平面向量的正交分解与坐标表示

合集下载

平面向量的正交分解及坐标表示 6.3.3 平面向量加、减运算的坐标表示课件(共25张PPT)

平面向量的正交分解及坐标表示 6.3.3 平面向量加、减运算的坐标表示课件(共25张PPT)
∴ = (1,5), = (4, −1), = (−5, −4),
∴ + = (1,5) + (4, −1) = (5,4),
− = (−5, −4) − (1,5) = (−6, −9).
(3)设向量,的坐标分别是(−1,2),(3, −5),则 + , − 的坐标分
(1)相等向量的坐标相同,且与向量的起点、终点无关.( √ )
(2)当向量的起点在坐标原点时,纵坐标为0,与轴平行的向量的横坐标为0.
(√ )
知识点二 平面向量加、减运算的坐标表示
设向量 = (1 , 1 ), = (2 , 2 ),则有下表:
A.(−2,4)

)
B.(4,6)
C.(−6, −2)
D.(−1,9)
[解析] 在平行四边形中,因为(1,2),(3,5),所以
= (2,3),又 = (−1,2),所以 = + = (1,5),
= − = (−3, −1),所以 + = (−2,4).故选A.
6.3 平面向量基本定理及坐标表示
6.3.2 平面向量的正交分解及坐标表示
6.3.3 平面向量加、减运算的坐标表示
【学习目标】
1.借助平面直角坐标系,理解平面向量坐标的概念,掌握平面向量
的正交分解及坐标表示.
2.掌握平面向量的坐标运算,会用坐标表示平面向量的加、减运算.
知识点一 平面向量的正交分解及坐标表示
互相垂直
1.正交分解:把一个向量分解为两个__________的向量,叫作把向量
作正交分解.
2.平面向量的坐标表示如图,在平面直角坐标系中,
设与轴、轴方向相同的两个单位向量分别为,,

原创2:6.3.2 平面向量的正交分解及坐标表示

原创2:6.3.2 平面向量的正交分解及坐标表示
6.3.2 平面向量的正交分解及坐标表示
学习目标: 了解向量的正交分解,理解在平面直角坐标系中表示向量,掌握向量的坐 标表示. 重点:平面直角坐标系中向量的坐标表示. 难点:在平面直角坐标系中,向量的坐标与点的坐标之间的联系.
温故知新 平面向量基本定理:
如果 e1 ,e2 是同一平面内的两个不共线的向量,那么对于这 一平面内的任一向量 a ,有且只有一对实数 1,2使 a 1e1 +2 e2.
叫做向量 a 的坐标表示. 显然: i (1, 0)
j (0,1)
0 (0, 0)
y a
A
j
oiB
x
y
yj a
yj
j
Oi
xi
显然:向量 a,b 有什么关系?
ab 能说出向量 b 的坐标吗? b
b (x, y)
相等的向量坐标相同
xi
x
y
a
y
A
j
Oi
x
如图,在直角坐标平面内,以原点 O为起点 作 OA a ,则点 A的位置由 a唯一确定. 设OA xi +y j ,则向量 OA 的坐标 (x, y) 就是点 A的坐标;
解:如图可知
a AA1 AA2 2i 3 j a (2, 3)
同理,
b 2i 3 j (2, 3); c 2i 3 j (2, 3); d 2i 3 j (2, 3).
y 5 b4 3 2
j1
-4 -3 -2 -1O -1
-2
c
-3
-4
-5
A2
A
i1 2
a
A1
3 4x d
B
a j Oi
P
a 2 3i 2 j

平面向量的正交分解及坐标表示

平面向量的正交分解及坐标表示
复习提问
平面向量的基本定理
a 1 e1 2 e2
其实质:同一平面内任一向量都可以用
两个不共线的向量进行表示.
2.3.2 平面向量的正交分解及坐标表示
如图,光滑斜面上一个木块受到的重力
为G ,产生两个效果,一个是下滑力为 F ,一 1 个是木块对斜面的压力为 F2 .
把一个向量分解为两个互相垂直的向量,叫
a 2 3i 2j
B a j O i
P A
y
i, j 是分别与 如图, x轴、 y轴方向相同 的单位向量,若以 i, j为基底,则
对于该平面内的任一向量 a, 有且只有一对实数x、y,可使 a = xi + y j.
课堂小结
向量的坐标表示是一种向量与坐标的对 应关系,它使得向量具有代数意义.将向量的 起点平移到坐标原点,则平移后向量的终点 坐标就是向量的坐标.
j 表示向量 a 、 例1:如图,分别用基底 i , c 、, d b、 并求出它们的坐标.
A2
解:如图可知
a = AA1 + AA2 = 2i + 3j a = (2, 3)
A A1
同理
b = -2i + 3j = (-2, 3); c = -2i - 3j = (-2, -3); d = 2i - 3j = (2, -3).
三者有何相互关系?
F 1 G
F2
F 1 G
F2
重力 G产生两个效果,一是木块受平行于 斜面的力的作用 F ,沿斜面下滑;一是木块产 1 生垂直于斜面的压力 F2.也就是说,重力G 的 效果等价于F 和F2 得合力效果,即 G = F + F . 1 1 2

平面向量的正交分解及坐标表示

平面向量的正交分解及坐标表示
平面对量旳正交分解及坐标 表达
复习:
1.向量旳数乘运算:实数λ与向量a旳积是一种向 量,记作λa, 它旳长度和方向要求如下:
(1) |λa|=|λ| |a|
(2) 当λ>0时,λa旳方向与a方向相同; 当λ<0时,λa旳方向与a方向相反;
尤其地,当λ=0或a=0时, λa=0
设a,b为任意向量,λ,μ为任意实数,则有: ①λ(μa)=(λμ) a ②(λ+μ) a=λa+μa ③λ(a+b)=λa+λb

a b (x1 x2 , y1 y2 )

a b (x1 x2 , y1 y2 )
两个向量和与差旳坐标分别等于这 两个向量相应坐标旳和与差
(2) 若 A(x1, y1 ) B(x2 , y2 )
则 AB x2 x1, y2 y1
一种向量旳坐标等于表达此向量旳 有向线段旳终点坐标减去始点旳坐 标
(3)若 a (x, y) 和实数
则 a (x, y)
实数与向量旳积旳坐标等于用这个实 数乘原来向量旳相应坐标
例5.已知 a=(2,1),
b =(例-354,.4)已,知求例6a b
3a 4b 旳坐标.
ab
作业P101习题A1,B1,3,4 P118A3,4B4
尤其地:
()a (a) (a)
(a b) a b
向量 b 与非零向量 a 共线当且仅当 有且只有一种实数λ,使得 b=λa
新课讲解
设e1、e2是同一平面内旳两个不共
线旳向量,a 是这一平面内旳任历来量,
我们研究 a 与 e1、e2之间旳关系.
e1
a
研究
e2
OC = OM + ON = 1OA + 2OB

2.3.3平面向量的正交分解及坐标表示平面向量的坐标运算

2.3.3平面向量的正交分解及坐标表示平面向量的坐标运算

2.3.3平面向量的正交分解及坐标表示平面向量的坐标运算.3.2&2.3.3 平面向量的正交分解及坐标表示平面向量的坐标运算预习课本P94~98,思考并完成以下问题怎样分解一个向量才为正交分解?如何由a,b的坐标求a+b,a-b,λa的坐标?[新知初探].平面向量正交分解的定义把一个平面向量分解为两个互相垂直的向量..平面向量的坐标表示基底:在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为基底.坐标:对于平面内的一个向量a,有且仅有一对实数x,y,使得a=xi+yj,则有序实数对叫做向量a的坐标.坐标表示:a=.特殊向量的坐标:i=,j=,0=.[点睛] 平面向量的正交分解实质上是平面向量基本定理的一种应用形式,只是两个基向量e1和e2互相垂直.由向量坐标的定义,知两向量相等的充要条件是它们的横、纵坐标对应相等,即a=b⇔x1=x2且y1=y2,其中a=,b=..平面向量的坐标运算设向量a=,b=,λ∈R,则有下表:文字描述符号表示加法两个向量和的坐标分别等于这两个向量相应坐标的和a+b=减法两个向量差的坐标分别等于这两个向量相应坐标的差a-b=数乘实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标λa=重要结论一个向量的坐标等于表示此向量的有向线段的终点的坐标减去起点的坐标已知A,B,则=[点睛] 向量的坐标只与起点、终点的相对位置有关,而与它们的具体位置无关.当向量确定以后,向量的坐标就是唯一确定的,因此向量在平移前后,其坐标不变.[小试身手].判断下列命题是否正确.相等向量的坐标相同与向量的起点、终点无关.当向量的始点在坐标原点时,向量的坐标就是向量终点的坐标.两向量差的坐标与两向量的顺序无关.点的坐标与向量的坐标相同.答案:√√××.若a=,b=,则3a+2b的坐标是A.B.c.D.答案:c.若向量=,=,则=A.B.c.D.答案:A.若点,点N,用坐标表示向量=______.答案:平面向量的坐标表示[典例]如图,在边长为1的正方形ABcD中,AB与x轴正半轴成30°角.求点B和点D的坐标和与的坐标.[解] 由题知B,D分别是30°,120°角的终边与单位圆的交点.设B,D.由三角函数的定义,得x1=cos30°=32,y1=sin30°=12,∴B32,12.x2=cos120°=-12,y2=sin120°=32,∴D-12,32.∴=32,12,=-12,32.求点和向量坐标的常用方法求一个点的坐标,可以转化为求该点相对于坐标原点的位置向量的坐标.在求一个向量时,可以首先求出这个向量的起点坐标和终点坐标,再运用终点坐标减去起点坐标得到该向量的坐标.[活学活用]已知o是坐标原点,点A在象限,||=43,∠xoA=60°,求向量的坐标;若B,求的坐标.解:设点A,则x=43cos60°=23,y=43sin60°=6,即A,=.=-=.平面向量的坐标运算[典例] 已知三点A,B,c,则向量3+2=________,-2=________.已知向量a,b的坐标分别是,,求a+b,a-b,3a,2a +3b的坐标.[解析] ∵A,B,c,∴=,=,=.∴3+2=3+2==.-2=-2==.[答案]解:a+b=+=,a-b=-=,a=3=,a+3b=2+3=+=.平面向量坐标运算的技巧若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则进行.若已知有向线段两端点的坐标,则可先求出向量的坐标,然后再进行向量的坐标运算.向量的线性坐标运算可完全类比数的运算进行.[活学活用].设平面向量a=,b=,则a-2b=A.B.c.D.解析:选A ∵2b=2=,∴a-2b=-=..已知,N,=12,则P点坐标为______.解析:设P,=,=,∴=12=12=-4,12,∴x-3=-4,y+2=12.∴x=-1,y=-32.答案:-1,-32向量坐标运算的综合应用[典例] 已知点o,A,B及=+t,t为何值时,点P在x轴上?点P在y轴上?点P在第二象限?[解] 因为=+t=+t=,若点P在x轴上,则2+3t=0,所以t=-23.若点P在y轴上,则1+3t=0,所以t=-13.若点P在第二象限,则1+3t<0,2+3t>0,所以-23<t<-13.[一题多变].[变条件]本例中条件“点P在x轴上,点P在y轴上,点P在第二象限”若换为“B为线段AP的中点”试求t的值.解:由典例知P,则1+1+3t2=4,2+2+3t2=5,解得t=2..[变设问]本例条件不变,试问四边形oABP能为平行四边形吗?若能,求出t值;若不能,说明理由.解:=,=.若四边形oABP为平行四边形,则=,所以3-3t=1,3-3t=2,该方程组无解.故四边形oABP不能成为平行四边形.向量中含参数问题的求解向量的坐标含有两个量:横坐标和纵坐标,如果横或纵坐标是一个变量,则表示向量的点的坐标的位置会随之改变.解答这类由参数决定点的位置的题目,关键是列出满足条件的含参数的方程,解这个方程,就能达到解题的目的.层级一学业水平达标.如果用i,j分别表示x轴和y轴方向上的单位向量,且A,B,则可以表示为A.2i+3jB.4i+2jc.2i-jD.-2i+j解析:选c 记o为坐标原点,则=2i+3j,=4i+2j,所以=-=2i-.已知=a,且A12,4,B14,2,又λ=12,则λa等于A.-18,-1B.14,3c.18,1D.-14,-3解析:选A ∵a==14,2-12,4=-14,-2,∴λa=12a=-18,-1..已知向量a=,2a+b=,则b=A.B.c.D.解析:选A b=-2a=-=..在平行四边形ABcD中,Ac为一条对角线,=,=,则=A.B.c.D.解析:选c =-=-=-=..已知,N,点P是线段N上的点,且=-2,则P点的坐标为A.B.c.D.解析:选D 设P,则=,=,由=-2得10-x=4+2x,-2-y=-14+2y,所以x =2,y=4..已知向量a=,b=,若a+nb=,则-n的值为________.解析:∵a+nb==,∴2+n=9,-2n=-8,∴=2,n=5,∴-n=2-5=-3.答案:-3.若A,B,c,则+2=________.解析:∵A,B,c,∴=,=.∴+2=+2=+=.答案:.已知o是坐标原点,点A在第二象限,||=6,∠xoA =150°,向量的坐标为________.解析:设点A,则x=||cos150°=6cos150°=-33,y=||sin150°=6sin150°=3,即A,所以=.答案:.已知a=,B点坐标为,b=,c=,且a=3b-2c,求点A的坐标.解:∵b=,c=,∴3b-2c=3-2=-=,即a==.又B,设A点坐标为,则==,∴1-x=-7,0-y=10⇒x=8,y=-10,即A点坐标为.0.已知向量=,=,点A.求线段BD的中点的坐标.若点P满足=λ,求λ与y的值.解:设B,因为=,A,所以=,所以x1+1=4,y1+2=3,所以x1=3,y1=1,所以B.同理可得D,设BD的中点,则x2=3-42=-12,y2=1-32=-1,所以-12,-1.由=-=,=-=,又=λ,所以=λ=,所以1=-7λ,1-y=-4λ,所以λ=-17,y=37. 层级二应试能力达标.已知向量=,=,则12=A.B.c.D.解析:选D 12=12=12=,故选D..已知向量a=,b=,c=,且c=λ1a+λ2b,则λ1,λ2的值分别为A.-2,1B.1,-2c.2,-1D.-1,2解析:选D ∵c=λ1a+λ2b,∴=λ1+λ2=,∴λ1+2λ2=3,2λ1+3λ2=4,解得λ1=-1,λ2=2..已知四边形ABcD的三个顶点A,B,c,且=2,则顶点D的坐标为A.2,72B.2,-12c.D.解析:选A 设点D,则由题意得=2=,故2=4,2n -4=3,解得=2,n=72,即点D2,72,故选A..对于任意的两个向量=,n nn=.设f f f等于A.B.c.D.解析:选B 由⊗f=,得p-2q=5,2p+q=0,解得p=1,q=-2,所以f f.已知向量i=,j=,对坐标平面内的任一向量a,给出下列四个结论:①存在唯一的一对实数x,y,使得a=;②若x1,x2,y1,y2∈R,a=≠,则x1≠x2,且y1≠y2;③若x,y∈R,a=,且a≠0,则a的起点是原点o;④若x,y∈R,a≠0,且a的终点坐标是,则a=.其中,正确结论有________个.解析:由平面向量基本定理,可知①正确;例如,a=≠,但1=1,故②错误;因为向量可以平移,所以a=与a 的起点是不是原点无关,故③错误;当a的终点坐标是时,a=是以a的起点是原点为前提的,故④错误.答案:1.已知A,B,o为坐标原点,点c在∠AoB内,|oc|=22,且∠Aoc=π4.设=λ+,则λ=________.解析:过c作cE⊥x轴于点E,由∠Aoc=π4知,|oE|=|cE|=2,所以=+=λ+,即=λ,所以=λ,故λ=23.答案:23.在△ABc中,已知A,B,c,,N,D分别是AB,Ac,Bc的中点,且N与AD交于点F,求的坐标.解:∵A,B,c,∴==,==.∵D是Bc的中点,∴=12=12=12=-72,-4.∵,N分别为AB,Ac的中点,∴F为AD的中点.∴=-=-12=-12-72,-4=74,2..在直角坐标系xoy中,已知点A,B,c,若++=0,求的坐标.若=+n,且点P在函数y=x+1的图象上,求-n. 解:设点P的坐标为,因为++=0,又++=++=.所以6-3x=0,6-3y=0,解得x=2,y=2.所以点P的坐标为,故=.设点P的坐标为,因为A,B,c,所以=-=,=-=,因为=+n,所以=+n=,所以x0=+2n,y0=2+n,两式相减得-n=y0-x0,又因为点P在函数y=x+1的图象上,所以y0-x0=1,所以-n=1.。

平面向量的正交分解及坐标表示

平面向量的正交分解及坐标表示

a 2 3i 2j
B
j
O i
a
P A
思考4:在平面直角坐标系中,分别取与x轴、 y轴方向相同的两个单位向量i、j作为基底, 对于平面内的一个向量a,由平面向量基本定 理知,有且只有一对实数x、y,使得 a= xi+yj.我们把有序数对(x,y)叫做向量a 的坐标,记作a=(x,y).其中x叫做a在x轴上 的坐标,y叫做a在y轴 上的坐标,上式叫做向量 y a y 的坐标表示.那么x、y的 几何意义如何? j x O i x
CD 2i 3 j
探究:平面向量的正交分解及坐标表示
思考1:不共线的向量有不同的方向,对 于两个非零向量a和b,作 OA a,OB b, 如图.为了反映这两个向量的位置关系, 称∠AOB为向量a与b的夹角.你认为向量 的夹角的取值范围应如何约定为宜?
B a b b
[0°,180°]
a
O
在平面直角坐标系内,每一个平面向量 都可以用一组有序实数对唯一表示.
y
y
A
a
j
O
i
x
x
a OA xi +yj
a ( x, y)
例1 如图,分别用基底 i ,j 表示向量 a 、 b、 c 、 d ,并求出它们的坐标。
A2
A
A1
ห้องสมุดไป่ตู้ 解:如图可知
a AA 1 AA 2 2i 3 j
j | ______, 1 1 (1) i _____,|
5 | OC | ______; (2)若用 i , j 来表示 OC, OD ,则:
3i 4 j OD _________. 5i 7 j OC ________,

平面向量的正交分解及坐标表示

平面向量的正交分解及坐标表示

2.3.2平面向量的正交分解及坐标表示2.3.3平面向量的坐标运算学习目标:1.掌握平面向量的坐标表示及其坐标运算.2.理解平面向量坐标的概念.3.向量的坐标与平面内点的坐标的区别与联系.学习重点:平面向量的坐标表示及其坐标运算学习难点:平面向量的坐标表示及其坐标运算课上导学:[基础·初探][教材整理1平面向量的正交分解及坐标表示阅读教材P94~P95内容,完成下列问题.1.平面向量的正交分解:把一个向量分解为两个互相的向量,叫做把向量正交分解.2.平面向量的坐标表示:在平面直角坐标系中,分别取与x轴、y轴方向的两个向量i、j作为.对于平面内的一个向量a,由平面向量基本定理知,一对实数x,y,使得a=x i+y j,我们把有序数对叫做向量a的坐标,记作a=(x,y),其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,a=(x,y)叫做向量的坐标表示.显然,i= ,j = ,0= .判断(正确的打“√”,错误的打“×”)(1)两个向量的终点不同,则这两个向量的坐标一定不同.( )(2)当向量的始点在坐标原点时,向量的坐标就是向量终点的坐标.( )(3)两向量差的坐标与两向量的顺序无关.( )](4)点的坐标与向量的坐标相同.( )教材整理2 平面向量的坐标运算阅读教材P 96“思考”以下至P 97例4以上内容,完成下列问题.1.若a =(x 1,y 1),b =(x 2,y 2),则a +b = ,即两个向量和的坐标等于这两个向量相应坐标的和.2.若a =(x 1,y 1),b =(x 2,y 2),则a -b = ,即两个向量差的坐标等于这两个向量相应坐标的差.3.若a =(x ,y ),λ∈R ,则λa = ,即实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.4.向量坐标的几何意义:在平面直角坐标系中,若A (x ,y ),则OA→= ,若A (x 1,y 1),B (x 2,y 2),则AB→= .[小组合作型]>类型一:平面向量的坐标表示(1)已知AB→=(1,3),且点A (-2,5),则点B 的坐标为( )A .(1,8)B .(-1,8)C .(3,2) D .(-3,2)(2)如图,在正方形ABCD 中,O 为中心,且OA→=(-1,-1),则OB→=________;OC →=________;OD →________.(3)如图,已知在边长为1的正方形ABCD 中,AB 与x 轴正半轴成30°角,求点B 和点D 的坐标和AB→与AD →的坐标.类型二:平面向量的坐标运算(1)设AB→=(2,3),BC →=(m ,n ),CD →=(-1,4),则DA →等于( )A .(1+m ,7+n )B .(-1-m ,-7-n )C .(1-m ,7-n )D .(-1+m ,-7+n )^(2)已知向量OA →=(3,-2),OB →=(-5,-1),则向量12AB →的坐标是( )A .⎝ ⎛⎭⎪⎫-4,12B .⎝ ⎛⎭⎪⎫4,-12C .⎝ ⎛⎭⎪⎫-1,-32 D .(8,1) (3)若A 、B 、C 三点的坐标分别为(2,-4),(0,6),(-8,10),求AB →+2BC →,BC →-12AC →的坐标.[课堂回馈]1.点A (1,-3),AB→的坐标为(3,7),则点B 的坐标为( ) A .(4,4) B .(-2,4)C .(2,10) D .(-2,-10)2.若a =(2,1),b =(1,0),则3a -2b 的坐标是( )A .(5,3)B .(4,3)C .(8,3)D .(0,-1)3.若向量AB→=(1,2),BC →=(3,4),则AC →等于( ) A .(4,6) B .(-4,-6) C .(-2,-2) D .(2,2)4.已知A (-2,4),B (3,-1),C (-3,-4),CM→=3CA →,CN →=2CB →,求MN →的坐标.。

平面向量的正交分解及坐标表示 和坐标运算

平面向量的正交分解及坐标表示 和坐标运算

§2.3.2-2.3.3平面向量的正交分解及坐标表示 和坐标运算一 学习目标1 .理解平面向量的正交分解及坐标表示2 .理解掌握坐标运算二 学习过程1. 预习新知(1) 正交分解:把一个向量分解成 的向量,叫做把向量正交分解(2) 向量的坐标表示: 平面直角坐标系中,分别取与x 轴,y 轴方向相同的两个----------i,j 作为基底,对于平面内的一个向量a ,由平面向量基本定理知,有且只有一对实数x,y ,使得a= ,我们把有序数对 叫向量a 的坐标(3) 已知a =(1x ,1y ) b =(2x ,2y ),则a = , a -b = ,m a = . .2 合作探究例1 已知A (1x ,1y ),B(2x ,2y ),求AB 的坐标变式 你能在图中标出坐标为(2x -1x ,2y -1y )的点吗?例2 已知a =(2,1), b =(-3,4)求a +b ,a -b ,3a +4b 的坐标例3 已知平行四边形的三个顶点的坐标分别A(-2,1),B(-1,3),C(3,4)为,求顶点D 的坐标.三.总结与疑惑四.达标检测1.已知A (3,1),B (2,-1),则BA →的坐标是( ).A .(-2,-1)B .(2,1)C .(1,2)D .(-1,-2)2.若a =(2,1),b =(1,0),则3a +2b 的坐标是( ).A .(5,3)B .(4,3)C .(8,3)D .(0,-1)3.已知向量a =(-2,3),b =(2,-3),则下列结论正确的是( ).A .向量a 的终点坐标为(-2,3)B .向量a 的起点坐标为(-2,3)C .向量a 与b 互为相反向量D .向量a 与b 关于原点对称4.已知AB →=(2,-1),AC →=(-4,1)则BC →=________.5.已知a =(-1,1)且a =x i +y j ,则x =________,y =________.6.已知A (2,0),a =(x +3,x -3y -5),O 为原点,若a =OA →,求x ,y 的值.7.给出下面几种说法:①相等向量的坐标相同;②平面上一个向量对应于平面上唯一的坐标;③一个坐标对应于唯一的一个向量;④平面上一个点与以原点为始点,该点为终点的向量一一对应.其中正确说法的个数是( ).A .1B .2C .3D .48.已知向量OA →=(3,-2),OB →=(-5,-1),则向量12AB →的坐标是( ).A.⎝ ⎛⎭⎪⎫-4,12 B.⎝ ⎛⎭⎪⎫4,-12 C .(-8,1) D .(8,1)9.已知M (3,-2),N (-5,-1),MP →=12MN →,则P 点的坐标为________.10.(2012·洛阳高一检测)设m =(a ,b ),n =(c ,d ),规定两向量之间的一个运算为m ⊗n =(ac -bd ,ad +bc ),若已知p =(1,2),p ⊗q =(-4,-3),则q =________.11.如图,已知四边形ABCD 为平行四边形,O 为对角线AC ,BD 的交点,AD →=(3,7),AB →=(-2,1).求OB →的坐标.12.已知点O (0,0),A (1,2),B (4,5)及OP →=OA →+t ·AB →,求:(1)t 为何值时,点P 在x 轴上?在y 轴上?在第二象限?(2)四边形OABP 能否成为平行四边形?若能,求出相应的t 值?若不能,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

140206平面向量的正交分解与坐标表示
140206平面向量的正交分解与坐标运算
教学目的:掌握平面向量的正交分解方法,会运用坐标计算向量的和、差、数乘运算。

教学重点:掌握平面向量的正交分解方法,会运用坐标计算向量的和、差、数乘运算。

教学难点:掌握平面向量的正交分解方法,会运用坐标计算向量的和、差、数乘运算。

教学过程:
一、问题探索
【问题1】如图,光滑的斜面上,物体会向下滑动,
如何知道使物体下滑的作用力有多大
30时,你能计算出【思考】当重力是4N,斜面的倾斜角是0
下滑的作用力吗
【定义】将一个向量分解为两个互相垂直的向量,称为向量的正
交分解。

二、向量的正交分解与坐标表示
【问题2】将向量a
置于直角坐标系内,以两轴正向的
单位向量i
、j
作为基底,
如何研究向量a
的正交分解式
【结论】1、对于直角坐标平面内的任一向量a
,存在唯一的一
对实数,x y ,
使(,)a xi y j x y =+=
2、当向量a
的起点在坐标原点时,终点的坐标是(,)x y 3、||a =
三、平面向量的坐标运算
【问题3】已知11(,)a x y =
,22(,)b x y = ,求a b + ,a
b
-
和a λ
【思考】请你总结向量的加法、减法和数乘运算的法则。

四、向量坐标运算的应用
O
i
j
x
y
a
【例1】已知(,)A A A x y 、(,)B B B x y ,求证:
(,)B A B A AB x x y y =--
【例2】已知)2,3(-=a ,)1,2(-=b ,)4,7(-=c ,若b a c μλ+=,求实数λ和μ的值。

【例3】平行四边形的三个顶点的坐标是A(-2,1)、B(-1,3)、C(3,4),求第四个顶点的坐标。

【练习】
1、已知)4,3(-=a ,)1,1(-=b 且A B = b a
23-,若B 点坐标是
(1,0),求A 点坐标。

2、已知M是圆22
x y
-+-=上的动点,A点坐标是(1,1),
(3)(3)4
点N在MA的延长线上,且MA=2AN,求动点N的轨迹方程。

五、布置作业
P101 T1 T2 T3 T4
六、课后反思
相关文档:










更多相关文档请访问:。

相关文档
最新文档