人教版九年级锐角三角函数全章教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学教案

第二十八章锐角三角函数

教材分析:

本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。

本章内容与已学"相似三角形""勾股定理"等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。

学情分析:

锐角三角函数的概念既是本章的难点,也是学习本章的关键。难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号 sinA 、 cosA 、 tanA 表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。

28.1 锐角三角函数(1)

第一课时

教学目标:

知识与技能:

1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。

2、能根据正弦概念正确进行计算

3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。

过程与方法:

通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.

情感态度与价值观:

引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.

重难点:

1.重点:理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.

2.难点与关键:难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实.

教学过程:

一、复习旧知、引入新课

【引入】操场里有一个旗杆,老师让小明去测量旗杆高度。(演示学校操场上的国旗图片)

小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34度,并已知目高为1米.然后他很快就算出旗杆的高度了。

你想知道小明怎样算出的吗?

?

34

1

10

下面我们大家一起来学习锐角三角函数中的第一种:锐角的正弦

二、探索新知、分类应用

【活动一】问题的引入

【问题一】为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行灌溉。现测得斜坡与水平面所成角的度数是30o,为使出水口的高度为35m ,那么需要准备多长的水管? 分析:

问题转化为,在Rt△ABC 中,∠C=90o ,∠A=30o

,BC=35m,求AB

根据“再直角三角形中,30o

角所对的边等于斜边的一半”,即 可得AB=2BC=70m.即需要准备70m 长的水管

结论:在一个直角三角形中,如果一个锐角等于30o

,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于

2

1 【问题二】如图,任意画一个Rt △ABC ,使∠C=90o ,∠A=45o ,计算∠A 的对边与斜边的比

AB

BC

,能得到什么结论?(学生思考) 结论:在一个直角三角形中,如果一个锐角等于45o

,那么不管三角都等于

2

2

。 形的大小如何,这个角的对边与斜边的比值

【问题三】一般地,当∠A 取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?

如图:Rt △ABC 与Rt △A`B`C`,∠C=∠C` =90o ,∠A=∠

A`=α,那么与有什么关系

分析:由于∠C=∠C` =90o

,∠A=∠A`=α,所以R t△ABC∽Rt△A`B`C`,

,即

结论:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,∠A 的对边与斜边的比也是一个固定值。 【活动二】认识正弦

如图,在Rt △ABC 中,∠A 、∠B 、∠C 所对的边分别记为a 、b 、c 。

师:在Rt △ABC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦。记作sinA 。 板书:sinA =

A a

A c

∠=∠的对边的斜边 (举例说明:若a=1,c=3,

则sinA=

3

1) 【注意】:1、sinA 不是 sin 与A 的乘积,而是一个整体;

A

B

C

D 2、正弦的三种表示方式:sinA 、sin56°、sin ∠DEF 3、sinA 是线段之间的一个比值;sinA 没有单位。

提问:∠B 的正弦怎么表示?要求一个锐角的正弦值,我们需要知道直角三角形中的哪些边?

【活动三】正弦简单应用 例1 如课本图28.1-5,在Rt △ABC 中,∠C=90°,求sinA 和sinB 的值.

教师对题目进行分析:求sinA 就是要确定∠A 的对边与斜边的比;求sinB•就是要确定∠B 的对边与斜边的比.我们已经知道了∠A 对边的值,所以解题时应先求斜边的高.

三、总结消化、整理笔记

在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,∠A 的对边与斜边

的比都是一个固定值. 在Rt △ABC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA 。

四、书写作业、巩固提高

练习:做课本第77页练习.

五、教学后记

28.1 锐角三角函数(2)

第二课时

教学目标:

知识与技能:

1、了解锐角三角函数的概念,能够正确应用sinA 、cosA 、tanA•表示直角三角形中两边的比.

2、逐步培养学生观察、比较、分析、概括的思维能力. 过程与方法:

通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.

情感态度与价值观:

引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.

重难点:

1.理解余弦、正切的概念.

2.难点:熟练运用锐角三角函数的概念进行有关计算.

教学过程:

一、复习旧知、引入新课

【复习】

1、口述正弦的定义

2、(1)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,且AB =5,BC =3. 则sin ∠BAC= ;sin ∠ADC= .

(2)﹙2006成都﹚如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D 。已知AC= 5 ,BC=2,那么sin ∠ACD =( ) A

B .23

C

D

二、探索新知、分类应用

【活动一】余弦、正切的定义

一般地,当∠A 取其他一定度数的锐角时,它的邻边与斜边的比是否也是一个固定值?

相关文档
最新文档