气体保护焊焊丝中杂质对焊接质量的影响
二氧化碳气体保护焊焊接操作要点
二氧化碳气体保护焊焊接操作要点一.焊接参数设置1.电流选择:焊接电流的选择要根据焊丝直径决定。
一般来说,焊丝直径越小,焊接时应选择较低的焊接电流,以防止熔核过深。
2.电压选择:焊接电压的选择要根据板材厚度和焊缝形状来决定。
板材较厚时,应选择较高的电压,以保证焊缝的充满度和穿透力;而板材较薄时,则应选择较低的电压,以避免熔核过深、产生穿孔和扩腔缺陷。
3.进给速度选择:进给速度的选择是根据焊丝直径和焊接电流来决定的。
一般焊丝直径越大,电流越大,进给速度就应相应调整得更快。
二.焊接姿势和技巧1.稳定姿势:焊接时要保持稳定的身体姿势,使身体和手臂能够稳固地支撑焊枪,以保证焊缝的稳定性和均匀性。
2.位置控制:焊枪应保持与焊缝成约45度的角度,以确保熔池能够正常形成。
同时,焊枪离焊缝的距离应保持适当,一般焊枪与焊缝之间保持3-5毫米的间距即可。
3.前进速度:焊接时,焊枪应以均匀稳定的速度沿着焊缝前进,一般应保持每分钟4-5厘米的前进速度。
过快的前进速度会导致焊缝充填不充分,而过慢的前进速度则会导致熔核过深。
三.焊缝准备和清洁1.焊缝预处理:焊接前要对焊缝进行清洁和加工,将焊缝两侧的铁锈、油污和氧化物等杂质清除干净,以保证焊接质量。
2.焊缝加工:焊缝的准备应保证其宽度和深度符合要求。
一般来说,焊缝的宽度应与板材厚度相匹配,且焊缝深度一般应为板材的厚度的1.5-2倍。
3.焊缝清洁:焊接过程中,焊缝两侧的氧化物、污染物和尘埃等杂质会严重影响焊缝质量,因此焊接前要对焊缝进行清洁,可采用机械方法如打磨、刨削等,也可以使用溶剂进行清洗。
四.气体保护和预处理1.保护气体的流量:焊接时需要使用二氧化碳气体作为保护气体,其流量应根据材料的厚度和焊枪距离焊缝边缘的距离来调整。
一般来说,板材较薄时,气体流量应相应减小;板材较厚时,气体流量则应相应增大。
2.气体预处理:二氧化碳气体应经过滤芯来净化,以去除其中可能含有的杂质和水分。
二氧化碳气体保护焊的焊接时需要注意的参数
二氧化碳气体保护焊的焊接时需要注意的参数二氧化碳气体保护焊是目前广泛应用于金属焊接领域的一种焊接方法。
在进行二氧化碳气体保护焊时,有一些重要的参数需要注意,以确保焊接质量和效果。
本文将重点介绍这些参数及其注意事项。
一、焊接电流焊接电流是二氧化碳气体保护焊中最关键的参数之一。
焊接电流的大小直接影响焊接速度和焊缝形貌。
一般来说,焊接电流过大会导致焊接熔渣增多,焊缝过宽,焊接速度过快;焊接电流过小则会导致焊缝宽度不足,焊接速度过慢。
因此,在进行二氧化碳气体保护焊时,需要根据焊接材料的性质和焊接要求,选择适当的焊接电流。
二、焊接电压焊接电压是指在二氧化碳气体保护焊中,焊接电弧的电压大小。
焊接电压的高低直接影响焊接熔渣的形成和清除。
一般来说,焊接电压过高会导致焊接熔渣难以清除,焊接接头容易产生气孔;焊接电压过低则会导致焊接熔渣清除不彻底,焊缝容易产生夹渣缺陷。
因此,在进行二氧化碳气体保护焊时,需要根据焊接材料的性质和焊接要求,选择适当的焊接电压。
三、气体流量气体流量是指二氧化碳气体保护焊中保护气体的流量大小。
保护气体的流量直接影响焊接熔渣的清除和焊接接头的质量。
一般来说,气体流量过大会导致保护气体扩散范围过大,难以有效保护焊接区域;气体流量过小则会导致保护气体无法充分覆盖焊接区域,容易产生气孔和氧化皮。
因此,在进行二氧化碳气体保护焊时,需要根据焊接材料的性质和焊接要求,选择适当的气体流量。
四、焊丝直径焊丝直径是指在二氧化碳气体保护焊中使用的焊接电极的直径。
焊丝直径的大小直接影响焊接熔渣的形成和焊接接头的质量。
一般来说,焊丝直径过大会导致焊接熔渣增多,焊缝过宽;焊丝直径过小则会导致焊接熔渣清除不彻底,焊缝不足。
因此,在进行二氧化碳气体保护焊时,需要根据焊接材料的性质和焊接要求,选择适当的焊丝直径。
五、焊接速度焊接速度是指焊接过程中焊接电极移动的速度。
焊接速度的快慢直接影响焊缝的形成和焊接接头的质量。
一般来说,焊接速度过快会导致焊缝不够深,焊接接头强度不足;焊接速度过慢则会导致焊缝过宽,焊接熔渣增多。
气保焊常见的质量缺陷分析与防止措施
培训与意识
01
定期对焊接人员进行培训,提高其技能水平和质量意识,确保
焊接操作的规范性和准确性。
设备维护与检查
02
定期对焊接设备进行维护和检查,确保设备的正常运行和精度
,防止因设备故障导致的质量缺陷。
工艺控制与优化
03
持续优化焊接工艺,制定合理的焊接参数和操作规程,提高焊
接质量和稳定性。
THANKS
气保焊常见的质量缺陷分析 与防止措施
汇报人: 日期:
目录
• 气保焊简介 • 气保焊常见的质量缺陷 • 质量缺陷产生的原因分析 • 防止措施与改进建议 • 实例分析 • 结论
01
气保焊简介
气保焊的定义与特点
定义
气保焊是一种利用气体保护电弧进行 焊接的方法,通过在电弧周围形成一 层气体保护层,使焊接过程中金属不 被氧化,提高焊接质量。
特点
气保焊具有焊接速度快、熔深大、变 形小、适应性强等优点,广泛应用于 各种金属材料的焊接。
气保焊的应用范围
工业制造
压力容器
气保焊在汽车、船舶、航空航天、石 油化工等工业制造领域广泛应用,是 实现高效、高质量焊接的重要手段。
对于需要承受高压、高温或腐蚀介质 等苛刻环境下的压力容器,气保焊是 制造过程中必不可少的焊接方法。
案例一:某机械零件的气保焊质量缺陷分析
总结词:夹渣
详细描述:夹渣是指焊接过程中,熔池中的 熔渣未能及时浮出,而是在焊缝中夹带进去 的杂质。夹渣的产生可能是由于焊接前坡口 清理不干净、焊接速度过快、多层多道焊接
时熔渣未完全清除等原因造成的。
案例二:建筑钢结构的气保焊质量缺陷分析
总结词:未熔合
详细描述:在建筑钢结构的气保焊中,未熔合是一种 常见的质量缺陷,表现为焊缝金属与母材之间未能完 全熔合在一起。这可能是由于焊接电流过小、焊接速 度过快、焊丝或母材的熔点差异等原因造成的。
二保焊假焊的原因和解决方法
二保焊假焊的原因和解决方法大家好,今天咱们聊聊二保焊的那些事儿。
二保焊,又叫二氧化碳气体保护焊,这玩意儿在焊接领域可是个大主角。
不过呢,这个主角也有点小毛病,其中最头疼的就是“假焊”了。
假焊听起来挺吓人的,实际上就是焊接的连接不牢固,有可能一碰就裂了。
今天咱们就一起来看看,假焊是怎么回事儿,咱们又能用什么办法来解决这个问题。
1. 假焊的原因1.1 焊接工艺问题首先呢,假焊的一个大原因就是焊接工艺不当。
要知道,二保焊可不是随便一焊就行的事儿。
焊接的电流、电压、速度等等,都得调得妥妥的。
如果这些参数不对劲,焊接的时候就容易出现问题。
比方说,电流小了,焊接的熔池就没法充分融化,这就容易出现假焊。
电流大了又容易过热,导致焊缝变形,也不行。
1.2 焊接材料不合格另外一个常见的原因是焊接材料的问题。
说白了,就是焊丝或者焊条不靠谱。
如果焊丝的质量差,里面含有杂质,那焊接出来的接头自然就不牢固。
还有,焊接用的气体也很关键。
如果保护气体的纯度不够,那也会影响焊接质量,搞不好还会造成假焊。
1.3 材料表面处理不到位说到这里,我们还得聊聊材料的表面处理。
焊接前,材料的表面必须要处理干净,没有油污、锈迹什么的。
要是表面不干净,那焊接的时候就会有很多问题。
就像你做饭前不洗手,那食物肯定不干净,焊接也是一样的道理。
表面处理不到位,焊缝就容易出现假焊。
2. 解决方法2.1 调整焊接工艺参数要解决假焊问题,第一步就是得调整焊接工艺参数。
我们得根据实际情况,调整电流、电压和焊接速度。
一般来说,可以通过实验来找出最适合的参数值。
这个过程有点像调试音响一样,需要一点点试探和调整。
记得在调试过程中要做好记录,这样下次就能更加准确地设置了。
2.2 选用合格的焊接材料第二步,当然就是选择优质的焊接材料了。
焊丝和焊条要选那些质量过硬的,尽量从正规的厂家购买。
焊接气体也是一样,要确保气体的纯度符合标准。
这样才能保证焊接的效果,让假焊的概率降到最低。
CO2气体保护焊工艺参数对焊接质量的影响
CO2气体保护焊工艺参数对焊接质量的影响摘要:正确选择焊接工艺参数是获得高生产率和高质量焊缝的先决条件,各种工艺参数的选择是以生产率要求、被焊材料、焊缝位置和形状,以及设备情况为基础的。
CO2气体保护焊通常采用短路过渡及细颗粒过渡工艺,工艺参数主要包括:焊丝直径、焊接电流、焊接速度、焊丝伸出长度、直流回路电感值、气体流量、电源极性、焊接角度及焊接方向等。
关键词:工艺参数;焊接质量;焊接电流;电弧电压前言二氧化碳气体保护焊属于利用CO2作保护气体的熔化极气体保护焊,是以燃烧于工件与焊丝间的电弧作热源的一种焊接方法,简称CO2焊。
由于二氧化碳具有一定的氧化性,因此二氧化碳焊一般采用含一定脱氧元素的专用CO2焊丝进行焊接。
二氧化碳气体保护焊是目前焊接钢铁材料的重要熔焊方法,在许多金属结构的生产中已逐渐取代了手工电弧焊和埋弧自动焊。
特别是药芯焊丝CO2气体保护焊近年来发展速度很快,越来越多的在生产中应用。
CO2气体保护焊主要用于焊接低碳钢及低合金钢。
此外,还用于耐磨零件的堆焊、铸钢件的补焊以及电铆焊等方面。
1 CO2气体保护焊的工艺特点1.1 CO2气体保护焊的优点1.1.1焊接成本低CO2气体及CO2焊焊丝价格便宜,焊接能耗低;因此,二氧化碳气体保护焊的使用成本很低,只有埋弧焊及手工电弧焊的30%~50%。
1.1.2焊缝质量好CO2气体保护焊抗锈能力强,对油污不敏感,焊缝含氢量低,抗裂性能好。
1.1.3生产效率高CO2气体保护焊采用细丝焊接时,焊接电流密度较大,电弧热量集中,熔透能力强,熔敷速度快,且焊后无需进行清渣处理,因此生产效率高;半自动CO2气体保护焊的效率比手工电弧焊高1~2倍,自动CO2气体保护焊比手工电弧焊高2~5倍。
1.1.4适用范围广适用于各种位置的焊接,而且既可用于薄板的焊接又可用于厚板的焊接;CO2气流还能对焊件起一定的冷却作用,在一定程度上防止了焊接薄壁构件的烧穿问题,还能减小焊接变形。
钨极惰性气体保护焊(TIG)
焊接参数
01 02
焊接电流
电流的大小直接影响焊接熔池的深度和宽度,进而影响焊缝的强度和外 观。电流过小会导致熔深不足,焊缝强度不够;电流过大则可能导致焊 缝过深、咬边等缺陷。
焊接速度
焊接速度决定了单位时间内完成的焊接长度。速度过快可能导致焊缝未 完全熔合,速度过慢则可能导致焊缝过宽、过深。
03
电弧电压
缝氧化或气孔。
05
TIG焊接应用实例
航空航天领域应用
总结词
关键技术,高标准要求
详细描述
钨极惰性气体保护焊在航空航天领域应用广泛,主要用于飞机机身、机翼、发 动机部件等的焊接,由于航空材料的高质量和安全性要求,TIG焊接技术能够满 足其严格的标准和要求。
汽车制造领域应用
总结词
高效、高质量
详细描述
电弧电压决定了电弧的长度,进而影响焊接熔池的形状和大小。电压过
高可能导致电弧过长、不稳定,电压过低则可能导致电弧过短、不稳定。
焊接材料
母材质量
母材的化学成分、机械性能和表面状态等都会影响焊接质量。例 如,碳含量过高可能导致焊缝脆化;表面有油污、锈迹等会影响 焊接过程的稳定性和焊缝质量。
填充材料
填充材料的化学成分、纯度等也会影响焊接质量。例如,杂质过 多可能导致焊缝脆性增大;合金元素不足可能导致焊缝强度下降 。
在汽车制造领域,钨极惰性气体保护焊主要用于发动机、变速器、车架等关键部 件的焊接,由于汽车制造业对焊接质量和效率的高要求,TIG焊接技术能够提供 高效、高质量的焊接解决方案。
压力容器领域应用
总结词
高强度、高密封性
详细描述
在压力容器制造中,钨极惰性气体保护焊主要用于封头、筒体等关键部位的焊接,由于压力容器对焊接强度和密 封性的高要求,TIG焊接技术能够提供可靠、安全的焊接工艺。
co2气体保护药芯焊丝材料要求
co2气体保护药芯焊丝材料要求一、化学成分1.元素含量:CO2气体保护药芯焊丝应符合相关标准规定的元素含量要求。
具体来说,碳(C)、硅(Si)、锰(Mn)、磷(P)、硫(S)等元素的含量应符合标准规定。
2.合金元素:根据焊接材料的不同,合金元素含量也会有所不同。
一般来说,CO2气体保护药芯焊丝中的合金元素含量应符合标准规定,以保证焊缝的力学性能和焊接质量。
二、力学性能1.抗拉强度:CO2气体保护药芯焊丝的抗拉强度应符合相关标准规定。
一般来说,抗拉强度越高,焊接接头的强度也会相应提高。
2.屈服点:CO2气体保护药芯焊丝的屈服点应不低于母材的屈服点,以保证焊接接头的塑性和韧性。
3.延伸率:CO2气体保护药芯焊丝的延伸率应不低于母材的延伸率,以保证焊接接头的塑性变形能力。
4.冲击韧性:对于有冲击韧性要求的焊接结构,CO2气体保护药芯焊丝的冲击韧性应符合相关标准规定。
三、焊接性能1.熔滴过渡:CO2气体保护药芯焊丝的熔滴过渡应顺畅,无明显飞溅,以保证焊接过程的稳定性和焊缝的质量。
2.电弧稳定性:CO2气体保护药芯焊丝在焊接过程中应能保持稳定的电弧燃烧,以避免焊接缺陷的产生。
3.焊接速度:CO2气体保护药芯焊丝的焊接速度应适中,过快或过慢的焊接速度都可能影响焊接质量和效率。
4.润湿性:CO2气体保护药芯焊丝在焊接过程中应具有良好的润湿性,以利于形成高质量的焊缝。
四、表面质量1.外观光滑度:CO2气体保护药芯焊丝的外观应光滑,无明显的划痕、毛刺等缺陷。
2.镀层质量:CO2气体保护药芯焊丝的外表面应无气泡、裂纹等缺陷,镀层应均匀、牢固地附着在焊丝表面。
3.锈蚀情况:CO2气体保护药芯焊丝不应有锈蚀现象,如发现锈蚀应及时处理,以保证焊接质量和安全性。
五、尺寸精度1.直径精度:CO2气体保护药芯焊丝的直径精度应符合相关标准规定,以保证焊接过程的稳定性和焊缝的质量。
2.长度精度:CO2气体保护药芯焊丝的长度精度也应符合相关标准规定,以确保连续焊接过程的顺畅性。
焊接材料对焊接质量的影响1
焊接材料对焊接质量的影响焊接材料(焊条、焊丝、焊剂)的成分对焊缝金属的化学成分、组织与性能有重要的影响。
为了使焊缝金属具有所要求的成分与性能,必须保证焊接材料中有益的合金元素含量和严格控制有害杂质的含量。
1 焊缝金属的合金化(1)焊缝金属的合金化就是把所需的合金元素通过焊接材料过渡到焊缝金属(或堆焊金属)中去。
焊接中合金化的目的是补偿焊接过程中由于蒸发、氧化等原因造成的合金元素的损失,消除焊接缺陷(裂纹、气孔等)和改善焊缝金属的组织和力学性能,或者是获得具有特殊性能的堆焊金属。
对金属焊接性影响较大的合金元素主要有C、Mn、Si、Cr、Ni、Mo、Ti、V、Nb、Cu、B等;低合金钢焊接中提高热影响区淬硬倾向的元素有C、Mn、Cr、Mo、V、W、Si等;降低淬硬倾向的元素有Ti、Nb、Ta等。
还应特别注意一些微量元素的作用,如B、N、RE等。
焊接中常用的合金化方式有以下几种。
①应用合金焊丝或带极把所需要的合金元素加入焊丝、带极或板极内,配合碱性药皮或低氧、无氧焊剂进行焊接或堆焊,把合金元素过渡到焊缝或堆焊层中去。
这种合金化方式的优点是可靠,焊缝成分均匀、稳定,合金损失少;缺点是制造工艺复杂,成本高。
对于脆性材料,如硬质合金不能轧制、拔丝,故不能采用这种方式。
②应用合金药皮或非熔炼焊剂把所需要的合金元素以铁合金或纯金属的形式加入药皮或非熔炼焊剂中,配合普通焊丝使用。
这种合金化方式的优点是简单方便,制造容易,成本低;缺点是由于氧化损失较大,并有一部分合金元素残留在渣中,故合金利用率较低,合金成分不够稳定、均匀。
③应用药芯焊丝或药芯焊条药芯焊丝的截面形状是各式各样的,最简单的是具有圆形断面的,外皮可用低碳钢其他合金钢卷制而成,里面填满需要的铁合金及铁粉等物质。
用这种药芯焊丝可进行埋弧焊、气体保护焊和自保护焊,也可以在药芯焊丝表面涂上碱性药皮,制成药芯焊条。
这种合金过渡方式的优点是药芯中合金成分的配比可以任意调整,因此可行到任意成分的堆焊金属,合金的损失较少;缺点是不易制造,成本较高。
二氧化碳气体保护焊未焊透的原因
二氧化碳气体保护焊未焊透的原因一、简介二氧化碳气体保护焊(简称CO2焊)是一种常用的金属焊接技术,广泛应用于汽车制造、船舶建造和建筑行业。
然而,在实际应用中,经常会遇到CO2焊未焊透的情况,影响产品的质量和使用寿命。
本文将就此展开讨论。
二、CO2焊未焊透的原因1. 焊接电流不稳定在CO2焊过程中,焊接电流的稳定性对焊接质量至关重要。
如果焊接电流不稳定,容易导致焊接熔深不均匀,从而影响焊透的效果。
2. 焊接速度过快过快的焊接速度会导致焊接熔深不足,无法完全融合焊接件,从而使焊透效果不佳。
3. 焊接温度不够CO2焊需要足够高的温度才能保证焊透效果,如果焊接温度不够,熔融的金属不足以填充焊缝,造成焊接不透。
4. 焊接参数设置不当焊接参数包括电流、电压和焊接速度等,如果这些参数设置不当,就会影响焊接质量,导致焊透效果不佳。
5. 焊缝准备不良焊缝准备不良会导致焊接时无法完全融合焊接件,从而影响焊透的效果。
焊缝表面存在油污、氧化物等杂质,都会对焊接质量产生不良影响。
三、如何避免CO2焊未焊透1. 确保焊接设备的稳定性和可靠性,定期进行维护和检修,保证焊接电流的稳定性。
2. 根据工件材料和厚度合理设置焊接参数,保证焊接熔深和焊接速度的平衡。
3. 在焊接前做好焊缝准备工作,清理焊接区域的杂质,确保焊缝的纯净度。
4. 确保焊接区域的通风良好,避免被污染和氧化。
5. 结合实际情况,选用合适的焊接技术和方法,保证焊接的质量和效果。
四、个人观点和建议作为CO2焊的从业者,我认为要解决CO2焊未焊透的问题,关键在于全面分析焊接过程中的各种因素,从焊接设备、材料准备到焊接技术都要做到尽善尽美。
不断学习和积累实践经验也是非常重要的,只有不断总结和改进,才能在实际工作中不断提高焊接技术,避免出现未焊透的情况。
CO2焊未焊透的原因可能是多方面的,需要综合考虑和分析。
对于每一个可能的因素,都需要进行合理的控制和调整,才能确保焊接质量。
影响焊缝金属的杂质和气体
影响焊缝金属的杂质和气体1. 硫硫是焊缝中有害元素之一,它与铁生成低熔点的硫化铁(FeS)。
焊接时FeS会导致焊缝热裂和热影响区出现液化裂纹,使焊接性能变坏,降低冲击韧性和耐蚀性,促使产生偏析。
同时,硫以薄膜形式存在于晶界,使钢的塑性和韧性下降。
熔液中的Mn、MnO、CaO具有一定的脱硫作用,与硫反应后,生成MnS、CaS都进入熔渣中。
由于MnO、CaO均属碱性氧化物,在碱性熔渣中含量较多。
所以碱性熔渣脱硫能力比酸性熔渣强。
因此,焊接含硫偏高的钢材,采用碱性焊条具有抗裂作用。
2.磷磷也是焊缝中尚存的有害元素之一,它会增加钢的冷脆性,恶化钢的焊接性能,大幅度降低焊缝金属的冲击韧性。
焊接奥氏体类钢或焊缝中含碳量较高时,磷会促使焊缝金属产生热裂纹。
由于碱性熔渣中含有CaO,所以脱磷效果比酸性熔渣好,当然最好的办法是在母材及焊接材料中限制硫、磷的含量。
3.焊接区内的气体(1)气体的来源焊接过程中,焊接区内充满大量气体,主要有CO、CO2、H2等。
由于焊条、焊丝、工件潮湿,有油污、铁锈,受热后产生气体以及空气侵入熔池。
采用低氢型焊条施焊时,焊缝含氢量比较低,用CO2气体保护焊时,含氢量最低。
氢使焊缝塑性严重下降,是产生气孔的根源,也会导致延迟裂纹的产生,还会在拉伸试样断面上出现白点。
减少焊缝金属含氢量常用的措施有:①消除焊件和焊丝表面上的铁锈、杂质和油污;②对焊丝、焊剂、焊条进行烘焙,保持干燥;③在焊条药皮和焊剂中加入适量的氟石(CaF2)、硅砂(SiO2),具有较好的去氢效果;④采用低氢型焊条、超低氢型焊条和碱性焊剂;⑤在焊接低合金钢对接焊缝时,为防止焊接时吸入空气及潮湿,可在背面先用手工焊封底,正面用碳刨刨槽焊接,再反身将原先的封底焊刨去,正式封底焊,这样可防止底部吸入空气,效果很好。
(2)氧气氧气主要来源于空气、药皮和焊剂中的氧化物、水分及焊接材料表面的氧化物。
焊缝金属中含氧量增加,焊缝强度、硬度和塑性会明显下降,出现热脆、冷脆和时效硬化,并在焊缝中形成气孔。
气体保护焊对焊接的影响
气体保护焊对焊接的影响摘要:短路过渡焊接由于具有电流小、电压低的焊接特点,使得短路过渡焊接的范围较小,焊接产生的光、热辐射较小,操作难度较低,易于与薄板焊接等方式进行全方位焊接,因而在生产生活中得到了广泛应用。
为了进一步提升焊接的质量水平,在考虑焊缝金属的化学成分、焊接接头的组织和性能、焊接应力与变形时,还要保证焊接接头没有缺陷,这些与焊接方法和焊接工艺是否合理有密切关系,各种焊接方法有各自的特点,因此,焊接时应根据应用范围进行合理选用。
另外,每种焊接方法随着不同的焊接工艺,也明显地影响焊接质量。
关键词:气体保护;焊接方法;焊接工艺的影响引言在进行短路过渡焊接的过程中,将焊接同路中的电弧电压、焊接电流、送丝速度、焊接回路电感、焊接速度、气体流量和焊丝伸出长度以及电源极性等作为主要的技术参数进行设置。
焊接回路中的电弧电压和焊接电流,短路过渡由于自身功能要求,呈现出低电压的特性。
但是如果电弧电压的数值过低,增加焊接引燃难度,就造成了焊接流程的不稳定。
如果焊接回路中出现电弧电压过高的情况,使得熔滴过渡发生改变,由短路过渡转变为大颗粒的长弧过渡,也同样造成了焊接过程的不稳定。
为了保证焊接流程的稳定性,焊丝直径、电弧电压与焊接电流要根据实际要求,进行科学设置,使得三者能够协调起来,保证焊接质量。
1气孔问题在气体保护焊时,由于氧化作用,会在熔池中产生气体,由于气体又具有冷却功能,一方面熔池在快速凝固的情况下,在焊缝之中容易产生较多气孔。
一般使用焊丝作为技术手段,减少焊缝中气孔的产生几率。
这是因为焊丝之中含有足够的脱氧元素,能够高效地防止焊缝气孔的产生。
另一方面熔池在高温条件下,会有大量氧气渗入进来,在焊缝凝结的过程中氧气不能够完全逸出,残留的氧气在焊缝中形成气孔。
气体保护焊电弧区中的氢元素主要来自两个部分:一部分是焊接过程中所使用的焊丝以及工件表面的油污及铁锈内含有氢元素;另一部分是气体中含有一定的水分。
为了消除氢气的影响,一方面在进行焊接操作之前,相关工作人员要对焊丝和工件表面的油污与铁锈进行清除;另一方面焊接过程中应选用水分含量较低的气体。
二氧化碳气体保护焊的焊接参数设定
二氧化碳气体保护焊的焊接参数设定二氧化碳气体保护焊的焊接参数设定二氧化碳气体保护焊的焊接参数有:焊丝直径、焊接电流、电弧电压、焊接速度、气体流量、干伸长度、电源极性、回路电感、焊枪倾角。
干伸长度、电源极性、回路电感、焊枪倾角。
一、焊丝直径,焊丝直径影响焊缝熔深。
本文就最常用的焊丝直径1.2mm 实心焊丝展开论述。
牌号:H08MnSiA 。
焊接电流在150~300时,焊缝熔深在6~7mm 。
二、焊接电流,依据焊件厚度、材质、施焊位置及要求的过渡形式来选择焊接电流的大小。
短路过渡的焊接电流在110~230A 之间(焊工手册为40~230A );细颗粒过渡的焊接电流在250~300A 之间。
焊接电流决定送丝速度。
焊接电流的变化对熔池深度有决定性的影响,随着焊接电流的增大,着焊接电流的增大, 熔深明显增加,熔宽略有增加。
熔深明显增加,熔宽略有增加。
三、电弧电压,三、电弧电压,电弧电压不是焊接电压。
电弧电压不是焊接电压。
电弧电压不是焊接电压。
电弧电压是在导电嘴和焊件之间测得的电压,电弧电压是在导电嘴和焊件之间测得的电压,电弧电压是在导电嘴和焊件之间测得的电压,而焊而焊接电压是焊机上的电压表所显示的电压。
焊接电压是电弧电压与焊机和焊件间连接的电缆上的电压降之和。
通常情况下,电弧电压在17~24V 之间。
电压决定熔宽。
之间。
电压决定熔宽。
四、焊接速度,焊接速度决定焊缝成形。
焊接速度过快,熔深和熔宽都减小,并且容易出现咬肉、未熔合、气孔等焊接缺陷;过慢,会出现塌焊、增加焊接变形等焊接缺陷。
通常情况下,焊接速度在80mm/min 比较合适。
比较合适。
五、气体流量,CO2气体具有冷却特点。
因此,气体流量的多少决定保护效果。
通常情况下,气体流量为15L/min ;当在有风的环境中作业,流量在20L/min 以上(混合气体也应当加热)。
六、干伸长度,干伸长度是指从导电嘴到焊件的距离。
干伸长度是指从导电嘴到焊件的距离。
气体保护焊焊接工艺
气体保护焊焊接工艺简介气体保护焊是一种常用的焊接工艺,通过在焊接过程中引入保护气体,以保护熔融金属与周围氧气的接触,从而减少氧化和沾污,提高焊缝质量。
该工艺广泛应用于金属焊接领域,特别适用于不锈钢、铝合金等高反应性金属的焊接。
工艺步骤气体保护焊焊接工艺包括以下步骤:1.准备工作:清洁焊接表面,去除氧化层和油脂等杂质,以确保焊接接头的质量。
2.装配焊接设备:确定适当的焊接设备和工具,如保护气体供应系统、焊枪和电源等。
3.配置保护气体:根据焊接材料的要求,选择合适的保护气体,如纯净的氩气或氩气与其他气体的混合物。
4.调节气体流量:根据焊接材料的厚度和类型,调节保护气体的流量,以确保适当的保护效果。
5.确定适当的电流和电压:根据焊接材料和焊接参数表,设置适当的电流和电压,以获得理想的焊接效果。
6.进行焊接:将焊条或焊丝与工件接触,通过引入保护气体开始焊接。
焊接时需要保持恰当的焊接速度和距离,以避免过热或冷却太快。
7.后处理工作:焊接完成后,进行适当的后处理,如去除焊渣和清洁焊缝,以获得最终的焊接成品。
常见问题与注意事项在气体保护焊焊接工艺中,需要注意以下问题:1.保护气体的纯度和流量对焊接质量有重要影响,需要根据具体要求进行调整。
2.电流和电压的设置需要根据焊接材料和焊接参数表进行选择,以达到理想的焊接效果。
3.焊接过程中要注意焊接速度和距离的控制,避免过热或冷却不足导致焊缝质量下降。
4.后处理工作的细致处理可以提高焊接部位的美观度和耐腐蚀性。
总结气体保护焊焊接工艺是一种常用的焊接技术,通过引入保护气体,在焊接过程中保护熔融金属,提高焊缝质量。
在应用该工艺时,需要注意保护气体的选择和流量调节,适当设置电流和电压,控制焊接速度和距离,并进行适当的后处理工作。
这些注意事项可以确保焊接质量和成品的美观性。
短路过渡CO2保护焊焊接参数对质量的影响
短路过渡CO2保护焊焊接参数对质量的影响作者:谢合胜来源:《卷宗》2020年第20期摘要:二氧化碳气体保护焊是应用非常广泛的一种焊接方法,其中在焊接过程中采用短路过渡的方式应用最为普遍。
要想得到合格的优质的焊缝质量,必须在焊前、焊接中对影响焊接质量的因素进行合理的控制,其中焊接参数对焊接质量具有很大的影响。
关键词:CO2焊;短路过渡;焊接参数;质量随着工业的迅速发展,钢铁材料应用越来越多,在竞争日益强烈的今天,效率非常重要,二氧化碳气体保护焊也得到了越来越广泛的应用。
在汽车制造行业、车辆制造领域、化工机械、农业机械部门等应用非常广泛。
二氧化碳气体保护焊主要用于焊接低碳钢和低合金钢,效率高。
为了达到较好的焊接质量,也需要对影响焊接质量的各个方面进行考虑。
1 CO2气体保护焊二氧化碳气体保护焊是利用二氧化碳气体作为保护气体,用焊丝作为填充材料的一种熔化极电弧焊方法。
二氧化碳气体能对熔池进行很好的保护,防止空气中的有害气体的侵入。
在二氧化碳气体保护焊中,二氧化碳气体的纯度对焊接质量有影响,焊丝作为填充金属也会对焊接质量造成影响。
二氧化碳气体保护焊有很多优点:焊接生产效率高,焊接过程中不需要像焊条电弧焊那样更换焊条,可以连续不断的进行焊接,节省了时间,在焊接后也不需要清理熔渣,减少了工序;气体来源广泛,价格便宜,用电量相对少,焊接成本相对较低;焊接电弧能量集中,工件受热面积小,焊接变形小,特别适用于薄板的焊接具有优势,易于实现全位置焊接,容易成形,质量高。
但二氧化碳气体保护焊焊接时飞溅比较大,特别是焊接参数不匹配时焊接飞溅更大。
另外,需要进行防风措施。
2 短路过渡形式二氧化碳气体保护焊按选用的焊丝的粗细来分,分为细丝CO2焊和粗丝CO2焊。
按照熔滴的过渡形式CO2焊主要分为短路过渡和细颗粒过渡,一般细丝CO2焊多采用短路过渡形式,粗丝CO2焊采用细颗粒过渡形式。
其中细丝采用短路过渡形式应用最广泛。
细颗粒过渡形式时采用较大的焊接电流和电弧电压,电弧穿透力强,适于焊接中厚度板材,但焊接时飞溅较大,成形不好,应用较少。
焊接工艺中的杂质和夹杂物问题分析和控制
加强操作过程监控管理
制定详细的操作规程
建立完善的焊接操作规程,明确每一步操作的步骤、要求和注意事项,确保操作人员能够规范、准确地执行焊接 操作。
引入过程监控技术
采用先进的传感器和监测设备,实时监测焊接过程中的电流、电压、温度等关键参数,及时发现并处理异常情况 ,确保焊接过程稳定可控。
提高操作人员技能水平
其他先进无损检测技术
涡流检测法
利用电磁感应原理,通过测量焊缝表面涡流的变 化来识别缺陷。
磁粉检测法
在焊缝表面施加磁场,利用磁粉聚集显示缺陷形 状和位置。
渗透检测法
使用渗透剂渗入焊缝表面缺陷,再通过显像剂显 示缺陷形状和位置。
04
控制措施与手段
原材料质量控制
严格筛选原材料
选用质量稳定、杂质含量低的优质原 材料,从源头控制杂质和夹杂物的引 入。
X射线照相法
利用X射线穿透物质并在另一侧形成 影像的原理,检测焊缝内部的气孔、 夹渣、裂纹等缺陷。
X射线荧光屏观察法
通过荧光屏接收X射线并转换为可见光 ,直接观察焊缝内部缺陷。
超声波检测法
脉冲反射法
利用超声波在材料中传播遇到缺陷时产生反射的原理,检测焊缝内部的气孔、 夹渣、裂纹等缺陷。
穿透法
在两个相对面上分别放置发射和接收探头,通过检测超声波穿透焊缝后的能量 变化来判断缺陷情况。
焊接工艺是一种通过加热、加压或两者并用,使两个分离的金属 连接处达到原子间的结合,形成永久性连接的工艺方法。
焊接工艺分类
根据焊接过程中金属所处的状态及工艺特点,焊接工艺可分为熔 化焊、压力焊和钎焊三大类。
焊接工艺应用领域
制造业
焊接工艺在制造业中应用广泛,如汽车、船舶、航 空航天、轨道交通等。
CO2气体保护焊的焊接缺陷产生的原因及防止方法以及焊接常用知识
CO2气体保护焊的焊接缺陷产生的原因及防止方法【转】CO2气体保护焊的工艺参数选择CO2气体保护焊以其速度快、操作方便、焊接质量高、适用范围广和成本低廉等诸多优势,逐渐取代了传统的手工焊条电弧焊。
在焊接生产中,焊接工艺参数对焊接质量和焊接生产率有很大的影响,正确选择焊接工艺参数是获得质量优良的焊接接头和提高生产率的关键。
本文主要对CO2气体保护焊中各种相关的工艺参数对CO2气体保护焊的影响及其焊接工艺的参数选择进行了比较详细的分析。
随着科学技术的飞速发展,焊接设备也在不断的更新换代。
CO2气体保护焊的出现和发展对于传统的手工焊条电弧焊就是一次技术性的革命。
它以其速度快、操作方便、焊接质量高、适用范围广和低成本等诸多优势,逐渐取代了传统的手工焊条电弧焊。
在实际生产中,广泛用于机车车辆、汽车、摩托车、船舶、煤矿机械及锅炉制造行业,主要用于焊接低碳钢、低合金钢、耐磨零件的堆焊、铸钢件的补焊等方面。
为了充分发挥CO2气体保护焊的效能,在焊接时必须正确选择焊接工艺参数。
焊接工艺参数就是焊接时,为保证焊接质量而选定的各项参数的总称。
CO2气体保护焊焊接工艺参数主要包括焊丝直径、焊接电流、电弧电压、焊接速度、气体流量、焊丝伸出长度、焊枪倾角和电源极性等。
在这里,我根据多年的工作经验,把CO2气体保护焊各焊接工艺参数对其焊接的影响及其选择的肤浅认识整理出来,供大家参考、探讨:1、 CO2气体保护焊各工艺参数对其焊接的影响焊接工艺参数对焊接质量和焊接生产率有很大的影响。
为了获得优质的焊接接头,必须先搞清楚各焊接工艺参数对焊接的影响。
焊丝直径焊丝直径对焊接过程的电弧稳定、金属飞溅以及熔滴过渡等方面有显著影响。
随着焊丝直径的加粗(或减细)则熔滴下落速度相应减小(或增大);随着焊丝直径的加粗(或减细),则相应减慢(或加快)送丝速度,才能保证焊接过程的电弧稳定。
随着焊丝直径加粗,焊接电流、焊接电压、飞溅颗粒等都相应增大,焊接电弧越不稳定,焊缝成形也相对较差。
二氧化碳(CO2)气体保护焊焊接缺陷总结分析
二氧化碳(CO2)气体保护焊焊接缺陷的总结分析摘要:焊接生产中经常会用到各种焊接形式,目前二氧化碳(co2)气体保护焊在焊接生产中的应用越来越广泛,但二氧化碳(co2)气体保护焊在实际焊接中如果存在焊接材料使用不当、焊接方法选择不合理、焊接工艺参数选择不正确、对焊接设备的相关性能不了解等,都会使焊缝产生各种焊接缺陷,本文主要阐述焊缝的内外部缺陷、缺陷原因分析、处理方法及应采取的相关的预防措施等。
关键词:缺陷、焊接缺陷前言在实际焊接中焊接缺陷的产生始终困扰着我们,焊接缺陷的产生对焊接构件的质量、安全性能等均存在着严重的影响,因此我们必须对焊接过程中产生的各种焊接缺陷有充分足够的了解、认识,对其产生的原因进行深入的剖析,进而采取相关的预防性措施对其进行“对症下药”,使之产生“药到病除之功效”。
1 焊缝的外部缺陷、缺陷产生的原因、处理方法及应采取的预防措施焊缝外部缺陷的产生会造成产品外观不良,影响焊缝的观感质量,同时对其连接强度产生相应的不良影响,且其应力分布集中,进而造成焊件结构使用安全性能显著下降。
产生焊缝外部缺陷的主要原因有:焊接工艺参数选择不当、焊件坡口角度不当、拼装间隙不均匀、焊接电流过大或过小、焊枪喷嘴高度过高、焊件位置安放不当、焊接速度或快或慢、焊工操作技能较差等,二氧化碳(co2)气体保护焊焊缝的内部缺陷主要有:焊缝产生蛇形焊道、弧坑、烧穿、咬边、焊瘤、飞溅等。
1.1焊缝产生蛇形焊道的主要原因:焊丝干伸过长;焊丝校正调整不良;导电嘴磨损严重及焊工操作水平不佳等;1.2弧坑:弧坑是焊缝收尾低于焊缝表面高度而产生的凹陷或凹坑,在弧坑处易产生裂纹或缩孔,弧坑产生的原因主要是收尾时焊枪抬起过快,弧坑没有填满,或焊工没有运用好收弧电流与电压等。
预防措施:收弧时不要收的太快,填满弧坑后再熄弧,有收弧电流、电压的应将收弧电流、电压调到i=150a、u=19~21v范围内,焊缝在结束前10㎜~20㎜处用收弧电流、电压进行焊接收弧;1.3 烧穿:主要是焊接电流过大、焊接速度过慢及焊缝根部间隙过大等。
CO2焊焊接参数及对焊接质量的影响
JIU JIANG UNIVERSITY毕业设计题目:CO2焊焊接参数及对焊接质量的影响院系:机械与材料工程学院专业:焊接技术及自动化姓名:年级:指导教师:二零一零年十二月摘要二氧化碳气体保护焊是焊接方法中的一种,是以二氧化碳气为保护气体,进行焊接的方法。
在应用方面操作简单,适合自动焊和全方位焊接。
在焊接时不能有风,适合室内作业。
由于二氧化碳气体的热物理性能的特殊影响,使用常规焊接电源时,焊丝端头熔化金属不可能形成平衡的轴向自由过渡,通常需要采用短路和熔滴缩颈爆断、因此,与MIG焊自由过渡相比,飞溅较多.但如采用优质焊机,参数选择合适,可以得到很稳定的焊接过程,使飞溅降低到最小的程度.由于所用保护气体价格低廉,采用短路过渡时焊缝成形良好,加上使用含脱氧剂的焊丝即可获得无内部缺陷的质量焊接接头.因此这种焊接方法目前已成为黑色金属材料最重要焊接方法之一。
本文主要是介绍二氧化碳气体保护焊的发展及前景。
分析二氧化碳焊的特点及在薄板厚板、工程机械、供水管道当中的应用。
介绍了二氧化碳焊焊接工艺参数对成形质量的影响及二氧化碳中飞溅问题的分析与处理。
通过实验研究得出实验前所设计工艺参数中最为合理的应用参数。
【关键词】:二氧化碳气体保护焊焊接参数缺陷成形质量目录第1章绪论 (1)1.1 焊接发展概况 (1)1.2 焊接方法分类及特点 (2)1.3 本课题研究的内容及意义 (4)第2章二氧化碳焊 (6)焊原理特点及应用 (6)2.1 CO22.1.1 CO2焊基本原理 (6)2.1.2 CO2焊基本特点 (6)2.1.3 CO2焊的一些应用 (7)焊设备 (7)2.2 CO2焊的焊接材料.......................................... ..92.3 CO22.3.1 CO2保护气体 (9)2.3.2 CO2焊焊丝 (9)焊缺陷及处理措施 (10)2.4 CO22.4.1合金元素的氧化 (10)2.4.2 CO2焊气孔 (10)2.4.3 CO2焊飞溅及处理措施 (11)第3章二氧化碳焊实验设计 (13)3.1 实验材料 (13)3.1.1 20R钢板成分及性能 (13)3.1.2 H08Mn2SiA焊丝 (14)3.1.3焊缝分布 (15)焊设备及工艺 (15)3.2 CO23.3 实验工艺参数 (16)第4章实验及数据 (18)4.1 焊接试样 (18)4.1.1 焊前准备 (18)4.1.2焊接过程 (18)4.1.3焊后处理 (19)4.2 外观无损检测 (20)4.3 形貌观察 (22)4.4 硬度 (25)第5章数据整理及分析 (26)5.1 数据整理 (26)5.1.1 焊接电流对焊缝质量影响 (26)5.1.2电弧电压对焊缝质量影响 (27)5.1.3接头性能分析 (27)5.2 工艺参数对比及分析 (28)结论 (30)参考文献 (31)致谢 (32)第1章绪论焊接是被焊工件的材质(同种或异种),通过加热或加压或两者并用,并且用或不用填充材料,使工件的材质达到原子间的建和而形成永久性连接的工艺过程。
焊接区内的气体对焊接质量的影响
焊接区内的气体对焊接质量的影响气焊过程中焊接区内的大量气体是由一氧化碳、二氧化碳、水蒸汽、氧气、氮气以及由它们分解的产物和金属、熔渣的蒸气等组成的混合气体。
其中对焊接质量影响最大的是氧气(O2)、氢气(H2)和氮气(N2)。
一、氧的影响(一)氧的来源气焊过程中不可避免地有氧气侵入,如气体火焰中自由状态的氧常常进入内焰而侵入熔池.外焰中的二氧化碳和水蒸汽中的氧,也常和熔池内液体金属及其附近的热态金属化合;当气焊火焰因风吹歪斜偏离熔池、焊炬过早离开熔池,都使气体火焰不能很好地保护熔池而造成空气中的氧侵入焊接区;再者,焊丝、熔剂和母材中溶解的氧或氧化物,金属表面的油脂、铁锈、油漆等污物及熔剂内部的结晶水等均构成了氧的来源。
(二)氧对焊接和焊接质量的影响由于金属本身在加热到很高温度时非常容易氧化,致使焊缝金属及其合金元素迅速被氧化而形成氧化物。
氧对焊接和焊接质量的主要影响有:1.使焊缝金属及合金元素被烧损,造成焊缝的力学性能下降。
在熔滴和熔池表面,铁被氧化成氧化亚铁(FeO),当钢中存在过量的氧时便生成三氧化二铁(Fe2O3),这些铁的氧化物以不规则的点状凝集物或在晶界成不完整的褐色细网的形式存在,在碳钢和合金钢中除了基体铁被氧化,其它元素,例如碳(C)、硅(Si)、锰(Mn)、钛(Ti)和铬(Cr)等也会被氧化。
氧化的结果使熔池中有益的元素烧损,使焊缝金属的强度、硬度和塑性等发生明显的下降。
如图2—10所示为氧对低碳钢力学性能的影响。
焊接有色金属时的氧化反应,如焊接紫铜时,当温度接近铜的熔点(1083℃)时,铜很容易被氧化生成氧化亚铜(CuO2),在焊缝结晶时,氧化亚铜又会和铜形成低熔点共晶(Cu2O·Cu)分布在铜的晶界上,使焊缝容易产生热裂纹,降低其接头性能。
焊接黄铜时,黄铜所含的锌(Zn)很容易在焊接火焰温度下气化、蒸发和氧化,从而改变黄铜的化学成分,使焊接接头的力学性能和抗腐蚀性能降低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CO2气体保护焊焊丝中杂质对焊接质量的影响第1章绪论1.1 引言焊接技术是随着铜铁等金属的冶炼生产、各种热源的应用而出现的。
古代的焊接方法主要是铸焊、钎焊、锻焊、铆焊古代焊接技术长期停留在铸焊、锻焊、钎焊和铆焊的水平上,使用的热源都是炉火,温度低、能量不集中,无法用于大截面、长焊缝工件的焊接,只能用以制作装饰品、简单的工具、生活器具和武器。
19世纪初,英国的戴维斯发现电弧和氧乙炔焰两种能局部熔化金属的高温热源;1885~1887年,俄国的别纳尔多斯发明碳极电弧焊钳;1900年又出现了铝热焊。
20世纪初,碳极电弧焊和气焊得到应用,同时还出现了薄药皮焊条电弧焊,电弧比较稳定,焊接熔池受到熔渣保护,焊接质量得到提高,使手工电弧焊进入实用阶段。
电弧焊从20年代起成为一种重要的焊接方法。
也成为现代焊接工艺的发展开端。
在此期间,美国的诺布尔利用电弧电压控制焊条送给速度,制成自动电弧焊机,从而成为焊接机械化、自动化的开端。
1930年美国的罗宾诺夫发明使用焊丝和焊剂的埋弧焊,焊接机械化得到进一步发展。
40年代,为适应铝、镁合金和合金钢焊接的需要,钨极和熔化极惰性气体保护焊相继问世。
1953年,苏联的柳巴夫斯基等人发明二氧化碳气体保护焊,促进了气体保护电弧焊的应用和发展,如出现了混合气体保护焊、药芯焊丝气渣联合保护焊和自保护电弧焊等。
截至到目前二氧化碳气体保护焊依旧应用在我们现在生产生活中。
1.2 预防和控制焊丝中杂质对焊接质量的影响的意义焊接生产中对于焊接质量的影响主要分为客观主观两个方面,主观上在于人为操作流程上,通过学习和培训,可以做到有效避免,即使发生不良影响,也相对更容易解决,影响范围也相对小一些。
但是客观上焊丝中的杂质对于焊接质量的影响可就不是简单的培训与学习就能解决的,它所带来的影响也不仅仅是小范围的失误,往往都是批量上的生产损失,而且由于材料上的不合格或焊丝杂质含量过大,所带来的技术上的问题,已不是一朝一夕从头再来就能解决的,相对应的技术上的瓶颈也往往束缚着企业乃至行业的发展。
1.3 本文的主要研究内容本文主要介绍了焊接的发展历史、二氧化碳气体保护焊(一下简称二保焊)的应用优势。
介绍论述了二保焊中焊丝杂质的主要成分,通过对二氧化碳气体保护焊焊丝中成分的论述分析,找出影响焊接质量的各类杂质,做到有效消除和尽量避免焊丝中杂质对焊接质量的影响。
最后论述了预防或消除焊丝中杂质对焊接质量的影响的防治措施。
第2章二氧化碳气体保护焊的概述2.1 二氧化碳气体保护焊的简介二氧化碳气体保护焊,它是一种熔化极气体保护电弧焊技术。
气体保护电弧焊是采用气体保护焊接区域内的金属,使之不受空气(空气主要成分有79%氮、21%氧)的危害,这种工艺方法简称气电焊。
它是在手工电孤焊,埋弧自动焊广泛应用的基础上发展起来的。
二氧化碳气体保护焊是迄今为止成本最低的气电焊工艺方法之一,CO2气体价廉易得、生产率高、适应范围大[1]。
二氧化碳气体保护电弧焊(简称CO2焊)的保护气体是二氧化碳(有时采用CO2+Ar的混合气体)。
由于二氧化碳气体的0热物理性能的特殊影响,使用常规焊接电源时,焊丝端头熔化金属不可能形成平衡的轴向自由过渡,通常需要采用短路和熔滴缩颈爆断、因此,与MIG焊自由过渡相比,飞溅较多。
但如采用优质焊机,参数选择合适,可以得到很稳定的焊接过程,使飞溅降低到最小的程度。
由于所用保护气体价格低廉,采用短路过渡时焊缝成形良好,加上使用含脱氧剂的焊丝即可获得无内部缺陷的高质量焊接接头。
因此这种焊接方法目前已成为黑色金属材料最重要焊接方法之一。
2.1.1二氧化碳气体保护焊的优点1.焊接成本低。
其成本只有埋弧焊、焊条电弧焊的40~50%。
2.生产效率高。
其生产率是焊条电弧焊的1~4倍。
3.操作简便。
明弧,对工件厚度不限,可进行全位置焊接而且可以向下焊接。
4.焊缝抗裂性能高。
焊缝低氢且含氮量也较少。
5.焊后变形较小。
角变形为千分之五,不平度只有千分之三。
6.焊接飞溅小。
当采用超低碳合金焊丝或药芯焊丝,或在CO2中加入Ar,都可以降低焊接飞溅。
2.2二氧化碳气体保护焊的分类(1)按机械化程度可分为自动化和半自动化(2)按焊丝直径可分为细丝1.0~1.2 中丝1.2~1.4 粗丝 1.4~1.6 (3)按焊丝分类可分为药芯和实心焊丝两种2.3二氧化碳气体保护焊中焊丝的要求2.3.1二氧化碳气体保护焊对焊丝化学成分的要求:(1)焊丝必须含有足够数量的脱氧元素以减少焊缝金属中的含氧量和防止产生气体(2)焊丝的含碳量要低,通常要求<0.11%,这样可减少气孔和飞溅。
(3)保证焊缝金属具有满意的机械性能和抗裂性能。
(4)所用原材料为焊丝钢盘条完全符合国家标准,主要化学成分(%)c0.06-0.15、mn1.40-1.85、si0.80-1.15、p≤0.025、s≤0.035、cu≤0.50. [2]2.3.2二氧化碳气体保护焊对焊丝物理方面的要求:产品质量完全符合国家GB/T8110-1995标准即:焊丝表面光滑平整,无毛刺、划痕、锈蚀和氧化反映,镀铜均匀牢固,翘距≤25mm,挺度适中,使焊丝均匀连续送进焊枪内,抗拉强度≥930mpa,松弛直径≥250mm。
目前生产中应用最广的焊丝为H08Mn2SiA焊丝,该焊丝有较好的工艺性能、机械性能及抗热裂纹能力,适用于焊接低碳钢、屈服极限<500Mpa的低合金钢和经焊后热处理抗拉强度<1200Mpa的低合金高强钢[3]。
焊丝表面的清洁程度影响到焊缝金属中含氢量。
焊接重要结构应采用机械、化学或加热办法清除焊丝表面的水分和污染物。
2.4本章小结二氧化碳气体保护焊是目前黑色金属材料最为重要的一种焊接方式。
并且在我国以及全世界范围内应用。
二氧化碳气体保护焊中焊丝是其技术关键所在,标准中对其有着详细的化学成分要求和物理性质要求。
焊丝中杂质对焊接质量起到至关重要的作用了,而且焊丝中的杂质不仅仅包括焊丝中内部的超标金属和非金属物质,也包含后期运输,储存过程中附在焊丝表层的其他物质。
第3章二氧化碳气体保护焊焊丝中杂质对焊接质量的影响3.1 二氧化碳气体保护焊焊丝中的主要成分3.1.1 焊丝中杂质主要分类二保焊焊丝中杂质主要分为金属杂质和非金属杂质和金属杂质。
金属杂质主要包括:Si、Mn、S、P、Cr、AI、Ti、Mo、V等合金元素。
非金属杂质则包括C 以及焊接过程中产生的氧化物、硫化物等。
因为金属杂质在生产过程中无可避免,少量杂质不会对焊接质量产生影响,但是超过国家规定的数值就会对焊接效果,焊接质量产生巨大影响[4]。
3.1.2 焊丝中所含非金属杂质对焊接质量的影响焊丝中非金属杂质主要包括C以及焊接时高温产生的烟花无和硫化物,这些杂质一般都是操作不当或焊接参数设置错误所产生的,对于焊接质量的影响主要在于于降低焊缝处金属性能,影响焊后工件的刚度或者强度。
3.1.3 焊丝中所含金属元素对焊接质量的影响对于焊丝中含有Si、Mn、S、P、Cr、AI、Ti、Mo、V等合金元素[5]。
这些合金元素对焊接性能有何影响,下面分别说明;硅(Si)硅是焊丝中最常用的脱氧元素,它可以防止铁与氧化合,并可在熔池中还原FeO。
但是单独用硅脱氧,生成的SiO2熔点高(约1710℃),且生成物的颗粒小,难以从熔池中浮出,易造成焊缝金属夹渣。
锰(Mn)锰的作用与硅相似,但脱氧能力比硅稍差一些。
单独用锰脱氧,生成的MnO 密度较大(15.11g/cm3),也不易从溶池中浮出。
在焊丝中含锰,除了脱氧作用外,还能和硫化合生成了硫化锰(MnS),并被除去(脱硫),故可降低由硫引起的热裂纹的倾向。
由于单独用硅和锰脱氧,都难以除去脱氧的生成物。
故目前多采用硅锰联合脱氧,使生成的SiO2和MnO 复合成硅酸盐(MnO·SiO2)。
MnO·SiO2的熔点低(约1270℃)且密度小(约3.6g / cm3),在熔池中能凝聚成大块熔渣而浮出,达到良好的脱氧效果。
锰也是钢材中的重要合金元素,也是重要的淬透性元素,它对焊缝金属的韧性有很大影响。
当Mn含量<0.05%时焊缝金属的韧性很高;当Mn含量>3%后又很脆;当Mn含量 = 0.6~1.8%时,焊缝金属有较高的强度和韧性[6]。
硫(S)硫在钢中常以硫化铁的形式存在,并呈网状分布在晶粒边界,因而显著地降低钢的韧性。
铁加硫化铁的共晶温度较低(985℃),因此,在进行热加工时,由于加工开始温度一般为1150~1200℃,而铁和硫化铁共晶已经熔化,从而导致加工时开裂,这种现象就是所谓“硫的热脆性”。
硫的这种性质使钢在焊接时产生热裂纹。
因此,一般在钢中对硫的含量都严格加以控制。
普通碳素钢、优质碳素钢以及高级优质钢的主要区别就在于硫、磷含量的多少。
前面提到,锰有脱硫作用,这是因为锰可与硫形成高熔点(1600℃)的硫化锰(MnS),它呈粒状分布于晶粒内。
在热加工时,硫化锰有足够的塑性,因而消除了硫的有害作用。
因此钢中保持一定的含锰量是有益的。
磷(P)磷在钢中能全部溶于铁素体内。
它对钢的强化作用仅次于碳,使钢的强度和硬度增加,磷能提高钢的抗腐蚀性能,而塑性和韧性则显著降低。
特别在低温时影响更为严重,这称为磷的冷跪倾向。
故它对焊接不利,增加钢的裂缝敏感性。
作为杂质,磷在钢中的含量也要加以限制。
铬(Cr)铬能提高钢的强度和硬度而塑性和韧性降低不大。
铬具有很强的耐蚀、耐酸的能力,所以奥氏体不锈钢中一般都含有较多的铬(13%以上)。
铬还具有很强的抗氧化能力和耐热性。
因此,铬在耐热钢中应用也很广,如12CrMo、15CrMo 5CrMo 等。
钢中都含有一定量的铬[7]。
铬是奥氏体钢的重要组成元素和铁素体化的元素,它在合金钢中能提高在高温时的抗氧化能力和机械性能。
在奥氏体不锈钢中,当铬镍的总量为40%,Cr /Ni = 1时,有热裂缝倾向;当Cr/Ni = 2.7时,就没有热裂缝倾向。
所以一般18-8型钢中Cr/Ni = 2.2~2.3左右时,铬在合金钢中就容易产生碳化物,使合金钢导热变差,容易产生氧化铬,使焊接造成困难。
铝(AI)铝是强烈的脱氧元素之一,故用铝作脱氧剂,不仅可少产生FeO,且易于使FeO还原,有效地抑制在熔池中产生的CO气体的化学反应,提高抗CO 气孔的能力。
另外,铝还能和氮化合而起固氮作用,故也能减少氮气孔。
但是用铝脱氧,生成的AI2O3熔点很高(约2050℃),以固态存在熔池中,容易引起焊缝夹渣。
同时,含铝的焊丝容易引起飞溅,铝的含量过高还会降低焊缝金属抗热裂能力,因而焊丝中含铝量必须严格控制,不宜过多。
若在焊丝中含铝量控制适当,则在焊缝金属的硬度、屈服点、抗拉强度均稍有提高。
钛(Ti)钛也是一种强烈的脱氧元素,且也能和氮化合成TiN而起固氮作用,提高焊缝金属抗氮气孔的能力。