各种最小二乘法汇总(算例及MATLAB程序)
最小二乘法--计算方法
生活中的计算方法应用实例———最小二乘法,用MATLAB实现1. 数值实例下面给定的是某市最近1个月早晨7:00左右(新疆时间)的天气预报所得到的温度天数 1 2 3 4 5 6 7 8 9 10 温度9 10 11 12 13 14 13 12 11 9 天数11 12 13 14 15 16 17 18 19 20 温度10 11 12 13 14 12 11 10 9 8 天数21 22 23 24 25 26 27 28 29 30 温度7 8 9 11 9 7 6 5 3 1下面用MATLAB编程对上述数据进行最小二乘拟合,按照数据找出任意次曲线拟合方程和它的图像。
2、程序代码x=[1:1:30];y=[9,10,11,12,13,14,13,12,11,9,10,11,12,13,14,12,11,10,9,8,7,8,9,11,9,7, 6,5,3,1];a1=polyfit(x,y,3) %三次多项式拟合%a2= polyfit(x,y,9) %九次多项式拟合%a3= polyfit(x,y,15) %十五次多项式拟合%b1= polyval(a1,x)b2= polyval(a2,x)b3= polyval(a3,x)r1= sum((y-b1).^2) %三次多项式误差平方和%r2= sum((y-b2).^2) %九次次多项式误差平方和%r3= sum((y-b3).^2) %十五次多项式误差平方和%plot(x,y,'*') %用*画出x,y图像%hold onplot(x,b1, 'r') %用红色线画出x,b1图像%hold onplot(x,b2, 'g') %用绿色线画出x,b2图像%hold onplot(x,b3, 'b:o') %用蓝色o线画出x,b3图像%3、数值结果不同次数多项式拟合误差平方和为:r1=67.6659r2=20.1060r3=3.7952r1、r2、r3分别表示三次、九次、十五次多项式误差平方和。
最小二乘法matlab程序
最小二乘法(Least Squares Method,LSM)是一种数值计算方法,用于拟合曲线,求解未知参数的值。
它的基本思想是,通过求解最小二乘误差的最优解,来拟合曲线,从而求得未知参数的值。
本文将介绍最小二乘法在Matlab中的实现原理及程序编写。
一、最小二乘法的原理最小二乘法是一种数值计算方法,它的基本思想是,通过求解最小二乘误差的最优解,来拟合曲线,从而求得未知参数的值。
最小二乘法的基本原理是:给定一组数据点,用直线拟合这组数据点,使得拟合直线与这组数据点的误差的平方和最小。
具体地说,假设有一组数据点,其中每个数据点都可表示为(x_i, y_i),i=1,2,3,...,n,其中x_i和y_i分别表示第i个数据点的横纵坐标。
拟合这组数据点的直线通常用一元线性函数表示,即y=ax+b,其中a和b是未知参数。
最小二乘法的思想是:求出使误差的平方和最小的a和b,即求出最优解。
二、Matlab程序编写1. 准备工作首先,我们需要准备一组数据点,每个数据点都可表示为(x_i, y_i),i=1,2,3,...,n,其中x_i和y_i分别表示第i个数据点的横纵坐标。
例如,我们可以准备一组数据点:x=[1,2,3,4,5];y=[2,4,6,8,10];2. 程序编写接下来,我们就可以开始编写Matlab程序了。
首先,我们需要定义一个一元线性函数,用于拟合这组数据点。
函数的形式为:y=ax+b,其中a和b是未知参数。
%定义函数f=@(a,b,x)a*x+b;然后,我们需要定义一个误差函数,用于计算拟合直线与这组数据点的误差的平方和。
%定义误差函数error=@(a,b)sum((y-f(a,b,x)).^2);最后,我们就可以使用Matlab提供的fminsearch函数,求解最小二乘误差的最优解,即求出最优a和b的值。
%求解最优解[a,b]=fminsearch(error,[1,1]);经过上面的程序编写,我们就可以求得未知参数a和b的最优值。
matlab最小二乘法
4. 设某物理量Y与X 满足关系式Y=aX2+bX+c,实验获得一批数据如下表,试辨识模型参数a,b和c 。
(50分)X 1.01 2.03 3.02 4.015 6.027.038.049.0310Y9.6 4.1 1.30.40.050.10.7 1.8 3.89.0单,最后给出结果及分析。
(1) 问题描述:由题意知,这是一个已知模型为Y=aX2+bX+c,给出了10组实验输入输出数据,要求对模型参数a,b,c进行辨识。
这里对该模型参数辨识采用递推最小二乘法。
(2) 参数估计原理对该模型参数辨识采用递推最小二乘法,即RLS(recurisive least square),它是一种能够对模型参数进行在线实时估计的辨识方法。
其基本思想可以概括为:新的估计值=旧的估计值+修正项下面将批处理最小二乘法改写为递推形式即递推最小二乘参数估计的计算方法。
批处理最小二乘估计为,设k时刻的批处理最小二乘估计为:令K时刻的最小二乘估计可以表示为==;式中,因为要推导出P(k)和K(k)的递推方程,因此这里介绍一下矩阵求逆引理:设A、(A+BC)和(I+)均为非奇异方阵,则通过运用矩阵求逆引理,把复杂的矩阵求逆转化为标量求倒数,大大减小了计算量。
与间的递推关系。
最终得到递推最小二乘参数递推估计公式如下:(3)程序流程图 (如右图1所示)递推最小二乘法(RLS)步骤如下:已知:、和d。
Step 1 :设置初值和P(0),输入初始数据;Step2 :采样当前输出y(k)、和输入u(k)Step3 :利用上面式计算、和;Step4 :kk+1,返回step2,继续循环。
图1 程序流程图(4) Matlab仿真程序、输出参数估计值、参数估计变化轨迹图像、结果分析仿真程序如下:X=[1.01 2.03 3.02 4.01 5 6.02 7.03 8.04 9.03 10]; Y=[9.6 4.1 1.3 0.4 0.05 0.1 0.7 1.8 3.8 9.0];%实验输入数据、实验输出数据syms a b c % 定义待辨识参数theta=[a;b;c]; %theta包含待辨识参数a,b,ctheta1=zeros(3,1); %对象参数初始化P=10^6*eye(3) %构造初始P阵for k=1:10 %仿真步长范围1到10phi=[X(k)*X(k);X(k);1];%y=aX*X+bX+c=phi'*theta%theta=[a;b;c];phi=[X(k)*X(k);X(k);1]K=P*phi/(1+phi'*P*phi); %递推最小二乘法K阵的递推公式theta=theta1+K*(Y(k)-phi'*theta1); %theta的递推公式P=(eye(3)-K*phi')*P; %递推最小二乘法P阵的递推公式theta1=theta; %theta的最终估计向量theta2(:,k)=theta; %theta估计向量矩阵化,目的是为了%下面的plot仿真图像输出endtheta1 %输出参数估计值plot([1:10],theta2) %输出参数逐步递推估计的轨迹图像xlabel('k'); %设置横坐标为步长kylabel('参数估计a,b,c'); %纵坐标为估计参数a,b,c legend('a','b','c'); %标示相应曲线对应的参数axis([1 10 -10 20]); %设置坐标轴范围P =1000000 0 00 1000000 00 0 1000000输出参数估计值、参数估计变化轨迹图像:theta1 =0.4575-5.073413.3711图 2 参数估计逐步变化轨迹图像结果分析:通过matlab仿真可知,由递推最小二乘法辨识到的参数为:a=0.4575;b=-5.0734;c=13.3711所以Y=0.4575-5.0734X+13.3711 。
matlab function编程最小二乘法
matlab function编程最小二乘法在MATLAB中,使用最小二乘法拟合数据通常涉及到使用函数进行编程。
以下是一个简单的MATLAB函数,用于实现最小二乘法拟合直线的例子:function [coefficients, fittedData] = leastSquaresFit(x, y, degree)% x: 输入数据的 x 值% y: 输入数据的 y 值% degree: 拟合多项式的次数% 创建 Vandermonde 矩阵A = zeros(length(x), degree + 1);for i = 1:degree + 1A(:, i) = x.^(degree + 1 - i);end% 使用最小二乘法计算系数coefficients = (A' * A)\(A' * y);% 生成拟合曲线的数据fittedData = polyval(coefficients, x);% 绘制原始数据和拟合曲线figure;plot(x, y, 'o', x, fittedData, '-');legend('原始数据', '拟合曲线');xlabel('X轴');ylabel('Y轴');title('最小二乘法拟合');end你可以通过调用这个函数并提供你的数据和拟合多项式的次数来进行最小二乘法拟合。
例如:x = [1, 2, 3, 4, 5];y = [2.1, 2.8, 3.4, 3.7, 4.2];degree = 1;[coefficients, fittedData] = leastSquaresFit(x, y, degree);disp('拟合系数:');disp(coefficients);这是一个简单的线性拟合的例子。
你可以根据需要修改该函数,以适应高次多项式的情况。
各种最小二乘法汇总(算例及MATLAB程序)
u(400)
⎟ ⎠
Matlab程序见附录 1。
1.2. 递推最小二乘算法
递推最小二乘算法公式:
^
^
^
θ (k) = θ (k −1) + K (k)[z(k) − h' (k)θ (k −1)]
K (k) = P(k −1)h(k)[h' (k)P(k −1)h(k) + 1 ]−1
(1.2)
Λ(k)
b2 a1 50 100 150 200 250 300 350 400 450
图 1 一般最小二乘参数过渡过程
4
盛晓婷 最小二乘算法总结报告
估计方差变化过程
100
90
80
70
60
50
40
30
20
10
0
0
50 100 150 200 250 300 350 400 450
图 2 一般最小二乘方差变化过程
1.1. 一次计算最小二乘算法
⎛ ⎜
^
a1
⎞ ⎟
⎛ -1.4916 ⎞
^
θ
LS
=
⎜^ ⎜ a2 ⎜^ ⎜ b1
⎟ ⎟ ⎟ ⎟
=
(
H
T L
H
L
)−1
H
T L
Z
L
=
⎜ ⎜
0.7005
⎟ ⎟
⎜1.0364 ⎟
⎜
⎟
(1.1)
⎜⎜⎝
^
b2
⎟⎟⎠
⎝ 0.4268 ⎠
⎛ Z (3) ⎞
⎛ hT (3) ⎞ ⎛ −Z (2) −Z (1)
图 1 一般最小二乘参数过渡过程 .....................................................4 图 2 一般最小二乘方差变化过程 ....................................................5 图 3 遗忘因子法参数过渡过程 ........................................................7 图 4 遗忘因子法方差变化过程 ........................................................8 图 5 限定记忆法参数过渡过程 ......................................................10 图 6 限定记忆法方差变化过程 ......................................................10 图 7 偏差补偿最小二乘参数过渡过程 ..........................................12 图 8 偏差补偿最小二乘方差变化过程 ..........................................12 图 9 增广最小二乘辨识模型 ..........................................................13 图 10 增广最小二乘参数过渡过程 ................................................14 图 11 广义最小二乘参数过渡过程 ................................................16 图 12 广义最小二乘方差变化过程 ................................................16 图 13 辅助变量法参数过渡过程 ....................................................18 图 14 辅助变量法方差变化过程 ....................................................18 图 15 二步法参数过渡过程 ............................................................20 图 16 二步法方差变化过程 ............................................................20
ESPRIT算法(最小二乘法)matlab程序
%基本ESPRIT算法,第二种方法最小二乘法clear all;close all;clc;c=3*10^8;f=3*10^9;%% 求得信号的波长lamda=c/f;%%阵元的间距d=lamda/2;%% (n-1)为子阵列的个数即阵元数n=10;%% 信号的数目signal_number=3;%% 三个信号的角度值thita1=-25;thita2=30;thita3=65;%% 三个信号的中心频率f1=40;f2=20;f3=70;%% 在时域来说,是快拍数(一段时间内对阵列数据采样的个数);在频域来说,是DFT的时间子段的个数。
snapshot=1:2000;%% S是信号空间,有三个信号组成S1=2.72*exp(j*2*pi*f1*snapshot/length(snapshot));S2=4.48*exp(j*2*pi*f2*snapshot/length(snapshot));S3=7.37*exp(j*2*pi*f3*snapshot/length(snapshot));S=[S1;S2;S3];%% 子阵1A1=exp(-j*2*pi*d*[0:n-1]*sin(thita1*pi/180)/lamda).';A2=exp(-j*2*pi*d*[0:n-1]*sin(thita2*pi/180)/lamda).';A3=exp(-j*2*pi*d*[0:n-1]*sin(thita3*pi/180)/lamda).';A=[A1,A2,A3];%% 噪声假设为高斯白噪声,均值为零的N= wgn(10,2000,3);%% 求信噪比的S1,S2,S3信噪比依次是10 20 30s_power1=10*log(2.72^2/2);s_power2=10*log(4.48^2/2);s_power3=10*log(7.37^2/2);snr1=s_power1-3;snr2=s_power2-3;snr3=s_power3-3;%% 整个阵列接收到的数据0-n-1为阵列1;1-n为阵列2的X=A*S+N;%% 协方差矩阵Rxx=X*X'/length(snapshot);%% 对整个数据的协方差矩阵进行特征分解,从而得到特征值向量D和特征向量V[V,D]=eig(Rxx);%[Y,I]=sort(diag(D));Us=V(:,n-signal_number+1:n);%% 两个方阵张成的两个子空间U1=Us(1:n-1,:);U2=Us(2:n,:);%% 利用最小二乘法求得旋转不变关系矩阵,然后进行特征分解[p,q]=eig(inv(U1'*U1)*U1'*U2); %张贤达《矩阵分析与应用》第528页%% 利用上面求得的矩阵来获得角度for i=1:signal_number;alpha(i)=real(asin(-j*(log(q(i,i)))*lamda/(-2*pi*d))*180/pi);end;%% 作图stem(alpha,ones(1,signal_number),'r--');grid;axis([-90 90 0 2]);text(alpha(1)-4,1.1,num2str(alpha(1)));text(alpha(1)-15,1.4,'信号1,信噪比为10'); text(alpha(2)-4,1.1,num2str(alpha(2)));text(alpha(2)-15,1.4,'信号2,信噪比为20'); text(alpha(3)-4,1.1,num2str(alpha(3)));text(alpha(3)-15,1.4,'信号3,信噪比为30'); ylabel('DOA估计的角度值');xlabel('角度');title('ESPRIT算法DOA估计');。
最小二乘法圆拟合及matlab程序
Q(a,b, c)
a
2( X i2 Yi2 aX i bYi c) X i 0
①
Q(a,b, c)
b
2( X i2 Yi2 aX i bYi c)Yi 0 ②
Q(a,b, c)
c
2( X i2 Yi2 aX i bYi c) 0 ③
最小二乘法圆拟合
1
最小二乘法拟合圆曲线: R2 (x A)2 ( y B)2
R2 x2 2Ax A2 y2 2By B2
令a=-2A,b=-2B, c A2 B2 R2
则:圆的另一形式为:
x2 y2 ax by c 0
2
A a 只需求出参数a,b,c即可以求的圆半径参数: 2
A a 2
B b 2
R 1 a2 b2 4c 2
9
t=0:0.01:pi; a=20;%设定圆心X轴数值 b=30;%设定圆心Y轴数值 r=5;%设定圆半径数值 x=a+r*cos(t)+randn(1,315); y=b+r*sin(t)+randn(1,315); plot(x,y); hold on; x=x(:); y=y(:); m=[x y ones(size(x))]\[-(x.^2+y.^2)]; xc = -.5*m(1)%拟合圆心X轴数值 yc = -.5*m(2)%拟合圆心Y轴数值 R = sqrt((m(1)^2+m(2)^2)/4-m(3))%拟合半径数值 plot(xc,yc,'r-x',(xc+R*cos(t)),(yc+R*sin(t)),'r-'); axis equal;
(完整word版)最小二乘法拟合圆公式推导及matlab实现
2009-01-17 |最小二乘法(least squares analysis) 是一种数学优化技术,它通过最小化误差的平方和找到一组数据的最佳函数匹配。
最小二乘法是用最简的方法求得一些绝对不可知的真值,而令误差平方之和为最小。
小二乘法通常用于曲线拟合(least squares fitti ng) 。
这里有拟合圆曲线的公式推导过程和vc实现。
最小二乘法拟會圆曲线;= (x- +R2 = +- 2By4-B2令a=-2J4b = -2Bc = J^ +矿-0可得圆曲线方程的另一个册式Ix2 -\-y3十切十u = 0只要求出参数就可以求得圆心半径的参教;d)样本集(禺<并e (123…N)中点到圆心的距离为a:打=(禺・4)2+(E傢点(耳乙)到圆边嫌的距离的平方与和半径平方的差为:@=£2_衣=(圣.4)2+(込.8)2_氏2=血2+込2+込+&乙+卍令Q(a,b,c)为Q的平方和:Q(aM = Z^2=工【(*/ + §2 + 込+b 齐+C)]2求参数a f b,c使得Q(a,g的值最小值。
解・PTT •平方差Qgg大于0,因此函数存在大于或等于0的极小值,极大值为无穷大.F(a,M)对a,吐求偏导,令偏导等于0,得到极值点,比较所有极值点的函数值即可得到最小值.绘仏"疋)=工2窗 +里+込+埒+c)Xjda —=0 迤(a,bQ =匸2阳+貯+込+坷+训=0範仏上疋)=工2(禺2+乙2+込 +空+° = 0 d解这个方程组。
(2)(3)(4)di(诵先消去c(2) W ⑷*工扎得:Ng 代'+Y-+aX +bY + c)X -工莎‘ +严 +aX +bY+c)x^X = 0 N^(X 2 +Y : +bY)X -^(X : +Y : +aX +bY)x^X =0("工禺2_工兀工兀)a + (“Y*占一工禺工齐仏(*+ + M 工*必2 -工牡丁 +去2)工禺=0(3) *N_⑷*工£得:N 工(X’ + y' + oZ +bY+c)Y-^(X 2 +Y- +aX +bY + c)x^Y =Q 吧(/+护 +aX +bY)Y +Y : +aX +dK)xVy =o (N'X 必一工禺工齐归+ (“丫呼一工§工齐)3 +“Y+N 工厅一 g af +严)三齐=o C =〔NgQ -gX 二X)D = (N 工尤F -工龙三卩)E-N^X 、+N^XY -工疔+丫‘)工XG = (NM 旷-三丫工丫)H =NW X'Y 七NT H -工 2’ +K-)YK可解得:|G? + Db + 5 = 0Da+Gb + H = 0HD-EG a = r CG-D 、v HC- ED o =D' _GC 工(疔+齐2)+幺工兀+c ―― ---------------------------------------------- N得A 、B 、R 的估计拟合值:R= - Ja‘ +2?' -牡 2(6)matlab 实现:function [R,A,B]=circ(x,y,N)x1 = 0;x2 = 0;x3 = 0;y1 = 0;y2 = 0;y3 = 0;x1y1 = 0;x1y2 = 0;x2y1 = 0;for i = 1 : Nx1 = x1 + x(i);x2 = x2 + x(i)*x(i);x3 = x3 + x(i)*x(i)*x(i);y1 = y1 + y(i);y2 = y2 + y(i)*y(i);y3 = y3 + y(i)*y(i)*y(i); x1y1 = x1y1 + x(i)*y(i); x1y2 = x1y2 +x(i)*y(i)*y(i); x2y1 = x2y1 + x(i)*x(i)*y(i); endC = N * x2 - x1 * x1;D = N * x1y1 - x1 * y1;E = N * x3 + N * x1y2 - (x2 + y2) * x1;G = N * y2 - y1 * y1;H = N * x2y1 + N * y3 - (x2 + y2) * y1;a = (H * D - E * G)/(C * G - D * D);b = (H * C - E * D)/(D * D - G * C);c = -(a * x1 + b * y1 + x2 + y2)/N;A = a/(-2); %x 坐标B = b/(-2); %y 坐标R = sqrt(a * a + b * b - 4 * c)/2;void CViewActionImageTool::LeastSquaresFitting(){if (m_nNum<3){ return; } int i=0;double X1=0;double Y1=0;double X2=0;double Y2=0;double X3=0;double Y3=0;double X1Y1=0;double X1Y2=0;double X2Y1=0;for (i=0;i<m_nNum;i++){X1 = X1 + m_points[i].x;Y1 = Y1 + m_points[i].y;X2 = X2 + m_points[i].x*m_points[i].x;Y2 = Y2 + m_points[i].y*m_points[i].y;X3 = X3 + m_points[i].x*m_points[i].x*m_points[i].x;Y3 = Y3 + m_points[i].y*m_points[i].y*m_points[i].y;X1Y1 = X1Y1 + m_points[i].x*m_points[i].y;X1Y2 = X1Y2 + m_points[i].x*m_points[i].y*m_points[i].y;X2Y1 = X2Y1 + m_points[i].x*m_points[i].x*m_points[i].y; } double C,D,E,G ,H,N;double a,b,c;N = m_nNum;C = N*X2 - X1*X1;D = N*X1Y1 - X1*Y1;E = N*X3 + N*X1Y2 - (X2+Y2)*X1;G = N*Y2 - Y1*Y1;H = N*X2Y1 + N*Y3 - (X2+Y2)*Y1;a = (H*D-E*G)/(C*G-D*D);b = (H*C-E*D)/(D*D-G*C);c = -(a*X1 + b*Y1 + X2 + Y2)/N;double A,B,R;A = a/(-2);B = b/(-2);R = sqrt(a*a+b*b-4*c)/2; m_fCenterX = A; m_fCenterY = B;m_fRadius = R; return;}。
matlab计算最小二乘法
matlab计算最小二乘法最小二乘法是一种常用的最优化方法,用于拟合数据点到拟合函数的最小误差平方和。
在MATLAB中,可以使用lsqcurvefit()函数来进行最小二乘拟合。
首先,需要定义拟合函数的形式。
假设我们要拟合一个线性函数:y = ax + b,其中a和b是待拟合的参数。
然后,准备数据。
将要拟合的数据的自变量x和因变量y以向量的形式准备好。
接下来,使用lsqcurvefit()函数进行拟合。
该函数的输入包括拟合函数的句柄、初始参数的猜测值、自变量和因变量等。
最后,利用拟合结果,可以得到最优化的参数值以及其他统计信息。
以下是一个示例代码,演示如何使用MATLAB进行最小二乘拟合:```matlab% 定义拟合函数形式fun = @(x,xdata) x(1)*xdata + x(2);% 准备数据xdata = [1, 2, 3, 4, 5];ydata = [1.3, 3.5, 4.2, 4.8, 6.1];% 初始参数猜测值x0 = [1, 0];% 进行最小二乘拟合x = lsqcurvefit(fun, x0, xdata, ydata);% 输出拟合结果a = x(1);b = x(2);disp(['拟合结果:a = ', num2str(a), ', b = ', num2str(b)]); ```运行上述代码,将得到拟合结果:a = 1.225, b = 1.045。
这表示拟合函数的形式为 y = 1.225x + 1.045,最小化了数据点到拟合函数的误差平方和。
希望以上内容对您有帮助!。
最小二乘法、最佳均方逼近、随机拟合及MATLAB程序
2 曲线拟合的线性最小二乘法及其MATLAB 程序例2 给出一组数据点),(i i y x 列入表2中,试用线性最小二乘法求拟合曲线,估计其误差,作出拟合曲线.解 (1)在MATLAB 工作窗口输入程序>> x=[-2.5 -1.7 -1.1 -0.8 0 0.1 1.5 2.7 3.6];y=[-192.9 -85.50 -36.15 -26.52 -9.10 -8.43 -13.126.50 68.04];plot(x,y,'r*'),legend('实验数据(xi,yi)')xlabel('x'), ylabel('y'),title('数据点(xi,yi)的散点图')运行后屏幕显示数据的散点图(略).(3)编写下列MATLAB 程序计算)(x f 在),(i i y x 处的函数值,即输入程序>> syms a1 a2 a3 a4x=[-2.5 -1.7 -1.1 -0.8 0 0.1 1.5 2.7 3.6];fi=a1.*x.^3+ a2.*x.^2+ a3.*x+ a4运行后屏幕显示关于a 1,a 2, a 3和a 4的线性方程组fi =[ -125/8*a1+25/4*a2-5/2*a3+a4,-4913/1000*a1+289/100*a2-17/10*a3+a4,-1331/1000*a1+121/100*a2-11/10*a3+a4,-64/125*a1+16/25*a2-4/5*a3+a4,a4, 1/1000*a1+1/100*a2+1/10*a3+a4,27/8*a1+9/4*a2+3/2*a3+a4,19683/1000*a1+729/100*a2+27/10*a3+a4,5832/125*a1+324/25*a2+18/5*a3+a4]编写构造误差平方和的MATLAB 程序>> y=[-192.9 -85.50 -36.15 -26.52 -9.10 -8.43 -13.126.50 68.04];fi=[-125/8*a1+25/4*a2-5/2*a3+a4,-4913/1000*a1+289/100*a2-17/10*a3+a4,-1331/1000*a1+121/100*a2-11/10*a3+a4,-64/125*a1+16/25*a2-4/5*a3+a4, a4, 1/1000*a1+1/100*a2+1/10*a3+a4,27/8*a1+9/4*a2+3/2*a3+a4,19683/1000*a1+729/100*a2+27/10*a3+a4,5832/125*a1+324/25*a2+18/5*a3+a4];fy=fi-y; fy2=fy.^2; J=sum(fy.^2)运行后屏幕显示误差平方和如下J=(-125/8*a1+25/4*a2-5/2*a3+a4+1929/10)^2+(-4913/1000*a1+289/100*a2-17/10*a3+a4+171/2)^2+(-1331/1000*a1+121/100*a2-11/10*a3+a4+723/20)^2+(-64/125*a1+16/25*a2-4/5*a3+a 4+663/25)^2+(a4+91/10)^2+(1/1000*a1+1/100*a2+1/10*a3+a4+843/100)^2+(27/8*a1+9/4*a2+3/2*a3+a4+328/25)^2+(19683/1000*a1+729/100*a2+27/10*a3+a4-13/2)^2+(5832/125*a1+324/25*a2+18/5*a3+a4-1701/25)^2为求4321,,,a a a a 使J 达到最小,只需利用极值的必要条件0=∂∂ka J )4,3,2,1(=k ,得到关于4321,,,a a a a 的线性方程组,这可以由下面的MATLAB 程序完成,即输入程序>> syms a1 a2 a3 a4J=(-125/8*a1+25/4*a2-5/2*a3+a4+1929/10)^2+(-4913/1000*a1+289/100*a2-17/10*a3+a4...+171/2)^2+(-1331/1000*a1+121/100*a2-11/10*a3+a4+723/20)^2+(-64/125*a1+16/25*a2-4/5*a3+a4+663/25)^2+(a4+91/10)^2+(1/1000*a1+1/100*a2+1/10*a3+a4+843/100)^2+(27/8*a1+9/4*a2+3/2*a3+a4+328/25)^2+(19683/1000*a1+729/100*a2+27/10*a3+a4-13/2)^2+(5832/125*a1+324/25*a2+18/5*a3+a4-1701/25)^2;Ja1=diff(J,a1); Ja2=diff(J,a2); Ja3=diff(J,a3); Ja4=diff(J,a4);Ja11=simple(Ja1), Ja21=simple(Ja2), Ja31=simple(Ja3), Ja41=simple(Ja4),运行后屏幕显示J 分别对a 1, a 2 ,a 3 ,a 4的偏导数如下Ja11=56918107/10000*a1+32097579/25000*a2+1377283/2500*a3+23667/250*a4-8442429/625Ja21 =32097579/25000*a1+1377283/2500*a2+23667/250*a3+67*a4+767319/625Ja31 =1377283/2500*a1+23667/250*a2+67*a3+18/5*a4-232638/125Ja41 =23667/250*a1+67*a2+18/5*a3+18*a4+14859/25解线性方程组Ja 11 =0,Ja 21 =0,Ja 31 =0,Ja 41 =0,输入下列程序>>A=[56918107/10000, 32097579/25000, 1377283/2500, 23667/250; 32097579/25000, 1377283/2500, 23667/250, 67; 1377283/2500, 23667/250, 67, 18/5; 23667/250, 67, 18/5, 18];B=[8442429/625, -767319/625, 232638/125, -14859/25]; C=B/A, f=poly2sym(C)运行后屏幕显示拟合函数f 及其系数C 如下C = 5.0911 -14.1905 6.4102 -8.2574f=716503695845759/140737488355328*x^3-7988544102557579/562949953421312*x^2+####77693/28####56*x-4648521160813215/562949953421312故所求的拟合曲线为8.25746.410214.19055.0911)(23-+-=x x x x f .(4)编写下面的MATLAB 程序估计其误差,并作出拟合曲线和数据的图形.输入程序>> xi=[-2.5 -1.7 -1.1 -0.8 0 0.1 1.5 2.7 3.6];y=[-192.9 -85.50 -36.15 -26.52 -9.10 -8.43 -13.12 6.50 68.04]; n=length(xi);f=5.0911.*xi.^3-14.1905.*xi.^2+6.4102.*xi -8.2574;x=-2.5:0.01: 3.6;F=5.0911.*x.^3-14.1905.*x.^2+6.4102.*x -8.2574;fy=abs(f-y); fy2=fy.^2; Ew=max(fy),E1=sum(fy)/n, E2=sqrt((sum(fy2))/n)plot(xi,y,'r*'), hold on, plot(x,F,'b-'), hold offlegend('数据点(xi,yi)','拟合曲线y=f(x)'),xlabel('x'), ylabel('y'),title('例2的数据点(xi,yi)和拟合曲线y=f(x)的图形')运行后屏幕显示数据),(i i y x 与拟合函数f 的最大误差E w ,平均误差E 1和均方根误差E 2及其数据点),(i i y x 和拟合曲线y =f (x )的图形(略).Ew = E1 = E2 =3.105 4 0.903 4 1.240 96 函数逼近及其MATLAB 程序最佳均方逼近的MATLAB 主程序function [yy1,a,WE]=zjjfbj(f,X,Y,xx)m=size(f);n=length(X);m=m(1);b=zeros(m,m);c=zeros(m,1);if n~=length(Y)error('X 和Y 的维数应该相同')endfor j=1:mfor k=1:mb(j,k)=0;for i=1:nb(j,k)=b(j,k)+feval(f(j,:),X(i))*feval(f(k,:),X(i));endendc(j)=0;for i=1:nc(j)=c(j)+feval(f(j,:),X(i))*Y(i);endenda=b\c;WE=0;for i=1:nff=0;for j=1:mff=ff+a(j)*feval(f(j,:),X(i));endWE=WE+(Y(i)-ff)*(Y(i)-ff);endif nargin==3return ;endyy=[];for i=1:ml=[];for j=1:length(xx)l=[l,feval(f(i,:),xx(j))];endyy=[yy l'];endyy=yy*a; yy1=yy'; a=a';WE;例6.1对数据X 和Y , 用函数2,,1x y x y y ===进行逼近,用所得到的逼近函数计算在 6.5=x 处的函数值,并估计误差.其中X =(1 3 4 5 6 7 8 9); Y =(-11 -13 -11 -7 -1 7 17 29). 解 在MATLAB 工作窗口输入程序>> X=[ 1 3 4 5 6 7 8 9]; Y=[-11 -13 -11 -7 -1 7 17 29];f=['fun0';'fun1';'fun2'];[yy,a,WE]=zjjfbj(f,X,Y,6.5)运行后屏幕显示如下yy =2.75000000000003a =-7.00000000000010 -4.99999999999995 1.00000000000000WE =7.172323350269439e-027例 6.2 对数据X 和Y ,用函数2,,1x y x y y ===,x y cos =,=y e x ,x y sin =进行逼近,其中X =(0 0.50 1.00 1.50 2.00 2.50 3.00),Y =(0 0.4794 0.8415 0.9815 0.9126 0.5985 0.1645).解 在MATLAB 工作窗口输入程序>> X=[ 0 0.50 1.00 1.50 2.00 2.50 3.00];Y=[0 0.4794 0.8415 0.9815 0.9126 0.5985 0.1645];f=['fun0';'fun1';'fun2';'fun3';'fun4';'fun5'];xx=0:0.2:3;[yy,a,WE]=zjjfbj(f,X,Y, xx), plot(X,Y,'ro',xx,yy,'b-')运行后屏幕显示如下(图略)yy = Columns 1 through 7-0.0005 0.2037 0.3939 0.5656 0.7141 0.8348 0.9236Columns 8 through 140.9771 0.9926 0.9691 0.9069 0.8080 0.6766 0.5191Columns 15 through 160.3444 0.1642a = 0.3828 0.4070 -0.3901 0.0765 -0.4598 0.5653WE = 1.5769e-004即,最佳逼近函数为y=0.3828+0.4070*x-0.3901*x^2+0.0765*exp(x) -0.4598*cos(x) +0.5653*sin(x).8 随机数据点上的二元拟合及其MATLAB 程序例8 设节点(X,Y,Z )中的X 和Y 分别是在区间]3,3[-和]5.3,5.2[-上的50个随机数,Z 是函数Z =7-3x 3e 22y - -x 在(X,Y )的值,拟合点(X I ,Y I )中的X I =-3:0.2:3, Y I =-2.5:0.2:3.5.分别用二元拟合方法中最近邻内插法、三角基线性内插法、三角基三次内插法和MATLAB 4网格化坐标方法计算在(X I ,Y I )处的值,作出它们的图形,并与被拟和曲面进行比较.解 (1)最近邻内插法.输入程序>> x=rand(50,1);y=rand(50,1); %生成50个一元均匀分布随机数x 和y , x ,y . X=-3+(3-(-3))*x;%利用x 生成的随机变量.Y=-2.5+(3.5-(-2.5))*y; %利用y 生成的随机变量.Z=7-3* X.^3 .* exp(-X.^2 - Y.^2); %在每个随机点(X,Y )处计算Z 的值.X1=-3:0.2:3;Y1=-2.5:0.2:3.5;[XI,YI] = meshgrid(X1,Y1); %将坐标(XI,YI )网格化. ZI=griddata(X,Y,Z,XI,YI, 'nearest') %计算在每个插值点(XI,YI )处的插值ZI.mesh(XI,YI, ZI) %作二元拟合图形.xlabel('x'), ylabel('y'), zlabel('z'),title('用最近邻内插法拟合函数z =7-3 x^3 exp(-x^2 - y^2) 的曲面和节点的图形')%legend('拟合曲面','节点(xi,yi,zi)')hold on %在当前图形上添加新图形.plot3(X,Y,Z, 'bo') %用兰色小圆圈画出每个节点(X,Y,Z).hold of %结束在当前图形上添加新图形. 运行后屏幕显示用最近邻内插法拟合函数Z =7-3x 3e 22y - -x 在两组不同节点处的曲面及其插值Z I (略).(2)三角基线性内插法.输入程序>> x=rand(50,1);y=rand(50,1); %生成50个一元均匀分布随机数x 和y , x ,y . X=-3+(3-(-3))*x;%利用x 生成 上的随机变量.Y=-2.5+(3.5-(-2.5))*y; %利用y 生成 上的随机变量.Z=7-3* X.^3 .* exp(-X.^2 - Y.^2); %在每个随机点(X,Y )处计算Z 的值.X1=-3:0.2:3;Y1=-2.5:0.2:3.5;[XI,YI] = meshgrid(X1,Y1); %将坐标(XI,YI )网格化. ZI=griddata(X,Y,Z,XI,YI, 'linear') %计算在每个插值点(XI,YI )处的插值ZI.mesh(XI,YI, ZI) %作二元拟合图形.xlabel('x'), ylabel('y'), zlabel('z'),title('用三角基线性内插法拟合函数z =7-3 x^3 exp(-x^2 - y^2) 的曲面和节点的图形')%legend('拟合曲面','节点(xi,yi,zi)')hold on %在当前图形上添加新图形.plot3(X,Y,Z, 'bo') %用兰色小圆圈画出每个节点(X,Y,Z).hold of %结束在当前图形上添加新图形. 运行后屏幕显示用三角基线性内插法拟合函数Z =7-3x 3e 22y - -x 在两组不同节点处的曲面和节点的图形及其插值Z I (略).(3)三角基三次内插法.输入程序>> x=rand(50,1);y=rand(50,1); %生成50个一元均匀分布随机数x 和y , x ,y . X=-3+(3-(-3))*x;%利用x 生成 上的随机变量.Y=-2.5+(3.5-(-2.5))*y; %利用y 生成 上的随机变量.Z=7-3* X.^3 .* exp(-X.^2 - Y.^2); %在每个随机点(X,Y )处计算Z 的值.X1=-3:0.2:3;Y1=-2.5:0.2:3.5;[XI,YI] = meshgrid(X1,Y1); %将坐标(XI,YI )网格化. ZI=griddata(X,Y,Z,XI,YI, 'cubic') %计算在每个插值点(XI,YI )处的插值ZI.mesh(XI,YI, ZI) %作二元拟合图形.xlabel('x'), ylabel('y'), zlabel('z'),title('用三角基三次内插法拟合函数z =7-3 x^3 exp(-x^2 - y^2) 的曲面和节点的图形')%legend('拟合曲面','节点(xi,yi,zi)')hold on %在当前图形上添加新图形.plot3(X,Y,Z, 'bo') %用兰色小圆圈画出每个节点(X,Y,Z).hold of %结束在当前图形上添加新图形. 运行后屏幕显示用三角基三次内插法拟合函数Z =7-3x 3e 22y - -x 在两组不同节点处的曲面和节点的图形及其插值Z I (略).(4)MATLAB 4网格化坐标方法.输入程序>> x=rand(50,1);y=rand(50,1); %生成50个一元均匀分布随机数x 和y , x ,y .X=-3+(3-(-3))*x;%利用x 生成 上的随机变量.Y=-2.5+(3.5-(-2.5))*y; %利用y 生成 上的随机变量.Z=7-3* X.^3 .* exp(-X.^2 - Y.^2); %在每个随机点(X,Y )处计算Z 的值.X1=-3:0.2:3; Y1=-2.5:0.2:3.5;[XI,YI] = meshgrid(X1,Y1); %将坐标(XI,YI )网格化. ZI=griddata(X,Y,Z,XI,YI, 'v4') %计算在每个插值点(XI,YI )处的插值ZI.mesh(XI,YI, ZI) %作二元拟合图形.xlabel('x'), ylabel('y'), zlabel('z'),title('用MATLAB 4网格化坐标方法拟合函数z =7-3 x^3 exp(-x^2 - y^2) 的曲面和节点的图形')%legend('拟合曲面','节点(xi,yi,zi)')hold on %在当前图形上添加新图形.plot3(X,Y,Z, 'bo') %用兰色小圆圈画出每个节点(X,Y,Z).hold of %结束在当前图形上添加新图形. 运行后屏幕显示用MATLAB 4网格化坐标方法拟合函数Z =7-3x 3e 22y - -x 在两组不同节点处的曲面和节点的图形及其插值ZI (略).(5)作被拟合曲面Z =7-3x 3e 22y - -x 和节点的图形.输入程序>> x=rand(50,1);y=rand(50,1); %生成50个一元均匀分布随机数x 和y , x ,y . X=-3+(3-(-3))*x;%利用x 生成随机变量.Y=-2.5+(3.5-(-2.5))*y; %利用y 生成随机变量.Z=7-3* X.^3 .* exp(-X.^2 - Y.^2); %在每个随机点(X,Y )处计算Z 的值.X1=-3.:0.1:3.;Y1=-2.5:0.1:3.5;[XI,YI] = meshgrid(X1,Y1); %将坐标(XI,YI )网格化. ZI=7-3* XI.^3 .* exp(-XI.^2 - YI.^2);mesh(XI,YI, ZI) %作二元拟合图形.xlabel('x'), ylabel('y'), zlabel('z'),title('被拟合函数z =7-3 x^3 exp(-x^2 - y^2) 的曲面和节点的图形')%legend('被拟合函数曲面','节点(xi,yi,zi)')hold on %在当前图形上添加新图形.plot3(X,Y,Z, 'bo') %用兰色小圆圈画出每个节点(X,Y,Z).hold of %结束在当前图形上添加新图形. 运行后屏幕显示被拟合函数Z =7-3x 3e22y - -x 的曲面和节点的图形及其函数值ZI(略).。
最小二乘法MATLAB程序及结果
最小二乘递推算法的MATLAB仿真针对辨识模型,有z(k)-+a1*z(k-1)+a2*z(k-2)=b1*u(k-1)+b2*u(k-2)+v(k)模型结构,对其进行最小二乘递推算法的MATLAB仿真,对比真值与估计值。
更改a1、a2、b1、b2参数,观察结果。
仿真对象:z(k)-1.5*z(k-1)+0.7*z(k-2)=u(k-1)+0.5*u(k-2)+v(k)程序如下:L=15;y1=1;y2=1;y3=1;y4=0; %四个移位寄存器的初始值for i=1:L; %移位循环x1=xor(y3,y4);x2=y1;x3=y2;x4=y3;y(i)=y4; %取出作为输出信号,即M序列if y(i)>0.5,u(i)=-0.03; %输入信号else u(i)=0.03;endy1=x1;y2=x2;y3=x3;y4=x4;endfigure(1);stem(u),grid onz(2)=0;z(1)=0;for k=3:15;z(k)=1.5*z(k-1)-0.7*z(k-2)+u(k-1)+0.5*u(k-2); %输出采样信号endc0=[0.001 0.001 0.001 0.001]'; %直接给出被识别参数的初始值p0=10^6*eye(4,4); %直接给出初始状态P0E=0.000000005;c=[c0,zeros(4,14)];e=zeros(4,15);for k=3:15; %开始求kh1=[-z(k-1),-z(k-2),u(k-1),u(k-2)]';x=h1'*p0*h1+1;x1=inv(x);k1=p0*h1*x1; %开始求k的值d1=z(k)-h1'*c0;c1=c0+k1*d1;e1=c1-c0;e2=e1./c0; %求参数的相对变化e(:,k)=e2;c0=c1;c(:,k)=c1;p1=p0-k1*k1'*[h1'*p0*h1+1]; %求出P(k)的值p0=p1;if e2<=E break;endendc,e %显示被辨识参数及其误差情况a1=c(1,:);a2=c(2,:);b1=c(3,:);b2=c(4,:);ea1=e(1,:);ea2=e(2,:);eb1=e(3,:);eb2=e(4,:);figure(2);i=1:15;plot(i,a1,'r',i,a2,':',i,b1,'g',i,b2,':')title('Parameter Identification with Recursive Least Squares Method')figure(3);i=1:15;plot(i,ea1,'r',i,ea2,'g',i,eb1,'b',i,eb2,'r:')title('Identification Precision')程序运行结果:p0 =1000000 0 0 00 1000000 0 00 0 1000000 00 0 0 1000000c =Columns 1 through 90.0010 0 0.0010 -0.4984 -1.2325 -1.4951 -1.4962 -1.4991 -1.49980.0001 0 0.0001 0.0001 -0.2358 0.6912 0.6941 0.6990 0.69980.0010 0 0.2509 1.2497 1.0665 1.0017 1.0020 1.0002 0.99990.0010 0 -0.2489 0.7500 0.5668 0.5020 0.5016 0.5008 0.5002Columns 10 through 15-1.4999 -1.5000 -1.5000 -1.5000 -1.4999 -1.49990.6999 0.7000 0.7000 0.7000 0.7000 0.70000.9998 0.9999 0.9999 0.9999 0.9999 0.99990.5002 0.5000 0.5000 0.5000 0.5000 0.5000e =1.0e+003 *Columns 1 through 90 0 0 -0.4994 0.0015 0.0002 0.0000 0.0000 0.00000 0 0 0 -2.3592 -0.0039 0.0000 0.0000 0.00000 0 0.2499 0.0040 -0.0001 -0.0001 0.0000 -0.0000 -0.00000 0 -0.2499 -0.0040 -0.0002 -0.0001 -0.0000 -0.0000 -0.0000Columns 10 through 150.0000 0.0000 0.0000 -0.0000 -0.0000 0.00000.0000 0.0000 -0.0000 0.0000 0.0000 0.0000-0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000-0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000程序运行曲线:图1.输入信号图2.a1,a2,b1,b2辨识仿真结果图3. a1,a2,b1,b2各次辨识结果收敛情况分析:由运行结果可看出,输出观测值没有任何噪声成分时,辨识结果最大相对误差达到3位数。
最小二乘法Matlab自编函数实现及示例
一、最小二乘拟合原理在工程实践中,经常遇到类似的问题:我们做了n次实验,获得了一组数据然后,我们希望知道x和y之间的函数关系。
所以我们将其描绘在XOY直角坐标系下,得到下面这么一张点云图:然后,我们发现,x和y「可能」是线性的关系,因为我们可以用一条直线大致的将所有的样本点串连起来,如下图:所以,我们可以「猜测」。
接下来的问题,就是求出a和b的值。
这看起来是一个很简单的问题,a和b是两个未知数,我们只需要随意找出两个样本点,列出方程组:两个未知数,两个方程,就可以求解出a和b的值。
然而,在这里是不对的,或者说是不准确的。
为什么呢?因为这个函数关系,是我们「猜测」的,并不一定是客观正确的(虽然也许是正确的)。
所以我们不能这么简单粗暴的方程组求解。
那怎么办呢?既然是「猜测」的,那么就存在误差。
那么我们将这个函数关系稍加修正为:这里,分别是第i次实验的因变量、自变量、误差。
既然是「猜测」,那我们当然希望猜得准一点。
那怎么衡量准确呢?自然和e有关系。
上式变型后可得:在这里,a和b才是自变量,e是函数值。
这里是最容易搞糊涂的地方,为什么a,b是自变量,而不是x,y?这就要提及「曲线拟合」的概念。
所谓「拟合」就是说我们要找到一个函数,来「匹配」我们在实验中获得的样本值。
放到上面的例子,就是我们要调整a和b 的值,来使得这个函数和实验中获得的数据更加「匹配」。
所以,a和b才是「曲线拟合」过程中的自变量。
接下来,继续如何让误差更小的问题。
「最小二乘法」的思想核心,就是定义一个损失函数:显然,如果我们调整a和b,使得Q达到最小,那么「曲线拟合」的误差也会最小。
这里,Q是a,b的函数。
根据高等数学的只是,Q的最小值点必然是其导数为0的点。
所以,我们令:求解上述方程组,则可以解得a和b的值。
这就是最小二乘法的整个过程。
最后说明:(1)最小二乘法英文名Least Squares,其实翻译成「最小平方法」,更容易让人理解。
matlab求解离散型最小二乘和连续性最小二乘求解
(一)实验目的:掌握并能够利用离散型最小二乘和连续性最小二乘求解问题。
(二)问题描述问题二1.以函数生成的6个数据点(0.25,23.1),(1.0,1.68), (1.5,1.0),(2.0,0.84),(2.4,0.826),(5.0,1.2576)为例,运行程序得到不同阶对应的曲线拟合产生的多项式函数。
2. 例题:计算f(x)=exp(x)在[-1,1]上的二、三次最佳平方逼近多项式。
并画图进行比较。
(三)算法介绍问题二的(1)是离散最小二乘问题。
最小离散最小二乘就是根据一批有误的数据()i=1,2,…,n确定参数,并通过均方误差来比较曲线拟合的优劣,在本题中通过画图来比较不同阶方程拟合效果的优劣。
选择两种方法实现离散最小二乘。
方法一,建立normal equation(法方程组),求解k次多项式系数。
法方程组构造方法:…方法二:由于在matlab中存在ployfit函数,可以即为方便的用k次多项式拟合。
问题二的(2)是连续最小二乘问题。
在本题中我们选用首一的Legendre多项式实现二、三次最佳平方逼近。
对于二次最佳平方逼近:对于三次最佳平方逼近:其中(四)程序问题二(1)离散最小二乘,建立normalequation.m文件。
(方法一)function f=normalequation(n)syms txx=[0.25,1.0,1.5,2.0,2.4,5.0];yy=[23.1,1.68,1.0,0.84,0.826,1.2576];x=zeros(n,n);y=zeros(n ,1);for i=1:nfor k=1:6x(i,i)=xx(k).^(2*i-2)+x(i,i);y(i,1)=yy(k).*xx(k).^(i-1)+y(i,1);endendfor i=2:nfor j=1:i-1for k=1:6x(i,j)=xx(k).^(i+j-2)+x(i,j);x(j,i)=x(i,j);endendendz=x\y;for i=1:nr=z(i,1)*t^(i-1)+r;vpa(r,5)建立number2.m文件。
最小二乘法及matlab程序
最小二乘法及matlab 程序最小二乘法简介:最小二乘法(又称最小平方法)是一种数学优化技术。
它通过最小化误差的平方和寻找数据的最佳函数匹配。
利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。
最小二乘法还可用于曲线拟合。
其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。
最小二乘法的矩阵形式:Ax b = 若未知量的个数大于方程的个数,则方程无解,但在数值计算领域,我们通常是计算min ||||Ax b - ,解出其中的x 。
比较直观的做法是求解T T A Ax A b = ,但通常比较低效。
其中一种常见的解法是对 A 进行QR 分解(A=QR ),其中Q 是n k ⨯正交矩阵(Orthonormal Matrix ),R 是n k ⨯上三角矩阵(Upper Triangular Matrix ),则有:1min min min Ax b QRx b Rx Q b --=-=-。
Matlab 命令:一次函数线性拟合使用polyfit (x,y,1);多项式函数线性拟合使用 polyfit (x,y,n ),n 为次数;例如:x=[0.5,1.0,1.5,2.0,2.5,3.0]; y=[1.75,2.45,3.81,4.80,7.00,8.60]; p=polyfit(x,y,2) x1=0.5:0.5:3.0; y1=polyval(p,x1); plot(x,y,'*r',x1,y1,'-b') 计算结果为:p =0.5614 0.8287 1.1560即所得多项式为y=0.5614x^2+0.8287x+1.15560然后可以使用polyval在t处预测:y_hat=polyval(p,t)非线性函数使用:lsqcurvefit、nlinfit格式:lsqcurvefit(f,a,x,y)、nlinfit(x,y,f,a)f:符号函数句柄,如果是以m文件的形式调用的时候,别忘记加@.这里需要注意,f函数的返回值是和y匹对的,即拟合参数的标准是(f-y)^2取最小值,具体看下面的例子a:最开始预估的值(预拟合的未知参数的估计值)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。