初二数学--勾股定理讲义
初二讲义:勾股定理
初二数学讲义勾股定理一.知识归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证. (方法一)(方法二)(方法三)a b ccb a E DC B A方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以A B方法三:,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数) 2222,2,m n mn m n -+(,m n >m ,n 为正整数) 例题解析题型一:直接考查勾股定理例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222a b c +=考点一、已知两边求第三边例.已知,如图在ΔABC 中,AB=BC=CA=2cm ,AD 是边BC 上的高.求 ①AD 的长;②ΔABC 的面积.练习一1.已知直角三角形的两边长为3、2,则另一条边长________________.2.(2009年滨州)某楼梯的侧面视图如图4所示,其中4AB =米,30BAC ∠=°, 90C ∠=°,因某种活动要求铺设红色地毯,则在AB 段 楼梯所铺地毯的长度应为 .3.在数轴上作出表示10的点.4.三角形ABC 中,AB=10,AC=17,BC 边上的高线AD=8,求BC题型二:应用勾股定理建立方程例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为 分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜B CA 30CB A DE F 边上高的乘积.有时可根据勾股定理列方程求解例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长 例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积考点二、利用列方程求线段的长例.如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处? 练习二 如图,小红用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,•长BC•为10cm .当小红折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).想一想,此时EC 有多长?•题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了m题型四:与展开图有关的计算例4、如图一个圆柱,底圆周长6cm ,高4cm ,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行 cm题型五:勾股定理的实际应用 用勾股定理求两点之间的距离问题例、如图所示,在一次夏令营活动中,小明从营地A 点出发,沿北偏东60°A DE B CA B C D E 第7题F E D CB A 第9题 方向走了到达B 点,然后再沿北偏西30°方向走了500m 到达目的地C点。
华师版八年级数学 14.1勾股定理(学习、上课课件)
感悟新知
知1-练
2-1. 若直角三角形的三边长分别为2,4,x,则x的值可能
有( B )
A. 1个
B. 2个
C. 3个
D. 4个
感悟新知
知识点 2 勾股定理的证明
知2-讲
1. 常用证法 验证勾股定理的方法有很多,如测量法、几 何证明法等,但最常用的是通过拼图,构造特殊图形, 并根据拼图中各部分面积之间的关系来验证.
出第三边.
3. 运用勾股定理求解时,若分不清哪条边是斜边,则要分
类讨论,写出所有可能的情况,以免漏解或错解.
感悟新知
知1-练
例 1 在Rt△ABC中,∠A,∠B,∠C的对边分别为a,b, c,∠C=90°. (1)已知a=3,b=4,求c; (2)已知c=13,a=12,求b; (3)已知a∶b=2∶1,c=5,求b(结果保留根号). 解题秘方:紧扣“勾股定理的特征”解答.
感悟新知
知1-练
1-1. 在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边 分别为a,b,c.
(1)若a∶b=3∶4,c=75,求a,b; 解:设a=3x(x>0),则b=4x. 由勾股定理得a2+b2=c2, 则(3x)2+(4x)2=752,解得x=15. ∴a=3×15=45,b=4×15=60.
图形
赵爽的“赵 爽弦图”
知2-讲
证明
∵ 大正方形的边长为c,
∴ 大正方形的面积为c2.
又∵大正方形的面积=
4×
1 2
ab+(a-b)2=a2+b2,
∴ a2+b2=c2
感悟新知
续表: 方法
刘徽的“青 朱出入图”
图形
知2-讲
证明
设大正方形的面积为S,则 S=c2. 根据“出入相补, 以盈补虚”的原理,有S= a2+b2,∴ a2+b2=c2
《勾股定理》PPT优质课件(第1课时)
A. 3
B.3
C. 5
D.5
E
课堂检测
基础巩固题
1. 若一个直角三角形的两直角边长分别为9和12,则斜边的
长为( C)
A.13
B.17
C. 15
D.18
2.若一个直角三角形的斜边长为17,一条直角边长为15,则
另一直角边长为( A )
A.8
B.40
C.50
D.36
3.在Rt△ABC中,∠C=90°,若a︰b=3︰4,c=100,则 a= _6_0___,b = __8_0___.
课堂检测
4.如图,所有的四边形都是正方形,所有的三角形都是直角三角 形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面 积之和为_____4_9_____cm2 .
C D
B A
7cm
课堂检测
能力提升题
在Rt△ABC中,AB=4,AC=3,求BC的长.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
形,拼成一个新的正方形.
探究新知 剪、拼过程展示:
b
a ca
朱实
b 朱实 黄实朱实
c 〓b
ba
朱实
a
M a P bb
N
探究新知 “赵爽弦图”
c
朱实
b
朱实
黄实 朱实
a
朱实
证明:∵S大正方形=c2, S小正方形=(b-a)2,
∴S大正方形=4·S三角形+S小正方形,
探究新知
毕达哥拉斯证法:请先用手中的四个全等的直角三角形按图 示进行拼图,然后分析其面积关系后证明吧.
因此设a=x,c=2x,根据勾股定理建立方程得 (2x)2-x2=152,
勾股定理-综合讲义
数学学科辅导讲义教学内容勾股定理教学目标一.考点:1.求线段长;2.最短路径问题;3.两点之间距离公式.教学重点根据已知条件,分析相应图形,并选取合适的方法,求线段长.教学难点1.在应用勾股定理的过程中,注意分清楚直角边和斜边,选择正确的公式来进行计算;2.所对的直角边是斜边的一半,注意分清楚“所对的直角边”和“斜边”.教学过程知识详解一.求线段长求线段长1.直接利用勾股定理:已知直角三角形的两条边,求另外一条;2.通过设未知数,根据勾股定理列方程,解方程;特殊三角形比例关系图1中,图2中,等面积法求高勾股定理与角平分线结合已知,AD为∠CAB的角平分线,则CD=CE,AC=AE已知AD、AC,根据勾股定理,可求出CD勾股定理与折叠问题结合直角三角形ABC中,折叠使点C与点A重合,则AE=CE,C△ABE=AB+BC=9+12=21网格与勾股定理辅助线构造直角三角形(1)与等腰三角形三线合一结合求各边长上图等腰△ABC中,作AD⊥BC,构造出30°、60°、90°的特殊三角形(2)作垂直构造直角三角形,并与特殊角结合下图中,已知任意一边长,可求出图中其他的边长二.勾股定理与最短距离1. 画出立体图形的展开图2. 利用“两点之间线段最短”和“勾股定理”求出最短距离分类思路图示正方体1. 画出平面展开图2. 确定A、B两点的对应点,连接后求解长方体长方体的平面展开图会有两种情况,选择路径更短的求解圆柱 B 点应该在侧面展开图的中间线上缠绕多圈1.圆柱体:看做是多个最短路径的结合2.长方体:展开侧面,连接A 、B 两点即可典型例题进门测:1. 适合下列条件的△ABC 中, 直角三角形的个数为( ) ①;51,41,31===c b a ②,6=a ∠A=450; ③∠A=320, ∠B=580; ④;25,24,7===c b a ⑤.4,2,2===c b aA. 2个B. 3个C. 4个D. 5个 2. 在⊿ABC 中,若1,2,122+==-=n c n b n a ,则⊿ABC 是( )A . 锐角三角形B . 钝角三角形C . 等腰三角形D . 直角三角形3. 直角三角形斜边的平方等于两条直角边乘积的2倍, 这个三角形有一个锐角是( )A. 15°B. 30°C. 45°D. 60°4.已知,如图2,长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A .6cm 2B .8cm 2C .10cm 2D 12cm 25.如图(第17题)底面周长为12,高为8的圆柱体上有一只小蚂蚁要从点A 爬到点B ,则蚂蚁爬行的最短距离是( ).A .10B .8C .5D .4AB EF DC (图2)6.如图(第18题),已知矩形ABCD沿着直线BD折叠,使点C落在C'处,BC,交AD于点E,AD=8,AB =4,则DE的长为( ).A.3 B.4 C.5 D.67.如图,四边形ABCD中,AC、BD是对角线,△ABC是等边三角形,∠ADC=30°,AD=3,BD=5,则CD的长为( ).A.32B.4 C.25D.4.51.点P、Q分别是边长为4cm的等边△ABC的边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都是1cm/s,设运动时间为t秒.(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗:若变化,则说明理由,若不变,则求出它的度数;(2)连接PQ,①当t=2秒时,判断△BPQ的形状,并说明理由;②当PQ⊥BC时,则t=秒.(直接写出结果)2.如图,在△ABC中,AC=BC,∠ACB=90°,点D为△ABC内一点,且BD=AD.(1)求证:CD⊥AB;(2)∠CAD=15°,E为AD延长线上的一点,且CE=CA.①求证:DE平分∠BDC;②若点M在DE上,且DC=DM,请判断ME、BD的数量关系,并给出证明;③若N为直线AE上一点,且△CEN为等腰三角形,直接写出∠CNE的度数.3.如图1,△ABC和△EDC中,D为△ABC边AC上一点,CA平分∠BCE,BC=CD,AC=CE.(1)求证:∠A=∠CED;(2)如图2,若∠ACB=60°,连接BE交AC于F,G为边CE上一点,满足CG=CF,连接DG交BE于H.①求∠DHF的度数;②若EB平分∠DEC,试说明:BE平分∠ABC.随堂检测1.直角三角形两锐角的平分线所成钝角的度数是( )A.115°B.125°C.135°D.无法确定2.有四个三角形,分别满足下列条件:①一个内角等于另外两个内角之和;②三个内角之比为3:4:5;③三边之比为5:12:13;④三边长分别为7,24,25.其中直角三角形有( )A.1个B.2个C.3个D.4个3.在Rt△ABC中,∠C=90°,周长为60,斜边与一条直角边之比为13:5,则这个三角形三边长分别为( ) A.5,4,3 B.13,12,5 C.10,8,6 D.26,24,104.一等腰三角形底边长为10 cm,腰长为13 cm,则腰上的高为( )A.12 cm B.6013cm C.12013cm D.135cm6.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为( )A.42 B.32 C.37或33 D.42或32课后练习1.平面直角坐标系中,已知A(8,0),△AOP为等腰三角形且面积为16,满足条件的P点有( ) A.12个B.10个C.8个D.6个2.如图,在△ABC中,已知∠ACB=90°,AB=10cm,AC=8cm,动点P从点A出发,以2cm/s的速度沿线段AB向点B运动.在运动过程中,当△APC为等腰三角形时,点P出发的时刻t可能的值为()A.5 B.5或8 C.52D.4或52第2题图第3题图3.如图,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值_________.4.直角三角形三角形两直角边长为5和12,三角形内一点到各边距离相等,那么这个距离为________.4.如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.若DG=3,EC=1,则DE的长为6.如图,在Rt△ABC中,∠ABC=90°,点D是AC的中点,作∠ADB的角平分线DE交AB于点E,(1)求证:DE∥BC;(2)若AE=3,AD=5,点P为线段BC上的一动点,当BP为何值时,△DEP为等腰三角形.请求出所有BP的值.选择题专题6.如图,在把易拉罐中的水倒入一个圆水杯的过程中,若水杯中的水在点P与易拉罐刚好接触,则此时水杯中的水深为( )A.2 cm B.4 cm C.6 cm D.8 cm7.如图,一架长2.5 m的梯子,斜靠在竖直的墙上,这时梯子顶端离地面2.4 m,为了安装壁灯.梯子顶端离地面降至2m,请你计算一下,此时梯子底端应再向远离墙的方向移动( )A.0.4 m B.0.8 m C.1.2 m D.不能确定8.如图,在一个高为3m,长为5m的楼梯表面铺地毯,则地毯长度为( )A.7 m B.8 m C.9 m D.10 m9.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )A.600 m B.500 m C.400 m D.300 m。
八年级数学勾股定理课件
举例说明
例如,对于多项式x² - 5x + 6,可以将其转化为x² - 2x - 3x + 6,然后利用勾股定理将中间两项进行分组,得到 (x - 2)(x - 3)的因式分解形式。
05
拓展:勾股定理与现实生活联系
建筑行业中应用举例
80%
确定直角
学生自我评价报告分享
学生可以分享自己在学习勾股定理过程中的心得体会,如遇到的 困难、解决问题的方法等。
学生可以展示自己的学习成果,如完成的练习题、绘制的图形等 ,并与其他同学交流学习经验。
课堂互动环节:小组讨论
分组讨论
学生可以分成小组,围绕勾股定 理的相关话题展开讨论,如勾股 定理的证明方法、勾股定理在实
计算机图形学中应用
三维建模
碰撞检测
在计算机图形学中,勾股定理可用于三 维建模中的距离计算、角度计算等,为 构建逼真的三维场景提供数学基础。
在计算机游戏中,勾股定理可用于实 现物体之间的碰撞检测,提高游戏的 真实感和交互性。
图形变换
勾股定理在计算机图形学中的图形变 换方面也有广泛应用,如旋转、缩放 等变换中涉及的角度和长度计算。
判断三角形形状
判断是否为直角三角形
通过验证三角形的三边是否满足勾股 定理来判断该三角形是否为直角三角 形。
判断三角形类型
结合三角形的其他性质,如三边关系 、内角和等,可以进一步判断三角形 的类型,如等腰直角三角形、等边三 角形等。
求解最短路径问题
平面内两点间最短路径
在平面内,两点之间的最短路径是直线段。利用勾股定理可以求解两点间的距离 。
八年级数学勾股定理课件
目
CONTENCT
勾股定理ppt课件
创设情境 数学是科技发展中最重要的学科,2002年全球最顶级数学家大 会在北京召开,大会会徽是:
赵爽弦图
数学文化 赵爽,名婴,字君卿,是我国三国时期杰出的数学家, 他在注解《周髀算经》时给出的这个图.
创设情境 请你观察这个图中有哪些基本几何图形?2002年的数学家大会为 什么用这个图作为会徽呢?
继续探究
1.如图,表格中左、右各有一组图,每组图中的三个正方形的面积分 别是多少,它们之间有什么关系?(设表格中每个小正方形面积为1)
C A
B
C A
B
继续探究 2.观察图形,请完成下面表格:
两个图中正 方形C的面积 如何求呢?
项目
左图 右图 A、B、C 面积关系
A的面积 4 16
B的面积 9 9
A
8
B 6
C
应用新知
例2 如图,图中所有的三角形都是直角三角形,四边形都是正方形,已知正方形 B,D的边长分别是16,12,SE=625,S1=400,求正方形A、C的边长. 解:依题意,得SB=162=256,SD=122=144, ∵S1=SA+SB且S1=400, ∴SA=S1-SB=400-256=144, ∴正方形A的边长为 144 12, ∵SE=S1+S2且SE=625,S1=400, ∴S2=SE-S1=625-400=225, ∵S2=SC+SD,∴SC=S2-SD=225-144=81, ∴正方形C的边长 81 9 .
证明2: 如图,四个全等直角三角形拼成
如图所示的正方形,直角边为a、
b,斜边为c. S四个直角三角形面积和= 4 1 ab 2ab,
2
S四个直角三角形面积和=(a+b)2-c2
《勾股定理》数学教学PPT课件(10篇)
=BD·
CD.
D
B
E
C
课堂小
结
利用勾股定理解
决实际问题
勾股定理
的应用
构造直角三角形
解决实际问题
第十七章 勾股定理
17.1 勾股定理
第3课时
利用勾股定理作图和计算
知识要点
1.勾股定理与数轴、坐标系
2.勾股定理与网格
3.勾股定理与几何图形
新知导入
想一想:
我们知道数轴上的点有的表示有理数,有的表示无理数,你
能在数轴上画出表示 13 的点吗?
如果能画出长为 13 的线段,就能在数轴上画出表示 13 的
2
点.容易知道,长为
的线段是两条直角边的长都为1的直角三
角形的斜边.
长为 13 的线段能是直角边的长为正整数的直角三角形的
斜边吗?
新知导入
想一想:
利用勾股定理,可以发现,直角边的长为正整数2, 3
知识
的直角三角形的斜边长为
AC2+BC2=AB2
由上面的例子,我们猜想:
命题1 如果直角三角形的两条直角边长分别为a,b,斜边
长为c,那么a2+b2=c2.两直角边的平方和等于斜边的平方.
a
c
b
课程讲授
1
勾股定理
下面让我们跟着以前的数学家们用拼图法来证明这一猜想.
c
证明:∵S大正方形=c2,
S小正方形=(b-a)2,
b
a
b-a
例 如图是由4个边长为1的正方形构成的“田字格”,只用没有刻
度的直尺在这个“田字格”中最多可以作出长度为
8
_____条.
初二数学勾股定理讲义
初二数学勾股定理【知识点归纳】考点一:勾股定理(1)对于任意的直角三角形,如果它的两条直角边分别为a、b,斜边为c,那么一定有2c22+ba=勾股定理:直角三角形两直角边的平方和等于斜边的平方。
(2)结论:①有一个角是30°的直角三角形,30°角所对的直角边等于斜边的一半。
②有一个角是45°的直角三角形是等腰直角三角形。
③直角三角形斜边的中线等于斜边的一半。
(3)勾股定理的验证例题:例1:已知直角三角形的两边,利用勾股定理求第三边。
(1)在Rt△ABC中,∠C=90°①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则Rt△ABC的面积是=________。
(2)如果直角三角形的两直角边长分别为1n2-,2n(n>1),那么它的斜边长是()A、2n B、n+1 C、n2-1 D、1n2+(3)在Rt△ABC中,a,b,c为三边长,则下列关系中正确的是()A.222+=a c b+= B.222a b cC.222+= D.以上都有可能c b a(4)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A、25B、14C、7D、7或25例2:已知直角三角形的一边以及另外两边的关系利用勾股定理求周长、面积等问题。
(1)直角三角形两直角边长分别为5和12,则它斜边上的高为__________。
(2)已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A、242c mc m D、602c m B、362c m C、482(3)已知x、y为正数,且│x2-4│+(y2-3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为()A、5B、25C、7D、15例3:探索勾股定理的证明有四个斜边为c 、两直角边长为a,b 的全等三角形,拼成如图所示的五边形,利用这个图形证明勾股定理。
(word完整版)初二数学--勾股定理讲义(经典)
第一章 勾股定理【知识点归纳】123456⎧⎪⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩1、已知直角三角形的两边,求第三边勾股定理2、求直角三角形周长、面积等问题3、验证勾股定理成立1、勾股数的应用勾股定理勾股定理的逆定理2、判断三角形的形状3、求最大、最小角的问题、面积问题、求长度问题、最短距离问题勾股定理的应用、航海问题、网格问题、图形问题 考点一:勾股定理(1)对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有222c b a =+ 勾股定理:直角三角形两直角边的平方和等于斜边的平方。
(2)结论:①有一个角是30°的直角三角形,30°角所对的直角边等于斜边的一半。
②有一个角是45°的直角三角形是等腰直角三角形。
③直角三角形斜边的中线等于斜边的一半。
(3)勾股定理的验证abcab cab cabcababa bba例题:例1:已知直角三角形的两边,利用勾股定理求第三边。
(1)在Rt △ABC 中,∠C=90°①若a=5,b=12,则c=___________; ②若a=15,c=25,则b=___________; ③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c=10则Rt △ABC 的面积是=________。
(2)如果直角三角形的两直角边长分别为1n 2-,2n (n>1),那么它的斜边长是( ) A 、2nB 、n+1C 、n 2-1D 、1n 2+(3)在Rt △ABC 中,a,b,c 为三边长,则下列关系中正确的是( )A.222a b c +=B. 222a c b +=C. 222c b a +=D.以上都有可能(4)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( )A 、25B 、14C 、7D 、7或25例2:已知直角三角形的一边以及另外两边的关系利用勾股定理求周长、面积等问题。
《初二勾股定理讲解》课件
本PPT课件详细讲解了初二数学课程中的勾股定理,通过图文并茂的方式,带 领学生深入理解这一重要的几何定理。
引言
勾股定理是初中数学的基础,它是直角三角形中一条重要的等式,其应用广泛。学好勾股定理对于进一步学习 几何和数学有重要意义。
勾股定理的定义
直角三角形
勾股定理适用于直角三角形,即其中一个角为90度。
勾股三元组是一组满足勾股定 理的整数边长的三角形。
总结
勾股定理是数学中一条重要且有广泛应用的几何定理,学好勾股定理对于学 生的数学学习非常重要,希望大家能够努力掌握这一定理。
参考文献
- 《数学教学参考书目》 - 《初中数学教材》
通过数学运算和代数推导,可以证明勾股定理的代数性质。
勾股定理的应用
长方形的对角线
勾股定理可以用于计算长方形对角线的长正方形的边长。
直角三角形的中线
勾股定理可以用于计算直角三角形中线的长度。
...
勾股定理的拓展
广义勾股定理
勾股三元组
...
广义勾股定理是勾股定理在非 直角三角形中的推广和拓展。
斜边、直角边、另一条边
勾股定理描述了直角三角形的斜边平方等于两直角边平方和的关系。
勾股定理的表述
勾股定理可以简化成 a²+ b²= c²的等式。
勾股定理的证明
1
证明一:仿射几何
通过仿射几何的方法,可以得到勾股定理的几何证明。
2
证明二:相似三角形
使用相似三角形的性质,可以证明勾股定理的几何性质。
3
证明三:代数证明
初二数学勾股定理课件
05
练习与思考
基础练习题
01
总结词:巩固基础
02
详细描述:基础练习题是为了帮助学生掌握勾股定理的基本概念和应 用,包括简单的直角三角形问题,让学生熟悉如何运用勾股定理进行 计算。
进阶练习题
总结词
提升应用能力
详细描述
进阶练习题难度稍大,涉及更复杂的直角三角形问题,如多边形的边长计算、实际生活中的问题等, 旨在提高学生的解题技巧和实际应用能力。
勾股定理的重要性
解决实际问题
勾股定理在现实生活中有着广泛 的应用,如建筑、航海、航空等 领域,通过勾股定理可以解决许 多实际问题。
数学学科基础
勾股定理是数学学科中基础而重 要的知识点,对于后续学习三角 函数、解析几何等课程具有重要 意义。
勾股定理的历史背景
01
古代文明发现
勾股定理在古代文明中都有所 发现和应用,如古希腊、古中
国、古印度等。
勾股定理的证明方法有多种,其 中较为著名的是欧几里得证明法
和赵爽证明法等。
02
证明方法
02
勾股定理的证明
毕达哥拉斯定理的证明
毕达哥拉斯定理
在一个直角三角形中,直角边的平方 和等于斜边的平方。
证明方法
利用相似三角形的性质和三角形的面 积公式,通过一系列的推导和变换, 最终得出毕达哥拉斯定理。
在物理学中的应用
天文学中的行星轨道
在天文学中,行星绕太阳的轨道是一 个椭圆形,但为了简化计算,常常将 其近似为圆。利用勾股定理可以计算 行星的近地点和远地点。
光学中的折射定律
电磁学中的振荡电路
在电磁学中,振荡电路的三个元件( 电阻、电感、电容)之间满足勾股定 理关系,可以利用这个关系计算电路 的频率和相位差。
初二数学《勾股定理》PPT课件
即直角三角形两直角边的平方和等于 斜边的平方.
a
c
勾
弦
b
股
在RT△ABC中,∠C=90°, ∠A 、∠B、 ∠C的对边分别为a 、b 、c ,则:
勾股定理的各种表达式:
c2=a2+b2 a2=c2-b2 b2=c2-a2
5米
B
A
C
12米
解:∵BC⊥AC, ∴在Rt△ABC中, AC=12,BC=5, 根据勾股定理,
1.求下列图中表示边的未知数x、y、z的值.
①
81
144
x
y
z
②
③
625
576
144
169
如图,一个高3 米,宽4 米的大门,需在相对角的顶点间加一个加固木条,则木条的长为( )
B
A
勾 股 定 理
C
一、情景引入
如图,一根电线杆在离地面5米处断裂,电线杆顶部落在离电线杆底部12米处,电线杆折断之前有多高?
5米
B
A
C
12米
电线杆折断之前的高度=BC+AB=5米+AB的长
SA+SB=SC
图甲
图乙
A的面积
B的面积
C的面积
4
4
A
B
C
C
图甲
1.观察图甲,小方格 的边长为1. ⑴正方形A、B、C的 面积各为多少?
A.3米 B.4米 C.5米 D.6米
C
2、湖的两端有A、B两点,从与BA方向成直角的BC方向上的点C测得CA=130米,CB=120米,则AB为( )
A
B
C
A.50米 B.120米 C.100米 D.130米
初二勾股定理讲义
c b a D C A B第一讲 勾股定理复习讲义知识点一、勾股定理1、勾股定理:直角三角形的两条直角边的平方和等于斜边的平方。
在ABC Rt ∆中,,,,90B A C ∠∠︒=∠C ∠的对边分别为c b a ,,,则有:①222b a c +=;②222b c a -=;③222a c b -=.2、勾股数:满足a 2+b 2=c 2的三个 ,称为勾股数.常见勾股数如下(必须熟记):3、常见平方数(必须熟记):121112=; 144122=; 169132=; 196142=; 225152=;256162=; 289172=; 324182=; 361192=; 400202=;441212=; 484222=; 529232=; 576242=; 625252=4、勾股定理证明(等面积法)(1)已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。
求证:222c b a =+。
(2)已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。
求证:222c b a =+。
例题1.例题1.已知直角三角形的两边长分别为3和4,则斜边长为( )A .4B .5C .4或5D .5或变式练习:在△ABC 中,∠C =90°,AC =3,BC =4,则以AB 为边的正方形的面积为( )A .9B .16C .25D .53, 4, 56, 8, 10 9, 12, 15 12, 16, 20 15, 20, 25 5, 12, 1310, 24, 26 7, 24, 25 8 ,15 , 17 9, 40, 41例题2.两个边长分别为a ,b ,c 的直角三角形和一个两条直角边都是c 的直角三角形拼成如图所示的图形,用两种不同的计算方法计算这个图形的面积,则可得等式为( )A .(a +b )2=c 2B .(a ﹣b )2=c 2C .a 2﹣b 2=c 2D .a 2+b 2=c 2 变式练习:“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若ab =8,小正方形的面积为9,则大正方形的边长为( )A .9B .6C .5D .4例题3.如图1-1-1,在Rt ABC ∆中,ACB B A ABC ∠∠∠︒=∠,,,90所对的边分别为a,b,c.(1)若;,15,4:3:b c b a 求==(2)若.8,6的长及斜边上的高,求c b a ==变式练习:如图,△ABC 中,∠ACB=90°,AC=7,BC=24,CD ⊥AB 于D .(1)求AB 的长;(2)求CD 的长.知识点二、勾股定理的逆定理勾股定理的概念(1)语言表述:在一个直角三角形中,的平方和等于的平方.(2)公式表述:已知:在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.则有.2.勾股定理的应用在直角三角形中,知道其中任意的都可以求出第三边.即:c=,a=,b=.例题1.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( )A.8 B.4 C.6 D.无法计算变式练习:1.若直角三角形的两边为3和4,则第三边的长为2.若已知一个直角三角形的周长为30 cm,其中一个直角边长为12 cm,则它的斜边为cm.例题2.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形a、b、c、d的边长分别是3、5、2、3,则最大正方形e的面积是()A.13 B.26C.47 D.94图1 图2变式练习:1.在直线上依次摆着7个正方形(如图6),已知倾斜放置的3个正方形的面积分别为1,2,3,水平放置的4个正方形的面积是S1,S2,S3,S4,则S1+S2+S3+S4=_____.2.如图,直线l经过正方形ABCD的顶点B,点A、C到直线l的距离分别是1、2,则正方形的面积是.知识点三、折叠问题【例题】1.如图7,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为( )A.53B.52C.4 D.5 图7 图82.某同学在制作手工作品的前两个步骤是:①先裁下了一张长BC=20cm,宽AB=16cm的长方形纸片ABCD;②将纸片沿着直线AE折叠,点D恰好落在BC 边上的点F处,请你根据①②步骤计算EC的长为.变式练习:1.如图,将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上,若AB=6,BC=9,则BF的长为()A.4 B.3 2 C.4.5 D.52.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,点E在BC上,将△ABC 沿AE折叠,使点B落在AC边上的点B′处,求BE的长.知识点四、勾股定理中最短路径问题例题1.如图,两个村庄A、B在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,CD=3千米,现在要在河边CD上建造一水厂,向A、B两村送自来水,铺设水管的工程费用为每千米20000元,请你在CD上选择水厂的位置O,使铺设水管的费用最省,并求出铺设水管的总费用W.例题2.如图,有一个圆柱体,它的高为20,底面半径为5,如果一直蚂蚁要从圆柱体的底面的A点,沿圆柱体表面爬到与A相对的上底面B点,则蚂蚁爬的最短路线长越为_______(л取3)例题3.如图①,一只蚂蚁在长方体的一个顶点A处,食物在这个长方体上和蚂蚁相对的顶点B处,蚂蚁急于吃到食物,所以沿长方体的表面向上爬,请你计算它从A处爬到B处的最短路线长为多少米?例题4.如图,︒AOB,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、=∠30Q分别在边OB、OA上,则MP+PQ+QN的最小值是_________变式练习:1.如图,长方体的底面边长分别为1cm,3cm,高为6cm。
八年级勾股定理讲义
勾股定理一.知识点拨勾股定理是数学史上一颗璀璨的明珠,在西方数学史上称之为“毕达哥拉斯定理”1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方ABCabc弦股勾勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。
2. 勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。
)*附:常见勾股数:3,4,5;5,12,13;6,8,10;7,24,25;8,15,17;9,40,41;9,12,15;3. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。
(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。
(2)有两个角互余的三角形是直角三角形。
用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2)若c2=a2+b2,则△ABC是以∠C为直角的三角形;若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边);若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边)4.注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。
5. 勾股定理的作用:(1)已知直角三角形的两边求第三边。
(2)已知直角三角形的一边,求另两边的关系。
(3)用于证明线段平方关系的问题。
(4)利用勾股定理,作出长为n 的线段二.题型精析题型一 直角三角形中已知两边,求第三边。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学 勾股定理【知识点归纳】123456⎧⎪⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩1、已知直角三角形的两边,求第三边勾股定理2、求直角三角形周长、面积等问题3、验证勾股定理成立1、勾股数的应用勾股定理勾股定理的逆定理2、判断三角形的形状3、求最大、最小角的问题、面积问题、求长度问题、最短距离问题勾股定理的应用、航海问题、网格问题、图形问题考点一:勾股定理(1)对于任意的直角三角形,如果它的两条直角边分别为a、b,斜边为c ,那么一定有222c b a =+勾股定理:直角三角形两直角边的平方和等于斜边的平方。
(2)结论:①有一个角是30°的直角三角形,30°角所对的直角边等于斜边的一半。
②有一个角是45°的直角三角形是等腰直角三角形。
③直角三角形斜边的中线等于斜边的一半。
(3)勾股定理的验证abcab cab cabcababa bba例题:例1:已知直角三角形的两边,利用勾股定理求第三边。
(1)在R t△AB C中,∠C=90°①若a=5,b=12,则c=___________; ②若a =15,c=25,则b =___________; ③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c =10则Rt △ABC 的面积是=________。
(2)如果直角三角形的两直角边长分别为1n 2-,2n (n>1),那么它的斜边长是( ) A 、2nﻩB 、n+1ﻩC 、n2-1ﻩD 、1n 2+(3)在R t△A BC 中,a,b,c为三边长,则下列关系中正确的是( )A.222a b c += B . 222a cb +=C. 222c b a += D.以上都有可能(4)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( )A 、25ﻩﻩB 、14ﻩC 、7ﻩ ﻩD 、7或25例2:已知直角三角形的一边以及另外两边的关系利用勾股定理求周长、面积等问题。
(1)直角三角形两直角边长分别为5和12,则它斜边上的高为__________。
(2)已知R t△A BC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △A BC 的面积是( )A 、242c mﻩB 、36 2c mC 、482c m ﻩD 、602c m(3)已知x 、y 为正数,且│x 2-4│+(y 2-3)2=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( )A 、5ﻩﻩB、25 ﻩC 、7ﻩD、15例3:探索勾股定理的证明有四个斜边为c 、两直角边长为a ,b 的全等三角形,拼成如图所示的五边形,利用这个图形证明勾股定理。
ABCMDGHF E考点二:勾股定理的逆定理(1)勾股定理的逆定理:如果三角形的三边长a,b,c有关系,222c b a =+,那么这个三角形是直角三角形。
(2)常见的勾股数:(3n,4n,5n ),(5n ,12n ,13n),(8n,15n,17n),(7n ,24n,25n),(9n,40n,41n)…..(n 为正整数) (3)直角三角形的判定方法:①如果三角形的三边长a,b ,c 有关系,222c b a =+,那么这个三角形是直角三角形。
②有一个角是直角的三角形是直角三角形。
③两内角互余的三角形是直角三角形。
④如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形。
例题:例1:勾股数的应用(1)下列各组数据中的三个数,可作为三边长构成直角三角形的是( )A. 4,5,6 B . 2,3,4 C. 11,12,13 D. 8,15,17(2)若线段a,b ,c 组成直角三角形,则它们的比为( )A 、2∶3∶4 ﻩB 、3∶4∶6ﻩC 、5∶12∶13ﻩD 、4∶6∶7 例2:利用勾股定理逆定理判断三角形的形状 (1)下面的三角形中:①△A BC 中,∠C =∠A-∠B ; ②△A BC中,∠A:∠B:∠C=1:2:3; ③△A BC中,a:b :c=3:4:5; ④△AB C中,三边长分别为8,15,17. 其中是直角三角形的个数有( ).A.1个B.2个 C .3个 D.4个(2),则这个三角形一定是( ) A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.不等边三角形(3)已知a,b ,c 为△A BC 三边,且满足(a 2-b2)(a 2+b 2-c 2)=0,则它的形状为( ) A .直角三角形ﻩﻩﻩﻩ B.等腰三角形 C.等腰直角三角形ﻩﻩD.等腰三角形或直角三角形(4)将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )A . 钝角三角形 B. 锐角三角形 C . 直角三角形 D. 等腰三角形 (5)若△ABC 的三边长a,b,c满足222a b c 20012a 16b 20c +++=++,试判断△ABC 的形状。
(6)△ABC 的两边分别为5,12,另一边为奇数,且a +b+c 是3的倍数,则c 应为 ,此三角形为 。
例3:求最大、最小角的问题(1)若三角形三条边的长分别是7,24,25,则这个三角形的最大内角是 度。
(2)已知三角形三边的比为则其最小角为 。
考点三:勾股定理的应用例题:例1:面积问题(1)下图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是()A. 13B. 26C. 47D. 94A BCDES2S3S1ABCS3S2S1(图1)(图2)(图3)(3)如图,△ABC为直角三角形,分别以AB,BC,AC为直径向外作半圆,用勾股定理说明三个半圆的面积关系,可得( )A.S1+S2> S3B.S1+ S2= S3C.S2+S3<S1D. 以上都不是(2)如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S1、S2、S3,则它们之间的关系是()A.S1- S2= S3 B. S1+S2= S3 C. S2+S3<S1 D.S2-S3=S1例2:求长度问题(1)小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度。
(2)在一棵树10m高的B处,有两只猴子,一只爬下树走到离树20m处的池塘A处;•另外一只爬到树顶D处后直接跃到A外,距离以直线计算,如果两只猴子所经过的距离相等,试问这棵树有多高?CB例3:最短路程问题(1)如图1,已知圆柱体底面圆的半径为2,高为2,A B,CD 分别是两底面的直径,AD,BC 是母线,若一只小虫从A 点出发,从侧面爬行到C 点,则小虫爬行的最短路线的长度是 。
(结果保留根式)(2)如图2,有一个长、宽、高为3米的封闭的正方体纸盒,一只昆虫从顶点A要爬到顶点B ,那么这只昆虫爬行的最短距离为 。
BD(图1) (图2) 例4:航海问题(1)一轮船以16海里/时的速度从A港向东北方向航行,另一艘船同时以12海里/时的速度从A 港向西北方向航行,经过1.5小时后,它们相距________海里.(2)(深圳)如图1,某货船以24海里/时的速度将一批重要物资从A 处运往正东方向的M 处,在点A 处测得某岛C 在北偏东60°的方向上。
该货船航行30分钟到达B 处,此时又测得该岛在北偏东30°的方向上,已知在C 岛周围9海里的区域内有暗礁,若继续向正东方向航行,该货船有无暗礁危险?试说明理由。
D B CA(图1)(图2)(3)如图2,某沿海开放城市A接到台风警报,在该市正南方向260km的B处有一台风中心,沿BC方向以15km/h的速度向D移动,已知城市A到BC的距离AD=100km,那么台风中心经过多长时间从B点移到D点?如果在距台风中心30km的圆形区域内都将有受到台风的破坏的危险,正在D点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险? 例5:网格问题(1)如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC中,边长为无理数的边数是()A.0B.1C.2 D.3(2)如图,正方形网格中的△ABC,若小方格边长为1,则△ABC是( )A.直角三角形B.锐角三角形C.钝角三角形 D.以上答案都不对(3)如图,小方格都是边长为1的正方形,则四边形ABCD的面积是( )A.25B. 12.5 C. 9 D.8.5B CAA BC DC(图1)(图2) (图3)例6:图形问题(1)如图1,求该四边形的面积(2)(2010四川宜宾)如图2,已知,在△ABC中,∠A=45°,AC= 错误!,AB= 错误!+1,则边BC的长为.431213BC DA(图1) (图2)(3)某公司的大门如图所示,其中四边形AB CD 是长方形,上部是以AD 为直径的半圆,其中AB=2.3m ,BC =2m,现有一辆装满货物的卡车,高为2.5m,宽为1.6m,问这辆卡车能否通过公司的大门?并说明你的理由.(4)(太原)将一根长24㎝的筷子置于地面直径为5㎝,高为12㎝的圆柱形水杯中,设筷子露在杯子外面的长为h ㎝,则h 的取值范围 。
【中考链接】1.(2010 广西钦州市)如图是一张直角三角形的纸片,两直角边AC =6 cm 、B C=8 c m,现将△ABC 折叠,使点B 与点A 重合,折痕为DE,则BE 的长为 (A )4 cm (B )5 c m (C )6 cm (D )10 cmABC D2.(2010 山东荷泽)(本题满分8分)如图所示,在Rt △ABC 中,∠C =90°,∠A=30°,BD是∠A BC的平分线,C D=5㎝,求A B的长.3. 如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,以格点为顶点分别按下列要求画三角形:①使三角形的三边长分别为3、8、5(在图甲中画一个即可); ②使三角形为钝角三角形且面积为4(在图乙中画一个即可).甲乙4.(2010广东湛江)下列四组线段中,可以构成直角三角形的是( )A.1,2,3B.2,3,4C.3,4,5D.4,5,65.(2010 四川泸州)在△ABC 中,AB=6,AC=8,B C=10,则该三角形为( )A.锐角三角形 B.直角三角形 C . 钝角三角形 D.等腰直角三角形6.(2010辽宁丹东市)已知△ABC 是边长为1的等腰直角三角形,以Rt △AB C的斜边A C为直角边,画第二个等腰Rt △A CD ,再以R t△A CD 的斜边AD 为直角边,画第三个等腰Rt △AD E,…,依此类推,第n个等腰直角三角形的斜边长是 .7.(2010广西南宁)如图,每个小正方形的边长为1,ABC ∆的三边c b a ,,的大小关系式:(A )b c a << (B )c b a << (C )b a c << (D)a b c << 8.(2010 湖北孝感)(本题满分10分)[问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据AB CD E FG弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言。