函数的概念定义域和值域

合集下载

定义域和值域概念

定义域和值域概念

定义域和值域概念在数学中,函数是一种将每个输入都映射到唯一输出的规则。

其中,定义域和值域是函数的两个重要概念。

在本文中,我们将详细解释这两个概念,并介绍它们在函数中的作用。

一、定义域函数的定义域指的是函数的自变量所属的集合。

也就是说,定义域是指可以作为函数输入的所有实数的集合。

例如,如果我们有以下函数:$$f(x)=\sqrt{x+1}$$那么,函数$f(x)$的定义域为$x\geq-1$,因为当$x<-1$时,根式内的数为负数,无法求出实根。

因此,定义域规定了哪些值可以作为函数的自变量,是函数存在和合法的必要条件。

二、值域值域指的是函数所有可能的输出值组成的集合。

也就是说,值域是指函数对应的所有因变量的取值范围。

例如,函数$f(x)=x^2$的值域为$[0,\infty)$。

这是因为$x^2$始终为非负数,可以取到0,并且可以趋近于无穷大。

需要注意的是,值域并不总是函数的所有类型的值的可行取值集合。

例如,考虑以下函数:在这种情况下,函数$f(x)$的定义域为所有非零实数,并且函数上无界。

因此,函数的值域也不是一个有限的集合。

尽管如此,值域仍然描述了函数的可能取值的范围和趋势。

三、定义域与值域的关系定义域和值域是紧密相关的,但不一定相同。

实际上,对于任何一个定义良好的函数,定义域必须包括值域或值域的某个子集。

例如,考虑函数$f(x)=\sqrt{x}$。

在这种情况下,定义域为$x\geq0$,而值域为$[0,\infty)$。

因此,值域是定义域的子集。

但有些函数值域并不能包含定义域,例如函数$f(x)=\tan{x}$。

在这种情况下,定义域为$x\neq\frac{\pi}{2}+n\pi$,其中,$n$为整数。

而值域是所有实数的集合。

也就是说,值域并不能包含定义域。

在这种情况下,函数的值域是更加广泛的范围,因为函数为$x=\frac{\pi}{2}+n\pi$的函数值并没有特定范围。

四、总结定义域和值域是函数的两个基本概念。

函数的概念及定义域、值域基本知识点总结.doc

函数的概念及定义域、值域基本知识点总结.doc

函数的概念及定义域.值域基本知识点总结函数概念1.映射的概念设A、B是两个集合,如果按照某种对应法则/ ,对于集合4小的任意元素,在集合B 中都冇唯一确宦的元索与Z对应,那么这样的单值对应叫做从A到B的映射,通常记为f :A^ B , f 表示对应法则注意:(1)A中元素必须都有彖J1唯一;(2)B中元素不一定都有原彖,但原彖不一定唯一。

2.函数的概念(1)函数的定义:设A、B是两个非空的数集,如果按照某种对应法则/,对于集合4屮的每个数兀, 在集合B中都冇唯一确怎的数和它对应,那么这样的对应叫做从A到B的一个函数,通常⑵函数的定义域、值域在函数y = f(x\xeA中,x叫做自变量,x的取值范围A叫做y = f(x)的定义域;与x的值相对应的y值叫做两数值,函数值的集合{/⑴卜e △}称为函数y = /(%)的值域。

(3)函数的三要素:定义域、值域和对丿应法则3.函数的三种表示法:图象法、列表法、解析法(1).图象法:就是用函数图象表示两个变量之间的关系;(2).列表法:就是列出表格来表示两个变量的函数关系;(3).解析法:就是把两个变量的函数关系,用等式來表示。

4.分段函数在H变量的不同变化范围屮,对应法则用不同式子來表示的函数称为分段函数。

(-)考点分析考点1:映射的概念例1. (1) A = R , B = {yly〉O}, f :x —> y =1 xI ;(2) A = {x\ x>2,x e N^}, B = {y\ y>O,y e N], / : x y = x2 - 2x + 2 ;(3) A = {xI x > 0}, = {>' I y e R}, / : x —> y = ±\[x .上述三个对应是A到B的映射.例2.若A = {1,2,3,4}, B = {aM,a,b,cwR,则A到B的映射有个,B到A的映射有个,A到B 的函数有个例3.设集合M ={-1,0,1}, 7V = {-2,-1,0,1,2},如果从M到N的映射/满足条件:对(4)8 个(3)12 个(C)16 个(0)18 个M中的每个元素兀与它在N中的象/(兀)的和都为奇数,则映射/的个数是()考点2:判断两函数是否为同一个函数例1.试判断以下各组函数是否表示同一函数?(1) /(X )= , g(x) = V?":⑶ /(x) = 2n ^X^ , g(X )= (2“V7)2"T (/7GN 4);(4) /(x) = Vx Jx + 1 , g(x) = Jx ,十 x ;(5) /(x) = x 2 -2x -1, g(t) = t 2 -2r -1 考点3:求函数解析式方法总结:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法;(2) 若已知复合函数f[g(x)]的解析式,则可用换元法或配凑法;(3) 若已知抽象函数的表达式,则常用解方程组消参的方法求出/(%)题型1:由复合函数的解析式求原来函数的解析式例1.已知二次函数/(X )满足/(2X + 1) = 4X 2-6X + 5,求/U)(三种方法)| + V* | _ Y 2例2. (09湖北改编)已知/(-—)=—v ,则/(X )的解析式可取为 l-x 1 + JC题型2:求抽象函数解析式例1.已知函数/⑴满足/U) + 2/(-) = 3x,求/⑴函数的定义域题型1:求有解析式的函数的定义域(1) 方法总结:如没有标明定义域,则认为定义域为使得函数解析式有意义的X 的取值范 围,实际操作时要注意:酚母不能为0;②对数的真数必须为正;酬次根式中被开方数应 为非负数;歿指数幕中,底数不等于0;矽分数指数幕中,底数应人于0;魁解析式由 儿个部分组成,则定义域为各个部分相应集合的交集;⑦n 果涉及实际问题,还应使得实际 问题有意义,而11注意:研究函数的有关问题一定要注意定义域优先原则,实际问题的定义 域不耍漏写。

函数的定义域与值域

函数的定义域与值域

函数的定义域与值域函数是数学中常见的概念,它描述了两个集合之间的映射关系。

在讨论函数时,我们经常会遇到两个重要的概念,即定义域和值域。

本文将详细介绍函数的定义域与值域,并探讨它们在函数理论和实际问题中的重要性。

一、定义域的概念及作用在定义函数时,我们需要明确函数的输入变量的取值范围,这个取值范围称为函数的定义域。

简单来说,定义域是指函数能够接受的实际参数的集合。

例如,考虑一个简单的函数f(x) = 2x,如果我们要求f(x)的定义域为实数集,那么定义域可以表示为D = R。

这意味着函数f(x)可以接受任意实数作为输入。

定义域在函数的数学性质和实际应用中都起着重要作用。

首先,定义域的确定可以帮助我们分析函数的性质。

对于某些函数来说,定义域的限制可能导致函数的不连续、无定义等特殊情况。

其次,在实际问题中,定义域的设定可以帮助我们剔除那些无法满足条件的输入值,从而使得函数描述的问题更加合理和实用。

二、值域的概念及意义值域是函数中输出变量的取值范围,也可以理解为函数所有可能的输出值组成的集合。

考虑函数f(x) = x^2,如果定义域为实数集,那么值域可以表示为R+,即非负实数集合。

这是因为对于任意实数x,函数f(x)总能输出一个非负实数。

值域的确定与函数的图像密切相关。

通过绘制函数的图像,我们可以直观地观察函数的值域。

但需要注意的是,并非所有函数都能通过图像判断值域。

对于某些复杂的函数来说,值域的确定需要借助数学分析和推导。

在实际应用中,值域的确定有助于我们了解问题的解空间和可能的输出结果。

通过对值域的分析,我们可以推断出函数的特性,帮助我们解决实际中遇到的问题。

三、定义域与值域的关系定义域和值域是函数中的两个重要概念,它们之间存在一定的关系。

首先,定义域决定了值域的范围。

也就是说,值域的元素必须是定义域中元素通过函数映射得到的结果。

例如,对于函数f(x) = x^2而言,如果定义域为实数集,则值域为非负实数集。

函数的定义域与值域

函数的定义域与值域

函数的定义域与值域函数是数学中一个重要的概念,它描述了一种特定的对应关系。

在函数的定义中,有两个关键概念,即定义域和值域。

定义域是指函数中自变量的取值范围,而值域则是函数中因变量的取值范围。

本文将详细介绍函数的定义域与值域,并探讨它们在数学问题中的应用。

一、定义域的概念及求解方法在函数中,定义域指的是自变量的取值范围,即函数可以接受哪些输入。

为了确定一个函数的定义域,需要考虑自变量的限制条件。

常见的限制条件包括分式的分母不能为零,指数函数中指数不能为负数等。

下面以几个具体的例子来说明如何求解函数的定义域。

例1:求解函数f(x) = √(4-x) 的定义域。

由于根号内不能出现负数,所以要求 4-x ≥ 0。

解这个不等式,有 x ≤ 4。

因此,函数 f(x) 的定义域为x ≤ 4。

例2:求解函数 g(x) = 1/(x-2) 的定义域。

分式的分母不能为零,所以要求 x-2 ≠ 0。

解这个不等式,可得x ≠ 2。

因此,函数 g(x) 的定义域为x ≠ 2。

通过以上例子,可以看出求解定义域的方法是根据函数的特点,找出限制自变量的条件,并求解相应的不等式。

二、值域的概念及求解方法在函数中,值域指的是函数的因变量的取值范围,即函数可以得到哪些输出。

确定一个函数的值域,需要根据函数的性质来进行推导和分析。

下面以几个具体的例子来说明如何求解函数的值域。

例3:求解函数 h(x) = x^2 的值域。

对于任意实数 x,都有x^2 ≥ 0。

因此,函数 h(x) 的值域为y ≥ 0,即非负实数集。

例4:求解函数k(x) = √x 的值域。

由于根号函数的特点,要使得 k(x) 存在,需要x ≥ 0。

另外,根号函数的值永远大于等于零。

因此,函数 k(x) 的值域为y ≥ 0,即非负实数集。

通过以上例子,可以发现求解值域的方法是根据函数的性质,直接分析函数表达式得到。

三、定义域与值域的应用1. 函数的性质分析:通过确定函数的定义域和值域,可以深入了解函数的性质。

函数的定义域与值域

函数的定义域与值域

函数的定义域与值域函数是数学中的重要概念,用于描述输入和输出之间的对应关系。

在函数中,定义域(Domain)指的是函数的所有可能输入值所构成的集合,值域(Range)则是函数的所有可能输出值所构成的集合。

函数的定义域和值域在数学中具有重要的意义和应用,并在各个学科领域中发挥着重要的作用。

1. 定义域在函数中,定义域是指函数的所有可能输入值的集合。

它决定了函数可接受的输入范围。

通常,定义域可以是实数集、整数集、有理数集等。

然而,有些函数可能会有特定的限制条件,如分母不能为零、根号内不能为负数等。

例如,考虑函数f(x) = 1/x,其中x为实数。

在这种情况下,由于分母不能为零,所以x的定义域为除去0的实数集,即x∈R,x≠0。

这样,所有不为零的实数都可以作为这个函数的输入值。

2. 值域在函数中,值域是指函数的所有可能输出值的集合。

它表示了函数所能取得的所有可能结果。

值域的确定需要考虑函数在定义域中的取值范围以及函数本身的性质。

例如,再考虑函数f(x) = 1/x,其定义域为除去0的实数集,即x∈R,x≠0。

对于任意一个不为零的输入值x,在函数中,将其代入公式后可以得到一个相应的输出值,即f(x) = 1/x。

显然,输出值可以是任意实数,因此值域为实数集R,即f(x)∈R,f(x)≠0。

3. 定义域和值域的图示为了更好地理解函数的定义域和值域,可以通过图示来展示函数的输入输出关系。

在坐标系中,将定义域的值放在x轴上,将对应的函数值放在y轴上,可以绘制函数的图像。

例如,回顾函数f(x) = 1/x,在定义域除去0的实数集,可以绘制函数曲线。

这样,x轴上除了0以外的各个点,都对应着y轴上的一个值,而值域即为函数曲线所覆盖的y轴的范围。

4. 应用举例函数的定义域和值域在数学中具有广泛的应用和重要意义。

它们不仅可以帮助我们理解函数的性质,还能在实际问题中起到指导作用。

例如,在物理学和工程学中,定义域和值域的概念可以帮助我们描述和分析各种物理量之间的关系。

函数的定义域和值域

函数的定义域和值域

函数的定义域和值域函数是数学中的重要概念,它描述了两个集合之间的关系。

在函数中,有两个重要的概念需要关注,即定义域和值域。

定义域指的是函数输入的所有可能值构成的集合,而值域则是函数输出的所有可能值构成的集合。

一、定义域的概念和计算方法定义域是函数输入值的范围,它决定了函数能够接受哪些数作为输入。

我们可以通过以下方式计算函数的定义域:1. 在给定的函数中,寻找使得函数在数学上有意义的输入值。

2. 对于分式函数,要注意分母不能为零。

找出使得分母为零的值,然后将这些值排除在定义域之外。

3. 对于根式函数,要保证根号下的值为非负数。

找出使得根号下的值小于零的情况,将这些值排除在定义域之外。

4. 在数轴上,画出函数的图像并观察其范围。

例如,对于函数f(x) = √(x-1),我们需要保证根号内的值不小于零,即 x-1 ≥ 0,解得x ≥ 1。

因此,定义域为一切大于等于1的实数。

二、值域的概念和计算方法值域表示函数的所有可能输出值构成的集合。

我们可以通过以下方式计算函数的值域:1. 分析函数的表达式和图像,确定函数的上下界。

2. 对于连续函数,值域为函数图像所覆盖的纵坐标范围。

3. 对于分段函数,值域为每个分段函数的值域的合集。

例如,对于函数 g(x) = x^2,由于 x 的平方永远大于等于零,所以值域即为非负实数集合[0, +∞)。

三、定义域和值域的关系函数的定义域和值域之间存在一种对应关系。

当输入值属于定义域中的某个数时,函数会根据定义域和函数的表达式计算出相应的输出值,并将其纳入值域。

因此,定义域和值域是密切相关的,它们互相影响和制约着函数的性质。

在实际问题中,合理确定函数的定义域和值域是解决问题的关键。

通过准确地确定函数的定义域和值域,我们可以更好地理解和分析函数的性质,并应用函数进行实际计算和建模。

总结起来,函数的定义域和值域是函数学习中的重要概念。

定义域决定了函数的输入范围,而值域则表示函数的输出范围。

函数的定义域和值域

函数的定义域和值域

函数的定义域、值域一、知识回顾第一部分:函数的定义域1.函数的概念:设集合A 是一个非空的数集,对于A 中的任意一个数x ,按照确定的法则f ,都有唯一的确定的数y 与它对应,则这种关系叫做集合A 上的一个函数,记作()x f y =,(A x ∈)其中x 叫做自变量,自变量的取值范围(数集A )叫做这个函数的定义域.如果自变量取值a ,则由法则f 确定的值y 称为函数在a 处的函数值,记作)(a f y =或a x y =,所有的函数值所构成的集合{}A x x f y y ∈=),(叫做这个函数的值域.2.定义域的理解:使得函数有意义的自变量取值范围,实际问题还需要结合实际意义在确定自变量的范围,注意:定义域是个集合,所以在解答时要 用集合来表示. 3.区间表示法:设a ,R b ∈,且b a <.满足b x a ≤≤的全体实数x 的集合,叫做闭区间,记作[]b a ,. 满足b x a <<的全体实数x 的集合,叫做开区间,记作()b a ,.满足b x a ≤<或b x a <≤的全体实数x 的集合,都叫做半开半闭区间,记作(][)b a b a ,,或.b a 与叫做区间的端点,在数轴上表示时,包括端点时,用实心的点,不包括时用空心点表示.4.基本思想:使函数解析式有意义的x 的所有条件化为不等式,或不等式组的解集.5.定义域的确定方法:保证函数有意义,或者符合规定,或满足实际意义. (1)分式的分母不为零. (2)偶次方根式的大于等于零. (3)对数数函数的真数大于零.(4)指数函数与对数函数的底大于零且不等于1. (5)正切函数的角的终边不能在y 轴上. (6)零次幂的底数不能为零.(7)分段函数:①分段函数是一个函数.②分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(8)复合函数定义域的求法:①已知)(x f y =的定义域是A ,求()[]x f y ϕ=的定义域的方法为解不等式:A x ∈)(ϕ,求出x 的取值范围.②已知()[]x f y ϕ=的定义域为A ,求)(x f y =的定义域的方法:A x ∈,求)(x ϕ的取值范围即可.第二部分:函数的值域函数值域的确定方法:(1)直接观察法对于一些比较简单的函数,其值域可通过观察得到. (2)分离常数法:分子、分母是一次函数得有理函数,形如,dcx bax y ++=,,,,,(d c b a 为常数,)0≠c 可用分离常数法,此类问题一般也可以利用反函数法.(3)换元法:运用代数代换,将所给函数化成值域容易确定的另一函数,从而求得原函数的值域,如d cx b ax y +±+=(d c b a ,,,均为常数且0≠a )的函数常用此法求解. (4)配方法:适用于二次函数值域的求值域. (5)判别式法:适用于二次函数型值域判定.(6)单调性法:利用单调性,端点的函数值确定值域的边界.(7)函数的有界性:在直接求函数值域困难的时候,可以利用已学过函数的有界性,反过来确定函数的值域.(8)不等式法:利用不等式的性质确定上下边界.(9)数形结合法:函数解析式具有明显的某种几何意义,如两点间的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目.二、 精选例题第一部分:函数的定义域例1.函数x x y +-=1的定义域为( )A .{}1x x ≤B .{}0x x ≥ C.{}10x x x ≥≤或 D.{}01x x ≤≤【解析】由题意⎩⎨⎧≥≤⇒⎩⎨⎧≥≥-01001x x x x 即∈x {}10≤≤x x ,故选D. 例2.函数()()xx x x f -+=01的定义域是( )A .()0,+∞B .(),0-∞ C.()(),11,0-∞-- D.()()(),11,00,-∞--+∞【解析】由⎩⎨⎧≠-≠+001x x x 得,01⎩⎨⎧<-≠x x 故选C.例3.若函数()1+=x f y 的定义域是[],3,2-则()12-=x f y 的定义域是( )5.0,2A ⎡⎤⎢⎥⎣⎦[]4,1.-B []5,5.-C []7,3.-D 【解析】 ()1+=x f y 的定义域是[],3,2-,32≤≤-∴x[]4,11-∈+∴x ,即()x f 的定义域是[]4,1-.又由4121≤-≤-x 解得250≤≤x即()12-=x f y 的定义域是⎥⎦⎤⎢⎣⎡25,0故选.A例4.设函数()x f y =的定义域是()1,0,则()2x f y =的定义域是什么?【解析】 函数()x f y =的定义域是()1,0.102<<∴x 即11<<-x故()2x f y =的定义域是()1,1-∈x 且0≠x .例5.已知函数(),11+=x x f 则函数()[]x f f 的定义域是( ) {}1.-≠x x A {}2.-≠x x B {}21.-≠-≠x x x C 且{}21.-≠-≠x x x D 或【解析】:()11+=x x f 的定义域是101-≠⇒≠+x x 则()[]x f f 的定义域是111-≠+x 即21012-≠-≠⇒≠++x x x x 且故选.C 例6.已知()x f21-求函数⎪⎭⎫⎝⎛-x x f 213的定义域是?【解析】由()x f21-可知021≥-x 即0213≥-xx()2100312≤≤⇒≤-⇒x x x 故函数⎪⎭⎫⎝⎛-x x f 213的定义域是⎥⎦⎤⎢⎣⎡∈21,0x例7.若函数y =R ,求实数k 的取值范围.【解析】当0=k 时,86+-=x y ,当34>x 时,无意义,∴0≠k ; 当0<k 时,()268y kx x k =-++为开口向下的二次函数,图像向下延伸,函数值总会出现小于零的情况,进而,0<k 不成立,当0>k 时,同时要求0≤∆,即解得1≥k .例8.已知函数x x x f -+=11lg )(,求函数)2(12)1()(xf x x f x F +++=的定义域. 【解析】由题意011>-+xx,即0)1)(1(<+-x x ,解得11<<-x 故函数xxx f -+=11lg )(的定义域为)1,1(-所以⎩⎨⎧≠+<+<-012111x x 解得02<<-x 且21-≠x .即12)1()(++=x x f x m 的定义域为)0,21()21,2(---又121<<-x ,解得22<<-x ,即)2(xf 的定义域为)2,2(-)2(12)1()(x f x x f x F +++=的定义域即为)(x m 和)2(xf 的定义域的交集,即)0,21()21,2(--- )2,2(- =)0,21()21,2(---故函数)2(12)1()(xf x x f x F +++=的定义域为)0,21()21,2(--- . 例9.已知函数()23x x f x a b =⋅+⋅,其中常数,a b 满足0ab ≠. (1)若0ab >,判断函数()f x 的单调性; (2)若0ab <,求(1)()f x f x +>时x 的取值范围. 【解析】(1)当0,0a b >>时,任意1212,,x x R x x ∈<,则121212()()(22)(33)xxxxf x f x a b -=-+-∵121222,0(22)0x x x x a a <>⇒-<,121233,0(33)0x x x x b b <>⇒-<,∴12()()0f x f x -<,函数()f x 在R 上是增函数. 当0,0a b <<时,同理,函数()f x 在R 上是减函数. (2)(1)()2230x x f x f x a b +-=⋅+⋅>当0,0a b <>时,3()22xa b >-,则 1.5log ()2ax b >-;当0,0a b ><时,3()22x a b <-,则 1.5log ()2ax b<-.第二部分:函数的值域1.观察法:例1.求函数x y 1=的值域. 【解析】0≠x 01≠∴x0≠∴y ,即值域为:()()+∞∞-,00,2.分离常数法:分子、分母是一次函数得有理函数,形如)0,,,(,≠++=c d c b a dcx bax y 为常数,,可用分离常数法,此类问题一般也可以利用反函数法.通式解析:)(,)(cad b d cx c ad b c a d cx b c ad d cx c a d cx b ax y ≠+-+=++-+=++= 故值域为⎭⎬⎫⎩⎨⎧≠c a y y 例2.求函数125xy x -=+的值域. 【解析】因为177(25)112222525225x x y x x x -++-===-++++, 所以72025x ≠+,所以12y ≠-,所以函数125x y x -=+的值域为1{|}2y y ≠-.3.换元法:运用代数代换,将所给函数化成值域容易确定的另一函数,从而求得原函数的值域,如d cx b ax y +±+=(d c b a ,,,均为常数且0≠a )的函数常用此法求解.例3.(A 类)求函数2y x =.【解析】令x t 21-=(0t ≥),则212t x -=,所以22151()24y t t t =-++=--+因为当12t =,即38x =时,max 54y =,无最小值所以函数2y x =5(,]4-∞.4.三角换元:例4.求函数2)1(12+-++=x x y 的值域.【解析】0)1(12≥+-x 1)1(2≤+∴x ,令[]πββ,0,cos 1∈=+x1)4sin(21cos sin cos 11cos 2++=++=-++=∴πβββββy ,,0πβ≤≤ 4544ππβπ≤+≤,1)4sin(22≤+≤-πβ, 121)4sin(20+≤++≤πβ故值域为:[]12,0+ 5.配方法:例5.求函数242y x x =-++([1,1]x ∈-)的值域.【解析】2242(2)6y x x x =-++=--+, 因为[1,1]x ∈-,所以2[3,1]x -∈--,所以21(2)9x ≤-≤,所以23(2)65x -≤--+≤,即35y -≤≤, 所以函数242y x x =-++在([1,1]x ∈-)的值域为[3,5]-.6.判别式法:例6.求函数2211xx x y +++=的值域. 【解析】原函数化为关于x 的一元二次方程,0)1()1(2=-+--y x x y (1)当1≠y 时,R x ∈,0)1(4)1(22≥---=∆y .解得2321≤≤y , 当1=y 时,0=x ,而⎥⎦⎤⎢⎣⎡∈23,211,故函数的值域为⎥⎦⎤⎢⎣⎡23,21.7.单调性法:例7.求函数x x x f 4221)(-+-=的值域. 【解析】由042≥-x ,解得21≤x , 令x x g 21)(-=,x x m 42)(-=,在21≤x 上)(),(x m x g 均为单调递减函数, 所以x x x m x g 4221)()(-+-=+在21≤x 上也是单调递减函数.故0)21()(min ==f x f ,值域为),0[+∞.8.有界性例8.求函数11+-=x x e e y 的值域.【解析】函数变形为11-+=y y e x,0>x e 011>-+∴y y ,解得11<<-y , 所以函数的值域为()1,1-.9.不等式法: 例9.求函数xx y 4+=的值域; 【解析】当0>x 时,4424=⋅≥+=xx x x y (当x =2时取等号); 所以当0>x 时,函数值域为),4[+∞.当0<x 时,442)4(-=⋅-≤+-=xx x x y (当2-=x 时取等号); 所以当0<x 时,函数值域为]4,(--∞. 综上,函数的值域为),4[]4,(+∞--∞10.数形结合法函数解析式具有明显的某种几何意义,如两点间的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目. 例10. (1)求函数82++-=x x y 的值域.(2)求函数5413622++++-=x x x x y 的值域. (3)求函数5413622++-+-=x x x x y 的值域.【解析】(1)函数可以看成数轴上点P (x )到定点A (2),)8(-B 间的距离之和.由上图可知,当点P 在线段AB 上时,10min ==AB y 当点P 在线段AB 的延长线或反向延长线上时,10>=AB y 故所求函数的值域为:),10[+∞ 此题也可以画函数图象来解.(2)原函数可变形为:2222)10()2x ()20()3x (y ++++-+-=可看成x 轴上的点)0,(x P 到两定点)1,2(),2,3(--的距离之和, 由图可知当点P 为线段与x 轴的交点时,如图34)12()23(22min =+++==AB y ,故所求函数的值域为),34[+∞.(3)将函数变形为:2222)10()2()20()3(-++--+-=x x y可看成定点A ()3,2到点P )0,(x 的距离与定点B ()2,1-到点P )0,(x 的距离之差. 如图BP AP y -=由图可知:①当点P 在x 轴上且与A ,B 两点不供线时,如点'P ,则构成'ABP ∆,)2xBP根据三角形两边之差小于第三边,有26)12()23(22=-++=<'-'AB P B P A所以2626<'-'<-P B P A即2626<<-y②当点P 恰好为直线AB 与x 轴的交点时,有26=='-'AB P B P A .综上所述,函数的值域为:]26,26(-.三、 课堂训练第一部分:函数定义域1.函数()x x x y +-=1的定义域为( ){}0.≥x x A{}1.≥x x B{}{}01. ≥x x C{}10.≤≤x x D解析:由题意得()⎩⎨⎧≥≥-001x x x ⎩⎨⎧≥≤≥⇒001x x x 或即[){}0,1 +∞∈x ,故选.C 2.()xx f 1111++=的定义域为 .【解析】由分式函数分母不为0得:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≠≠+≠++001101121x x x解得⎪⎪⎪⎩⎪⎪⎪⎨⎧≠-≠≠-≠-≠010311x x x x x 或或()1,-∞-∈⇒x ⎪⎭⎫ ⎝⎛-31,1 ⎪⎭⎫ ⎝⎛0,31 ()+∞,0 3.已知函数()x f 的定义域为[].2,2- ①求函数()x f 2的定义域;②求函数⎪⎭⎫⎝⎛-141x f 的定义域. 【解析】① 函数()x f 的定义域为[]2,2-222≤≤-∴x 即11≤≤-x故函数()x f 2的定义域为[]1,1-∈x . ② 函数()x f 的定义域为[]2,2-21412≤-≤-∴x 即124≤≤-x 故函数⎪⎭⎫⎝⎛-141x f 的定义域为[]12,4-. 4.已知函数()42-x f的定义域[]5,3∈x ,则函数()x f 的定义域是?【解析】 函数()42-x f 的定义域[]5,3∈x 21452≤-≤∴x即函数()x f 的定义域是[]21,5∈x5.如果函数()()()x x x f -+=11的图像在x 轴上方,则()x f 的定义域为( ).{}1.<x x A {}1.>x x B {}11.-≠<x x x C 且 {}11.≠->x x x D 且【解析】对于()(),011>-+x x 当0≥x 时,有()()011<-+x x 11<<-⇒x 得;10<≤x当0<x 时,有()012>+x 1-≠⇒x 得.10-≠<x x 且 综上,,11-≠<x x 且故选.C6.(1)已知1,,,,≠∈+a R z y x a ,设,,log 11log 11zya a ay ax --==用x a ,表示z .(2)设ABC ∆的三边分别为c b a ,,,且方程01lg 2)lg(2222=+--+-a b c x x 有等根,判断ABC ∆的形状. 【解析】(1),,log 11log 11zya a ay ax --==则,log 11log log ,log log log 11log 11z ay ax a za a ya a a a -===--y ax a ya a a log 11log log log 11-==-zza a log 11log 1111-=--=所以xz a a log 11log -=,故xa a z log 11-=.(2)原方程可以转化为0)(10lg 22222=-+-a b c x x又因为方程有等根,则0)(10lg 4)2(2222=---=∆ab c , 必然有1)(10lg 222=-a b c ,所以10)(10222=-ab c ,即222a b c +=. 故ABC ∆为直角三角形.第二部分:函数的值域例1.求函数111++=x y 的值域.【解析】.111,01≥++∴≥+x x ∴11110≤++<x ,∴函数的值域为(]1,0.例2.求函数[]2,1,522-∈+-=x x x y 的值域.【解析】将函数配方得:()412+-=x y []2,1-∈x由二次函数的性质可知:当1=x 时,,4m in =y 当1-=x 时,8m ax =y故函数的值域是[]8,4例3.求函数1-+=x x y 的值域.【解析】令()01≥=-t t x ,则12+=t x 故.4321122+⎪⎭⎫ ⎝⎛+=++=t t t y又,0≥t 由二次函数性质知,当0=t 时,;1min =y 当t 不断增大时,y 值趋于∞+, 故函数的值域为[)+∞,1.例4.求函数2332+-+-=x x x y 的值域. 【解析】定义域满足⎩⎨⎧≥+-≥-023032x x x 3≥⇒x . 令,31-=x y 任取,321≥>x x 由,03333212121>-+--=---x x x x x x1y ∴在[)+∞,3上单调递增.令,2322+-=x x y由,232+-=x x u 对称轴,23=x 开口向上,知2y 在[)+∞,3上也单调递增. 从而知()=x f 2332+-+-x x x 在定义域[)+∞,3上是单调递增.()∴=≥∴.23f y 值域为[)+∞,2.例5.求函数21+-=x x y 的值域 【解析】由1231232≠+-=+-+=x x x y ,可得值域{}1≠y y 例6.求13+--=x x y 的值域【解析】可化为 ⎪⎩⎪⎨⎧>-≤≤---<=3,431,221,4x x x x y 如图:观察得值域{}44≤≤-y y .例7.求函数x y -=3的值域.【解析】0≥x 33,0≤-≤-∴x x 故函数的值域是:[]3,∞-例8.求函数51042+++=x x y 的值域.【解析】配方,得().5622+++=x y ().65,6622+≥∴≥++y x∴函数的值域为).,65(+∞+例9.求函数1122+++-=x x x x y 的值域.【解析】 1122+++-=x x x x y ,R x ∈,去分母整理得()()01112=-+++-y x y x y.当1=y 时,,0=x 故y 可取1; ①当1≠y 时,方程①在R 内有解,则()()(),011412≥---+=∆y y y,031032≤+-∴y y 解得.331≤≤y ∴函数的值域为.3,31⎥⎦⎤⎢⎣⎡例10.求函数11--+=x x y 的值域.【解析】原函数可化为:112-++=x x y令,1,121-=+=x y x y 显然21,y y 在[)+∞,1上为无上界的增函数所以21,y y y =在[)+∞,1上也为无上界的增函数所以当1=x 时,21y y y +=有最小值2,原函数有最大值222= 显然,0>y 故原函数的值域为(]2,0.例11.求函数133+=x xy 的值域【解析】设t x=+13 ,则()111131113113>-=+-=+-+=t ty xx x 101101<<∴<<∴>y tt ,()01原函数的值域为∴.例12.求函数53-++=x x y 的值域.【解析】53-++=x x y ⎪⎩⎪⎨⎧≥-<<--≤+-=)5(22)53(8)3(22x x x x x由图像可知函数53-++=x x y 的值域为[)+∞,8.四、 课后作业【训练题A 类】1.函数()f x = ).A . 1[,)2+∞B . 1(,)2+∞ C. 1(,]2-∞ D. 1(,)2-∞2.函数265x x y ---=的值域是( )525.≤≤y A5.≤y B 50.≤≤y C 5.≥y D 3.函数31---=x x y 在其定义域内有( ).A 最大值2,最小值2- .B 最大值3,最小值1- .C 最大值4,最小值0 .D 最大值1,最小值3-4.已知函数31++-=x x y 的最大值为M ,最小值为m ,则Mm的值为( ) 41.A 21.B 22.C23.D 5.函数()=x f 962+-x 的值域是 ( )A 、(-∞,6)B 、]3,(-∞C 、 (0,6)D 、 (0,3) 6.()421-=x x f 的定义域为_____ 7.函数x x y 21-+=的值域是 . 8.求()4313512-++-=x x x x f 的定义域9.求2045222+-++-=x x x x y 的值域.10.求函数12-+=x x y 的值域.11.已知()x f 的值域为,94,83⎥⎦⎤⎢⎣⎡试求()()x f x f y 21-+=的值域.【参考答案】1.【答案】C【解析】由根式知21021≤⇒≥-x x 故选.C 2.【答案】A【解析】425425216022≤+⎪⎭⎫ ⎝⎛+-=--≤x x x , 25602≤--≤∴x x ,即525≤≤y3.【答案】A【解析】由题意得()()()⎪⎩⎪⎨⎧>≤<-≤-=3,231,421,2x x x x y []2,2-∈⇒y ,故选A4.【答案】C【解析】两边平方,即()()312312+-+++-=x x x x y ()41242++-+=x844max 2=+=y ,4min 2=y ,2284max min ==y y 故选C . 5.【答案】B【解析】∴≥+392x 3962≤+-x 故选.B6.【答案】()+∞,8 【解析】80421≥⇒≥-x x ,即()+∞,8 7.【答案】(],1-∞【解析】令x t 21-=则()0212≥-=t t x 即()()021212≥++-=t t t t f ()11212+--=t故1=t 时,取得最大值.即().1≤x f8.【解析】1212210431012>⇒⎪⎩⎪⎨⎧>≥⇒⎪⎩⎪⎨⎧>-≥-x x x x x ,即()+∞,129.【解析】()()1624122+-++-=x x y ()()()()2222402201-+-+++-=x x即可看成三点:()()()4,2,2,1,0,B A x P -,PB PA y +=在PAB ∆中AB PB PA >+知点()2,1-A 点()4,2B 在数轴异侧时AB 最大.PB PA y +==AB 故()()37422122=--+-=≥AB y10.【解析】显然,函数的定义域为21≥x . 当21≥x 时,函数12,21-==x y x y 都是递增的 所以在21=x 时,取得最小值.即⎪⎭⎫⎢⎣⎡+∞∈,21y . 11.【解析】()(),412191,9483≤-≤∴≤≤x f x f即有(),212131≤-≤x f 令(),21,31,21⎥⎦⎤⎢⎣⎡∈-=t x f t ()(),1212t t x f +-=()()t t t g y +-==∴2121()11212+--=t⎥⎦⎤⎢⎣⎡∉21,311 ,∴函数()t g y =在区间⎥⎦⎤⎢⎣⎡21,31上单调递增,,9731min =⎪⎭⎫ ⎝⎛=∴g y ∴=⎪⎭⎫ ⎝⎛=.8721max g y 函数的值域为⎥⎦⎤⎢⎣⎡87,97.【训练题B 类】1.求()52+=x x f 的值域2.求函数xy --=111的值域3.求函数12--=x x y 的值域.4.已知()x f 43-的定义域为[],2,1-∈x 则函数()x f 的定义域是?5.求下列函数的值域:(1);1342++=x x y (2)5438222+-+-=x x x x y6.对于每个函数x ,设()x f 是2,14+=+=x y x y 和42+-=x y 三个函数中的最小者,则()x f 的最大值是什么?7.已知⎪⎭⎫⎝⎛-x f 213的定义域为[]5,1∈x ,则函数()32+x f 的定义域是?8.求下列函数的值域:(1)[);5,1,642∈+-=x x x y (1)245x x y -+=.9.求函数13+--=x x y 的值域.10.函数232+-=kx x y 的值域为⎪⎭⎫⎝⎛+∞-⎪⎭⎫ ⎝⎛-∞-,3232, ,求k 的值.11.(1)已知函数⎩⎨⎧≥<=0,0,)(2x x x x x f ,求))((x f f .(2)求函数12)(2--+=x x x f 的最小值.12.若函数432--=x x y 的定义域为[],,0m 值域为,4,425⎥⎦⎤⎢⎣⎡--求m 的取值范围.【参考答案】1.【解析】25052-≥⇒≥+x x ,即⎪⎭⎫⎝⎛+∞-,25 2.【解析】原式化为,11=--x y y ,011≥-=-∴yy x 即01<≥y y 或. 故()[)+∞∞-∈,10, y .3.【解析】函数的定义域是{}.,1R x x x ∈≥令()0,1≥=-t t x 则 ,12+=t x8154122222+⎪⎭⎫ ⎝⎛-=+-=∴t t t y ,又o t ≥,∴结合二次函数的图像知()815≥t y .故原函数的值域为⎭⎬⎫⎩⎨⎧≥815y y . 4.【解析】 ()x f 43-的定义域为[]2,1-∈x 7435≤-≤-∴x()x f ∴的定义域为[]7,5-∈x .5.【解析】(1)由1342++=x x y 可得,0342=-+-y x yx 当0=y 时,;43-=x 当0≠y 时,,R x ∈故()(),03442≥---=∆y y解得,41≤≤-y 且0≠y .当2-=x 时,;1-=y 当21=x 时,.4=y∴所求函数的值域为[].4,1-(2)由5438222+-+-=x x x x y 可得()()0352422=-+---y x y x y ,当02≠-y 时,由,R x ∈得()()()035242162≥----=∆y y y ,25≤≤-∴y .25<≤-∴y .经检验2=x 时,5-=y ,而2≠y .∴原函数的值域为[]2,5-.6.【解析】在同一直角坐标系中作出三个函数的图像,由图像可知,()x f 的最大值是2+=x y 和42+-=x y 交点的纵坐标,易得()38max =x f . 7.【解析】 ⎪⎭⎫⎝⎛-x f 213的定义域为[]5,1∈x 2521321≤-≤∴x 即253221≤+≤x4145-≤≤-∴x 故函数()32+x f 的定义域是⎥⎦⎤⎢⎣⎡--∈41,45x 8.【解析】(1)配方,得().222+-=x y [),5,1∈x ∴函数的值域为{}.112<≤y y(2)对根号里配方得:()30922≤≤⇒+--=y x y 即[]3,0∈∴y .9.【解析】原式可变为()[)[)⎪⎩⎪⎨⎧+∞∈--∈+--∞-∈=,3,43,1,221,,4x x x x y 44≤≤-⇒y 即[]4,4-∈y10.【解析】232+-=kx x y 的反函数为kx x y -+=232,其定义域为⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛∞-,22,k k ,故.3322-=⇒-=k k 11.【解析】(1)当0≥x 时,0)(2≥=x x f ,则42)())((x x f x f f ==;当0<x 时,,0)(<=x x f 则x x f x f f ==)())(( 所以⎩⎨⎧≥<=0,0,))((2x x x x x f f(2)⎪⎩⎪⎨⎧<++-≥-+=2,12,3)(22x x x x x x x f由)(x f 在),2[+∞上的最小值为3)2(=f , 在)2,(-∞上的最小值为43)21(=f 故函数)(x f 在R 上的最小值为43. 12.【解析】,425232-⎪⎭⎫ ⎝⎛-=x y 因为,4,425⎥⎦⎤⎢⎣⎡--∈y 又,4)0(-=f ,42523-=⎪⎭⎫ ⎝⎛f ()43-=f ,故⎥⎦⎤⎢⎣⎡∈⇒≤≤3,23323m m . 【训练题C 类】1.函数()()R x xx f ∈+=211的值域是( ) []1,0.A [)1,0.B (]1,0.C ()1,0.D2.函数()155+=x xx f 的值域是( ) ()()+∞-∞-,51,. A ()5,1.B()()+∞∞-,11,. C ⎪⎭⎫⎝⎛+∞-⎪⎭⎫ ⎝⎛-∞-,5151,. D3.下列函数中,值域是()+∞,0的是( )12.2+-=x x y A ()()+∞∈++=,012.x x x y B ()Nx x x y C ∈++=121.211.+=x y D 4.求函数x x y 431-+-=的值域.5.求x x y ++-=12的值域.6.函数()112->++=x x x y 的值域是.7.已知函数()x f 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有()()()x f x x xf +=+11,则⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛25f f 的值是多少?8.求函数)2(x x x y -+=的值域.9.已知函数⎪⎩⎪⎨⎧+∞∈+-∞∈-=),0[,1)0,(,11)(2x x x x x f ,求)1(+x f .10.已知函数()x f 的定义域为()b a ,且,2>-a b 则()()()1313+--=x f x f x F 的定义域为()13,13.-+b a A ⎪⎭⎫ ⎝⎛-+31,31.b a B ⎪⎭⎫ ⎝⎛--31,31.b a C ⎪⎭⎫⎝⎛++31,31.b a D11.若函数()x f y =的定义域为[],1,1-求函数⎪⎭⎫⎝⎛-∙⎪⎭⎫ ⎝⎛+=4141x f x f y 的定义域.【参考答案】1.【答案】C【解析】.1110,11,0,222≤+<∴≥+∴≥∴∈x x x R x∴函数()()R x xx f ∈+=211的值域为(].1,0 2.【答案】C 【解析】15115155+-+=+=x x x x y 1511+-=x 11511015≠+-∴≠+x x 即1≠y 知()()+∞∞-∈,11, y 故选.C3.【答案】D 【解析】A 中()012≥-x [)+∞∈∴,0yB 中11112++=++x x x ()+∞∈,0x 21<<∴y 即()2,1∈y C 中()2211121+=++=x x x y N x ∈ ()1,0∈∴y D 中由题意知01>+x ()+∞∈+∴,011x 故选D 4.【解析】令()01≥=-t t x 则()012≥+=t t x则142-+-=t t y ()o t t ≥⎪⎭⎫⎝⎛--=2214则0≤y .5.【解析】两边平方:6649212322≤⇒≤+⎪⎭⎫ ⎝⎛--+=y x y6.【解析】()12111211111112->=+⋅+≥+++=+++=++=x x x x x x x x x y当且仅当111+=+x x 即0=x 时成立,故2≥y 7.【解析】由()()()x f x x xf +=+11可得:23=x 时,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛23252523f f ,21=x 时,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛21232321f f , 21-=x 时,⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-21212121f f .又.025,023021=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛f f f又()()()(),111111--=+--f f ()().0100=-=-∴f f()().0025,00==⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∴=∴f f f f8.【解析】由0)2(≥-x x 解得定义域为20≤≤x两边平方整理得:0)1(2222=++-y x y x (1)因为0)1(2222=++-y x y x 一定有根,所以08)1(42≥-+=∆y y 解得:2121+≤≤-y由0≥∆仅保证关于x 的方程:0)1(2222=++-y x y x 在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根, 也就是说0≥∆求出的范围可能比y 的实际范围大, 故需要进一步确定此函数的值域. 采取如下方法进一步确定函数的值域. ∵20≤≤x 0)2(≥-+=∴x x x y ,把0min =y ,21+=y 带入方程(1)解得:]2,0[2222241∈-+=x即当时,2222241-+=x 时原函数的值域为:]21,0[+9.【解析】由复合函数的定义域知)1(+x f 的定义为),1[)1`,(+∞-⋃--∞当)1`,(--∞∈x 时 11)2(+=-x x f ,当),1[+∞-∈x 时22)1(2++=+x x x f 所以⎪⎩⎪⎨⎧+∞-∈++--∞∈+=+),1[,22)1,(,11)1(2x x x x x x f10.【答案】B【解析】由题意得⎩⎨⎧<+<<-<b x a b x a 1313,即⎪⎪⎩⎪⎪⎨⎧-<<-+<<+31313131b x a b x a 显然,3131->+b b ,3131->+a a 又,2>-a b 从而.3131+>-a b()x F ∴的定义域为⎪⎭⎫⎝⎛-+31,31b a ,故选.B11.【解析】 函数()x f y =的定义域为[]1,1-∴有⎪⎪⎩⎪⎪⎨⎧≤-≤-≤+≤-14111411x x 即⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤-45434345x x 得4343≤≤-x 故函数⎪⎭⎫ ⎝⎛-∙⎪⎭⎫ ⎝⎛+=4141x f x f y 的定义域是⎥⎦⎤⎢⎣⎡-∈43,43x .。

第1讲 函数的定义域及值域(教师版)

第1讲 函数的定义域及值域(教师版)

第1讲 函数的定义域及值域【知识梳理】一.函数的基本概念 (1)函数的定义设A ,B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A . (2)函数的定义域、值域在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(3)函数的三要素:定义域、对应关系和值域. (4)函数的表示法表示函数的常用方法有解析法、图象法和列表法. 二.映射的概念设A ,B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射. 三.函数解析式的求法求函数解析式常用方法有待定系数法、换元法、配凑法、消去法. 四.常见函数定义域的求法 (1)分式函数中分母不等于零. (2)偶次根式函数被开方式大于或等于0. (3)一次函数、二次函数的定义域为R .(4)y =a x (a >0且a ≠1),y =sin x ,y =cos x ,定义域均为R .(5)y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x |x ∈R 且x ≠k π+π2,k ∈Z .(6)函数f (x )=x α的定义域为{x |x ∈R 且x ≠0}.【题型归纳全解】题型一 函数的概念例1. 有以下判断:①f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1 (x ≥0)-1 (x <0)表示同一函数;②函数y =f (x )的图象与直线x =1的交点最多有1个; ③f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;④若f (x )=|x -1|-|x |,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=0. 其中正确判断的序号是________. 答案 ②③解析 对于①,由于函数f (x )=|x |x 的定义域为{x |x ∈R 且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1 (x ≥0)-1 (x <0)的定义域是R ,所以二者不是同一函数;对于②,若x =1不是y =f (x )定义域内的值,则直线x =1与y =f (x )的图象没有交点,如果x =1是y =f (x )定义域内的值,由函数定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于③,f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )和g (t )表示同一函数;对于④,由于f ⎝⎛⎭⎫12=⎪⎪⎪⎪12-1-⎪⎪⎪⎪12=0,所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=f (0)=1. 综上可知,正确的判断是②③.题型二 求函数的解析式例2. (1)如果f (1x )=x1-x,则当x ≠0且x ≠1时,f (x )等于( )A.1xB.1x -1C.11-xD.1x -1 (2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,则f (x )=________.(3)已知函数f (x )的定义域为(0,+∞),且f (x )=2f (1x)·x -1,则f (x )=________.答案 (1)B (2)2x +7 (3)23x +13解析 (1)令t =1x ,得x =1t ,∴f (t )=1t 1-1t =1t -1,∴f (x )=1x -1.(2)设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b ,即ax +5a +b =2x +17不论x 为何值都成立, ∴⎩⎪⎨⎪⎧ a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7.(3)在f (x )=2f (1x )x -1中,用1x代替x ,得f (1x )=2f (x )1x -1,将f (1x )=2f (x )x-1代入f (x )=2f (1x )x -1中,可求得f (x )=23x +13.题型三 求函数的定义域 例3. (1)函数f (x )=ln (2+x -x 2)|x |-x 的定义域为( )A .(-1,2)B .(-1,0)∪(0,2)C .(-1,0)D .(0,2)(2)已知函数f (x )的定义域为[1,2],则函数g (x )=f (2x )(x -1)0的定义域为________.答案 (1)C (2)[12,1)解析 (1)f (x )有意义,则⎩⎪⎨⎪⎧2+x -x 2>0,|x |-x ≠0,解之得⎩⎪⎨⎪⎧-1<x <2,x <0,∴-1<x <0,∴f (x )的定义域为(-1,0).(2)要使函数g (x )=f (2x )(x -1)0有意义,则必须有⎩⎪⎨⎪⎧1≤2x ≤2x -1≠0,∴12≤x <1,故函数g (x )的定义域为[12,1). 题型四 分段函数例4. (1)已知函数f (x )=⎩⎪⎨⎪⎧2x,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于( )A .-3B .-1C .1D .3(2)设函数y =f (x )在R 上有定义.对于给定的正数M ,定义函数f M (x ) =⎩⎪⎨⎪⎧f (x ),f (x )≤M ,M ,f (x )>M ,则称函数f M (x )为f (x )的“孪生函数”.若给定函数f (x )=2-x 2,M =1,则f M (0)的值为 ( )A .2B .1 C. 2 D .- 2 答案 (1)A (2)B解析 (1)由题意知f (1)=21=2.∵f (a )+f (1)=0, ∴f (a )+2=0.①当a >0时,f (a )=2a,2a +2=0无解;②当a ≤0时,f (a )=a +1,∴a +1+2=0,∴a =-3. (2)由题设f (x )=2-x 2≤1,得 当x ≤-1或x ≥1时, f M (x )=2-x 2;当-1<x <1时,f M (x )=1.∴f M (0)=1.【课堂训练】1. 函数f (x )=1ln (x +1)+4-x 2的定义域为( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]答案 B解析 由⎩⎪⎨⎪⎧x +1>0ln (x +1)≠04-x 2≥0,得-1<x ≤2,且x ≠0.2. (2012·江西)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x ,x >1,则f (f (3))等于( )A.15 B .3 C.23 D.139 答案 D解析 由题意知f (3)=23,f ⎝⎛⎭⎫23=⎝⎛⎭⎫232+1=139,∴f (f (3))=f ⎝⎛⎭⎫23=139.3. 若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )答案 B解析 可以根据函数的概念进行排除,使用筛选法得到答案.4. 已知函数f (x )满足f (2x +|x |)=log 2x |x |,则f (x )的解析式是( )A .f (x )=log 2xB .f (x )=-log 2xC .f (x )=2-xD .f (x )=x -2答案 B解析 根据题意知x >0,所以f (1x )=log 2x ,则f (x )=log 21x=-log 2x .5. 某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( )A .y =[x10]B .y =[x +310]C .y =[x +410]D .y =[x +510]答案 B解析 方法一 取特殊值法,若x =56,则y =5,排除C ,D ; 若x =57,则y =6,排除A ,选B.方法二 设x =10m +α(0≤α≤9,m ,α∈N ),当0≤α≤6时,[x +310]=[m +α+310]=m =[x10],当6<α≤9时,[x +310]=[m +α+310]=m +1=[x10]+1,所以选B.6. 下表表示y答案 {2,3,4,5}解析 函数值只有四个数2、3、4、5,故值域为{2,3,4,5}. 7. 已知f (x -1x )=x 2+1x 2,则f (3)=________.答案 11解析 ∵f (x -1x )=x 2+1x 2=(x -1x )2+2,∴f (x )=x 2+2(x ≠0),∴f (3)=32+2=11.8. 若函数f (x )=2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________. 答案 [-1,0]解析 由题意知2x 2+2ax -a -1≥0恒成立. ∴x 2+2ax -a ≥0恒成立, ∴Δ=4a 2+4a ≤0,∴-1≤a ≤0.9. 已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1.求函数f (x )的解析式. 解 设f (x )=ax 2+bx +c (a ≠0),又f (0)=0, ∴c =0,即f (x )=ax 2+bx .又∵f (x +1)=f (x )+x +1.∴a (x +1)2+b (x +1)=ax 2+bx +x +1. ∴(2a +b )x +a +b =(b +1)x +1,∴⎩⎪⎨⎪⎧2a +b =b +1a +b =1,解得⎩⎨⎧a =12b =12.∴f (x )=12x 2+12x .10. 某人开汽车沿一条直线以60 km /h 的速度从A 地到150 km 远处的B 地.在B 地停留1 h后,再以50 km/h 的速度返回A 地,把汽车与A 地的距离x (km)表示为时间t (h)(从A 地出发开始)的函数,并画出函数的图象. 解x =⎩⎪⎨⎪⎧60t 0≤t ≤52150 52<t ≤72150-50(t -72) 72<t ≤132.图象如右图所示.【课下作业】1. 已知a ,b 为两个不相等的实数,集合M ={a 2-4a ,-1},N ={b 2-4b +1,-2},f :x →x表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .1B .2C .3D .4答案 D解析 由已知可得M =N ,故⎩⎪⎨⎪⎧ a 2-4a =-2,b 2-4b +1=-1⇒⎩⎪⎨⎪⎧a 2-4a +2=0,b 2-4b +2=0,所以a ,b 是方程x 2-4x +2=0的两根,故a +b =4.2. 设函数f (x )=⎩⎪⎨⎪⎧x 2+4x +6,x ≤0-x +6,x >0,则不等式f (x )<f (-1)的解集是( )A .(-3,-1)∪(3,+∞)B .(-3,-1)∪(2,+∞)C .(-3,+∞)D .(-∞,-3)∪(-1,3) 答案 A解析 f (-1)=3,f (x )<3,当x ≤0时,x 2+4x +6<3, 解得x ∈(-3,-1);当x >0时,-x +6<3,解得x ∈(3,+∞),故不等式的解集为(-3,-1)∪(3,+∞),故选A.3. 已知函数f (x )=⎩⎪⎨⎪⎧e x ,x ≥0,-2x ,x <0,则关于x 的方程f (f (x ))+k =0,给出下列四个命题:①存在实数k ,使得方程恰有1个实根; ②存在实数k ,使得方程恰有2个不相等的实根; ③存在实数k ,使得方程恰有3个不相等的实根; ④存在实数k ,使得方程恰有4个不相等的实根.其中正确命题的序号是________.(把所有满足要求的命题序号都填上) 答案 ①②解析依题意,知函数f (x )>0, 又f (f (x ))=⎩⎪⎨⎪⎧ee x ,x ≥0,e -2x ,x <0,依据y =f (f (x ))的大致图象(如右图所示),知存在实数k ,使得方程f (f (x ))+k =0恰有1个实根或恰有2个不相等的实根;不存在实数k ,使得方程恰有3个不相等的实根或恰有4个不相等的实根.4. 行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫 作刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度. 解 (1)由题意及函数图象,得⎩⎨⎧402200+40m +n =8.4602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70. ∵x ≥0,∴0≤x ≤70.故行驶的最大速度是70千米/时.5. 运货卡车以每小时x 千米的速度匀速行驶130千米(50≤x ≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油(2+x 2360)升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.解 (1)行车所用时间为t =130x(h),y =130x ×2×(2+x2360)+14×130x ,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是 y =2 340x +1318x ,x ∈[50,100].(2)y =2 340x +1318x ≥2610,当且仅当2 340x =1318x ,即x =1810时,上述不等式中等号成立.故当x =1810时,这次行车的总费用最低,最低费用为2610元.。

函数的定义域和值域的概念

函数的定义域和值域的概念

函数的定义域和值域的概念函数的定义域和值域,听起来就像是高深莫测的数学术语,其实说白了,跟我们日常生活中的一些事情还真有点像。

想象一下,你在餐厅点菜,菜单上的每道菜都有它的限制,不是说你想点什么就点什么。

定义域就像是那个菜单,它告诉你哪些菜可以点,哪些不可以。

比如说,你去一家海鲜餐厅,菜单上没有牛排,哎,那牛排就不在你的选择范围之内。

这就说明了定义域的概念:一个函数的输入值能接受的所有可能值,简单点说,就是“你可以尝试的东西”。

然后说到值域,这个就更有趣了。

值域就像是你点菜后能尝到的味道。

有些菜做得特别好,味道鲜美,给你留下深刻的印象。

可有些菜,虽然点了,但味道一般,甚至让你想起那些不堪回首的经历。

值域就是函数的输出结果,也就是你能从输入中“尝”到的味道。

比如,刚刚那个海鲜餐厅,你点了大虾,结果上来一盘色香味俱全的虾,哇,简直让人陶醉。

这一盘虾就是你的值域,代表了这个函数在定义域中所有输入的结果。

听起来是不是有点抽象?来,咱们换个更贴近生活的比喻。

想象一下,篮球场上投篮。

场地就是定义域,篮球筐就是值域。

你在场地上投篮,只有在规定的区域内你才能投,超出这个范围就没戏。

然后你每投一次,就会得到不同的分数,这些分数就像是值域,反映了你在这个投篮过程中能达到的效果。

你投得好,得分高,那就是成功;投得差,得分低,嘿,这也是个教训。

这样看,是不是一目了然?再来说说这些概念的实际应用。

比如说,你在编程时用到函数。

每次你给函数输入数据,它就像一个勤劳的小工人,认真负责地把结果计算出来。

可是如果你的输入超出了它的定义域,它可能就会傻眼,甚至给你报错,真是让人哭笑不得。

因此,了解函数的定义域就显得格外重要,这样你才能保证你的程序能正常运行。

而值域呢?这可是你检查函数是否有效的一个重要指标。

想象一下,你在一个大型项目中,如果你用的函数输出的值根本不是你想要的结果,那真是得不偿失。

所以,搞清楚一个函数的值域,能够帮助你预测结果,做好相应的准备,避免到时候再忙得不可开交。

函数定义域值域及表示

函数定义域值域及表示

函数定义域值域及表示 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT函数定义域值域及表示(1)函数的概念设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域.注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; 函数的定义域、值域要写成集合或区间的形式.构成函数的三要素:定义域、对应关系和值域再注意:1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)(2)区间的概念及表示法设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a xb <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()=可以化成一个系数含有y的关于x的二次方程y f x2++=,则在()0a y xb y xc y()()()0a y≠时,由于,x y为实数,故必须有2()4()()0∆=-⋅≥,从而确定函数的值域或最值.b y a yc y④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.例题讲解[例1] 求下列函数的定义域:⑴y=⑵y=(3)x x x x f -+=0)1()( (4)g(x)=211+-++x x[例2] 求抽象函数求定义域记住两句话:地位相同范围相同,定义域是关于x 的。

2.1函数的定义域、值域、解析式

2.1函数的定义域、值域、解析式

函数的定义域、值域、解析式一、知识点1、定义域的概念和求法2、值域的概念和求法3、映射、对应法则 区间概念设,a b R ∈且a b <(,a b 称为端点,在数轴上注意实心空心的区分) 满足a x b ≤≤的全体实数x 的集合,叫做闭区间,记作[,]a b 满足a x b <<的全体实数x 的集合,叫做开区间,记作(,)a b满足a x b ≤<或a x b <≤的全体实数x 的集合,叫做半开半闭区间,记作[,)a b 或(,]a b 分别满足,,,x a x a x a x a ≥>≤<的全体实数的集合分别记作[,),(,),(,],(,)a a a a +∞+∞-∞-∞一、定义域1、定义域的概念设集合A 是一个非空实数集,对A 内任意实数x ,按照确定的法则f ,都有唯一确定的实数值y 与它对应,则这种对应关系叫做集合A 上的一个函数,记做(),y f x x A =∈。

x 叫做自变量,自变量取值的范围所组成的集合叫做函数的定义域。

函数的定义域和值域一定表示成集合或区间的形式。

(易错点)2、函数定义域的求法(方法对接):(1)分式中的分母不为零; (2)偶次方根下的数(或式)大于或等于零; (3)a 的零次方没有意义; (后续课程会涉及的定义域:指数式的底数,对数式的底数和真数,正余切函数和反三角函数的定义域)例1、求下列函数的定义域(分母和偶次方根)1()1f x x =+ 221533x x y x --=+-练习、求下列函数的定义域:1()5f x x =- ()13f x x x =-++ ()f x x x =+- 262x y x -=+ 021(21)4111y x x x =+-+-+- 211()1x y x -=-+(选讲)复合函数的定义域:函数()f x 的定义域为(,)a b ,函数()g x 的定义域为(,)m n ,则函数[]()f g x 的定义域为()(,)(,)g x a b x m n ∈⎧⎨∈⎩,解不等式,最后结果才是。

函数的定义域与值域

函数的定义域与值域

函数的定义域与值域函数是数学中一个非常重要的概念,在各个数学分支中都有应用。

函数的定义域和值域是函数研究的基本内容之一。

本文将详细介绍函数的定义域与值域的概念及其应用。

一、函数的定义域函数的定义域是指函数中自变量(x)的取值范围。

简单来说,定义域就是使函数有意义的所有可能自变量值的集合。

如果自变量取值超出定义域,则函数无法计算。

下面通过几个例子来说明。

例子1:考虑函数f(x) = √x由于方根函数的自变量必须是非负实数,所以其定义域为x ≥ 0。

任何小于0的自变量将使得函数无法计算。

例子2:考虑函数 g(x) = 1/x在这种情况下,我们不能让自变量 x 等于0,因为除数不能为0。

所以函数 g(x) 的定义域为x ≠ 0。

其他所有实数都是函数的定义域。

函数的定义域可以是一个具体的数轴区间,也可以是由多个区间组成的集合。

定义域的范围可以是全体实数,也可以是局限于特定范围内。

二、函数的值域函数的值域是函数所有可能输出值的集合。

也就是说,如果我们遍历自变量的所有可能取值,函数的值域就是对应的函数值的集合。

同样地,我们使用几个例子来说明。

例子1:考虑函数 f(x) = x^2对于这个函数,自变量可以取任何实数值。

但是根据平方函数的图像,我们可以看出函数的值域是y ≥ 0。

因为平方的结果不会为负数。

例子2:考虑函数 g(x) = sin(x)由三角函数的周期性可知,对于任何自变量,都存在对应的函数值。

因此,函数 g(x) 的值域是 (-1, 1) 的闭区间。

有时候,函数的值域是一个区间,也可以是由多个不相交区间组成的集合。

三、定义域与值域的应用函数的定义域和值域在数学中广泛应用于各个领域。

例如,在微积分中,对函数进行求导和积分时,必须要考虑函数的定义域。

此外,在解方程和不等式时,也要考虑函数的定义域和值域。

在实际问题中,函数的定义域和值域还可以帮助我们理解现象的范围和取值情况。

例如,当我们研究某种物理模型时,函数的定义域可以帮助我们确定变量的有效范围,而函数的值域则可以帮助我们计算物理量的可能取值。

数学中的函数定义域与值域

数学中的函数定义域与值域

数学中的函数定义域与值域一、函数定义域的概念1.函数定义域是指函数中自变量可以取的所有可能值的集合。

2.函数定义域通常用区间表示,如实数集R、有理数集Q、整数集Z等。

3.函数定义域可以是无限的,如f(x) = x^2的定义域为实数集R。

4.函数定义域可以是有限的,如f(x) = sin(x)的定义域为[-1, 1]。

二、函数值域的概念1.函数值域是指函数中因变量可以取的所有可能值的集合。

2.函数值域通常用区间表示,如实数集R、有理数集Q、整数集Z等。

3.函数值域可以是无限的,如f(x) = x^2的值域为非负实数集[0, +∞)。

4.函数值域可以是有限的,如f(x) = sin(x)的值域为[-1, 1]。

三、函数定义域与值域的关系1.函数的定义域与值域不一定相同,它们可以是不同的集合。

2.函数的定义域是函数值域的子集,即函数的所有自变量取值都在值域中。

3.函数的值域可以小于、等于或大于定义域,这取决于函数的特性。

四、确定函数定义域的方法1.对于多项式函数,定义域通常为实数集R。

2.对于三角函数,定义域通常为实数集R。

3.对于指数函数和对数函数,定义域通常为正实数集(0, +∞)。

4.对于分式函数,定义域为除数不为零的所有实数。

5.对于绝对值函数,定义域为所有实数。

五、确定函数值域的方法1.对于多项式函数,值域通常为实数集R。

2.对于三角函数,值域通常为闭区间[-1, 1]。

3.对于指数函数,值域为正实数集(0, +∞)。

4.对于对数函数,值域为实数集R。

5.对于分式函数,值域为非零实数集。

6.对于绝对值函数,值域为非负实数集[0, +∞)。

六、函数定义域与值域的应用1.函数的定义域与值域是研究函数性质的基础,如单调性、奇偶性、周期性等。

2.函数的定义域与值域可以帮助我们理解和解决实际问题,如最值问题、方程问题等。

3.函数的定义域与值域可以用来判断函数的合理性和有效性。

4.函数定义域是指函数中自变量可以取的所有可能值的集合,函数值域是指函数中因变量可以取的所有可能值的集合。

函数的定义域、值域--高考数学【解析版】

函数的定义域、值域--高考数学【解析版】

专题06 函数的定义域、值域函数的定义域作为函数的要素之一,是研究函数的基础,函数的定义域问题也是高考的热点.函数的值域(最值)也是高考中的一个重要考点,并且值域(最值)问题通常会渗透在各类题目之中,成为解题过程的一部分.【重点知识回眸】1.函数的有关概念 (1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据. (4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法.提醒:两个函数的值域和对应关系相同,但两个函数不一定相同,例如,函数f (x )=|x |,x ∈[0,2]与函数f (x )=|x |,x ∈[-2,0]. 2.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.提醒:分段函数是一个函数,而不是几个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集. 3.常见函数定义域的求法类型x 满足的条件2()nf x (n ∈N *) f (x )≥0 21()n f x (n ∈N *)f (x )有意义 1()f x 与[f (x )]0 f (x )≠0 log a f (x )(a >0且a ≠1) f (x )>0 a f (x )(a >0且a ≠1)f (x )有意义 tan[f (x )]f (x )≠π2+k π,k ∈Z四则运算组成的函数 各个函数定义域的交集实际问题使实际问题有意义4.①若()y f x =的定义域为(),a b ,则不等式()a g x b <<的解集即为函数()()y f g x =的定义域;②若()()y f g x =的定义域为(),a b ,则函数()g x 在(),a b 上的的值域即为函数()y f x =的定义域.5.常见函数的值域:在处理常见函数的值域时,通常可以通过数形结合,利用函数图像将值域解出,熟练处理常见函数的值域也便于将复杂的解析式通过变形与换元向常见函数进行化归.(1)一次函数(y kx b =+):一次函数为单调函数,图像为一条直线,所以可利用边界点来确定值域.(2)二次函数(2y ax bx c =++),给定区间.二次函数的图像为抛物线,通常可进行配方确定函数的对称轴,然后利用图像进行求解.(关键点:①抛物线开口方向,②顶点是否在区间内).(3)反比例函数:1y x=(1)图像关于原点中心对称(2)当,0x y →+∞→ ,当,0x y →-∞→. (4)对勾函数:()0ay x a x=+> ① 解析式特点:x 的系数为1;0a >注:因为此类函数的值域与a 相关,求a 的值时要先保证x 的系数为1,再去确定a 的值 例:42y x x =+,并不能直接确定4a =,而是先要变形为22y x x ⎛⎫=+ ⎪⎝⎭,再求得2a =② 极值点:,x a x a ==③ 极值点坐标:(,2,,2a a a a --④ 定义域:()(),00,-∞+∞⑤ 自然定义域下的值域:(),22,a a ⎡-∞-+∞⎣(5)函数:()0ay x a x=-> 注意与对勾函数进行对比① 解析式特点:x 的系数为1;0a > ② 函数的零点:x a =③ 值域:R(5)指数函数(xy a =):其函数图像分为1a >与01a <<两种情况,可根据图像求得值域,在自然定义域下的值域为()0,+∞(6)对数函数(log a y x =)其函数图像分为1a >与01a <<两种情况,可根据图像求得值域,在自然定义域下的值域为()0,+∞(7)三角函数的有界性,如sin [1,1],x ∈-cos [1,1]x ∈-. 6.函数值域问题处理策略 (1)换元法:① ()()(),log ,sin f x a y ay f x y f x ===⎡⎤⎡⎤⎣⎦⎣⎦:此类问题在求值域时可先确定()f x 的范围,再求出函数的范围.② ()()(),log ,sin x a y f a y f x y f x ===:此类函数可利用换元将解析式转为()y f t =的形式,然后求值域即可.③形如y ax b cx d =++(2)均值不等式法:特别注意“一正、二定、三相等”.(3)判别式法:若原函数的定义域不是实数集时,应结合函数的定义域,将扩大的部分剔除.(4)分离常数法:一般地, ① ax by cx d+=+:换元→分离常数→反比例函数模型② 2ax bx c y dx e ++=+:换元→分离常数→ay x x=±模型③ 2dx ey ax bx c+=++:同时除以分子:21y ax bx c dx e=+++→②的模型④ 22ax bx cy dx ex f++=++:分离常数→③的模型(5)单调性性质法:利用函数的单调性(6)导数法:利用导数与函数的连续性求图复杂函数的极值和最值, 然后求出值域 (7)数形结合法【典型考题解析】热点一 已知函数解析式求定义域【典例1】(广东·高考真题(文))函数f (x )=11x-+lg(1+x )的定义域是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)∪(1,+∞)D .(-∞,+∞)【答案】C 【解析】根据函数解析式建立不等关系即可求出函数定义域. 【详解】 因为f (x )=11x-+lg(1+x ), 所以需满足1010x x -≠⎧⎨+>⎩,解得1x >-且1x ≠,所以函数的定义域为(-1,1)∪(1,+∞), 故选:C【典例2】(山东·高考真题(文))函数21()4ln(1)f x x x =-+( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]【答案】B 【解析】 【详解】x 满足2101140x x x +>⎧⎪+≠⎨⎪-≥⎩,即1022x x x >-⎧⎪≠⎨⎪-≤≤⎩. 解得-1<x <0或0<x ≤,选B.【典例3】(2019·江苏·高考真题)函数276y x x =+-_____. 【答案】[1,7]-. 【解析】 【分析】由题意得到关于x 的不等式,解不等式可得函数的定义域. 【详解】由已知得2760x x +-≥, 即2670x x --≤ 解得17x -≤≤, 故函数的定义域为[1,7]-.【典例4】(2022·北京·高考真题)函数1()1f x x x=-_________. 【答案】()(],00,1-∞⋃【解析】 【分析】根据偶次方根的被开方数非负、分母不为零得到方程组,解得即可; 【详解】 解:因为()11f x x x =-100x x -≥⎧⎨≠⎩,解得1x ≤且0x ≠,故函数的定义域为()(],00,1-∞⋃; 故答案为:()(],00,1-∞⋃ 【总结提升】已知函数的具体解析式求定义域的方法(1)简单函数的定义域:若f(x)是由一些基本初等函数通过四则运算构成的,则它的定义域为各基本初等函数的定义域的交集.(2)复合函数的定义域:先由外层函数的定义域确定内层函数的值域,从而确定对应的内层函数自变量的取值范围,还需要确定内层函数的定义域,两者取交集即可. 热点二 求抽象函数的定义域【典例5】(全国·高考真题(理))已知()f x 的定义域为(1,0)-,则函数(21)f x +的定义域为 ( ) A .(1,1)- B .1(1,)2--C .(1,0)-D .1(,1)2【答案】B 【解析】 【详解】试题分析:因为函数()f x 的定义域为(1,0)-,故函数(21)f x +有意义只需-1210x <+<即可,解得1-1-2x <<,选B .【典例6】(2023·全国·高三专题练习)已知函数()31f x +的定义域为[]1,7,求函数()f x 的定义域. 【答案】[]4,22 【解析】 【分析】根据复合函数定义域的性质进行求解即可. 【详解】因为()31f x +的定义域为[]1,7,所以17x ≤≤,所以43122x ≤+≤.令31x t +=,则422t ≤≤.即()f t 中,[]4,22t ∈. 故()f x 的定义域为[]4,22.【典例7】(2022·全国·高三专题练习)已知函数(1)y f x +=的定义域为112⎡⎤-⎢⎥⎣⎦,,则函数2(log )y f x =的定义域为( )A .(0,)+∞B .(0,1)C .22⎡⎤⎢⎥⎣⎦D .2⎡⎤⎣⎦,【答案】D 【解析】 【分析】根据(1)y f x +=的定义域可知1122x ≤+≤,故21log 22x ≤≤,即可求出答案. 【详解】解:∵函数(1)y f x +=的定义域为112⎡⎤-⎢⎥⎣⎦, ∴112x -≤≤,1122x ≤+≤∴函数2(log )y f x =中,21log 22x ≤≤ 24x ≤≤所以函数2(log )y f x =的定义域为2,]. 故选:D 【总结提升】(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出. (2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. 热点三 求函数的值域(最值)【典例8】(江西·高考真题(理))若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是( ) A .1[,3]2B .10[2,]3 C .510[,]23D .10[3,]3【答案】B 【解析】 【详解】试题分析:设()f x =t,则1,32t ⎡⎤∈⎢⎥⎣⎦,从而()F x 的值域就是函数11,,32y t t t ⎡⎤=+∈⎢⎥⎣⎦的值域,由“勾函数”的图象可知,102()3F x ≤≤,故选B .【典例9】(2023·全国·高三专题练习)已知函数()y f x =的定义域是R ,值域为[]1,2,则下列四个函数①()21y f x =-;①()21y f x =-;①()12f x y -=;①()2log 11y f x =++,其中值域也为[]1,2的函数个数是( ) A .4 B .3 C .2 D .1【答案】B 【解析】 【分析】求出①②③④中各函数的值域,即可得出合适的选项. 【详解】对于①,因为()12f x ≤≤,则()[]211,3y f x =-∈,①不满足条件;对于②,对于函数()21y f x =-,21x -∈R ,则函数()21y f x =-的值域为[]1,2,②满足条件;对于③,因为()12f x ≤≤,则()[]1,221f x y -∈=,③满足条件; 对于④,因为()12f x ≤≤,()[]11,2f x +∈,则()[]2log 111,2y f x =++∈,④满足条件. 故选:B.【典例10】(2023·全国·高三专题练习)已知函数2()(2)sin(1)1xf x x x x x =--+-在[1,1)-(1,3]⋃上的最大值为M ,最小值为N ,则M N +=( )A .1B .2C .3D .4【答案】B 【解析】 【分析】令1x t -=,()f x 转化为()21sin sin 1g t t t t t =+-+,令()21sin sin h t t t t t=+-,根据奇偶性的定义,可判断()h t 的奇偶性,根据奇偶性,可得()h t 在(][2,0)0,2-⋃最大值与最小值之和为0,分析即可得答案. 【详解】由21()[(1)1]sin(1)11f x x x x =---++- 令1x t -=,因为[1,1)(1,3]x ∈-⋃,所以(][2,0)0,2t ∈-⋃;那么()f x 转化为()21sin sin 1g t t t t t =+-+,(][2,0)0,2t ∈-⋃,令()21sin sin h t t t t t=+-,(][2,0)0,2t ∈-⋃,则()()()()()()2211sin sin sin sin h t t t t t t t h t t t ⎛⎫-=--+--=-+-=- ⎪-⎝⎭,所以()h t 是奇函数可得()h t 的最大值与最小值之和为0, 那么()g t 的最大值与最小值之和为2. 故选:B .【典例11】(2022·河南·郑州四中高三阶段练习(文))高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的美誉,用其名字命名的“高斯函数”:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,也称取整函数,例如:[]1.32-=-,[]3.43=,已知()11313x f x =-+,则函数()y f x ⎡⎤=⎣⎦的值域为______. 【答案】{}1,0- 【解析】 【分析】根据指数函数的性质分析()f x 的值域,进而得到()y f x ⎡⎤=⎣⎦的值域即可 【详解】 ∵()11313x f x =-+,()30,x∈+∞, ∴令30x t =>,则()()1112,1333f x g t t ⎛⎫==-∈- ⎪+⎝⎭故函数()()y f x g t ==⎡⎤⎡⎤⎣⎦⎣⎦的值域为{}1,0-, 故答案为:{}1,0-【典例12】(2023·全国·高三专题练习)函数()21f x x x =+-________;函数24y x x =-________.【答案】 2 22,2⎡⎤-⎣⎦【解析】 【分析】()f x 1x t -换元后化为二次函数可得最大值,函数24y x x =-2cos ([0,])x θθπ=∈,然后利用两角和的余弦公式化函数为一个角的一个三角函数形式,再由余弦函数的性质得取值范围. 【详解】(1)1x -t (t ≥0),所以x =1-t 2.所以y =f (x )=x 1x --t 2+2t =-t 2+2t +1=-(t -1)2+2.所以当t =1即x =0时,y max =f (x )max =2. (2)由4-x 2≥0,得-2≤x ≤2, 所以设x =2cos θ(θ∈[0,π]),则y =2cos θ244cos θ-θ-2sin θ2()4πθ+,因为5[,]444πππθ+∈, 所以cos ()4πθ+∈2⎡-⎢⎣⎦,所以y ∈[-22].故答案为:2;[2,2]-.【典例13】(2023·河南·洛宁县第一高级中学一模(文))已知函数()211122f x x x =++. (1)求()f x 的图像在点()()22f ,处的切线方程; (2)求()f x 在1,22⎡⎤⎢⎥⎣⎦上的值域.【答案】(1) 7420x y --=; (2)[]2,3. 【解析】 【分析】对于第一小问,把点()()22f ,代入函数解析式,得切点坐标,通过函数求导,得到过切点的切线的斜率,根据直线的点斜式方程,求切线方程.对于第二小问,解不等式()0f x '>,得函数增区间,解不等式()0f x '<,得函数减区间,结合1,22x ⎡∈⎤⎢⎥⎣⎦,确定函数单调性,求得最值,进而得值域.(1) 因为()211122f x x x =++,所以()21f x x x '=-,所以()23f =,()724f '=, 故所求切线方程为()7324y x -=-,即7420x y --=. (2)由(1)知()()()2322111x x x x f x x x -++-'==,1,22x ⎡∈⎤⎢⎥⎣⎦. 令()0f x '>,得12x <≤;令()0f x '<,得112x ≤<.所以()f x 在1,12⎡⎤⎢⎥⎣⎦上单调递减,在[]1,2上单调递增,所以()()min 12f x f ==. 又12128f ⎛⎫= ⎪⎝⎭,()23f =,所以()23f x ≤≤,即()f x 在1,22⎡⎤⎢⎥⎣⎦上的值域为[]2,3.热点四 求参数的值或取值范围【典例14】(2023·全国·高三专题练习)设a R ∈,函数()2229,1163,1x ax x f x x a x x ⎧-+≤⎪=⎨+->⎪⎩,若()f x 的最小值为()1f ,则实数a 的取值范围为( ) A .[]1,2 B .[]1,3 C .[]0,2 D .[]2,3【答案】A 【解析】 【分析】当1x >时,结合不等式求得其最小值为123a -,当1x ≤时,()()229f x x a a =-+-,根据函数()f x 的最小值为()1f ,列出不等式组,即可求解. 【详解】 当1x >时,22231688883333123x a x a x a a x x x x x+-=++-≥⨯⨯=-, 当且仅当28x x=时,等号成立; 即当1x >时,函数()f x 的最小值为123a -,当1x ≤时,()()222299f x x ax x a a =-+=-+-,要使得函数()f x 的最小值为()1f ,则满足()11102123a f a a ≥⎧⎨=-≤-⎩,解得12a ≤≤,即实数a 的取值范围是[]1,2. 故选:A.【典例15】(2022·全国·高三专题练习)已知函数()221f x ax x =++R ,则实数a 的取值范围是__. 【答案】[1,+∞) 【解析】 【分析】等价于ax 2+2x +1≥0恒成立,再对a 分类讨论得解. 【详解】解:函数()221f x ax x ++R , 即为ax 2+2x +1≥0恒成立, 若a =0,则2x +1≥0不恒成立; 当a >0,∆=4﹣4a ≤0, 解得a ≥1;当a <0,ax 2+2x +1≥0不恒成立. 综上可得,a 的取值范围是[1,+∞). 故答案为:[1,+∞).【典例16】(2016·北京·高考真题(理))设函数33,(){2,x x x af x x x a -≤=->. ①若0a =,则()f x 的最大值为____________________; ②若()f x 无最大值,则实数a 的取值范围是_________________. 【答案】2 (,1)-∞- 【解析】 【分析】试题分析:如图,作出函数3()3g x x x =-与直线 2y x =-的图象,它们的交点是(1,2),(0,0),(1,2)A O B --,由 2'()33g x x =-,知1x =是函数 ()g x 的极小值点,①当0a =时, 33,0(){2,0x x x f x x x -≤=->,由图象可知()f x 的最大值是 (1)2f -=;②由图象知当1a ≥-时, ()f x 有最大值(1)2f -=;只有当 1a <-时,332a a a -<-,()f x 无最大值,所以所求 a 的取值范围是(,1)-∞-.【精选精练】1.(2023·全国·高三专题练习)若集合-1|2M x y x ==⎧⎨⎩,{}2|N y y x -==,则( )A .M N ⋂=∅B .M N ⊆C .N M ⊆D .M =N【答案】B 【解析】 【分析】利用集合间的基本关系来进行运算即可. 【详解】集合M 表示函数21y x =-2x -1>0,解得12x >.集合N 表示函数2y x 的值域,值域为()0,∞+,故选:B.2.(2022·全国·高三专题练习)下列函数中,其定义域和值域分别与函数lg 10x y =的定义域和值域相同的是( ) A .y =x B .y =lg xC .y =2xD .y x【答案】D 【解析】 【分析】求出函数lg 10x y =的定义域和值域,对选项逐一判断即可. 【详解】因函数lg 10x y =的定义域和值域均为()0,∞+, 对于A ,y x =的定义域和值域均为R ,故A 错误;对于B ,lg y x =的定义域和值域分别为()0,,R +∞,故B 错误; 对于C ,2y x =的定义域和值域均为R ,故C 错误;对于D ,y x=定义域和值域均为()0,∞+,故D 正确; 故选:D .3.(2022·全国·高三专题练习)若函数()21f x ax ax =-+R ,则a 的范围是( ) A .()0,4 B .[)0,4 C .(]0,4 D .[]0,4【答案】D 【解析】 【分析】分0a =、0a >、0a <讨论即可求解. 【详解】若()f x 的定义域为R ,则当0a =时,()1f x =满足题意;当0a ≠时,20Δ40a a a >⎧⎨=-≤⎩,解得:04a <≤; 当0a <时,无法满足定义域为R . 综上所述:04a ≤≤,D 正确. 故选:D4.(2023·全国·高三专题练习)已知函数()f x 的定义域为[]0,1,值域为[]1,2,那么函数()2f x +的定义域和值域分别是( )A .[]0,1,[]1,2B .[]2,3,[]3,4C .[]2,1--,[]1,2D .[]1,2-,[]3,4【答案】C 【解析】 【分析】由[]20,1x +∈可求出函数的定义域,由于()2y f x =+的图象是由()y f x =的图象向左平移2个单位得到,所以其值域不变,从而可得答案 【详解】令[]20,1x +∈得[]2,1x ∈--,即为函数()2y f x =+的定义域, 而将函数()y f x =的图象向左平移2个单位即得()2y f x =+的图象, 故其值域不变. 故选:C .5.(2022·江西·高三阶段练习(文))函数()s 2π2inxf x x =+在[0,1]上的值域为( ) A .[1,2] B .[1,3] C .[2,3] D .[2,4]【答案】B 【解析】 【分析】根据指数函数与正弦函数的单调性可得函数()f x 在上单调递增,从而可求()f x 的值域. 【详解】解:易知函数()s 2π2inxf x x =+在[0,1]上单调递增,且(0)1f =,(1)3f =, 所以()f x 在[0,1]上的值域为[1,3]. 故选:B .6.(2022·全国·高三专题练习)已知(12)3,1()ln ,1a x a x f x x x -+<⎧=⎨≥⎩的值域为R ,那么a 的取值范围是( ) A .(﹣∞,﹣1] B .(﹣1,12)C .[﹣1,12)D .(0,1)【答案】C 【解析】 【分析】先求出ln ,1y x x =≥的值域,然后确定(12)3,1y a x a x =-+<的值域所包含的集合,利用一次函数性质可得. 【详解】当x ≥1时,f (x )=ln x ,其值域为[0,+∞),那么当x <1时,f (x )=(1﹣2a )x +3a 的值域包括(﹣∞,0), ∴1﹣2a >0,且f (1)=(1﹣2a )+3a ≥0, 解得:12a <,且a ≥﹣1. 故选:C.7.(2023·全国·高三专题练习)函数f (x 2sin 12x π- )A .54,433k k πππ⎡⎤++⎢⎥⎣⎦ (k ∈Z ) B .154,433k k ⎡⎤++⎢⎥⎣⎦ (k ∈Z )C .54,466k k πππ⎡⎤++⎢⎥⎣⎦(k ∈Z ) D .154,466k k ⎡⎤++⎢⎥⎣⎦(k ∈Z )【答案】B 【解析】 【分析】由题意可得2sin 102x π-≥,然后利用正弦函数的性质求解即可【详解】 由题意,得2sin 102x π-≥,1sin22x π≥, 所以522,Z 626k x k k πππππ≤+≤≤+∈, 解得1544,Z 33k x k k +≤≤+∈,所以函数的定义域为()154,4Z 33k k k ⎡⎤++∈⎢⎥⎣⎦,故选:B8.(2023·山西大同·高三阶段练习)函数6()e 1||1x mxf x x =+++的最大值为M ,最小值为N ,则M N +=( ) A .3 B .4C .6D .与m 值有关【答案】C 【解析】 【分析】利用分离常数法对函数的式子变形,结合函数奇函数的定义及奇函数最值的性质即可求解. 【详解】由题意可知,()3e 16()3e 1||1e 1||1x x x mx mxf x x x =+=--+++++, 设()()3e 1e 1||1x x mxg x x =--+++,则()g x 的定义域为(),-∞+∞, 所以()()()()()3e 13e 1e 1||1e 1||1x x xx m x mx g x g x x x --⎡⎤-⎢⎥-=-+=--+=-+-+++⎢⎥⎣⎦--, 所以()g x 为奇函数, 所以()()max min 0g x g x +=,所以()()()()max min max min 336f x f x M N g x g x +=+=+++=, 故选:C.9.(2022·江苏南京·高三开学考试)已知函数()()()()5sin sin ,99f x x x g x f f x ππ⎛⎫⎛⎫=++-= ⎪ ⎪⎝⎭⎝⎭,则()g x 的最大值为( )A 2B 3C .32D .2【答案】B 【解析】 【分析】 记9t x π=+,()()33sin 2f x h t t t ==+,由三角函数的性质即可求出()g x 的最大值. 【详解】 记9t x π=+,则()()33sin sin sin 32f x h t t t t t π⎛⎫==++= ⎪⎝⎭, 所以()3sin 3,36h t t π⎛⎫⎡=+∈- ⎪⎣⎝⎭, 33π>,所以()()f f x 3故选:B.10.(2022·广东·石门高级中学高二阶段练习)函数()12cos f x x x x =+-的最小值为( ) A .1ππ B .22ππC .-1D .0【答案】C 【解析】 【分析】根据题意得到()f x 为偶函数,由0x ≥时,()12cos f x x x x =+-,利用导数求得函数的的单调区间,进而求得函数的最小值. 【详解】由题意,函数()12cos f x x x x =+-的定义域为R ,关于原点对称,且满足()()()1122cos cos f x x x x x x x f x -=-+---=+-=,所以()f x 为偶函数,当0x ≥时,()12cos f x x x x =+-, 可得()1sin 11022f x x xx=≥'+>,()f x 在单调递增,又由()f x 为偶函数,所以()f x 在(),0∞-单调递减,[)0,∞+单调递增, 所以()()min 01f x f ==-. 故选:C. 二、多选题11.(2023·全国·高三专题练习)已知函数122()log (2)log (4)f x x x =--+,则下列结论中正确的是( )A .函数()f x 的定义域是[4,2]-B .函数(1)=-y f x 是偶函数C .函数()f x 在区间[1,2)-上是减函数D .函数()f x 的图象关于直线1x =-对称 【答案】BD 【解析】 【分析】求出函数定义域为(4,2)-,A 选项错误;利用定义证明函数(1)=-y f x 是偶函数,B 选项正确;函数()f x 在区间[)1,2-上是增函数,故C 选项错误;可以证明f (x )的图象关于直线1x =-对称,故D 选项正确. 【详解】解:函数()()()()()1222log 2log 4log 24f x x x x x ⎡⎤=--+=--+⎣⎦, 由20,40x x ->+>可得42x -<<,故函数定义域为(4,2)-,A 选项错误;()()()21log 33y f x x x ⎡⎤=-=--+⎣⎦的定义域为()3,3-,设()()()2log 33,g x x x ⎡⎤=--+⎣⎦所以()()()()2log 33,g x x x g x ⎡⎤-=-+-+=⎣⎦即()1y f x =-是偶函数,B 选项正确;()()()()222log 24log 28f x x x x x ⎡⎤=--+=---+⎣⎦()22log 19x ⎡⎤=--++⎣⎦()212log 19x ⎡⎤=-++⎣⎦,当[)1,2x ∈-时,()219t x =-++是减函数,外层12log y t =也是减函数,所以函数()f x 在区间[)1,2-上是增函数,故C 选项错误;由()()()()22log 42=f x x x f x ⎡⎤--=-+-⎣⎦,可得f (x )的图象关于直线1x =-对称,故D 选项正确. 故选:BD 三、双空题12.(2023·全国·高三专题练习)已知函数()ln ,1e 2,1xx b x f x x +>⎧=⎨-≤⎩,若(e)3(0)f f =-,则b =_____,函数()f x 的值域为____. 【答案】 2 (][)2,e 22,--+∞【解析】【分析】根据(e)3(0)f f =-可解得b 的值,代入分段函数,结合对数函数及指数函数的值域求解分段函数的值域即可. 【详解】由(e)3(0)f f =-得13(1)b +=-⨯-,即2b =,即函数()ln 2,1e 2,1xx x f x x +>⎧=⎨-≤⎩, 当1x >时,ln 22y x =+>;当1x ≤时,(]e 22,e 2xy =-∈--.故函数()f x 的值域为(][)2,e 22,--+∞.故答案为:2;(][)2,e 22,--+∞.13.(2023·全国·高三专题练习)已知函数()121x f x a =+-为奇函数,则实数a =__,函数f (x )在[1,3]上的值域为__. 【答案】 1293,142⎡⎤⎢⎥⎣⎦【解析】 【分析】由()f x 是定义在(﹣∞,0)∪(0,+∞)上的奇函数可得f (﹣x )=﹣f (x ),代入可求出实数a ;再判断数f (x )在[1,3]上单调性,即可求出答案. 【详解】解:∵f (x )是(﹣∞,0)∪(0,+∞)上是奇函数, ∴f (﹣x )=﹣f (x ), 即121x -+-a121x =---a , 即212xx+-a 121x=---a , 则2a 121221121212x x xx x x=--=-=----1, 则a 12=, 则f (x )11212x =+-在[1,3]为减函数, 则f (3)≤f (x )≤f (1), 即914≤f (x )32≤, 即函数的值域为[914,32],故答案为:12;[914,32] 四、填空题14.(2022·全国·高三专题练习)函数()02lg 2112x y x x x -=++-的定义域是________.【答案】(3,1)(1,2)--⋃- 【解析】 【分析】要使该函数表达式有意义,只需20x ->,2120x x +->,10x +≠同时成立,解不等式即可求出结果. 【详解】 函数()02lg 2112x y x x x -=++-的解析式有意义,由22012010x x x x ->⎧⎪+->⎨⎪+≠⎩,即2341x x x <⎧⎪-<<⎨⎪≠-⎩,所以31x -<<-或12x -<<, 故该函数的定义域为(3,1)(1,2)--⋃-. 故答案为:(3,1)(1,2)--⋃-15.(2022·上海闵行·二模)已知函数()()41log 42x f x m x =+-的定义域为R ,且对任意实数a ,都满足()()f a f a ≥-,则实数m =___________;【答案】1 【解析】 【分析】根据条件得到()()f a f a =-,即()()41log 42xf x m x =+-为偶函数,根据()()f x f x -=列出方程,求出实数m 的值. 【详解】因为()()41log 42xf x m x =+-的定义域为R ,所以40x m +>恒成立, 故0m ≥,又因为对任意实数a ,都满足()()f a f a ≥-, 则对于实数a -,都满足()()f a f a -≥, 所以()()f a f a =-,所以()()41log 42x f x m x =+-为偶函数, 从而()()4411log 4log 422x x m x m x -++=+-, 化简得:()()4110x m --=,要想对任意x ,上式均成立,则10m -=,解得:1m =故答案为:116.(2022·上海市嘉定区第二中学模拟预测)已知函数()y f x =是定义域为R 的奇函数,且当0x <时,()1a f x x x=++.若函数()y f x =在[)3,+∞上的最小值为3,则实数a 的值为________.【答案】3【解析】【分析】根据已知条件及奇函数的定义求出当0x <时函数的解析式,再利用函数的单调性对a 进行分类讨论,确定单调性即可求解.【详解】由题意可知,因为0x >,所以0x -<, 所以()1a f x x x -=--+, 因为函数()f x 是定义域为R 的奇函数,所以()()1a f x f x x x=--=+-. 因为函数()y f x =在[)3,+∞上的最小值为3当0a ≤时,由函数的性质知,函数()f x 在[)3,+∞上单调递增;当3x =时,()f x 取得最小值为(3)23a f =+, 因为函数()y f x =在[)3,+∞上的最小值为3,所以233a +=,解得3a =(舍), 当09a <≤时,由函数的性质知,函数()f x 在[)3,+∞上单调递增;当3x =时,()f x 取得最小值为(3)23a f =+, 因为函数()y f x =在[)3,+∞上的最小值为3,所以233a +=,解得3a =, 当9a >时,由对勾函数的性质知,函数()f x 在),a ⎡+∞⎣上单调递增;在(a 上单调递减; 当x a =()f x 取得最小值为(11f a a a a ==,因为函数()y f x =在[)3,+∞上的最小值为3,所以213a =,解得1a =(舍), 综上,实数a 的值为3.故答案为:3.17.(2022·北京·清华附中模拟预测)已知函数()()2ln ,1,1x a x f x x a x +≥⎧⎪=⎨+<⎪⎩,下列说法正确的是___________.①当0a ≥时,()f x 的值域为[0,)+∞;②a ∀∈R ,()f x 有最小值;③R a ∃∈,()f x 在(0,)+∞上单调递增:④若方程1f x有唯一解,则a 的取值范围是(,2)-∞-.【答案】①②【解析】【分析】由分段函数解析式,讨论参数a ,结合二次函数、对数函数的性质研究()f x 的单调性、最值及对应值域,利用函数()f x 与1y =的交点情况判断参数范围.【详解】由2()y x a =+的对称轴x a =-,当1a >-时,则1x a =-<,且(,)a -∞-上递减,(,1)a -上递增,值域为[0,)+∞, 当1a =-时,则(,1)-∞上递减,值域为[0,)+∞,当1a <-时,则1x a =->,(,1)-∞上递减,值域为2((1),)a ++∞,对于ln y x a =+在[1,)+∞上递增,且值域为[,)a +∞,综上,0a ≥时()f x 的值域为[0,)+∞,①正确;当0a ≥时()f x 最小值为0,当0a <时()f x 最小值为a ,②正确;由211|(1)|ln1x x y a y a a ===+>=+=恒成立,故在(0,)+∞上不可能递增,③错误; 要使1f x 有唯一解,当1a <-时,在[1,)+∞上必有一个解,此时只需2(1)1a +≥,即2a ≤-;当1a =-时,在R 上有两个解,不合题设;当1a >-时,在(,)a -∞-上必有一个解,此时()211{1a a +≤>,无解.所以④错误.故答案为:①② 18.(2022·全国·高三专题练习)已知函数f (x )()221mx m x m =--+-的值域是[0,+∞),则实数m 的取值范围是__. 【答案】230⎡⎢⎣⎦, 【解析】【分析】将m 分为000m m m =><,, 三种情况讨论:当0m =时,()210f x x - 满足条件;当0m <时,由二次函数知开口向下,不满足条件;当0m >时,只需二次函数的0∆≥即可,解出m 的取值范围,综上得m 的取值范围.【详解】解:当0m =时,()()22121f x mx m x m x =--+--[0,+∞),满足条件;令()()221g x mx m x m =--+- ,()()0g x ≥当m <0时,()g x 的图象开口向下,故f (x )的值域不会是[0,+∞),不满足条件;当m >0时,()g x 的图象开口向上,只需()2210mx m x m --+-=的0∆≥,即(m ﹣2)2﹣4m (m ﹣1)≥0, ∴2323m ≤≤,又0m > ,所以230m <≤ 综上,230m ≤≤∴实数m 的取值范围是:230⎡⎢⎣⎦,, 故答案为:230⎡⎢⎣⎦,.。

2.2函数的定义域和值域

2.2函数的定义域和值域
由于 t≥0,所以 y≤12,故函数的值域是(-∞,12]. 解法二:(单调性法)容易判断 f(x)为增函数,而其定义域 应满足 1-2x≥0,即 x≤12,所以 y≤f(12)=12, 即函数的值域是(-∞,12].
【自主解答】(1)(换元法)令 t= 1-2x(t≥0),则 x=1-2 t2. ∵y=-t2+t+1=-(t-12)2+54, ∴当 t=12,即 x=38时 ymax=54,无最小值. ∴函数的值域为(-∞,54].
(2)(三角代换法)函数的定义域是{x|-1≤x≤1}.
设x=sin t,-π2≤t≤π2,则 y=x+ 1-x2化为y=sin t+cos t = 2 sint+π4. ∵-π2≤t≤2π,∴-π4≤t+4π≤34π,
号内大的于式或子等于零
的实数的集合.
(4)如果f(x)是由几个部分的函数式子构成的,那么 函数的定义域是使各部分式子同时有意义的实数 的集合.
求函数的定义域往往归结为解不等式或不等式组
的问题.可以借助数轴求交集,特别要注意区间
端点是实点还是虚点.
集合 区间
求定义域时需注意最终结果一定要写成 的形式.
4sin (4)(图象法)y=2cos
xx+-142=2·sincoxs-x--214,
上式可看作单位圆外一点 P(2,-14)与圆 x2+y2=1 的点
(cos x,sin x)所连线段的斜率的 2 倍.
由图可知 2kPQ≤y≤2kPT.
设过 P 点的直线方程为 y+14=k(x-
2),
【题后总结】在解题中,容易忽视了复合函数f(x) 的定义域,误认为函数y=f(x2)+f2(x)的定义域是 f(x)的定义域,而导致出错,在解题中,应注意隐 含条件的挖掘与应用,避免错误的发生.

函数定义、表示、定义域、值域

函数定义、表示、定义域、值域
函数概念与表示
一、函数概念及其定义域
函数的概念:设是 非空数集,如果按某个确定的对应关系 ,使对于集合 中的任意一个 ,在集合 中都有唯一确定的数 和它对应,那么就称 为集合 到集合 的函数,记作: 。其中 叫自变量, 的取值范围 叫做函数的定义域;与 的值相对应的 的值叫做函数值.
注意:(1)“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
∴y= ,y∈(0,+∞),∴此时x∈(1,+∞),
∴log81x= ,x=81 =3。
变式题:(2006山东文2)设 ()
A.0B.1C.2 D.3
解:选项为C。
例2.(2006安徽文理15)
(1)函数 对于任意实数 满足条件 ,若 则 __________;
(2)函数 对于任意实数 满足条件 ,若 则 __________。
⑥基本不等式法:转化成型如: ,利用平均值不等式公式来求值域;
⑦单调性法:函数为单调函数,可根据函数的单调性求值域。
⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。
题型1:函数概念
例1.(1)设函数
(2)设函数f(x)= ,则满足f(x)= 的x值为。
解:(1)这是分段函数与复合函数式的变换问题,需要反复进行数值代换,
函数转化为二次函数);②判别式法(将函数转化为二次方程);③不等=
=
(2)当x∈(-∞,1 ,值域应为[ ,+∞],
当x∈(1,+∞)时值域应为(0,+∞),
解:(1)(配方法) ,
∴ 的值域为 。
改题:求函数 , 的值域。
解:(利用函数的单调性)函数 在 上单调增,
∴当 时,原函数有最小值为 ;当 时,原函数有最大值为 。

函数的定义域与值域

函数的定义域与值域

函数的定义域与值域函数是数学中常见的概念,它描述了输入和输出之间的关系。

在函数中,定义域和值域是两个重要的概念。

本文将介绍函数的定义域与值域的定义及其在数学中的应用。

一、定义域的定义在函数中,定义域表示输入的取值范围。

换句话说,对于一个函数f(x),定义域是指在满足特定条件下x可以取值的范围。

通常情况下,定义域可以是实数集、有理数集或整数集等。

例如,对于函数f(x) = √(x - 1),由于在实数范围内,被开方数不能为负数,所以定义域为x ≥ 1。

二、值域的定义在函数中,值域表示函数的输出结果的集合。

换句话说,对于函数f(x),值域是指所有可能的输出值的集合。

值域可以是实数集、有理数集或整数集等。

例如,对于函数f(x) = x^2,所有的输出结果都是非负数,所以值域为y ≥ 0。

三、定义域与值域的关系定义域和值域之间存在一定的关系。

函数的定义域决定了函数的输入范围,而函数的值域决定了函数的输出结果。

在某些情况下,函数的定义域和值域可能具有一定的约束条件。

例如,对于函数f(x) = 1/x,定义域为除了x = 0之外的所有实数集。

然而,由于分母不能为零,值域为除了y = 0之外的所有实数集。

四、定义域和值域的确定方法确定函数的定义域和值域的方法主要依赖于函数的类型和特点。

以下是一些常见的方法:1. 对于基本函数,如多项式函数、指数函数、对数函数和三角函数等,定义域和值域可能由函数的特性直接决定。

2. 对于复合函数,函数的定义域和值域可以通过确定组成函数的子函数的定义域和值域,并进行合适的组合得出。

3. 对于有条件约束的函数,如分段函数和绝对值函数等,定义域和值域需要根据函数的条件进行确定。

五、应用举例以下是一些常见函数及其定义域和值域的示例:1. 函数f(x) = x^2,定义域为所有实数集,值域为y ≥ 0。

2. 函数f(x) = √(x - 1),定义域为x ≥ 1,值域为y ≥ 0。

3. 函数f(x) = 1/x,定义域为除了x = 0之外的所有实数集,值域为除了y = 0之外的所有实数集。

函数的定义域与值域

函数的定义域与值域

函数的定义域与值域函数是数学中的一个重要概念,它描述了两个集合之间的一种对应关系。

在函数中,定义域和值域是两个关键的概念,它们分别指代了函数的输入和输出的取值范围。

一、定义域的概念在数学中,函数的定义域是指函数的自变量(输入)可以取值的范围。

简单来说,定义域就是函数中所有可能的输入值所组成的集合。

以一个简单的例子来说明定义域的概念。

考虑一个函数f(x) = √x,其中x为实数。

在这个函数中,由于开方运算的定义域为非负实数,所以函数f(x)的定义域为[0, +∞)。

也就是说,只有当x大于等于0时,函数f(x)才有定义。

定义域的确定需要考虑函数中的各种限制条件,比如根号函数中不能出现负数、分母不能为零等等。

因此,在定义函数时,我们需要仔细考虑自变量的取值范围,以确保函数在定义域内有意义。

二、值域的概念值域是函数的输出值所能取到的范围。

也就是说,值域是函数在定义域内所有可能的输出值所组成的集合。

继续以上面的函数f(x) = √x为例。

由于开方运算的结果为非负实数,所以函数f(x)的值域也为[0, +∞)。

也就是说,函数f(x)的输出值只能是大于等于0的实数。

确定函数的值域需要考虑函数的性质和限制条件。

有些函数的值域可以通过观察函数的图像来确定,而有些函数的值域则需要通过数学推导来得出。

三、定义域与值域的关系函数的定义域和值域之间存在着密切的关系。

一般来说,函数的值域是由定义域内的元素经过函数运算得到的结果所组成的。

对于一些简单的函数,比如线性函数y = kx + b,其中k和b为常数,它们的定义域和值域可以很容易地确定。

但对于一些复杂的函数,比如三角函数、指数函数等,确定定义域和值域就需要更深入的研究。

在实际问题中,函数的定义域和值域常常与问题的背景相关。

比如在描述人口增长的函数中,定义域可能是非负实数集合,而值域则可能是正实数集合。

总结起来,函数的定义域和值域是函数的重要属性,它们描述了函数输入和输出的取值范围。

函数的定义域与值域

函数的定义域与值域

函数的定义域与值域函数是数学中常见的概念,它在实际问题中起到了非常重要的作用。

而函数的定义域与值域是函数的两个重要属性,它们决定了函数的输入与输出的范围。

本文将详细讨论函数的定义域与值域的概念、计算方法以及应用。

一、函数的定义域函数的定义域指的是函数中所有可能的输入值所构成的集合。

通俗地说,定义域就是函数的自变量(输入)的取值范围。

对于一元函数,我们可以通过分析函数的解析式来确定其定义域。

例如,对于函数f(x) = √(x + 1),我们可以发现根号下的被开方数必须大于等于0,所以函数的定义域为x ≥ -1。

对于多元函数,定义域的确定更为复杂,需要考虑各个自变量之间的约束关系。

以二元函数f(x, y) = √(x + y)为例,需要满足x + y ≥ 0,因此定义域为x + y ≥ 0的平面区域。

二、函数的值域函数的值域指的是函数中所有可能的输出值所构成的集合。

通俗地说,值域就是函数的因变量(输出)的取值范围。

对于简单的函数来说,我们可以通过分析函数的图像来确定其值域。

例如,对于函数f(x) = x²,我们可以发现函数的图像是一个开口向上的抛物线,因此它的值域为y ≥ 0的区间。

对于复杂的函数,我们通常需要借助数学工具来计算其值域。

例如,对于函数f(x) = 1 / x,在无穷大、无穷小附近的值都可以取得,因此其值域为除了0以外的所有实数。

三、定义域与值域的应用函数的定义域与值域在实际问题中具有广泛的应用,下面以几个具体例子说明其用途。

1. 对于自然科学中的物理问题,函数的定义域和值域可以帮助我们确定问题的合理范围和可能结果。

例如,对于自由落体运动的位移函数,定义域可以告诉我们物体下落的时间范围,值域可以告诉我们物体的落地位置范围。

2. 在经济学中,函数的定义域和值域可以帮助我们理解和分析经济问题。

例如,对于需求曲线和供给曲线,定义域可以表示价格的取值范围,值域可以表示商品的数量范围。

高二函数定义域和值域知识点总结

高二函数定义域和值域知识点总结

高二函数定义域和值域知识点总结函数是数学中的重要概念,研究函数的定义域和值域是学习函数的基础知识。

在高二数学学习中,我们首先需要了解函数及其定义域和值域的概念,然后学习如何确定函数的定义域和值域。

下面是对高二函数定义域和值域知识点的总结。

1. 函数的定义函数是一种特殊的关系,它将一个或多个输入值映射到唯一的输出值。

用符号表示,函数一般记作"f(x)",其中x为自变量,f(x)为因变量。

2. 定义域的概念函数的定义域是指函数中自变量的所有可能取值的集合。

换句话说,定义域是函数输入的合法范围。

一般情况下,函数的定义域是根据函数的公式或者特性来确定的。

3. 常见函数的定义域- 有理函数的定义域:有理函数是多项式函数和分式函数的组合,其定义域由分式函数的分母确定,分母为0时,函数无定义。

- 幂函数的定义域:幂函数的定义域由指数的取值确定,当底数为正数时,定义域为全体实数;当底数为负数或零时,定义域可能为实数的一个子集。

- 指数函数的定义域:指数函数的定义域为全体实数。

- 对数函数的定义域:对数函数的定义域由实参的取值确定,对数函数的实参必须为正数。

4. 值域的概念函数的值域是指函数所有可能输出的值的集合。

换句话说,值域是函数输出的合法范围。

一般情况下,值域是根据函数的特性和定义域来确定的。

5. 常见函数的值域- 有理函数的值域:对于有理函数,我们可以通过对其进行求导,并找到其极限值来确定其值域。

- 幂函数的值域:当底数为正数,并且指数为无穷大时,幂函数的值域为正实数;当底数为零或者负数,并且指数为奇数时,幂函数的值域为全体实数。

- 指数函数的值域:指数函数的值域为正实数。

- 对数函数的值域:对数函数的值域为全体实数。

6. 确定函数的定义域和值域的方法- 公式法:根据函数的公式,推导出定义域和值域的范围。

- 图像法:通过绘制函数的图像,观察函数的特性,确定定义域和值域。

- 分段讨论法:当函数在不同定义域范围内具有不同的特性时,可以将函数分段讨论,分别确定各个定义域范围内的值域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的概念定义域和值域函数的概念、表示、定义域和值域一、复习回顾1.设集合{}1,2,3,4,5,6,A ={}4,5,6,7,B =则满足S A ⊆且SB φ≠的集合S 为 (A )57 (B )56 (C )49 (D )82.集合}{,,,,,U =123456,}{,,S =145,}{,,T =234,则)(T C S U等于(A )}{,,,1456 (B) }{,15 (C) }{4(D) }{,,,,123453.已知全集U=R ,集合{}21P x x =≤,那么UC P =A. (),1-∞-B. ()1,+∞C. ()1,1-D.()(),11,-∞-+∞ 4. 若a R ∈,则“2a =”是“(1)(2)0a a --=”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件 C .既不充分又不必要条件5.若实数b a ,满足0,0≥≥b a ,且0=ab ,则称a 与b 互补,记()b a b a b a --+=22,ϕ,那么()0,=b a ϕ是a 与b 互补A. 必要而不充分条件 B . 充分而不必要条件C. 充要条件D. 既不充分也不必要的条件6.设{1,2}M =,2{}N a =,则“1a =”是“N M ⊆”则( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件7.命题“若()f x 是奇函数,则()f x -是奇函数”的否命题是( ).A.若()f x 偶函数,则()f x -是偶函数B.若()f x 不是奇函数,则()f x -不是奇函数C.若()f x -是奇函数,则()f x 是奇函数D.若()f x -不是奇函数,则()f x 不是奇函数二、知识梳理1.函数的概念⑴定义:设A ,B 是_______,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x 在集合B 中都有___________和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作)(x f y =,A x ∍,其中x 叫做自变量,x 的取值范围A 叫做函数的__________;与x 相对应的y 的值叫做函数值,函数值的集合{x x f )(∈A}叫做函数的________,值域是集合B 的 。

⑵.函数的三要素: 、 及 。

在函数三要素中起决定性作用的是______________及____________,定义域和对应法则确定了,这个函数就确定了。

2.映射设A,B 是两个集合,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个元素在集合B 中都有唯一确定的元素和它对应,那么这样的对应就称为从集合A 到集合B 的一个映射,记作B A f →:映射是特殊的对应:____________________________________,函数是特殊的映射:_____________________________________.3.函数的表示方法函数的表示方法主要有三种: 、 、 。

分段函数:在定义域的不同区域有不同的解析式,这样的函数称为分段函数。

4.定义域的求法⑴通常情况下,定义域是由使表达式有意义的所有自变量的值组成的集合,常见的情况有: ①)()(x f x g : ,②)(x f :③)(log x f a : ,④0)(x f :⑵x x f )((∈A )形式的函数其定义域为A,而不是由使函数表达式有意义的所有自变量的值构成的集合。

⑶当变量有实际意义时,要考虑自变量的实际意义。

5.求函数值域或最值的方法①单调性法;②配方法;③换元法;④判别式法;⑤图像法;⑥不等式法;⑦导数法。

一、映射的概念在理解映射概念时要注意:⑴A 中元素必须都有象且唯一;⑵B 中元素不一定都有原象,但原象不一定唯一。

练习1.设:f M N →是集合M 到N 的映射,下列说法正确的是A 、M 中每一个元素在N 中必有象B 、N中每一个元素在M 中必有原象C 、N 中每一个元素在M 中的原象是唯一的D 、N 是M 中所在元素的象的集合练习2.点),(b a 在映射f 的作用下的象是),(b a b a +-,则在f 作用下点)1,3(的原象为点________;练习3.若}4,3,2,1{=A ,},,{c b a B =,,,a b c R ∈,则A 到B 的映射有 个,B 到A 的映射有 个,A 到B 的函数有 个;练习 4.设集合{1,0,1},{1,2,3,4,5}M N =-=,映射:f M N →满足条件“对任意的x M ∈,()x f x +是奇数”,这样的映射f 有____个;练习5.设2:x x f →是集合A 到集合B 的映射,若B={1,2},则B A 一定是_____.二、函数f : A →B 是特殊的映射。

特殊在定义域A 和值域B 都是非空数集!据此可知函数图像与x 轴的垂线至多有一个公共点,但与y 轴垂线的公共点可能没有,也可能有任意个。

练习 6.已知函数()f x ,x F ∈,那么集合{(,)|(),}{(,)|1}x y y f x x F x y x =∈=中所含元素的个数有 个;练习7.若函数42212+-=x x y 的定义域、值域都是闭区间]2,2[b ,则b =三、同一函数的概念构成函数的三要素是定义域,值域和对应法则。

而值域可由定义域和对应法则唯一确定,因此当两个函数的定义域和对应法则相同时,它们一定为同一函数。

如若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“天一函数”,那么解析式为2y x =,值域为{4,1}的“天一函数”共有______个.四、求函数定义域的常用方法(在研究函数问题时要树立定义域优先的原则):1.根据解析式要求如偶次根式的被开方大于零,分母不能为零,对数log ax 中0,0x a >>且1a ≠,三角形中0A π<<, 最大角3π≥,最小角3π≤等。

练习8.函数lg 3y x =-的定义域是____;练习9.若函数2743kx y kx kx +=++的定义域为R ,则k ∈_______;练习10.函数()a b,0f x的定义域是[,]>->,则函数b aF x f x f x=+-的定义域是__________;()()()练习11.设函数2=++,f x ax x()lg(21)①若()f x的定义域是R,求实数a的取值范围;②若()f x的值域是R,求实数a的取值范围2.根据实际问题的要求确定自变量的范围。

3.复合函数的定义域:若已知()a b,其复合函数[()]f x的定义域为[,]f g x的定义域由不等式()f g x的定a g x b≤≤解出即可;若已知[()]义域为[,]f x的定义域,相当于当[,]a b,求()∈时,求x a b()g x 的值域(即()f x 的定义域)。

练习12.若函数)(x f y =的定义域为⎥⎦⎤⎢⎣⎡2,21,则)(log 2x f 的定义域为__________练习13.若函数2(1)f x +的定义域为[2,1)-,则函数()f x 的定义域为________五、求函数值域(最值)的方法:1.配方法----二次函数(二次函数在给出区间上的最值有两类:一是求闭区间[,]m n 上的最值;二是求区间定(动),对称轴动(定)的最值问题。

求二次函数的最值问题,勿忘数形结合,注意“两看”:一看开口方向;二看对称轴与所给区间的相对位置关系),练习14.求函数225,[1,2]y x x x =-+∈-的值域练习15.当]2,0(∈x 时,函数3)1(4)(2-++=x a ax x f 在2=x 时取得最大值,则a 的取值范围是___;练习16.已知()3(24)x b f x x -=≤≤的图象过点(2,1),则1212()[()]()F x f x f x --=-的值域为______.2.换元法――通过换元把一个较复杂的函数变为简单易求值域的函数,其函数特征是函数解析式含有根式或三角函数公式模型练习17.①22sin 3cos 1y x x =--的值域为_____;练习18.21y x =++的值域为_____练习19.sin cos sin cos y x x x x =++的值域为____;练习20.4y x =+____;3.函数有界性法――直接求函数的值域困难时,可以利用已学过函数的有界性,来确定所求函数的值域,最常用的就是三角函数的有界性,练习21.求函数2sin 11sin y θθ-=+,313x xy =+,2sin 11cos y θθ-=+的值域.4.单调性法――利用一次函数,反比例函数,指数函数,对数函数等函数的单调性 。

练习22.求1(19)y x x x=-<<,532log x y -=+5.数形结合法―函数解析式具有明显的某种几何意义,如两点的距离、直线斜率、等等,练习23.已知点(,)P x y 在圆221x y +=上,求2yx +及2y x-的取值范围;练习24.求函数y =的值域;练习25.求函数y 及y =的值域。

6.判别式法――对分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其它方法进行求解,不必拘泥在判别式法上,也可先通过部分分式后,再利用均值不等式:①2by k x=+型,可直接用不等式性质, 练习26.求232y x =+的值域②2bx y xmx n=++型,先化简,再用均值不等式, 练习27.求21x y x =+的值域练习28.求函数y =③22x m x n y x mx n''++=++型,通常用判别式法;练习29.已知函数2328log 1mx x ny x ++=+的定义域为R ,值域为[0,2],求常数,m n 的值④2x m x n y mx n''++=+型,可用判别式法或均值不等式法,练习30.求211x x y x ++=+的值域7.不等式法――利用基本不等式,)a b a b R ++≥∈求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧。

练习31.设12,,,x a a y 成等差数列,12,,,x b b y 成等比数列,则21221)(b b a a +的取值范围是____________8.导数法――一般适用于高次多项式函数, 如求函数32()2440f x x x x =+-,[3,3]x ∈-的最小值。

提醒:(1)求函数的定义域、值域时,你按要求写成集合形式了吗?(2)函数的最值与值域之间有何关系?六、分段函数的概念。

相关文档
最新文档