高中数学 月考数学试卷
辽宁省重点高中协作校2024-2025学年高一上学期第一次月考数学试卷
绝密★启用并使用完毕前辽宁省重点高中协作校2024-2025学年高一第一次月考—数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间120分钟一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集}5|{*≤∈=x N x U ,集合}31{,=A 、集合}421{,,=B ,则=)(B C A U ( )。
A 、}4210{,,, B 、}5310{,,, C 、}5421{,,, D 、}531{,,2.已知命题p :R x ∈∀,01>−x x ,则p ¬为( )。
A 、R x ∈∀,01≤−x x B 、R x ∈∃,01≤−x x C 、R x ∈∀,01≤−x x 或01=−x D 、R x ∈∃,01≤−x x 或01=−x 3.若0<x ,则x x 1+( )。
A 、有最小值2− B 、有最大值2− C 、有最小值2 D 、有最大值24.若不等式02>−−c x ax 的解集为}211|{<<−x x ,则函数a x cx y −−=2的图像可以为( )。
A 、 B 、 C 、 D 、5.已知a 、b 是互不相等的正实数,则下列四个数中最大的数是( )。
A 、b a +2 B 、b a 11+ C 、ab2 D 、222b a + 6.已知集合}023|{2=+−=x x x M 、集合}053|{2=−+−=a ax x x N ,若M N M = ,则实数a 的取值集合为 ( )。
A 、∅B 、}102{,C 、}102|{<≤a aD 、}102|{≤<a a7.手机屏幕面积与手机前面板面积的比值叫手机的“屏占比”,它是手机外观设计中一个重要参数,其值通常在0~1之间.若设计师将某款手机的屏幕面积和手机前面板面积同时增加相同的数量,升级为一款新手机,则该款手机的“屏占比”和升级前相比( )。
广西壮族自治区贵百河武鸣高中2024-2025学年高一上学期10月月考试题 数学(含解析)
2024级“贵百河—武鸣高中”10月高一年级新高考月考测试数 学(考试时间:120分钟 满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.回答非选择题时,将答案写在答题卡上,写在试卷上无效。
一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,集合,则图中阴影部分表示的集合为()A . B.C .D .2.已知命题,则是( )A .B .C .D .3.已知集合,则“”是“集合M 仅有1个真子集”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分又不必要条件4.已知函数的对应关系如下表,函数的图象如图,则的值为()A .3B .0C .1D .25.给出下列结论:①两个实数a ,b 之间,有且只有a ﹥b ,a =b ,a <b 三种关系中的一种;②若,则a ﹥b ;③若,;④已知,则.其中正确结论的个数为( )A .1B .2C .3D .4x123230{32}A x x =-<<{05}B x x =<<{35}x x -<<{02}x x <<{30}x x -<≤{3025}x x x -<≤≤<或2:1,1p x x ∀<->p ⌝21,1x x ∃≤-≤21,1x x ∃<-≤21,1x x ∀<->21,1x x ∀≥->{}()210R M x ax x a =-+=∈14a =)(x f y =)(x g y =()1f g ⎡⎤⎣⎦1>ab0a b >>0a bc d d c >>⇒>0ab >11a b a b>⇔<()f x6.已知函数的定义域是,则的定义域为()A .B .C .D .7.已知函数,若对于任意的实数与至少有一个为正数,则实数m 的取值范围是( )A .B .C .D .8.已知正实数a ,b ,记,则M 的最小值为()AB .2C .1D .二、多选题:本题共3小题,每小题6分,共18分。
四川省南充2024-2025学年高二上学期10月月考数学试题含答案
南充高中高2023级上期第一次月考数学试卷(答案在最后)考试时间:120分钟满分:150分注意事项:1.答题前,务必将自己的姓名、班级、考号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,将答案书写在答题卡相应位置上,写在本试卷上无效.4.考试结束后将答题卡交回.一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的4个选项中,只有一项是符合题目要求的)1.“2sin 2θ=”是“π4θ=”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】C 【解析】【分析】判断“sin 2θ=”和“π4θ=”之间的逻辑推理关系,即可得答案.【详解】当2sin 2θ=时,π2π,Z 4k k θ=+∈或3π2π,Z 4k k θ=+∈,推不出π4θ=;当π4θ=时,必有2sin 2θ=,故“sin 2θ=”是“π4θ=”的必要不充分条件,故选:C2.设l ,m 是两条不同的直线,α,β,γ是三个不同的平面,下列说法正确的是()A.若//l α,//m α,则//l mB.若//l α,//l β,则//αβC.若l α⊥,m α⊥,则//l mD.若αγ⊥,βγ⊥,则//αβ【答案】C【分析】根据直线与直线的位置关系、直线与平面的位置关系和平面与平面的位置关系依次判断选项即可.【详解】对选项A ,若//l α,//m α,则l 与m 的位置关系是平行,相交和异面,故A 错误.对选项B ,若//l α,//l β,则α与β的位置关系是平行和相交,故B 错误.对选项C ,若l α⊥,m α⊥,则根据线面垂直的性质得l 与m 的位置关系是平行,故C 正确.对选项D ,若αγ⊥,βγ⊥,则α与β的位置关系是平行和相交,故D 错误.故选:C3.若sin 2αα-+=,则tan(π)α-=()A. B.C.3D.3-【答案】C 【解析】【分析】由sin 2αα-+=两边同时平方,从而利用sin tan cos =aa a可以实现角α的弦切互化,【详解】由sin 2αα-+=两边同时平方,可得22sin cos 3cos 4αααα-+=,∴222222sin cos 3cos tan 34sin cos tan 1ααααααααα-+-+==++,解得tan 3α=-.()tan tan 3παα∴-=-=.故选:C.4.如图,在正方体1111ABCD A B C D -中,,M N 分别为11,DB A C 的中点,则直线1A M 和BN 夹角的余弦值为()A.23B.33C.23D.13【解析】【分析】以1,,DA DC DD 所在直线为,,x y z 轴,建立空间直角坐标系,根据向量夹角的余弦公式求解即可.【详解】分别以1,,DA DC DD 所在直线为,,x y z轴,建立如图所示空间直角坐标系,设正方体1111ABCD A B C D -的棱长为2,则()1(2,0,2),(1,1,0),(2,2,0),1,1,2A M B N ,所以()1(1,1,2),1,1,2MA BN =-=--设向量1MA 与BN的夹角为θ,则1142cos 63MA BN MA BNθ⋅===⋅,所以直线1A M 和BN 夹角的余弦值为23,故选:C .5.在三棱锥S ABC -中,()()20SC SA BS SC SA ++⋅-=,则ABC V 是()A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形【答案】C 【解析】【分析】由向量的线性运算得到2,SC SA BS BC BA SC SA BC BA ++=+-=- ,从而说明22BC BA = ,即可求解.【详解】()()22,SC SA BS SC SA SB SC SB SA SB BC BA SC SA AC BC BA ++=+-=-+-=+-==- ,()()()()2220SC SA SB SC SA BC BA BC BA BC BA ∴+-⋅-=+⋅-=-= ,BC BA ∴=,即BC BA =,所以ABC V 是等腰三角形.故选:C6.杭州亚运会的三个吉祥物分别取名“琮琮”“宸宸”“莲莲”,如图,现将三张分别印有“琮踪”“宸宸”“莲莲”图案的卡片(卡片的形状、大小和质地完全相同)放入盒子中.若从盒子中依次有放回地取出两张卡片,则一张为“琮琮”,一张为“宸宸”的概率是()A.38B.29C.59D.34【答案】B 【解析】【分析】记印有“琮琮”“宸宸”“莲莲”图案的卡片分别为,,A B C ,用列举法即可求解.【详解】记印有“琮琮”“宸宸”“莲莲”图案的卡片分别为,,A B C ,(),x y 代表依次摸出的卡片,{},,,x y A B C ∈,则基本事件分别为:()()()()()()()()(),,,,,,,,,,,,,,,,,A A A B A C B A B B B C C A C B C C ,其中一张为“琮琮”,一张为“宸宸”的共有两种情况:()(),,,A B B A ,所以从盒子中依次有放回地取出两张卡片,则一张为“琮琮”,一张为“宸宸”的概率是29.故选:B.7.已知函数()3f x x =,若正实数a ,b 满足()()490f a f b +-=,则11a b+的最小值为()A.1B.3C.6D.9【答案】A 【解析】【分析】根据函数的奇偶性可得49a b +=,再结合基本不等式“1”的代换可得解.【详解】由已知()3f x x =,定义域为R ,且()()()33f x x x f x -=-=-=-,则()f x 是R 上的奇函数,且函数()3f x x =在R 上单调递增,又()()490f a f b +-=,即()()()499f a f b f b =--=-,则49a b =-,即49a b +=,且0a >,0b >,所以()1111114144415999a b a b a b a b a b b a b a ⎛⎫⎛⎫⎛⎫+=++=+++=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又44a b b a +≥=,即()11141554199a b a b b a ⎛⎫+=++≥+= ⎪⎝⎭,当且仅当4a b b a =,即32a =,3b =时,等号成立,即11a b+的最小值为1.故选:A.8.已知正三棱锥P ABC -的六条棱长均为6,S 是ABC V 及其内部的点构成的集合.设集合{}5T Q S PQ =∈=,则集合T 所表示的曲线长度为()A.5πB.2πC.3D.π【答案】B 【解析】【分析】求出以P 为球心,5为半径的球与底面ABC 的截面圆的半径后即可求解.【详解】设顶点P 在底面上的投影为O ,连接BO ,则O 为三角形ABC 的中心,且23632BO =⨯⨯=,故PO ==因为5PQ =,故1OQ =,故S 的轨迹为以O 为圆心,1为半径的圆,集合T 所表示的曲线长度为2π故选:B二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的4个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部份分分,有选错的得0分.)9.函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则()A.2ω=B.π6ϕ=C.()f x 的图象关于点π,012⎛⎫⎪⎝⎭对称D.()f x 在区间5ππ,4⎛⎫⎪⎝⎭上单调递增【答案】ACD 【解析】【分析】根据三角函数的图象,先求得ω,然后求得ϕ,根据三角函数的对称性、单调性确定正确答案.【详解】()()5ππ2ππ,π,2,sin 22632T T f x x ωϕω=-=∴==∴==+,π2sin π133f ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,由于πππ2π7π,22636ϕϕ-<<<+<,所以2πππ,326ϕϕ+==-,所以A 选项正确,B 选项错误.()ππππsin 2,2π,,66122k f x x x k x k ⎛⎫=--==+∈ ⎪⎝⎭Z ,当0k =时,得π12x =,所以()f x 关于π,012⎛⎫⎪⎝⎭对称,C 选项正确,11111πππππ2π22π,ππ,26263k x k k x k k -+<-<+-+<<+∈Z ,当11k =时,得()f x 在54π,π63⎛⎫ ⎪⎝⎭上递增,则()f x 在区间5ππ,4⎛⎫⎪⎝⎭上单调递增,所以D 选项正确.故选:ACD10.对于随机事件A 和事件B ,()0.3P A =,()0.4P B =,则下列说法正确的是()A.若A 与B 互斥,则()0.3P AB =B.若A 与B 互斥,则()0.7P A B ⋃=C.若A 与B 相互独立,则()0.12P AB =D.若A 与B 相互独立,则()0.7P A B ⋃=【答案】BC 【解析】【分析】根据互斥事件、相互独立事件的概率公式计算可得.【详解】对于A :若A 与B 互斥,则()0P AB =,故A 错误;对于B :若A 与B 互斥,则()()()0.7P A B P A P B =+= ,故B 正确;对于C :若A 与B 相互独立,则()()()0.12P AB P A P B ==,故C 正确;对于D :若A 与B 相互独立,则()()()()0.30.40.30.40.58P A B P A P B P AB ⋃=+-=+-⨯=,故D 错误.故选:BC11.如图,边长为1的正方形ABCD 所在平面与正方形ABEF 在平面互相垂直,动点,M N 分别在正方形对角线AC 和BF 上移动,且(0CM BN a a ==<<,则下列结论中正确的有()A.(a ∃∈,使12MN CE=B.线段MN 存在最小值,最小值为23C.直线MN 与平面ABEF 所成的角恒为45°D.(a ∀∈,都存在过MN 且与平面BEC 平行的平面【分析】利用向量的线性运算可得()1MN a BC aBE =-+,结合向量的模的计算可判断B 的正误,结合向量夹角的计算可判断C 的正误,结合共面向量可判断D 的正误.【详解】因为四边形ABCD 正方形,故CB AB ⊥,而平面ABCD ⊥平面ABEF ,平面ABCD 平面ABEF AB =,CB ⊂平面ABCD ,故CB ⊥平面ABEF ,而BE ⊂平面ABEF ,故CB BE ⊥.设MC AC λ=,则= BN BF λ,其中()0,1λ=,由题设可得MN MC CB BN AC CB BF λλ=++=++,()()()1BC BA CB BA BE BC BE λλλλ=-+++=-+,对于A ,当12λ=即2a =时,111222MN BC BE CE =-+= ,故A 正确;对于B ,()22222111221222MN λλλλλ⎛⎫=-+=-+=-+ ⎪⎝⎭ ,故22MN ≥,当且仅当12λ=即2a =时等号成立,故min 22MN =,故B 错误;对于C ,由B 的分析可得()1MN BC BE λλ=-+,而平面ABEF 的法向量为BC 且()211MN BC BC λλ⋅=-=-,故cos ,MN BC =,此值不是常数,故直线MN 与平面ABEF 所成的角不恒为定值,故C 错误;对于D ,由B 的分析可得()1MN BC BE λλ=-+ ,故,,MN BC BE为共面向量,而MN ⊄平面BCE ,故//MN 平面BCE ,故D 正确;故选:AD三、填空题(本题共3小题,每小题5分,共15分.)12.复数2i12iz +=-的共轭复数z =______.【分析】根据复数的除法运算及共轭复数的概念可求解.【详解】因为2i 12i z +=-()()()()2i 12i 12i 12i ++=-+5i i 5==,所以z =i -.故答案为:i-13.已知向量()2,1,1a =- ,()1,,1b x = ,()1,2,1c =-- ,当a b ⊥ 时,向量b 在向量c上的投影向量为________.(用坐标表示)【答案】()1,2,1-【解析】【分析】先根据向量垂直得到方程,求出3x =,再利用投影向量公式求出答案.【详解】因为a b ⊥ ,所以210a b x ⋅=-+=,所以3x =.因为()1,3,1b = ,所以b 在c 上的投影向量为()1,2,1||||b c cc c c ⋅⋅=-=-.故答案为:()1,2,1-14.已知在ABC V 中,满足)34AB AC AB ACAB AC AB AC++=+,点M 为线段AB 上的一个动点,若MA MC ⋅ 取最小值3-时,则BC 边的中线长为______.【答案】1112【解析】【分析】设)34,,AB AC AB AC AD AN AE ABAC AB AC+===+,根据题意可推得||3,||4AD AN == ,2π3ADE ∠=,进一步根据MA MC ⋅ 取最小值3-时,求得对应的AC =AB =,由此即可得解.【详解】设)34,,AB AC AB AC AD AN AE ABAC AB AC+===+,则//,//AD EN AN DE ,四边形ADEN为平行四边形,||||3||3,||4,||4||||AB AD AD AN AE AC AN =====,22343712πcos 23423ADE ADE +-∴∠==-⇒∠=⨯⨯,又四边形ADEN 为平行四边形,3πBAC ∴∠=,设,,0,0MA AD AC AN λμλμ==≤≥,()()296MA MC MA MA AC AD AD AN λλμλλμ⋅=⋅+=⋅+=+,由题意2963λλμ+≥-即29630λλμ++≥恒成立,且存在,R λμ∈使得29630λλμ++=成立,其次29630λλμ++=当且仅当2296303Δ361080λλλμμμ⎧⎧=-++=⎪⇔⎨⎨=-=⎩⎪=⎩,此时AC ==AB ==所以BC边的中线长为122AB AC +===.故答案为:2.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.如图,四边形ABCD 为矩形,且2AD =,1AB =,PA ⊥平面ABCD ,1PA =,E 为BC 的中点.(1)求证:PE DE ⊥;(2)求四棱锥P ABCD -的外接球体积.【答案】(1)证明见解析(2【解析】【分析】(1)连接AE ,由线面垂直得到PA DE ⊥,再由线面垂直的判定定理得到DE ⊥平面PAE ,即可证明;(2)由底面为矩形利用长方体的性质可得四棱锥外接球的半径,再由体积公式计算体积.【小问1详解】连结,AE E 为BC 的中点,1EC CD ==,∴DCE △为等腰直角三角形,则45DEC ∠=︒,同理可得45AEB ∠=︒,∴90AED ∠=︒,∴DE AE ⊥,又PA ⊥平面ABCD ,且DE ⊂平面ABCD ,∴PA DE ⊥,又∵AE PA A = ,,AE PA ⊂平面PAE ,∴DE ⊥平面PAE ,又PE ⊂平面PAE ,∴DE PE ⊥.【小问2详解】∵PA ⊥平面ABCD ,且四边形ABCD 为矩形,∴P ABCD -的外接球直径2R =∴2R =,故:3344ππ332V R ⎛⎫=== ⎪ ⎪⎝⎭,∴四棱锥P ABCD -.16.ABC V 的内角,,A B C 的对边分别为,,a b c ,已知cos cos a B b A b c -=+.(1)求角A 的值;(2)若a ABC = ,求,b c .【答案】(1)2π3(2)2,2【解析】【分析】(1)由正弦定理及三角恒等变换化简即可得解;(2)由三角形面积公式及余弦定理求解即可.【小问1详解】cos cos a B b A b c -=+ ,由正弦定理可得:sin cos sin cos sin sin A B B A B C -=+,sin sin()sin cos cos sin C A B A B A B =+=+ ,sin cos sin cos sin sin cos cos sin A B B A B A B A B ∴-=++,即2sin cos sin B A B -=,sin 0B ≠ ,1cos 2A ∴=-,(0,π)A ∈ ,2π3A ∴=.【小问2详解】由题意,1sin 24ABC S bc A bc ===△,所以4bc =,由222222cos a b c bc A b c bc =+-=++,得()2216b c a bc +=+=,所以4b c +=,解得:2b c ==.17.全国执业医师证考试分实践技能考试与医学综合笔试两部分,每部分考试成绩只记“合格”与“不合格”,两部分考试都“合格”者,则执业医师考试“合格”,并颁发执业医师证书.甲、乙、丙三人在医学综合笔试中“合格”的概率依次为45,34,23,在实践技能考试中“合格”的概率依次为12,23,23,所有考试是否合格互不影响.(1)求甲没有获得执业医师证书的概率;(2)这三人进行实践技能考试与医学综合理论考试两项考试后,求恰有两人获得执业医师证书的概率.【答案】(1)35(2)13【解析】【分析】(1)先根据对立事件的概率公式结合独立事件概率乘积公式计算;(2)先应用对立事件的概率公式及独立事件概率乘积公式应用互斥事件求和计算;【小问1详解】记甲,乙,丙三人在医学综合笔试中合格依次为事件1A ,1B ,1C ,在实践考试中合格依次为2A ,2B ,2C ,设甲没有获得执业医师证书的概率为P124131()1525P P A A =-=-⨯=.【小问2详解】甲、乙、丙获得执业医师证书依次为12A A ,12B B ,12C C ,并且1A 与2A ,1B 与2B ,1C 与2C 相互独立,则()12412525P A A =⨯=,()12321432P B B =⨯=,()12224339P C C =⨯=,由于事件12A A ,12B B ,12C C 彼此相互独立,“恰有两人获得执业医师证书”即为事件:()()()()()()()()()121212121212121212A A B B C C A A B B C C A A B B C C ++,概率为212142141(1)(1)(1)52952952934P =⨯⨯-+⨯-⨯+-⨯⨯=.18.为深入学习贯彻习近平总书记关于禁毒工作重要指示精神,切实落实国家禁毒委员会《关于加强新时代全民禁毒宣传教育工作的指导意见》,巩固青少年毒品预防教育成果,大力推进防范青少年滥用涉麻精药品等成瘾性物质宣传教育活动,进一步增强青少年学生识毒防毒拒毒意识和能力,某市每年定期组织同学们进行禁毒知识竞赛活动,为了解同学们对禁毒知识的掌握情况,现从所有答卷中随机抽取100份作为样本,将样本的成绩(满分100分,成绩均为不低于40分的整数)分成六段:40,50,50,60,…,90,100得到如图所示的频率分布直方图.(1)求频率分布直方图中a 的值;(2)求样本成绩的第75百分位数;(3)已知落在50,60的平均成绩是56,方差是7,落在60,70的平均成绩为65,方差是4,求两组成绩的总平均数z 和总方差2s .【答案】(1)0.030(2)84(3)平均数为62;方差为23【解析】【分析】(1)根据频率之和为1即可求解,(2)根据百分位数的计算公式即可求解,(3)根据平均数的计算公式可求得两组成绩的总平均数;再由样本方差计算总体方差公式可求得两组成绩的总方差,即可求解.【小问1详解】由每组小矩形的面积之和为1得,0.050.10.2100.250.11a +++++=,解得0.030a =.【小问2详解】成绩落在[)40,80内的频率为0.050.10.20.30.65+++=,落在[)40,90内的频率为0.050.10.20.30.250.9++++=,显然第75百分位数[)80,90m ∈,由()0.65800.0250.75m +-⨯=,解得84m =,所以第75百分位数为84;【小问3详解】由频率分布直方图知,成绩在[)50,60的市民人数为1000.110⨯=,成绩在[)60,70的市民人数为1000.220⨯=,所以10562065621020z ⨯+⨯==+;由样本方差计算总体方差公式,得总方差为()(){}222110756622046562231020s ⎡⎤⎡⎤=+-++-=⎣⎦⎣⎦+.19.如图,三棱柱111ABC A B C -中,2AB =,且ABC V 与1ABA △均为等腰直角三角形,1π2ACB AA B ∠=∠=.(1)若1A BC 为等边三角形,证明:平面1AAB ⊥平面ABC ;(2)若二面角1A AB C --的平面角为π3,求以下各值:①求点1B 到平面1A CB 的距离;②求平面11B A C 与平面1A CB 所成角的余弦值.【答案】(1)证明见解析(2)①2217,②277【解析】【分析】(1)根据等腰直角三角形及等边三角形的性质可得各边长,再根据勾股定理证明线线垂直,根据线线垂直可证线面垂直,进而可证面面垂直;(2)根据二面角的定义可值1CEA 为等边三角形,①利用等体积转化法可得点到平面距离;②根据二面角的定义可得两平面夹角.【小问1详解】设AB 的中点为E ,连接CE ,1A E ,如图所示,因为ABC V 与1ABA △均为等腰直角三角形,1π2ACB A AB ∠=∠=,故1cos 452BC A B AB ==⋅︒=CE AB ⊥,且112CE AB ==,1112A E AB ==,因为1A BC 为等边三角形,故12==AC BC ,故22211A C CE A E =+,即1CE A E ⊥,又AB ,1A E ⊂平面1AA B ,1A E AB E ⋂=,故CE ⊥平面1AA B ,且CE ⊂平面ABC ,故平面1AA B ⊥平面ABC ;【小问2详解】①由(1)知,CE AB ⊥,1A E AB ⊥,且平面1AA B ⋂平面ABC AB =,故1CEA ∠即二面角1A AB C --的平面角,即1π3CEA ∠=,故1CEA 为等边三角形,则111CA CE A E ===,因为CE AB ⊥,1A E AB ⊥,1A E CE E ⋂=,且CE ,1A E ⊂平面1CEA ,所以AB ⊥平面1CEA ,设线段1A E 中点为F ,则1CF A E ⊥,AB CF ⊥,又AB ,1A E ⊂平面11ABB A ,1AB A E E = ,CF ∴⊥平面11ABB A ,又在三角形1CEA中易知:2CF =,∴11111112133226C A BB A BB V CF S -=⋅=⨯⨯⨯⨯= ,又在三角形1A BC 中,由11AC =,1BC A B ==则22211113cos 24BC A B A CA BC BC AB +-∠==⋅,1sin 4A BC ∠=,则11117sin 24A BC S AB BC A BC =⋅⋅∠= ,设点1B 到平面1A CB 的距离为d ,又由1111113C A BB B A BC A BC V V S d --==⋅⋅△,可得7d =,即求点1B 到平面1A CB 的距离为2217;②由①知,AB ⊥平面1CEA ,而11//AB A B ,故11A B ⊥平面1CEA ,且1A C ⊂平面1CEA ,故111A B AC ⊥,则2211115B C A B AC =+=,设1AC 和1B C 的中点分别为M ,N ,连接MN ,BN ,BM,则11//MN A B ,11112MN A B ==,1MN AC ⊥,又因为12BC A B ==1BM A C ⊥,且MN ⊂平面11A B C ,BM ⊂平面1A BC ,故BMN ∠即二面角11B A C B --的平面角,且222211722BM BC CM BC A C ⎛⎫=-=-= ⎪⎝⎭,因为112BB AA BC ===,故1BN B C ⊥,则222211322BN BC CN BC B C ⎛⎫=-=-= ⎪⎝⎭,所以222731744cos 277212BM MN BN BMN BM MN +-+-∠==⋅⨯⨯,故平面11B A C 与平面1A CB 所成角的余弦值为277.。
福建省福州市2024-2025学年高一上学期10月份第一次月考数学模拟试卷(原卷版)
2024-2025学年福州市高一上学期第一次月考数学模拟试卷总分150分;考试时间120分钟;一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各组对象中不能组成集合的是( ).A .2023年男篮世界杯参赛队伍B .中国古典长篇小说四大名著C .高中数学中的难题D .我国的直辖市2. 已知M,N 都是U 的子集,则图中的阴影部分表示( )A. M ∪NB. ∁U (M ∪N)C. (∁U M)∩ND. ∁U (M∩N)3.若集合{}1,2,3A =,(){},|40,,Bx y x y x y A =+−>∈,则集合B 的真子集个数为( ) A .5B .6C .7D .8 4.已知集合{}12A x x =−<<,{}01B x x =<<,则( ) A .A B > B .A ⊆B C .B ⊆A D .A B =5.已知命题3:0,p x x x ∀≥>,命题2:0,10q x x ∃<+>,则( )A .p 和q 均为真命题B .p ¬和q 均为真命题C .p 和q ¬均为真命题D .p ¬和q ¬均为真命题6.设,a b ∈R ,则“1a <且1b <”是“2a b +<”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.227x x +的最小值为( )A .B .C .D .8.若关于x 的方程()2210mx m x m +−+=有两个不相等的实数根,则实数m 的取值范围是( ).A .14m <B .14m >C .14m <且0m ≠ D .14m >且0m ≠ 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法正确的是( )A .“11a b>”是“a b >”的充分不必要条件 B .“A =∅”是“A B ∩=∅”的充分不必要条件C .若,,R a b c ∈,则“22ab cb >”的充要条件是“a c >”D .若,R a b ∈,则“220a b +≠”是“0a b +≠”的充要条件10.下列命题中,是真命题的有( )A .集合{}1,2的所有真子集为{}{}1,2B .若{}{}1,2,a b =(其中,a b ∈R ),则3a b +=C .{x x 是等边三角形}{x x ⊆是等腰三角形}D .{}{}3,6,x x k k x x z z =∈⊆=∈N N11.若关于x 的一元二次不等式()20,,R ax bx c a b c ++>∈的解集为{}23x x −<<,则( )A .0a >B .0bc >C .0a b +=D .0a b c −+>12. 对于非空数集M ,定义()f M 表示该集合中所有元素的和.给定集合 1,2,3,4S ,定义集合(){},T f A A S A ⊆≠∅,则下列说法正确的是( )A. 7T ∈B. 8T ∉C. 集合T 中有10个元素D. 集合T 中有11个元素三、填空题:本大题共4小题,每小题5分.13. 命题“x ∀∈R ,240x x −+≥”的否定为______.14.集合{}2|40A x x =−=的子集个数是15. 已知0a >,则91a a ++的最小值是______. 16.不等式2320x x −++>的解集为 .四、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤. 17. 已知关于x 不等式:()23130ax a x −++<. (1)当2a =−时,解此不等式;(2)当0a >时,解此不等式.18. 已知集合{}{}25,123A x x B x m x m =−≤≤=−≤≤+.(1)若4m =,求A B ∪;(2)若A B B = ,求实数m 的取值范围.19. 已知实数a >0,b >0,a +2b =2 (1)求12a b+的最小值; (2)求a 2+4b 2+5ab 的最大值.20. 某公司建造一间背面靠墙的房屋,地面面积为248m ,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,屋顶的造价为5800元,如果墙高为3m ,且不计房屋背面和地面的费用,那么怎样设计房屋能使总造价最低?最低总造价是多少?21. 已知命题:p x ∃∈R ,240x x m −+=为假命题.(1)求实数m 的取值集合B ;(2)设{}34A x a x a =<<+,若x B ∈是x A ∈的必要不充分条件,求实数a 的取值范围.22. 已知集合2{|320,R,R}A x ax x x a =−+=∈∈.(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并求集合A ;(3)若A 中至多有一个元素,求a 的取值范围的。
高中数学月考试题及答案
高中数学月考试题及答案一、选择题(每题3分,共30分)1. 下列不等式中,正确的是:A. \(-3 < -2\)B. \(-3 > -2\)C. \(-3 = -2\)D. \(-3 \geq -2\)答案:A2. 若\(x\)是实数,且\(x^2 - 4x + 4 = 0\),则\(x\)的值是:A. 0B. 2C. -2D. 4答案:B3. 函数\(f(x) = 2x^2 - 3x + 1\)的顶点坐标是:A. (1, 0)B. (-1, 0)C. (1, 1)D. (-1, 1)答案:A4. 计算\(\int_0^1 (2x + 3)dx\)的结果是:A. 2B. 3C. 4D. 5答案:C5. 集合\(A = \{1, 2, 3\}\),\(B = \{2, 3, 4\}\),则\(A \capB\)是:A. \(\{1, 2, 3\}\)B. \(\{2, 3\}\)C. \(\{2, 4\}\)D. \(\{1, 2, 4\}\)答案:B6. 若\(\sin \theta = \frac{1}{2}\),则\(\cos 2\theta\)的值是:A. \(\frac{1}{2}\)B. \(\frac{1}{4}\)C. \(-\frac{1}{2}\)D. \(-\frac{1}{4}\)答案:C7. 直线\(y = 2x + 1\)与直线\(y = -x + 2\)的交点坐标是:A. (1, 3)B. (-1, 3)C. (1, -1)D. (-1, -1)答案:A8. 已知\(a\)和\(b\)是方程\(x^2 - 5x + 6 = 0\)的两个根,则\(a + b\)等于:A. 2B. 3C. 4D. 5答案:D9. 函数\(f(x) = \frac{1}{x}\)的图像在点\(x = 2\)处的切线斜率是:A. 0.5B. -0.5C. 1D. -1答案:A10. 计算\(\lim_{x \to 0} \frac{\sin x}{x}\)的结果是:A. 0B. 1C. 2D. ∞答案:B二、填空题(每题4分,共20分)1. 已知\(\tan \alpha = 3\),则\(\sin \alpha\)的值是________。
2024-2025学年四川省绵阳市南山中学高一(上)月考数学试卷(10月份)+答案解析
2024-2025学年四川省绵阳市南山中学高一(上)月考数学试卷(10月份)✥一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列各组对象中不能组成集合的是()A.2023年男篮世界杯参赛队伍B.中国古典长篇小说四大名著C.高中数学中的难题D.我国的直辖市2.设命题p:,,则p的否定为()A.,B.,C.,D.,3.若,则下列命题正确的是()A.若,则B.若,则C.若,则D.若,则4.若集合中有且只有一个元素,则m值的集合是()A. B. C. D.5.持续的高温干燥天气导致某地突发山火,现需将物资运往灭火前线.从物资集散地到灭火前线-共40km,其中靠近灭火前线5km的山路崎岖,需摩托车运送,其他路段可用汽车运送.已知在可用汽车运送的路段,运送的平均速度为,设需摩托车运送的路段平均速度为,为使物资能在1小时内到达灭火前线,则x应该满足的不等式为()A. B. C. D.6.已知不等式成立的充分条件是,则实数m的取值范围是()A.或B.或C. D.7.学校举办运动会时,高一班有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳和田径比赛的有3人,同时参加游泳和球类比赛的有2人,没有人同时参加三项比赛.则同时参加田径和球类比赛的人数是()A.3B.4C.5D.68.中国南宋大数学家秦九韶提出了“三斜求积术”,即已知三角形三边长求三角形面积的公式:设三角形的三条边长分别为a,b,c,则三角形的面积S可由公式求得,其中p为三角形周长的一半,这个公式也被称为海伦-秦九韶公式.现有一个三角形的边长满足,,则此三角形面积的最大值为()A. B. C. D.二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得2分,有选错的得0分。
9.下列命题中是全称量词命题并且是真命题的是()A.,B.有些梯形的对角线相等C.菱形的对角线互相垂直D.任何实数都有算术平方根10.下列四个命题:其中正确的命题为()A.已知集合,集合,则B.集合的非空真子集有2个C.已知集合,且,则m的取值构成的集合为D.记,,则11.若实数,且,则()A. B.C. D.三、填空题:本题共3小题,每小题5分,共15分。
高三数学-10月月考数学试题参考答案
2024-2025学年度高三10月月考数学试题参考答案一、选择题题号1234567891011答案DDBCCABDABDBCDABD二、填空题12.5013.2433ππ⎛⎫ ⎪⎝⎭,14.(1)1327;(2)13425153n -⎛⎫-⋅- ⎪⎝⎭三、解答题15、解:(1)由题3sin 21==∆θbc S ABC ,可得θsin 6=bc ,又36cos 0≤=⋅≤θbc AC AB ,所以36sin cos 60≤≤θθ,得到33tan ≥θ或2πθ=因为()πθ,0∈,所以,62ππθ⎡⎤∈⎢⎥⎣⎦6分(2)()2cos sin cos34f πθθθθ⎛⎫=⋅++ ⎪⎝⎭,化简得()21sin 2cos 4f θθθ=进一步计算得()1sin 223f πθθ⎛⎫=- ⎪⎝⎭,因为,62ππθ⎡⎤∈⎢⎥⎣⎦,故22033ππθ⎡⎤-∈⎢⎥⎣⎦,故可得()102f θ⎡⎤∈⎢⎥⎣⎦,13分16、解:(1)过点P 作PO 垂直于平面ABCD ,垂足为O ,连接BO 交AD 于E ,连接PE ,则有AD PB AD PO ⊥⊥,,又P PB PO =⋂,所以POB AD 平面⊥,因为POB PE 平面⊂,所以PE AD ⊥,又PD P A =,所以E 为AD 得中点依题侧面P AD 与底面ABCD 所成的二面角为120°,即有32π=∠PEB ,所以3π=∠PEO ,因为侧面P AD 为正三角形,所以323sin 4=⋅=πPE ,则323323sin =⋅=⋅=πPE PO ,所以38323443131=⋅⋅⋅⋅==-PO S V ABCD ABCD P 7分(2)如图,在平面ABCD 内过点O 作OB 得垂线Ox ,依题可得Ox OB OP ,,两两垂直,以Ox OB OP ,,为轴轴,轴,x y z 建立空间直角坐标系可得()0,3,2A ,()0,0,0P ,()0,33,0B ,取PB 得中点为N ,则⎪⎪⎭⎫⎝⎛23,233,0N 因为AB AP =,所以PB AN ⊥,由(1)POB AD 平面⊥,AD BC //,知POB BC 平面⊥所以PB BC ⊥,可得NA BC ,所成角即为二面角A PB C --的平面角,求得⎪⎪⎭⎫ ⎝⎛-=23,23,2AN ,()0,0,2=BC,则72724-=-==BC NA则21sin 7A PBC --=15分17、解:(1)当a e =时,1()e lnx e f x x -=+,0(1)e ln 2f e =+=,11()e ,(1)0x f x f x-''=-=所求切线方程为:)1(02-=-x y ,即2y =5分(2)()2≥x f 转化为ln 2e ln ln 2a x a x +-+-≥,可得ln 2e ln +2ln 0a x a x x x x +-+-≥+>,构造函数()e x g x x =+,易得()g x 在R 单调递增所以有()(ln 2)ln g a x g x +-≥,由()g x 在R 单调递增,故可得ln 2ln a x x +-≥,即有ln ln 2a x x ≥-+在()∞+,0恒成立令()2ln +-=x x x h ,()011=-='xx h ,得到1=x ,可得()10,∈x 时,()0>'x h ;()∞+∈,1x 时,()0<'x h ,所以()x h 在1=x 时取最大值所以()ln 11a h ≥=,得到ea ≥15分18、解:(1)∵椭圆E 经过点A 52,3⎛⎫⎪⎝⎭,23e =∴222222549123a b a b c c e a ⎧⎪+=⎪⎪⎨=+⎪⎪==⎪⎩,解得32a b c =⎧⎪=⎨⎪=⎩E :22195x y +=;4分(2)由(1)可知,1(2,0)F -,2(2,0)F 思路一:由题意,1:512100AF l x y -+=,2:2AF l x =设角平分线上任意一点为(),P x y ,则51210213x y x -+=-得9680x y --=或2390x y +-=∵斜率为正,∴21AF F ∠的角平分线所在直线为9680x y --=思路二:椭圆在点A 52,3⎛⎫⎪⎝⎭处的切线方程为2319x y +=,23k =-切根据椭圆的光学性质,21AF F∠的角平分线所在直线l 的斜率为32l k =,∴,21AF F ∠的角平分线所在直线34:23l y x =-即9680x y --=10分(3)思路一:假设存在关于直线l 对称的相异两点()()1122,,,B x y C x y ,设2:3BC l y x m =-+,∴2222195912945023x y x mx m y x m ⎧+=⎪⎪⇒-+-=⎨⎪=-+⎪⎩∴线段BC 中点为25,39m mM ⎛⎫⎪⎝⎭在21AF F ∠的角平分线上,即106803m m --=得3m =∴52,3M ⎛⎫⎪⎝⎭与点A 重合,舍去,故不存在满足题设条件的相异的两点.思路二:假设存在关于直线l 对称的相异两点()()1122,,,B x y C x y ,线段BC 中点()00,Mx y ,由点差法,2211222212122222195095195x y x x y y x y ⎧+=⎪⎪⇒+=⎨⎪+=⎪--⎩,∴0121212120552993BC x y y x x k x x y y y -+==-=-=--+,∴0065OM y k x ==,:968052,63:5AM OM l x y M l y x --=⎧⎪⎛⎫⇒⎨⎪=⎝⎭⎪⎩与点A 重合,舍去,故不存在满足题设条件的相异的两点.17分19、解:(1)①()()()222121()111b f x x bx x x x x +=-=-+'++,∵1x >,()()2101h x x x =>+恒成立,∴函数()f x 具有性质()P b ;3分②设()()211u x x bx x =-+>,(i)当0b -≥即0b ≤时,()0u x >,()0f x '>,故此时()f x 在区间()1,+∞上递增;(ii)当0b >时当240b ∆=-≤即02b <≤时,()0u x >,()0f x '>,故此时()f x 在区间()1,+∞上递增;当240b ∆=->即2b >时,12441122b b x x +===,,∴x ⎛⎫∈⎪ ⎪⎝⎭时,()0u x <,()0f x '<,此时()f x在1,2b ⎛⎫⎪ ⎪⎝⎭上递减;4,2b x ∞⎛⎫+∈+ ⎪ ⎪⎝⎭时,()0u x >,()0f x '<,此时()f x在∞⎫+⎪⎪⎝⎭上递增.综上所述,当2b ≤时,()f x 在()1,+∞上递增;当2b >时,()f x在⎛⎫⎪ ⎪⎝⎭上递减,在∞⎫+⎪⎪⎝⎭上递增.9分(2)由题意,()()22()()21()1g x h x x x h x x =-+=-',又()h x 对任意的()1,x ∈+∞都有()0h x >,所以对任意的()1,x ∈+∞都有()0g x '>,()g x 在()1,+∞上递增.10分∵12(1)mx m x α=+-,12(1)m x mx β=-+,∴()()1212,21x x m x x αβαβ+=+-=--1先考虑12x x αβ-<-的情况即()()121221m x x x x --<-,得01m <<,此时1122(1)x mx m x x α<=+-<,1122(1)x m x mx x β<=-+<∴1212()()(),()()()g x g g x g x g g x αβ<<<<∴12()()()()g g g x g x αβ-<-满足题意13分2当1m ≥时,11112(1)(1)mx m x mx m x x α--≤==++,12222(1)(1)m x mx m x mx x β=--+≥=+,∴12x x αβ≤<≤∴12()()()()g g x g x g αβ≤<≤,∴12()()()()g g g x g x αβ-≥-,不满足题意,舍去16分综上所述,01m <<17分。
深圳外国语学校(集团)龙华高中部2024-2025学年高三上学期第一次月考数学试卷(含答案)
深圳外国语学校(集团)龙华高中部2025届高三年级第一次月考 数学试卷本试卷共4页,19小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}30xAx ex =−<,{}1,0,1,2B =−,则集合A B = ( )A .{}1,2−B .{}1,1,2−C .{}1,2D .{}12.已知2i 1iz−=−+,则z =( ) A .1i +B .1i −C .3i −D .3i + 3.已知向量(,1)a x = ,(2,1)b =− ,若()(2)a b a b +⊥−,则实数x =( )A .2B .12−C .2−或4D .44.已知3sin 24θ=−,则1tan tan θθ+=( )A .43B .12−C .83D .83−5.已知圆锥的底面半径为2,高为4,有一个半径为1的圆柱内接于此圆锥,则该圆柱的侧面积是( )A .πB .2πC .3πD .4π6.已知函数()122,0,,0,x x f x x x ≤= > 则下列说法正确的是( )A .()f x 是R 上的增函数B .()f x 的值域为[)0,∞+C .“14x >”是“()12f x >”的充要条件D .若关于x 的方程()f x a =恰有一个实根,则1a >7.已知函数π()sin(2)2f x x ϕϕ=+< 满足ππ43f f = ,若()f x 在区间π,2t上恰有3个零点,则实数t 的取值范围为( )A .25π37π,2424B .25π49π,2424C .37π49π,2424D .37π49π,24248.已知函数()y f x =具有以下的性质:对于任意实数a 和b ,都有()()()()2f a b f a b f a f b ++−=⋅,则以下选项中,不可能是()1f 值的是( ) A .2− B .1− C .0 D .1二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若随机变量()2~0,X N σ,()()f x P X x =≤,则( )A .()()1f x f x −=− B .()()22f x f x =C .()()()210P X x f x x <=−> D .若()121x f f x +> −,则113x << 10.已知三次函数()325(0)f x x bx b =++<有极小值点2x =,则下列说法中正确的有( )A .3b =−B .函数()f x 有三个零点C .函数()f x 的对称中心为(1,3D .过()1,1−可以作两条直线与()y f x =的图象相切11.数学中有许多形状优美,寓意美好的曲线,曲线22|:1|C x y x y +=+就是其中之一(如图).给出下列四个结论,其中正确结论是( )A .图形关于y 轴对称B .曲线C 恰好经过6个整点(即横、纵坐标均为整数的点)C .曲线C 的点D .曲线C 所围成的“心形”区域的面积大于3 三、填空题:本题共3小题,每小题5分,共15分.12.已知12,F F 为椭圆2222:1(0)C b b x a a y +>>=的两个焦点,P 为椭圆C 上一点,且12PF F △的周长为6,面C 的离心率为 .13.已知函数32(),()f x x x g x x a =−=+,曲线()y f x =在点(1,(1))f −−处的切线也是曲线()y g x =的切线.则a 的值是14.有一道楼梯共10阶,小王同学要登上这道楼梯,登楼梯时每步随机选择一步一阶或一步两阶,小王同学7步登完楼梯的概率为 .四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)如图,一智能扫地机器人在A 处发现位于它正西方向的B 处和北偏东30°方向上的C 处分别有需要清扫的垃圾,红外线感应测量发现机器人到B 的距离比到C 的距离少0.4m ,于是选择沿A →B →C 路线清扫.已知智能扫地机器人的直线行走速度为0.2m /s ,忽略机器人吸入垃圾及在B 处旋转所用时间,10s 完成了清扫任务.(1)求B 、C 两处垃圾之间的距离;(2)求智能扫地机器人此次清扫行走路线的夹角B 的余弦值.16.(15分)已知双曲线2222:1(0,0)x y C a b a b −=>>的焦点与椭圆2215x y +=的焦点重合,其渐近线方程为y x =. (1)求双曲线C 的方程;(2)若,A B 为双曲线C 上的两点且不关于原点对称,直线1:3l y x =过AB 的中点,求直线AB 的斜率.17.(15分)如图,在四棱锥B ACDE -中,正方形ACDE 所在平面与正ABC 所在平面垂直,M N ,分别为BC AE ,的中点,F 在棱CD 上.(1)证明://MN 平面BDE .(2)已知2AB =,点M 到AF 求三棱锥C AFM -的体积.18.(17分)蓝莓种植技术获得突破性进展,喷洒A 型营养药有--定的改良蓝莓植株基因的作用,能使蓝莓果的产量和营养价值获得较大提升.某基地每次喷洒A 型营养药后,可以使植株中的80%获得基因改良,经过三次喷洒后没有改良基因的植株将会被淘汰,重新种植新的植株. (1)经过三次喷洒后,从该基地的所有植株中随机检测一株,求-株植株能获得基因改良的概率;(2)从该基地多个种植区域随机选取一个,记为甲区域,在甲区域第一次喷洒A 型营养药后,对全部N 株植株检测发现有162株获得了基因改良,请求出甲区域种植总数N 的最大可能值;(3)该基地喷洒三次A 型营养药后,对植株进行分组检测,以淘汰改良失败的植株,每组n 株(50)n ≤,一株检测费为10元,n 株混合后的检测费用为8n +元,若混合后检测出有未改良成功的,还需逐一检测,求n 的估计值,使每株检测的平均费用最小,并求出最小值.(结果精确到0.1元)附:当0.01a <,50n ≤时,()11nna a ≈++,*n N ∈.19.(17分)“函数()x ϕ的图象关于点(),m n 对称”的充要条件是“对于函数()x ϕ定义域内的任意x ,都有()(2)2x m x n ϕϕ+−=,若函数()f x 的图象关于点()12,对称,且当[]01x ∈,时,2()1f x x ax a =−++ (1)求(0)(2)f f +的值; (2)设函数4()2xg x x=− ①证明函数()g x 的图象关于点(2,4)−称;②若对任意[]10,2x ∈,总存在22,13x∈−,使得()()12f x g x =成立,求实数a 的取值范围.数学参考答案:1.D【详解】解:将B 中元素分别代入30x e x −<,只有1符合,则{}1A B ∩=. 故选:D. 2.B 【详解】2i 21i 1i 1izz z −=−⇒−=−⇒=++, 所以1i z =−. 故选:B . 3.C【详解】由题设(2,0)a b x +=+ ,2(4,3)a b x −=−, 所以()(2)(2)(4)0a b a b x x +⋅−=+−=,可得x =2−或4.故选:C 4.D【详解】3sin 22sin cos 4θθθ==− ,3sin cos 8θθ∴=−,221sin cos sin cos 18tan 3tan cos sin sin cos 38θθθθθθθθθθ+∴+=+===−−. 故选:D. 5.D【详解】如图,设圆柱的高为h ,由题意可得142h =,所以2h =,从而圆柱的侧面积2124S ππ=××=侧,故选:D.6.D【详解】对于A ,当0x =时,102210=>,所以()f x 不是R 上的增函数,所以A 错误, 对于B ,当0x ≤时,021x <≤,当0x >时,120x >, 所以()f x 的值域为(0,)+∞,所以B 错误, 对于C ,当0x ≤时,由()12f x >,得122x >,解得10−<≤x ,当0x >时,由()12f x >,得1212x >,解得14x >,综上,由()12f x >,得10−<≤x ,或14x >,所以“14x >”是“()12f x >”的充分不必要条件,所以C 错误,对于D ,()f x 的图象如图所示,由图可知当1a >时,直线y a =与()y f x =图象只有一个交点, 即关于x 的方程()f x a =恰有一个实根,所以D 正确, 故选:D 7.C【详解】由题意可知,()f x 的最小正周期2ππ2T ==, 因为πππ34124T−=<,可知ππ7π34224x +=为()f x 的一条对称轴, 所以()f x 在7π24x =之后的零点依次为7π13π24424T +=,7π325π24424T +=,7π537π24424T +=,7π749π24424T +=,…, 若()f x 在区间π,2t上恰有3个零点,所以37π49π2424t ≤<. 故选:C. 8.A【详解】因为函数()y f x =对于任意实数a 和b ,都有()()()()2f a b f a b f a f b ++−=⋅,所以令0a b ==,有()()()()00200f f f f +=⋅,即()()20[01]0f f −=,所以()00f =或()01f =;令2x a b ==,x 为任意实数,有()()0222x x f x f f f +=⋅ ,即()()2022x x f x f f f⋅−; 因为022x x f f⋅≥,所以()()0f x f ≥−,当()00f =时,()0f x ≥;当()01f =时,()1f x ≥−; 所以()f x 的值不可能是2−, 故选:A. 9.ACD【详解】对于A ,随机变量()2~0,X N σ满足正态分布,且0µ=,故()()()()1f x P X x P X x f x −=≤−=≥=−,故A 正确; 对于B ,当0x =时,()()()(),20212201,f x P X f x P X =≤=≤== 此时()()22f x f x ≠,故B 错误;对于C ,()()()20P X x P x X x P X x <=−<<=<<()()12212f x f x=−=−,故C 正确;对于D ,()()f x P X x =≤,故()f x 单调递增,故()121x f f x +> −,即121x x +>−, 解得113x <<,故D 正确. 故选:ACD 10.ACD【详解】()232f x x bx ′=+, 因为函数()325(0)f x x bx b =++<有极小值点2x =,所以()21240f b ′=+=,解得3b =−,所以()3235f x x x =−+,()236f x x x ′=−, 当2x >或0x <时,()0f x '>,当02x <<时,()0f x ′<, 所以函数()f x 在()(),0,2,−∞+∞上单调递增,在()0,2上单调递减,所以()()()()05,21f x f f x f ====极大值极小值, 又()215f −=− 所以函数()f x 仅有1个在区间()2,0−上的零点,故A 正确,故B 错误;对于C ,由()()3223535f x x x x x =−+=−+,得()()()()()()2211113511356f x f x x x x x ++−=++−++−−−+=, 所以函数()f x 的图象关于()1,3对称,故C 正确;对于D ,设切点为()32000,35x x x −+,则()200036f x x x =−′, 故切线方程为()()()320020003365y x x x x x x −−+−−=,又过点()1,1−,所以()()()3200200315163x x xx x −−−+=−−,整理得300320x x −−=,即()()200120x x +−=, 解得01x =−或02x =,所以过()1,1−可以作两条直线与()y f x =的图象相切,故D 正确. 故选:ACD.11.ABD【详解】对于A ,将x 换成x −方程不变,所以图形关于y 轴对称,故A 正确; 对于B ,当0x =时,代入可得21y =,解得1y =±,即曲线经过点(0,1),(0,1)−,当0x >时,方程变换为2210y xy x −+−=,由224(1)0x x ∆=−−≥,解得x ∈ ,所以x 只能取整数1,当1x =时,20y y −=,解得0y =或1y =,即曲线经过(1,0),(1,1), 根据对称性可得曲线还经过(1,0),(1,1)−−,故曲线一共经过6个整点,故B 正确;对于C ,当0x >时,由221x y xy +=+可得222212x y x y xy ++−=≤,(当x y =时取等号),222x y ∴+≤,C 上y称性可得:曲线C ,故C 错误;对于D ,如图所示,在x 轴上图形的面积大于矩形ABCD 的面积:1122S =×=,x 轴下方的面积大于等腰三角形ABE 的面积:212112S =××=,所以曲线C 所围成的“心形”区域的面积大于213+=,故D 正确; 故选:ABD12.12/0.5【详解】依题意,12PF F △的周长为226a c +=,所以123,a c PF F +=面积的最大值为122c b bc ××又222a b c =+,整理得2223(3)c c c−=+,即2(1)(21)0c c −+=,解得1,2,===c a b C 的离心率为12,故答案为:12 13.3【详解】由题意知,(1)1(1)0f −=−−−=,2()31x f x ′=−,(1)312f ′−=−=, 则()y f x =在点()1,0−处的切线方程为2(1)y x =+, 即22y x =+,设该切线与()g x 切于点()00,()x g x , 其中()2g x x ′=,则00()22g x x ′==,解得01x =, 将01x =代入切线方程,得2124y =×+=, 则(1)14g a =+=,解得3a =; 故答案为:3 14.3589【详解】解:由题意可分为5步、6步、7步、8步、9步、10步共6种情况,①5步:即5步两阶,有551C =种;②6步:即4步两阶与2步一阶,有2615C =种;③7步:即3步两阶与4步一阶,有3735C =种;④8步:即2步两阶与6步一阶,有2828C =种;⑤9步:即1步两阶与8步一阶,有199C =种;⑥10步:即10步一阶,有10101C =种;综上可得一共有89种情况,满足7步登完楼梯的有35种; 故7步登完楼梯的概率为3589故答案为:358915.(1)()1.4m (2)1114【详解】(1)由题意得0.2102AB BC +=×=,设BC x =,02x <<,则2AB x =−,20.4 2.4AC x x =−+=−,由题意得9030120A=°+°=°. 在ABC 中,由余弦定理得222cos 2AB AC BC A AB AC+−=× ()()222(2)(2.4)122 2.42x x x x x −+−−==−×−×−, 解得 1.4x =或5.2(舍去), ∴()1.4m BC =(2)由(1)知62 1.0.4AB =−=, 2.4 1.41AC =−=, 1.4BC =. ∴2222220.6 1.4111cos 220.6 1.414AB BC AC B AB BC +−+−===⋅××. 16.(1)2213x y −= (2)1 【详解】(1)椭圆2215x y +=的焦点为()2,0±,故224a b +=,由双曲线的渐近线为y =,故b a =1,b a ==故双曲线方程为:2213x y −=. (2)设()()1122,,,A x y B x y ,AB 的中点为M ,因为M 在直线1:3l y x =,故13M M y x =, 而121231y x −=,222231y x −=()()12120y y y y −+=, 故()()121203M M x x x y y y −−−=, 由题设可知AB 的中点不为原点,故0M M x y ≠,所以121213M M y y xx x y −==−, 故直线AB 的斜率为1.此时12:33M M M AB y x x x x x =−+=−, 由222333M x y x x y =− −=可得222333M x x x −−= ,整理得到:22424303M M x x x x −++=, 当222416Δ168324033M M M x x x =−+=−>即M x <M x >即当M x <M x >AB 存在且斜率为1. 17.(1)证明见解析;(2)【详解】(1)取CD 中点G ,连接NG ,MG,G M 为,CD BC 中点 //GM BD ∴又BD ⊂平面BDE ,GM ⊄平面BDE //GM ∴平面BDE四边形ACDE 为正方形,,N G 为,AE CD 中点 //NG DE ∴又NG ⊂平面BDE ,NG ⊄平面BDE //NG ∴平面BDEGM NG G = ,,GM NG ⊂平面MNG ∴平面//MNG 平面BDE又MN ⊂平面MNG //MN ∴平面BDE(2)ABC ∆ 为正三角形,M 为BC 中点 AM BC ∴⊥平面ACDE ⊥平面ABC ,CD AC ⊥,平面ACDE 平面ABC AC =,CD ⊂平面ACDE CD 平面ABC ,又AM ⊂平面ABC AM CD ∴⊥又BC CD C ∩=,,BC CD ⊂平面BCD AM ∴⊥平面BCD FM ⊂ 平面BCD AM MF ∴⊥设CF a =,则AF =MF =,AM =AF AM MF ∴=⋅=1a =11111332C AFM A FCM FCM V V S AM −−∆∴==⋅=×××=18.(1)0.992(2)202株(3)10n =,2.6元 【详解】(1)记事件A =“该基地的植株经过三次喷洒后,随机检测一株植株能获得基因改良”,所以2()0.80.20.80.20.80.992P A =+×+×=,(2)因为植株经过一次喷洒后基因改良的概率为0.8,经过一次喷洒后基因改良的株数k 服从二项分布,()C 0.80.2k k N k N P N k −⋅==,0,1,2,,k N = 当162k <时,()1620Pk == 当162k ≥时,设162162162(162)C 0.80.2N N P k −==⋅ 若162N =时,则()()162161P k P k =<=若162N >时,则16216216216216216111621621621621621631C 0.80.2C 0.80.2C 0.80.2C 0.80.2N N N N N N NN −−+−−− ≥ ≥ ,所以0.8161.20.8162N N ≥ ≤ , 解得201.5202.5N ≤≤,又*N N ∈,所以202N = 所以甲区域种植总数N 的最大可能值为202株. (3)设每组n 株(50)n ≤的总费用为X 元,则X 的取值为8n +,118n + 所以 X8n + 118n +P 0.992n 10.992n −所以()(8)0.992(118)(10.992)n n E X n n =+++− (8)0.992(118)(10.992)n nn n n+++−= 所以()811100.992n E X n n=−×+ 因为()0.99210.00810.008n n n =−≈− 所以()810.081 2.6E X n n n =++≥+=(当且仅当10n =时等号成立) 所以当以10个每组时,检测成本最低,每株2.6元.19.(1)4【详解】(1)由题意可得,()(2)224f x f x +−=×=,令0x =,可得(0)(2)4f f +=. (2)①由4()2x g x x=−,(,2)(2,)x ∈−∞+∞ , 44(4)()(4)22(4)x x g x g x x x −+−=+−−−416422x x x x−−−−8162x x −=−8=−2(4)=×−, 所以函数()g x 的图象关于点(2,4)−对称.②4()2x g x x =−842x =−+−,函数在2,13 − 上单调递增,所以[]()1,4g x ∈−, 不妨设()f x 在[]0,2上的值域为A ,则[]1,4A ⊆−,因为[]01x ∈,时,2()1f x x ax a =−++, 所以(1)2f =,即函数()f x 的图象过对称中心()12,, (i )当02a ≤时,即0a ≤,函数()f x 在[]0,1上单调递增, 由对称性可知,()f x 在[]1,2上单调递增,所以()f x 在[]0,2上单调递增,由(0)1f a =+,(0)(2)4f f +=,所以(2)3f a =−,所以[]1,3A a a =+−, 由[]1,4A ⊆−,可得114313a a a a +≥− ≥− +≤−,解得10a −≤≤; (ii )当012a <<时,即02a <<,函数()f x 在0,2a上单调递减,()f x 在,12a 上单调递增,由对称性可知,()f x 在1,22a − 上单调递增,()f x 在2,22a −上单调递减, 所以()f x 在0,2a 上单调递减,在,222a a − 上单调递增,在2,22a − 上单调递减, 结合对称性可得,[](2),(0)A f f = 或(),(2)22a a A f f =− , 因为02a <<,所以(0)1(1,3)f a =+∈,(2)3(1,3)f a =−∈, 易知2()1(1,2)24a a f a =−++∈,又()(2)422a a f f +−=,所以(2)(2,3)2a f −∈, 所以当02a <<时,[]1,4A ⊆−成立; (iii )当12a ≥时,即2a ≥时,函数()f x 在[]0,1上单调递减, 由对称性可知,()f x 在[]1,2上单调递减,所以函数()f x 在[]0,2上单调递减,又(0)1f a =+,(2)3f a =−,则[]3,1A a a =−+,由[]1,4A ⊆−得, 311431a a a a −≥− +≤ −≤+,解得23a ≤≤. 综上可知,实数a 的取值范围为[]1,3−.。
2024-2025学年安徽省蚌埠市A层高中高一(上)第一次月考数学试卷(含答案)
2024-2025学年安徽省蚌埠市A 层高中高一(上)第一次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A ={x|−1<x ≤2},B ={x|1<x <3},则A ∪B =( )A. {0,1,2}B. {x|−1<x <1}C. {x|−1<x <3}D. {x|−1<x <1或1<x <3}2.集合A ={x|x =2n +1,n ∈Z},B ={y|y =4k ±1,k ∈Z},则A 与B 的关系为( )A. A⫋BB. A⫌BC. A =BD. A ≠B3.已知函数f(x)的定义域是[−1,3],则函数g(x)=f(2x−1) x 的定义域是( )A. [−3,5] B. [−3,0)∪(0,5] C. (0,2] D. [0,2]4.{2x +1>0x−3<0的一个必要不充分条件是( )A. −12<x <3B. −12<x <0C. −3<x <12D. −1<x <65.已知实数x ,y 满足−4≤x−y ≤−1,−1≤4x−y ≤5,则3x +y 的最大值为( )A. 8B. 9C. 16D. 186.下列命题中,正确的是( )A. x +4x 的最小值是4B. x 2+4+1x 2+4的最小值是2C. 如果a >b ,c >d ,那么a−c <b−d D. 如果ac 2>bc 2,那么a >b7.已知函数f(x)=−x 2+4x ,x ∈[m,4]的值域是[0,4],则实数m 的取值范围是( )A. (−∞,2)B. (0,2]C. [0,2]D. [2,4]8.《九章算术》中有“勾股容方”问题:“今有勾五步,股十二步.问:勾中容方几何?”魏晋时期数学家刘徽在《九章算术注》中利用出入相补原理给出了这个问题的一般解法:如图1,用对角线将长和宽分别为b 和a 的矩形分成两个直角三角形,每个直角三角形再分成一个内接正方形(黄)和两个小直角三角形(朱、青).将三种颜色的图形进行重组,得到如图2所示的矩形,该矩形长为a +b ,宽为内接正方形的边长d.由刘徽构造的图形可以得到许多重要的结论,如图3,设D 为斜边BC 的中点,作直角三角形ABC 的内接正方形对角线AE ,过点A 作AF ⊥BC 于点F ,则下列推理正确的是 ( )A. 由图1和图2面积相等得d=2aba+bB. 由AE≥AF可得a2+b22>a+b2C. 由AD≥AE可得a2+b22⩾21a+1bD. 由AD≥AF可得a2+b2>2ab二、多选题:本题共3小题,共18分。
山东省青岛市西海岸三校联考2024-2025学年高一10月月考数学试题
山东省青岛市西海岸三校联考2024-2025学年高一10月月考
数学试题
学校:___________姓名:___________班级:___________考号:___________
三、单选题
10.若“x k <或
2x k >+”是“41x -<<”的必要不充分条件,则实数k 的值可以是( )
A.1B.5-C.6-D.8-
由韦恩图可知()=U
A B ÆI ð,选项D 错误故选:D .D
【分析】根据给定条件,利用函数有意义列出不等式组求解即
妨令稀疏集为4A 与4B ,
因此,令1234A A A A A =ÈÈÈ,1234B B B B B =ÈÈÈ,则A 和B 是不相交的稀疏集,且
14
A B P È=,综上,所求n 的最大值为14.
【点睛】思路点睛:涉及求符合某个条件的集合元素个数问题,充分利用集合元素的性质,特别是互异性,可以通过列举法列出特例元素,以排除重复元素.。
天津市第一中学2023-2024学年高三第四次月考数学试卷(解析版)
天津一中2023—2024-2高三年级第四次月考数学试卷本试卷总分150分,考试用时120分钟.考生务必将答案涂写在答题卡上,答在试卷上的无效.一、选择题(本大题共9小题,每小题5分,共45分)1. 已知集合,则( )A. B. C. D. 【答案】C 【解析】【分析】根据题意,求得集合,结合集合交集的运算,即可求解.【详解】由不等式,解得,所以,又由,所以.故选:C.2. 将收集到的天津一中2021年高考数学成绩绘制出频率分布直方图,如图所示,则下列说法中不正确的是( )A. B. 高三年级取得130分以上的学生约占总数的65%C. 高三年级的平均分约为133.2D. 高三年级成绩的中位数约为125【答案】D 【解析】【分析】对于A ,由各个矩形面积之和为1即可列式求解;对于B ,求最右边两个矩形面积之和即可验算;对于C ,D 分别由平均数计算公式、中位数计算方法即可判断.{}{}2|3100,33A x x x B x x =--<=-≤≤A B = (2,3]-[)3,5-{1,0,1,2,3}-{3,2,1,0,1,2,3,4}---{}1,0,1,2,3,4A =-23100x x --<25x -<<{}1,0,1,2,3,4A =-{}33B x x =-≤≤{}1,0,1,2,3A B ⋂=-0.028a =【详解】对于A ,,故A 正确;对于B ,高三年级取得130分以上的学生约占总数的,故B 正确;对于C ,高三年级的平均分约为,故C 正确;对于D ,设高三年级成绩的中位数为,由于,所以,故D 不正确.故选;D.3. 已知,条件,条件,则是的( )A. 充分不必要条件 B. 必要不充分条件C 充要条件D. 既不充分也不必要条件【答案】A 【解析】【分析】结合绝对值的性质,根据不等式的性质及充分条件、必要条件的定义分析判断即可.【详解】因为,所以由得,故由能推出;反之,当时,满足,但是;所以是的充分不必要条件.故选:A .4. 函数的图象大致为( )A. B.C. D.【答案】B 【解析】.()1100.0010.0090.0250.037100.028a =-⨯+++÷=⎡⎤⎣⎦()0.0280.03710100%65%+⨯⨯=()1050.0011150.0091250.0251450.0281350.03710133.2⨯+⨯+⨯+⨯+⨯⨯=x 0.010.090.250.350.500.350.370.72++=<<+=130140x <<0a >:p a b >2:q a ab >p q 0a >a b >2a ab ab >≥:p a b >2:q a ab >10,2a b =>=-212a ab =>=-122a =<-=p q ()21cos 31x f x x ⎛⎫=-⋅ ⎪+⎝⎭【分析】根据函数奇偶性即可排除CD ,由特殊点的函数值即可排除A.【详解】,则的定义域为R ,又,所以为奇函数,图象关于原点对称,故排除CD ,当时,,故排除A .故选:B.5. 已知函数是上的偶函数,且在上单调递增,设,,,则a ,b ,c 的大小关系是( )A. B. C. D. 【答案】B 【解析】【分析】结合偶函数的性质,函数单调性,只需比较对数、分数指数幂的大小即可得解.【详解】因为函数是上的偶函数,且在上单调递增,所以,即.故选:B.6. 多项式展开式中的系数为( )A. 985B. 750C. 940D. 680【答案】A 【解析】分析】由二项式定理即可列式运算,进而即可得解.【详解】多项式展开式中的系数为.故选:A.7. 已知斜三棱柱中,为四边形对角线的交点,设三棱柱的体积【2()(1)cos 31xf x x =-⋅+()f x ()()()22321cos 1cos 1cos 313131x x x xf x x x x f x -⎛⎫⨯⎛⎫⎛⎫-=-⋅-=-⋅=-+⋅=- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭()f x πx =()ππ22π1cos π103131f ⎛⎫-=< ⎪++⎝⎭=-+()f x R ()f x [0,)+∞12e a f ⎛⎫= ⎪⎝⎭12b f ⎛⎫= ⎪⎝⎭1ln 2c f ⎛⎫= ⎪⎝⎭a b c <<b<c<ac<a<bb a c<<()f x R ()f x [0,)+∞()()1211ln 2ln 1e 22b f f f c f ff a ⎛⎫⎛⎫⎛⎫=<==<<== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭b<c<a ()52(71)52x x++2x ()52(71)52x x++2x 32350555C 712C 7159805985⋅⋅⋅+⋅⋅⋅=+=111ABC A B C -O 11ACC A 111ABC A B C -为,四棱锥的体积为,则( )A. B. C. D. 【答案】A 【解析】【分析】如图,延长,连接,则、,进而得,即可求解.【详解】如图,延长,连接,则,所以,又O 为的中点,所以点到平面的距离是点到平面的距离的2倍,则,所以,即故选:A8. 已知函数(为常数,且)的一个最大值点为,则关于函数的性质,下列说法错误的有( )个.1V 11O BCC B -2V 21:V V =1:31:41:62:31OA 11,,OB OB A B 111123A BCC B V -=11122A BCC B V V -=12223V V =1OA 11,,OB OB A B 11111111,3A ABC A BCCB A ABC V V V V V ---=+=111123A BCCB V -=1AC 1A 11BCC B O 11BCC B 11111222A BCC B O BCC B V V V --==12223V V =2113V V =()sin cos f x a x b x =+,a b 0,0a b >>π3x =()sin 2cos 2g x a x b x =+①的最小正周期为;②的一个最大值点为;③在上单调递增;④的图像关于中心对称.A. 0个 B. 1个C. 2个D. 3个【答案】B 【解析】【分析】根据三角函数的性质,求的关系,再根据辅助角公式化简函数,再利用代入的方法,判断函数的性质.【详解】函数,,平方后整理为,所以,,函数的最小正周期为,故①正确;当时,,此时函数取得最大值,故②正确;当时,,位于单调递增区间,故③正确;,故④错误,所以错误的只有1个.故选:B9. 已知双曲线的左焦点为,过作渐近线的垂线,垂足为,且与抛物线交于点,若,则双曲线的离心率为( )A.B.C.D.【答案】B 【解析】()g x π()g x π6()g x 2π,π3⎛⎫⎪⎝⎭()gx 7π,012⎛⎫⎪⎝⎭,a b ()g x ()sin cos f x a x b x =+12b +=()20a =a π()sin 2cos 22sin 26g x x b x b x ⎛⎫=+=+ ⎪⎝⎭0b >()g x 2ππ2=π6x =πππ2662⨯+=()g x 2π,π3x ⎛⎫∈⎪⎝⎭π3π13π2,626x ⎛⎫+∈ ⎪⎝⎭77ππ4π2sin 22sin 0121263g b b π⎛⎫⎛⎫=⨯+=≠ ⎪ ⎪⎝⎭⎝⎭22221(0,0)x y a b a b-=>>1(,0)F c -1F P 212y cx =M 13PM F P =【分析】首先利用等面积法求出点坐标,再根据,求出坐标,再将坐标带入抛物线化简即可求解出双曲线离心率.【详解】据题意,不妨取双曲线的渐近线方程为,此时,,∴,且是直角三角形,设,则,,代入中,得,即;设,则,,由,则,,∴,则;又在抛物线上,,即,化简得,分子分母同时除以,,且,,.故选:B二、填空题(本大题共6小题,每小题5分,共30分)10. 已知,且满足(其中为虚数单位),则_________.【答案】2【解析】【分析】根据复数相等得到关于的方程组,解该方程组即可.【详解】由题意,可得,P 13PM F P =M M 212y cx =by x a=-1F P b =1OF c =OP a =1OPF (,)p p P x y 11122OPF p S ab cy== p aby c ∴=b y xa =-2p a x c =-2(,a ab P c c-(,)M xy 2,a ab PM x y c c ⎛⎫=+- ⎪⎝⎭ 221,,a ab b ab F P c cc c c ⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭ 13PM F P = 223a b x c c+=⋅3ab ab y c c -=⋅2234,b a ab x y c c -==2234(,)b a abM c c -M 212y cx =22243()12ab b a cc c-∴=()()()2222222222221612316123a b b aca c a c a a c ⎡⎤=-⇔-=--⎣⎦422491640c a c a -+=4a 4291640e e ∴-+=1e >2e ∴===e ∴=,R a b ∈(12i)(i)3i a b ++=-i 22a b +=,a b (12i)(i)3i a b ++=-(2)(2)i 3i a b a b -++=-所以,解得,所以.故答案为:211. 著名的“全错位排列”问题(也称“装错信封问题”是指“将n 个不同的元素重新排成一行,每个元素都不在自己原来的位置上,求不同的排法总数.”,若将个不同元素全错位排列的总数记为,则数列满足,.已知有7名同学坐成一排,现让他们重新坐,恰有两位同学坐到自己原来的位置,则不同的坐法有_________种【答案】【解析】【分析】根据数列递推公式求出项,再结合分步计数原理求解.【详解】第一步,先选出两位同学位置不变,则有种,第二步,剩下5名同学都不在原位,则有种,由数列满足,,则,,,则不同的做法有种.故答案为:.12. 已知在处的切线与圆相切,则_________.【答案】或【解析】【分析】根据导数的几何意义,求得切线方程,再由直线与圆相切,列出方程,即可求解.【详解】由函数,可得,则且,所以函数在处的切线方程为,即,又由圆,可得圆心,半径为,2321a b a b -=⎧⎨+=-⎩1575a b ⎧=⎪⎪⎨⎪=-⎪⎩222a b +=n n a {}n a 120,1a a ==()12(1)(3)n n n a n a a n --=-+≥9242776C 2121⨯==⨯5a {}n a 120,1a a ==()12(1)(3)n n n a n a a n --=-+≥()()321312a a a =-+=()()432419a a a =-+=()()5435144a a a =-+=2144924⨯=9242()ln f x x x =-1x =22:()4C x a y -+==a -0x y -=2()ln f x x x =-1()2f x x x=-'(1)1f '=(1)1f =()f x 1x =11y x -=-0x y -=22:()4C x a y -+=(,0)C a 2r =因为与圆,解得.故答案为:.13. 元旦前夕天津-中图书馆举办一年一度“猜灯谜”活动,灯谜题目中逻辑推理占,传统灯谜占,一中文化占,小伟同学答对逻辑推理,传统灯谜,一中文化的概率分别为,,,若小伟同学任意抽取一道题目作答,则答对题目的概率为______,若小伟同学运用“超能力”,抽到的5道题都是逻辑推理题,则这5道题目中答对题目个数的数学期望为______.【答案】 ①. ##②. 【解析】【分析】根据全概率公式求解概率,根据二项分布列的期望公式求解即可.【详解】设事件“小伟同学任意抽取一道题目作答,答对题目”,则.由题意小伟同学任意抽取一道逻辑推理题作答,则答对题目的概率为,根据二项式分布知,所以,即的数学期望为.故答案为:,14. 在中,设,,其夹角设为,平面上点满足,,交于点,则用表示为_________.若,则的最小值为_________.【答案】 ①. ②.【解析】【分析】由和三点共线,得到和,得出方程组,求得的值,得到,再由,化简得到,得出,结合基本不等式,即可求解.0x y -=C 2a =±±20%50%30%0.20.60.7X 0.5511201A =()0.20.20.50.60.30.70.55P A =⨯+⨯+⨯=0.2()5,0.2X B ~()50.21E X =⨯=X 10.551ABC ,AB a AC b ==u u u r r u u u r r θ,D E 2AD AB = 3AE AC =,BE DC O AO ,a b65AO DE DC BE ⋅=⋅ cos θ4355AO a b =+ ,,D O C ,,B O E 2(1)AO ta t b =+- ()33AO ua u b =+-2133t ut u =⎧⎨-=-⎩,t u 4355AO a b =+ 65AO DE DC BE ⋅=⋅ 2248209a b a b ⋅=+ 22209cos 48a b a bθ+=【详解】因为三点共线,则存在实数使得,又因为三点共线,则存在实数使得,可得,解得,所以,由,因为,可得,整理得,可得,所以又因为所以,当且仅当时,即时,等号成立,所以.故答案为:15. 设函数,若函数与直线有两个不同的公共点,则的取值范围是______.【答案】或或【解析】【分析】对于,当可直接去绝对值求解,当时,分和,,D O C t (1)2(1)AO t AD t AC ta t b =+-=+-,,B O E u ()()133AO u AB u AE ua u b =+-=+-2133t u t u =⎧⎨-=-⎩24,55t u ==4355AO a b =+ 32,2,3DE AE AD b a DC AC AD b a BE AE AB b a =-=-=-=-=-=- 65AO DE DC BE ⋅=⋅ 436()(32)(2)(3)555a b b a b a b a +⋅-=-⋅-2248209a b a b ⋅=+ 2248cos 209a b a b θ=+ 22209cos 48a b a bθ+=22209a b+≥ 22209cos 48a b a b θ+=≥ 22209a b = 3b cos θ4355AO a b =+ 22()21f x x ax ax =-++()y f x =y ax =a 2a <-21a -<<-2a >221y x ax =-+0∆≤0∆>a <-a >论,通过和图像交点情况来求解.详解】由已知,即,则必过点,必过,对于,当时,,此时恒成立,所以,令,即,要有两个不同的公共点,则,解得或或,当时,或当时,和图象如下:此时夹在其两零点之间的部分为,令,得无解,则有两个根有两个根,即有两个解,,符合要求;当和图象如下:【221y x ax =-+()1y ax x =-22()21f x x ax ax ax =-++=()2211x ax ax x -+=-()1y ax x =-()()0,0,1,0221y x ax =-+()0,1221y x ax =-+280a ∆=-≤a -≤≤2210x ax -+≥()222()2121f x x ax ax a x ax =-++=+-+()221a x ax ax +-+=()22210a x ax +-+=()21Δ442020a a a ⎧=-+>⎨+≠⎩2a -≤<-21a -<<-2a <≤280a ∆=->a <-a >a <-221y x ax =-+()1y ax x =-221y x ax =-+-2221x ax ax ax -+-=-+()221a x -=()2211x ax ax x -+=-()2211x ax ax x ⇔-+=-()22210a x ax +-+=()2Δ4420a a =-+>a <-a >221y x ax =-+()1y ax x =-或令,根据韦达定理可得其两根均为正数,对于①,则,解得,对于②,则,解得,综上所述,的取值范围是或或.【点睛】方法点睛:对于方程的根或者函数零点问题,可以转化为函数图象的交点个数问题,图象直观方便,对解题可以带来很大的方便.三、解答题(本大发共5小题,共75分)16. 已知中,角A ,B ,C 的对边分别为a ,b ,c ,且,.(1)求;(2)若,求的面积.【答案】(1(2【解析】【分析】(1)利用正弦定理求关系,再利用余弦定理求出,再利用两角和的正弦定理计算即可;(2)利用三角形的面积公式求解即可.【小问1详解】2210x ax -+=011⎧<<⎪⎪>3a >011⎧<<⎪⎪<3a <<a 2a <-21a -<<-2a >ABC sin cos sin 22C CB =2223a c b -=πsin 3B ⎛⎫+⎪⎝⎭1b =ABC ,,a b c cos B因为,所以,由正弦定理得,所以,即,所以,在中,,所以【小问2详解】由(1)得当时,,所以17. 已知四棱台,下底面为正方形,,,侧棱平面,且为CD 中点.(1)求证:平面;(2)求平面与平面所成角的余弦值;(3)求到平面的距离.【答案】(1)证明见详解 (2)sincos sin 22C CB =sin 2sinC B =2c b =2222223347b a b c b b +=+===a 222cos 2a cb B ac +-===ABC sin B ==π11sin sin 322B B B ⎛⎫+=== ⎪⎝⎭1b =2a c ==122ABC S =´´=1111ABCD A B C D -ABCD 2AB =111A B =1AA ⊥ABCD 12,AA E =1//A E 11BCC B 11ABC D 11BCC B E 11ABC D 15(3【解析】【分析】(1)直接使用线面平行的判定定理即可证明;(2)构造空间直角坐标系,然后分别求出两个平面的法向量,再计算两个法向量的夹角余弦值的绝对值即可;(3)使用等体积法,从两个不同的方面计算四面体的体积即可求出距离.【小问1详解】由于,,故,而,故四边形是平行四边形,所以,而在平面内,不在平面内,所以平面;【小问2详解】如上图所示,以为原点,为轴正方向,建立空间直角坐标系.则,,,,,,设平面与平面的法向量分别是和,则有和,1EAD B 11∥A B AB CE AB ∥11CEA B 1111122CE CD AB A B ====11CEA B 11A E B C ∥1B C 11BCC B 1A E 11BCC B 1//A E 11BCC B 1A 11111,,A A A D A B,,x y z ()2,0,0A ()10,1,0D ()2,0,2B ()10,0,1B ()10,1,1C ()()()()11110,0,2,2,1,0,2,0,1,0,1,0AB AD BB B C ==-=--=11ABC D 11BCC B ()1,,n p q r = ()2,,n u v w =11100n AB n AD ⎧⋅=⎪⎨⋅=⎪⎩ 212110n BB n B C ⎧⋅=⎪⎨⋅=⎪⎩即,,从而,,.故我们可取,,而,故平面与平面所成角的余弦值是.【小问3详解】设到平面的距离为,由于,而,所以.所以到平面18. 已知椭圆的左右顶点为A ,B ,上顶点与两焦点构成等边三角形,右焦点(1)求椭圆的标准方程;(2)过作斜率为的直线与椭圆交于点,过作l 的平行线与椭圆交于P ,Q 两点,与线段BM 交于点,若,求.【答案】(1)(2)【解析】【分析】(1)根据上顶点与两焦点构成等边三角形求出即可;(2)设出直线方程,利用弦长公式求出求出,,利用点到直线的距离求出点到直线的距离和点到直线的距离,再根据列式计算即可.【小问1详解】2020r p q =⎧⎨-+=⎩200u w v --=⎧⎨=⎩0r v ==2p q =20u w +=()11,2,0n = ()21,0,2n =-11cos ,5n 11ABC D 11BCC B 15E 11ABC D L 111111332E AD B AD B V LS L AD AB L -==⋅⋅⋅= 111142333E AD B B AD E AEB ABCD V V S S --==⋅⋅=⋅= 43=L =E 11ABC D 22221(0)x y a b a b +=>>(1,0)F A (0)k k >l M F N 2AMN BPQ S S =△△k 22143x y +=k =,a b AM PQ N AM B PQ 2AMN BPQ S S =△△由已知在等边三角形中可得,则椭圆的标准方程为为;【小问2详解】设直线的方程为:,联立消去得,则,得,,设直线的方程为:,设,联立,消去得,易知,则,所以,由得,所以直线的方程为,即,联立得,所以点到直线的22,a c b ====22143x y +=l ()2y k x =+()222143y k x x y ⎧=+⎪⎨+=⎪⎩y ()2222341616120k x k x k +++-=221612234M k x k --=+226834M k x k-=+226834Mk AM x k -=-=-=+PQ ()1y k x =-()()1122,,,P x y Q x y ()221143y k x x y ⎧=-⎪⎨+=⎪⎩y ()22223484120k x k x k +-+-=0∆>221212228412,3434k k x x x x k k-+==++PQ ==()2212134k k +=+226834M k x k -=+222681223434M k k y k k k ⎛⎫-=⋅+= ⎪++⎝⎭BM ()2221234268234kk y x k k +=---+()324y x k=--()()3241y x k y k x ⎧=--⎪⎨⎪=-⎩222463,4343k k N k k ⎛⎫+ ⎪++⎝⎭N AM点到直线,因为,所以,解得.【点睛】方法点睛:直线与椭圆联立问题第一步:设直线方程:有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,都可由点斜式设出直线方程.第二步:联立方程:把所设直线方程与椭圆方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根的判别式.第四步:写出根之间的关系,由根与系数的关系可写出.第五步:根据题设条件求解问题中的结论.19. 已知数列满足对任意的,均有,且,,数列为等差数列,且满足,.(1)求,的通项公式;(2)设集合,记为集合中的元素个数.①设,求的前项和;②求证:,.【答案】(1),B PQ 2AMN BPQ S S =△△()221211122234k k +=⨯+k =∆0∆>{}n a *N n ∈212n n n a a a ++=12a =24a ={}n b 11b =2105b b a +={}n a {}n b {}*1N n n k n A k a b a +=∈<≤n c n A ()2n n n p b c =+{}n p 2n 2n P *N n ∀∈122121111176n n c c c c -++++< 2n n a =32n b n =-(2)①;②证明过程见解析【解析】【分析】(1)根据等比中项的性质,结合等差数列的通项公式、等比数列的通项公式进行求解即可;(2)①根据不等式的解集特征,结合累和法、等比数列的前项和公式分类讨论求出的表达式,最后根据错位相减法进行求解即可;②运用放缩法,结合等比数列前项和公式进行运算证明即可.【小问1详解】因为数列满足对任意的,均有,所以数列是等比数列,又因为,,所以等比数列的公比为,因此;设等差数列的公差为,由;【小问2详解】因为,,所以由,因此有,即有,,当时,有于是有当为大于2的奇数时,()2122122n n P n n +=-⋅+-12322,n n k k +*<-≤∈N n n c n {}n a *N n ∈212n n n a a a ++={}n a 12a =24a ={}n a 212a a =1222n n n a -=⨯={}n b d ()210511932313132n b d d d b b n n a ⇒+++=⇒=⇒=+-=+-=2n n a =32n b n =-11,2322,nn n k n a b a k k k *+*+<≤∈⇒<-≤∈N N {}{}{}{}{}123452,3,4,5,6,7,8,9,10,11,12,13,,22A A A A A ===== {}623,24,,43,A =1234561,1,3,5,11,21,c c c c c c ======234512233445562,42,82,162,322,c c c c c c c c c c +=+==+==+==+== 12,n n n c c ++= 2,N n n *≥∈112,n n n c c --+=1112,n n n c c -+--=n ()()()243122431122221n n n n n n n c c c c c c c c -----=-+-+-+=+++++,显然也适合,当为大于2的偶数时,,显然也适合.①,,,设,则有,两式相减,得,,;②设,显然,,当时,有,因此,12214211143n n -⎛⎫- ⎪+⎝⎭=+=-11c =n ()()()244222442222221n n n n n n n c c c c c c c c -----=-+-++-+=+++++ 122214211143nn ⎛⎫- ⎪-⎝⎭=+=-21c =()()()21,21,N 221,2,Nn n n n n n n k k p b c n n k k **⎧+=-∈⎪=+=⎨-=∈⎪⎩()()212342121321242n n n n n P P P P P P P P P P P P P --=++++++=+++++++ ()()132124212132321221222424222n nn n n n -⎡⎤⎡⎤=⨯++⨯+++-⋅+-+⨯-+⨯-++⋅-⎣⎦⎣⎦()()()123212122232212221234212n n n n n n -⎡⎤=⨯+⨯+⨯++-⋅+⋅+-+-+--⎣⎦ ()()12321212223221222n n S n n -=⨯+⨯+⨯++-⋅+⋅ ()()234221212223221222nn S n n +=⨯+⨯+⨯++-⋅+⋅ 123212212222222n n n S n -+-=+++++-⋅ ()()2212121222212212n n n S n S n ++-⇒-=-⋅⇒=-⋅+-()2122122n n P n n +=-⋅+-()()11321k k k k c *+=∈+-N ()11332121k k k k c +=≤-+-()4213224k k k --⨯=-4,N k k *≥∈()()344213224042132212kk kkkk k--⨯=->⇒->⨯⇒<-()1133421221k k k k k c +=≤<-+-所以当时,,即,显然当时,有成立.【点睛】关键点点睛:本题的关键由可以确定从第几项开始放缩,根据数列的通项公式的形式,得到,这样可以进行放缩证明.20. 已知函数.(1)讨论的单调区间;(2)已知,设的两个极值点为,且存在,使得的图象与有三个公共点;①求证:;②求证:.【答案】(1)答案见解析 (2)证明见解析【解析】【分析】(1)首先求函数的导数,再讨论,结合函数的定义域,即可求函数的单调区间;(2)①要证,即证,只需证,构造函数,,借助导数即可得证;②同①中证法,先证,则可得,利用、是方程的两根所得韦达定理,结合即可得证.【小问1详解】,,N k *∈4512321111111111143222k k k c c c c c -⎛⎫+++++<++++++ ⎪⎝⎭ 43123211111111122114312k k k c c c c c --⎛⎫- ⎪⎝⎭⇒+++++<+++⨯- 312321111171171171322326k k k c c c c c --⎛⎫+++++<+-<+= ⎪⎝⎭ 2k n =122121111176n n c c c c -++++< 171111632=+++()1133421221k k k k k c +=≤<-+-2()24ln f x x ax x =-+()f x [4,6]a ∈()f x ()1212,λλλλ<b ∈R ()y f x =y b =()123123,,x x x x x x <<1212x x λ+>31x x -<∆1212x x λ+>2112x x λ>-()()1112f x f x λ<-()()()12x g x f x f λ=--()10,x λ∈2232x x λ+<()()2312123122x x x x x x λλ=++<---1λ2λ220x ax -+=[4,6]a ∈()()222422x ax f x x a x x-+'=-+=0x >其中,,当时,即,此时恒成立,函数在区间单调递增,当时,即或当时,在区间上恒成立,即函数在区间上单调递增,当,得或当时,,时,,所以函数的单调递增区间是和,单调递减区间是,综上可知,当的单调递增区间是;当的单调递增区间是和,单调递减区间是;【小问2详解】①由(1)知,当时,函数的单调递增区间是和,单调递减区间是,、是方程的两根,有,,又的图象与有三个公共点,故,则,()22tx x ax =-+28a ∆=-0∆≤a -≤≤()0f x '≥()f x ()0,∞+0∆>a <-a >a <-()0f x ¢>()0,∞+()f x ()0,∞+a >()0t x =1x =1x =0x <<x >()0f x ¢>x <<()0f x '<()f x ⎛ ⎝⎫+∞⎪⎪⎭a ≤()f x ()0,∞+a >()f x ⎛ ⎝⎫+∞⎪⎪⎭[4,6]a ∈()f x ()10,λ()2,λ+∞()12,λλ1λ2λ220x ax -+=122λλ=12a λλ+=()y f x =y b =()123123,,x x x x x x <<112230x x x λλ<<<<<1112x λλ->要证,即证,又,且函数在上单调递减,即可证,又,即可证,令,,由,则恒成立,故在上单调递增,即,即恒成立,即得证;②由,则,令,,则,故在上单调递增,即,1212x x λ+>2112x x λ>-1112x λλ->()f x ()12,λλ()()1122f x f x λ<-()()12f x f x b ==()()1112f x f x λ<-()()()12x g x f x f λ=--()10,x λ∈()()()()212222422x ax x x f x x a x x xλλ-+--'=-+==()()()()()112211122222x x xx x g x x λλλλλλλ------'=+-()()()()()1221112222x x x x x x x λλλλλλ+--+-=-⋅-()()222211*********x x x x x x xx x λλλλλλλλ-+++--+=-⋅-()()()()()12221111222420x x x x x x x λλλλλλλ--=-⋅=>--()g x '()10,λ()()()()111102g x g f f λλλλ<=--=()()1112f x f x λ<-112230x x x λλ<<<<<2322x λλ-<()()()22x h x f x f λ=--()2,x λ∈+∞()()()()()122221222222x x xx x h x x λλλλλλλ------'=+-()()()()()2112222222x x x x x x x λλλλλλ+--+-=-⋅-()()221122212222222x x x x x x xx x λλλλλλλλ-+++--+=-⋅-()()()()()22112222222420x x x x x x x λλλλλλλ--=-⋅=>--()h x '()2,λ+∞()()()()222202h x h ff λλλλ>=--=即当时,,由,故,又,故,由,,函数在上单调递减,故,即,又由①知,故,又,故.【点睛】关键点点睛:最后一问关键点在于先证,从而借助①中所得,得到.()2,x λ∈+∞()()22x f x f λ>-32x λ>()()3232f x f x λ>-()()32f x f x =()()3222f x f x λ>-2322x λλ-<122x λλ<<()f x ()12,λλ2322x x λ<-2232x x λ+<1212x x λ+>()()2312123122x x x x x x λλ=++<---2122λλ-==≤=31x x -<2232x x λ+<1212x x λ+>()()2312123122x x x x x x λλ=++<---。
2024-2025学年江西师大附中高三(上)第三次月考数学试卷(含答案)
2024-2025学年江西师大附中高三(上)第三次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.复数z 满足|z−i|=2,z 在复平面内对应的点为(x,y),则( )A. (x−1)2+y 2=4B. (x−1)2+y 2=2C. x 2+(y−1)2=4D. x 2+(y−1)2=22.如图,在△ABC 中,点D 在BC 的延长线上,|BD|=3|DC|,如果AD =x AB +y AC ,那么( )A. x =12,y =32B. x =−12,y =32C. x =−12,y =−32D. x =12,y =−323.纯洁的冰雪,激情的约会,2030年冬奥会预计在印度孟买举行.按常理,该次冬奥会共有7个大项,如冰球、冰壶、滑冰、滑雪、雪车等;一个大项又包含多个小项,如滑冰又分为花样滑冰、短道速滑、速度滑冰三个小项.若集合U 代表所有项目的集合,一个大项看作是几个小项组成的集合,其中集合A 为滑冰三个小项构成的集合,下列说法不正确的是( )A. “短道速滑”不属于集合A 相对于全集U 的补集B. “雪车”与“滑雪”交集为空集C. “速度滑冰”与“冰壶”交集不为空集D. 集合U 包含“滑冰”4.已知直线l :x +y−3=0上的两点A ,B ,且|AB|=1,点P 为圆D :x 2+y 2+2x−3=0上任一点,则△PAB 的面积的最大值为( )A.2+1B. 22+2C.2−1D. 22−25.已知函数f(x)的部分图象如图所示,则f(x)的解析式可能为( )A. f(x)=xcosπx B. f(x)=(x−1)sinπx C. f(x)=xcos[π(x +1)]D. f(x)=(x−1)cosπx6.已知正数a ,b ,c 满足2022a =2023,2023b =2022,c =ln2,下列说法正确的是( )A. log a c >log b cB. log c a >log c bC. a c <b cD. c a <c b7.已知抛物线C 1:y =x 2+2x 和C 2:y =−x 2+a ,若C 1和C 2有且仅有两条公切线l 1和l 2,l 1和C 1、C 2分别相切于M ,N 点,l 2与C 1、C 2分别相切于P ,Q 两点,则线段PQ 与MN ( )A. 总是互相垂直 B. 总是互相平分C. 总是互相垂直且平分D. 上述说法均不正确8.在平面四边形ABCD 中,AB ⊥AC ,且AB =AC ,AD = 2CD =22,则BD 的最大值为( )A. 27B. 6C. 25 D. 23二、多选题:本题共3小题,共18分。
内蒙古鄂尔多斯市第二中学2024-2025学年高一上学期第一次月考数学试卷
内蒙古鄂尔多斯市第二中学2024-2025学年高一上学期第一次月考数学试卷一、单选题1.下列各组对象中:①高一个子高的学生;②《高中数学》(必修)中的所有难题;③所有偶数;④全体著名的数学家.其中能构成集合的有( )A .1组B .2组C .3组D .4组 2.如图所示的韦恩图中,已知A ,B 是非空集合,定义*A B 表示阴影部分的集合.若{}03A x x =≤<,{}2B y y =>,则*A B =( )A .{}3x x >B .{}23x x ≤≤C .{}23x x <<D .{}3x x ≥ 3.已知不等式240x ax ++<的解集为空集,则a 的取值范围是( )A .44a -≤≤B .44a -<<C .4a ≤-或4a ≥D .4a <-或4a >4.已知0a b >>,0c d <<,则下列结论一定成立的是( )A .a c b d +>+B .a c b d ->-C .ac bd >D .ad cd > 5.设m 为给定的实常数,命题:p x ∀∈R ,2420x x m -+≥,则“0m >”是“p 为真命题”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知()()()R,23,21x A x x B x x ∈=+-=-,则( )A .AB > B .A B =C .A B <D .A ,B 的大小关系与x 的取值有关 7.已知a ,b 为正实数,则“2aba b ≤+”是“16ab ≤”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件8.已知0m >,0n >,141m n+=,若不等式22m n x x a +≥-++对已知的m ,n 及任意实数x 恒成立,则实数a 的取值范围是( )A .[)8,+∞B .[)3,+∞C .(],3-∞D .(],8-∞二、多选题9.已知全集U A B =⋃,集合{}1,3,4A =,8{N |N}B x x=∈∈,则( ) A .集合A 的真子集有8个B .{}1U ∈C .U A B ⊆ðD .U 中的元素个数为510.有以下说法,其中正确的为( ) A .“m 是有理数”是“m 是实数“的充分条件B .“x A B ∈I ”是“x A ∈”的必要条件C .“2230x x --=”是“3x =”的必要条件D .“3x >”是“24x >”的充分条件11.设正实数x ,y 满足2x y +=,则下列说法正确的是( )A .11x y +的最小值为2B .xy 的最小值为1C 4D .22x y +的最小值为2三、填空题12.若命题2:[1,),1p x x m ∀∈+∞+≥,则命题p 的否定是13.已知14,24x y x y -<+<<-<,则32x y +的取值范围是.14.已知集合{|27}A x x =-≤≤,{|121}B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围是.四、解答题15.解下列不等式:(1)21233x x ≤-; (2)24129x x ≥-; (3)2104x x -+<; (4)24293x x +>. 16.已知集合{|14}A x x =-≤≤,{|1B x x =<或5}x >.(1)若全集R U =,求A B U 、()U A B I ð;(2)若全集R U =,求()U A B I ð.17.已知二次函数()()20f x ax bx c a =++≠.(1)若不等式()0f x >的解集为{}03x x <<,解关于x 的不等式()2320bx ax c b +-+<.(2)若0a >且1b a =--,1c =,解关于x 的不等式()0f x <.18.(1)已知:0x >,0y >.若97x y xy ++=,求3xy 的最大值;(2)已知0x >,0y >,且2x y +=,若410x mxy +-≥恒成立,求m 的最大值. 19.根据要求完成下列问题:(1)若0a b >>、0c d <<、b c >.①求证:0b c +>;②求证:22()()b c a d a c b d ++<--; ③在②中的不等式中,能否找到一个代数式,满足2()b c a c +<-所求式2()a d b d +<-?若能,请直接写出该代数式;若不能,请说明理由.(2)设x 、y ∈R ,求证:||||||x y x y +=+成立的充要条件是0xy ≥.。
辽宁省大连市滨城高中联盟2024-2025学年高二上学期10月月考数学试卷
辽宁省大连市滨城高中联盟2024-2025学年高二上学期10月月考数学试卷一、单选题1.如图所示,在四面体A -BCD 中,点E 是CD 的中点,记AB a =u u u r r,AC b =u u u r r ,AD c =u u u r r , 则BE u u u r等于( )A .1122a b c -++r r r B .1122a b c -+r r r C .1122a b c -+r r r D .1122a b c -++r r r2.若平面α的法向量为μu r ,直线l 的方向向量为v r,直线l 与平面α的夹角为θ,则下列关系式成立的是( )A .cos ||||v v μθμ⋅=u r r u r rB .||cos ||||v v μθμ⋅=u r ru r r C .sin |||v v μθμ⋅=u r ru r r ∣D .||sin ||||v v μθμ⋅=u r ru r r3.若直线AB 的一个法向量是)1a =-r,则该直线的倾斜角为( )A .30oB .60oC .120oD .150o4.已知空间向量()()1,1,2,1,2,1a b =-=-r r ,则向量a r在向量b r 上的投影向量是( )A .()1,1,1-B .555,,663⎛⎫- ⎪⎝⎭C .555,,636⎛⎫- ⎪⎝⎭D .111,,424⎛⎫- ⎪⎝⎭5.设P 是120o 的二面角l αβ--内一点,PA α⊥,PB β⊥,A 、B 是垂足,4PA =,3PB =,则AB 的长度为( )A .B .5CD 6.对于空间一点O 和不共线三点,,A B C ,且有2OP PA OB OC =-+u u u r u u u r u u u r u u u r,则( ) A .,,,O A B C 四点共面 B .,,,P A B C 四点共面 C .,,,O P B C 四点共面D .,,,,O P A B C 五点共面7.将正方形ABCD 沿对角线BD 折成直二面角,下列结论不正确的是( )A .AC BD ⊥B .AB ,CD 所成角为60︒C .ADC △为等边三角形D .AB 与平面BCD 所成角为60︒8.正方形11ABB A 的边长为12,其内有两点,P Q ,点P 到边111,AA A B 的距离分别为3,2,点Q 到边1,BB AB 的距离也分别是3和2.如图,现将正方形卷成一个圆柱,使得AB 和11A B 重合.则此时两点,P Q 间的距离为( )A B C D二、多选题9.下列说法中,正确的有( )A .直线()32y ax a a =-+∈R 必过定点()3,2B .方程0Ax ByC ++=是直线的一般式方程C .直线10x +=的斜率为D .点()5,3-到直线20y +=的距离为110.已知空间单位向量,,i j k rr r 两两垂直,则下列结论正确的是( )A .向量i j +r r与k j -r r 共线 B .问量i j k ++rr rC .{},,i j i j k +-r r r r r 可以构成空间的一个基底D .向量i j k ++r r r 和k r11.如图,已知正六棱柱ABCDEF A B C D E F ''''''-的底面边长为2点均在球O 的球面上,则下列说法错误的是( )A .直线DE '与直线AF '异面B .若M 是侧棱CC '上的动点,则AM MD '+C .直线AF '与平面DFE 'D .球O 的表面积为18π三、填空题12.已知点()1,2A -关于直线y kx b =+对称的点是()1,6B --,则直线y kx b =+在x 轴上的截距是.13.若三条直线2,3,100y x x y mx ny =+=++=相交于同一点,则点(),m n 到原点的距离的最小值为.14.已知正三棱柱ABC A B C '''-的底面边长为2,点P 是其表面上的动点,该棱柱内切球的一条直径是MN ,则PM PN ⋅u u u u r u u u r的取值范围是.四、解答题15.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程: (1)过定点A (-3,4); (2)斜率为16.16.如图,在四面体ABCD 中,AD ⊥面,2,BCD AD M =是AD 的中点,P 是BM 的中点,点Q 在棱AC 上,且3AQ QC =.请建立适当的空间直角坐标系,证明://PQ 面BCD .17.如图所示,平行六面体1111ABCD A B C D -中,111ππ1,2,,23AB AD AA BAD BAA DAA ===∠=∠=∠=.(1)用向量1,,AB AD AA u u u r u u u r u u u r 表示向量1BD u u u u r,并求1BD u u u u r ; (2)求1cos ,BD AC u u u u r u u u r . 18.如图,在五棱锥P ABCDE -中,PA ⊥平面,,,ABCDE AB CD AC ED AE BC ∥∥∥,45,24ABC AB BC AE ∠=︒===、三角形PAB 是等腰三角形.(1)求证:平面PCD ⊥平面PAC : (2)求直线PB 与平面PCD 所成角的大小;19.如图,在三棱柱111ABC A B C -中,棱1,AC CC 的中点分别为1,,D E C 在平面ABC 内的射影为D ,ABC V 是边长为2的等边三角形,且12AA =,点F 在棱11B C 上运动(包括端点).请建立适当的空间直角坐标系,解答下列问题:(1)若点F为棱B C的中点,求点F到平面BDE的距离;11(2)求锐二面角F BD E--的余弦值的取值范围.。
高中数学月考试题及答案
高中数学月考试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是()A. y = x^2B. y = x^3C. y = |x|D. y = x + 1答案:B2. 已知数列{an}满足a1 = 1,an+1 = 2an,那么a5的值为()A. 16B. 32C. 64D. 128答案:C3. 函数f(x) = 2x - 3的反函数为()A. f^(-1)(x) = (x + 3) / 2B. f^(-1)(x) = (x - 3) / 2C. f^(-1)(x) = 2x + 3D. f^(-1)(x) = 2x - 3答案:A4. 以下哪个不等式是正确的?()A. |x| > xB. |x| ≥ xC. |x| < xD. |x| ≤ x答案:B5. 已知集合A = {x | x^2 - 5x + 6 = 0},集合B = {x | x^2 - 3x + 2 = 0},则A∩B等于()B. {2, 3}C. {1, 3}D. {2}答案:D6. 已知直线l的方程为y = 2x + 3,点P(1, 0)到直线l的距离为()A. √5B. √13C. √17D. √21答案:A7. 函数f(x) = sin(x) + cos(x)的值域为()A. [-1, 1]B. [-√2, √2]D. [1, 2]答案:B8. 已知双曲线C的方程为x^2 / a^2 - y^2 / b^2 = 1,其中a > 0,b > 0,若双曲线C的渐近线方程为y = ±(√2)x,则()A. a = bB. a = √2bC. b = √2aD. b = 2a答案:C9. 已知等比数列{an}的首项a1 = 2,公比q = 2,则其前n项和Sn的公式为()A. Sn = 2^(n+1) - 2B. Sn = 2^(n+1) - 1C. Sn = 2^n - 1D. Sn = 2^n - 2答案:B10. 已知抛物线C的方程为y^2 = 4x,焦点F(1, 0),点P(2, 2)到抛物线C的准线的距离为()A. 1B. 2C. 3D. 4答案:B二、填空题(每题4分,共20分)11. 已知等差数列{an}的首项a1 = 3,公差d = 2,则a5 =_______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆市广益中学校高2022级高一上第一次月考数学试卷
第I 卷(选择题 共60分)
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项
中,只有一项符合题目要求.
1.已知集合{
}5,4,3,2,1=B ,集合A={}8,6,3,4,2,那么B A ⋂=( ) A {1,2,3,4,5} B {1,2,3} C {4,5} D {2,3,4} 2.下列关系正确的是( ) A .∅⊆{0}
B .∅∈{0}
C .0∈∅
D .{0}⊆∅ 3.已知全集=U R ,集合,图中阴影部分所表示
的集合为( )
A .{}1,2
B .{}4,5
C .{}1,2,3
D .{}3,4,5
4.已知函数1)(+=x x f ,那么)(2x f 的表达式为( )
A.12+x
B.()21+x
C.2x
D.()112++x 5.下列函数为奇函数的是( )
A.12)(+=x x f
B. 2
)(x x f = C. 1)(2--=x x x x f D.x
x x f 2
)(+=
6.已知函数y =()()
2
1020x x x x ⎧+≤⎪⎨>⎪⎩,若f (a )=10,则a 的值是( ) A .3或–3 B .–3或5 C .–3 D .3或–3或5
7.设偶函数()f x 的定义域为R ,当x [0,)∈+∞时()f x 是增函数,则(2)f -,(π)f ,
(3)f -的大小关系是( ) A .(π)f <(2)f -<(3)f - B .(π)f >(2)f ->(3)f - C .(π)f <(3)f -<(2)f -
D .(π)f >(3)f ->(2)f -
8.判断下列各组中的两个函数是同一函数的为( ) ⑴3
)
5)(3(1+-+=
x x x y ,52-=x y ; ⑵111-+=
x x y ,)1)(1(2-+=x x y ;
⑶x x f =)(,2)(x x g =
; ⑷343()f x x x =-,3()1F x x x =-;
⑸2
1)52()(-=x x f ,52)(2-=x x f 。
A .⑴、⑵
B .⑵、⑶
C .⑷
D .⑶、⑸ 9.已知函数y =f (x +1)定义域是[-2,3],则y =f (2x -1)的定义域是( )
A .[0,2
5
] B .[-1,4] C .[-5,5] D .[-3,7]
10 .函数)1,0(1
)(≠>-=a a a
a x f x 的图像可能为( )
11.若函数2
()2
f x mx mx =
-+的定义域为R ,则实数m 取值范围是( )
A .[0,8)
B .(8,)+∞
C .(0,8)
D .(,0)(8,)-∞⋃+∞
12.已知函数()266,0
34,0
x x x f x x x ⎧-+≥=⎨+<⎩,若互不相等的实数123,,x x x 满足
()()()123f x f x f x ==,则123x x x ++的取值范围是( )
A.11,63⎛⎫ ⎪⎝⎭
B.18,33⎛⎫- ⎪⎝⎭
C.11,63⎛⎤- ⎥⎝⎦
D.18,33⎛⎤- ⎥⎝⎦
第Ⅱ卷(非选择题 共90分)
二、填空题:本题共4小题,每小题5分,共20分.
13.已知集合{}
|2,1x A y y x ==<,则集合R C A =_________
14.函数2)(2
++=ax x x f 在()+∞,3上单调递增,则实数a 的取值范围是________
15.函数()f x
________ 16.已知函数2,(1)()11,(1)ax x f x x x
+≤⎧⎪
=⎨->⎪⎩在实数集R 上单减,则实数a 的取值范围是
三、解答题:共70分.解答应写出文字说明、证明过程或演示步骤.
17.(本题满分10分)
(1)计算:012
13
2)32()25(10)
002.0(827-+--+⎪
⎪⎭
⎫
⎝⎛---
-
(2)已知112
2
a a -+=3,求22a a -+的值
18. (本题满分12分)
已知全集U =R ,集合A ={x|x 2−4x ≤0},B ={x|m ≤x ≤m +2}. (1)若m =3,求∁U B 和A ∪B ;
(2)若B ⊆A ,求实数m 的取值范围; (3)若A ∩B =⌀,求实数m 的取值范围.
19.(本题满分12分)
已知函数f(x)=x 2−2|x|. (1)写出f(x)的分段解析式, (2)画出函数f(x)的图象.
(3)图象写出的单调区间和值域.
20.(本题满分12分)
已知函数2
()21f x x ax a =-++-
(1) 若2a =,求()f x 在区间[]0,3上的最小值。
(2) 若()f x 在区间[]0,1上有最大值3,求实数a 的值。
21.(本题满分12分)
设函数f(x)是增函数,对于任意x ,y ∈R 都有f(x +y)=f(x)+f(y). (1)求f(0)的值
(2)证明f(x)是奇函数;
(3)解不等式1
2f(x 2)−f(x)>1
2f(3x).
22.(本题满分12分)已知函数2()21
x x a
f x b +=⋅+是定义域为R 的奇函数.
(1)求函数()f x 的解析式;
(2)判断()f x 的单调性(不用证明)
(3)若存在[2,2]x ∈-使不等式1
(4)(12)0x
x f m f +⋅+-≥成立,求m 的最小值.。