遥感是利用传感器主动或被动地接受地面目标反射或发射的电磁波,通过电磁波所传递的信息来识别目标,从而达到探测目标物的目的。

三遥感的物理基础(一)电磁波电磁波是遥感技术的重要物理理论基础。

1、电磁波的性质:具有波的性质和粒子的性质(波粒二相性)2、波长越短(频率越高),能量越高。

3、电磁波谱电磁波几个主要的分段:宇宙射线、伽玛射线、X射线、紫外、可见光、红外(近、中、远)、微波、无线电波。

遥感常用的电磁波段主要是近紫外、可见光、红外、微波紫外:紫外线是电磁波谱中波长从0.01~0.38um辐射的总称,主要源于太阳辐射。

由于太阳辐射通过大气层时被吸收,只有0.3~0.38um波长的光能穿过大气层到达地面,且散射严重。

由于大气层中臭氧对紫外线的强烈吸收与散射作用,紫外遥感通常在2000m 高度以下的范围进行。

可见光:是电磁波谱中人眼可以感知的部分,遥感常用的可见光是蓝波段(0.45um附近)、绿波段(0.55um附近)和红波段(0.65um附近)红外,红外线是波长介乎微波与可见光之间的电磁波,波长在0.7um至1mm之间,遥感常用的在0.7um-100mm微波,波长在0.1毫米~1米之间的电磁波。

微波波段具有一些特殊的特性:①受大气层中云、雾的散射影响小,穿透性好,不受光照等条件限制,白天、晚上均可进行地物微波成像,因此能全天候的遥感。

②微波遥感可以对云层、地表植被、松散沙层和干燥冰雪具有一定的穿透能力。

微波越长,穿透能力越强。

4、黑体辐射定律辐射出射度:在单位时间内从物体表面单位面积上发出的各种波长的电磁波能量的总和。

黑体:如果一个物体对于任何波长的电磁辐射都全部吸收,又能全部发射,则该物体是绝对黑体。

遥感方面知识点总结

遥感方面知识点总结

遥感方面知识点总结一、遥感的基本原理遥感的基本原理是利用电磁波与地物之间的相互作用来获取地球表面信息。

地球表面上的各种地物会通过反射、辐射和散射等方式与入射的电磁波相互作用,不同的地物对电磁波的反射、辐射和散射特性也不同,因此可以通过遥感平台获取的电磁波数据来识别、分类和分析地球表面上的各种地物。

1. 光学遥感原理光学遥感是利用可见光、红外光等电磁波来获取地球表面信息的一种遥感方法。

在光学遥感中,遥感平台会携带光学传感器,通过接收来自地球表面的太阳辐射和地球辐射,来获取地球表面的图像数据。

光学遥感可以获取高分辨率的地表图像,对地物的特征进行精细化的识别和分析。

2. 雷达遥感原理雷达遥感是利用雷达系统发送微波信号,并通过接收微波信号的回波来获取地球表面信息的一种遥感方法。

在雷达遥感中,遥感平台会携带雷达传感器,通过发射微波信号,并接收地面目标反射回来的信号,来获取地球表面的图像数据。

雷达遥感可以在多云天气下获取地表信息,对地面地形、植被等特征进行有效的识别和分析。

3. 热红外遥感原理热红外遥感是利用地球表面目标的热辐射来获取地球表面信息的一种遥感方法。

在热红外遥感中,遥感平台会携带热红外传感器,通过接收地面目标的热辐射,来获取地球表面的图像数据。

热红外遥感可以通过地面目标的热辐射特征,对地表信息进行识别和分析。

二、遥感数据的处理方法遥感数据的处理方法包括遥感图像的预处理、信息提取和信息分析等步骤,对遥感数据进行有效的处理可以提高地表信息的获取和利用效率。

1. 遥感图像的预处理遥感图像的预处理是指对遥感图像进行校正、配准和辐射校正等处理,以保证遥感图像的质量和准确性。

在遥感图像的预处理中,需要进行大气校正,地形校正,影像配准等处理,以提高遥感图像的信息质量。

2. 遥感信息的提取遥感信息的提取是指通过遥感数据进行地表信息的分类、识别和提取等处理,对地表信息进行量化和分析。

在遥感信息的提取中,需要进行地物分类、植被指数提取、土地利用类型提取等处理,以获取地表信息的定量化数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

遥感试题
一、名词解释
1、遥感:就字面意思可以解释为遥远的感知。

它是一种远离目标,在不与目标对象直接接触的情况下,通过某种平台上装载的传感器获取其特征信息,然后对所获取的信息进行提取、判定、加工处理及应用分析的综合性技术。

2、遥感技术:是一个从地面到空中,乃至空间,从信息收集、存储、处理到判读分析和应用的完整技术体系。

3、颜色立体:是颜色环和明度轴的结合。

4、监督分类:如果是通过选择代表各类的已知样本的像元光谱特征事先取得各类别的参数,确定判别函数,在进行分类,是为监督分类。

5、空间分辨率:是指遥感图像上能够详细区分的最小单元的尺寸和大小,是用来表征影像分辨地面目标细节能力的指标。

6、3S:GPS、GIS、RS
7、高光谱遥感:是利用很多狭窄的电磁波段(波段宽度通常小于10nm)产生光谱连续的图像数据。

8、混淆矩阵:是用来反映某一个分类模型的分类结果的,其中行代表的是真实的类,列代表的是模型的分类。

9、黑体:如果一个物体对于任何波长的电磁辐射,都全部吸收,则这个物体是绝对黑体。

10、非监督分类:如果根据事先制定的某一准则让计算机自动进行判别分类,无须认为干涉,则称非监督分类。

11、主成分变换:K-L变换是离散Karhunen-Loeve变换的简称,又常称作主成份变换(Principal Component Analysis)。

它是对某一多光谱图像X,利用K-L变换矩阵A进行线性组合,而产生一组新的多光谱图像Y的操作,表达式为:Y=AX,A的作用是过多波段的像元亮度加权系数,实现线性变换。

13、负片:定影液把显影后残留在乳胶层中的卤化银去掉形成负片,这样光强之处银颗粒层厚而发黑,透过率低,光弱处银颗粒层薄而发白,透过率高,刚好与自然景物的呈度相反,所以叫做负片。

14、颜色的性质:颜色的性质由明度、色调、饱和度来描述。

15、反差:P68
16、电磁波:是电磁振动的传播。

当电磁振荡进入空间时,变化的磁场激发了变化了的电场,使电磁振荡在空间传播,形成电磁波。

17、电磁波谱:按照电磁波在真空中传播的频率或波长排列可以形成一个连续的谱带,这个谱带就是电磁波谱。

二、简单题
1、遥感的特点?
答:宏观观测,大范围获取数据资料;动态监测,快速更新监控范围数据;技术手段多样,可获取海量信息;应用邻域广泛,经济效益高
2、在卫星影像合成过程中真彩色卫星影像和假彩色卫星影像有什么不同?
答:合成后的影像如果与自然景色完全一致成为真彩色合成影像,如果与自然景物色彩不一致称为假彩色或伪彩色合成影像。

3、三原色与加色法叠加产生其他色彩的原理?
答:P62第一段
4、传感器的主要类型?
答:按工作方式可分为主动传感器和被动传感器;按数据记录方式可分为成像方式传感器和非成像方式传感器;按传感器工作的波段可分为可见光传感器、红外传感器和微波传感器;
5、植物的光谱特性?
答:1、健康植物的反射光谱特征:两个反射峰、五个吸收谷。

2、影响植物光谱的因素:植物叶子的颜色;叶子的组织结构;叶子的含水量;植
物的覆盖度
6、与可见光和近红外遥感相比,微波遥感有什么特点?
答:微波遥感具有穿云透雾能力;微波可以全天候工作;微波对地表面的穿透力较强;微波还具有某些独特的穿透能力,微波是海洋探测的重要波段,还是测量地面高程、大地水准面等的良好波段。

7、图像融合的主要目的和方法?
答:主要目的:
①提高图像空间分辨率,改善图像几何精度,增强特征显示能力,改善分类精度,提供变化检测能力,替代或修补图像数据的缺陷等。

②发挥不同遥感数据源的优势,弥补某一种遥感数据的不足,提高遥感数据的可应用性。

(2)常用方法:
①彩色变换:
指采用不同的彩色坐标系统,把不同的遥感器数据或不同性质的数据融合起来,产生彩色合成图像。

常用的彩色变换有RGB彩色合成和HIS变换。

②图像运算:
两幅或多幅单波段影像完成空间配准后,通过一系列运算,可以实现图像增强,达到提取某些信息或去掉某些不需要信息的目的。

常用的图像运算方法有差值运算、比值运算和混合运算。

③图像变换:
常用的图像变换方法有主成分分析、相关统计分析(又称相关系数法)、空间滤波分析、回归变量代换(RVS-Regression Variable Substitution)、小波变换等。

8、航天遥感和航空遥感相比有什么特点?
答:航天遥感:感测面积大、范围广、速度快、效果好,可定期或连续监视一个地区,不受国界和地理条件限制;能取得其他手段难以获取的信息
航空遥感:具有技术成熟、成像比例尺大、.地面分辨率高、适于大面积地形测绘和小面积地形详查以及不需要复杂的地面处理设备等优点。

缺点是飞行高度、续航能力、姿态控制、全天候作业能力以及大范围的动态监测能力较差。

9、中心投影与垂直投影有什么区别?
答:a. 投影距离的影响
正射投影:比例尺和投影距离无关
中心投影:焦距固定,航高改变,其比例尺也随之改变
b. 投影面倾斜的影响
正射投影:表现为比例尺的放大
中心投影: 若投影面倾斜,航片各部分的比例尺不同
c. 地形起伏的影响
地形起伏对正射投影无影响
对中心投影引起投影差航片各部分的比例尺不同
三、论述题
1、遥感技术中,常用的电磁波段有哪些?各有什么特征?
答:遥感中较多地使用紫外线、可见光、红外和微波波段。

紫外线:波长范围为0.01~0.38μm,太阳光谱中,只有0.3~0.38μm波长的光到达地面,对油污染敏感,但探测高度在2000m以下。

可见光:0.4—0.76um。

它由红、橙、黄、绿、青、蓝紫色光组成。

人眼对可见光可直接感觉,不仅对可见光的全色光,而且对不同波段的单色光,也具有这种能力。

所以可
见光是作为鉴别物质的主要波段。

红外线:0.76—1000um,为了实际应用方便,又
将其划分为:近红外(0.76—3.0 um),中红外(3.0—6.0um),远红外(6.0—15.0um)和超远红外(15-1000um)。

微波:1mm—1m。

来源于地物的热辐射由于其波长比可见光、红外线要长,受大气层中云、雾的散射干扰要小,因此能全天候进行遥感。

可见光与近红外:0..3~2.5um,地表反射太阳辐射为主,
中红外:2.5~6um,地表反射太阳辐射和自身热辐射,远红外:大于6um,地表物体自身热辐射
2、绘制沙漠、湿地、小麦的反射光谱曲线,并说明地物光谱反射特性
答:(1)地物的反射率、吸收率和透射率
对于某波段反射率高的地物,其吸收率就低,即为弱辐射体;反之,吸收率高的地物,其反射率就低。

(2)地物的反射率(反射系数或亮度系数)
地物对某一波段的反射能量与入射能量之比。

反射率随入射波长而变化。

影响地物反射率大小的因素:
Ø 入射电磁波的波长
Ø 入射角的大小
Ø 地表颜色与粗糙度
(3)地物的反射光谱:地物的反射率随入射波长变化的规律。

Ø 地物反射光谱曲线:根据地物反射率与波长之间的关系而绘成的曲线。

地物电磁波光谱特征的差异是遥感识别地物性质的基本原理。

Ø 不同地物在不同波段反射率存在差异:雪、沙漠、湿地、小麦的光谱曲线
Ø 同类地物的反射光谱具有相似性,但也有差异性。

Ø 地物的光谱特性具有时间特性和空间特性。

3、目视判读有哪些直接解析标志?
答:色调;阴影;形状;大小;位置;布局;图案;纹理和质地。

4、什么叫大气窗口,常用的大气窗口有哪些?
答:通常把电磁波通过大气层时较少被反射、吸收或散透的透过率较高的波段称为大气窗口。

常用的有:0.3~1.3um,即紫外,可见光、近红外波段;1.5~1.8um,2.0~3.5um,即近、中红外波段;3.5~5.5um,即中红外波段;8~14um,即远红外波段;0.8~2.5cm,即微波波段。

相关文档
最新文档