【精校】2013年辽宁省鞍山市中考数学试卷(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年辽宁省鞍山市中考数学试卷
一.选择题(共8小题,每小题2分,满分16分)
1.3﹣1等于()
A.3 B.﹣C.﹣3 D.
2.一组数据2,4,5,5,6的众数是()
A.2 B.4 C.5 D.6
3.如图,已知D、E在△ABC的边上,DE∥BC,∠B=60°,∠AED=40°,则∠A的度数为()
A.100°B.90°C.80°D.70°
4.要使式子有意义,则x的取值范围是()
A.x>0 B.x≥﹣2 C.x≥2D.x≤2
5.已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为()
A.45°B.35°C.25°D.20°
6.已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根
C.没有实数根D.有两个实数根
7.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:
选手甲乙丙丁
平均数(环)9.2 9.2 9.2 9.2
方差(环2)0.035 0.015 0.025 0.027
则这四人中成绩发挥最稳定的是()
A.甲B.乙C.丙D.丁
8.如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;
②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b;⑤3a+c<0.
其中正确的结论有()
A.5个 B.4个 C.3个 D.2个
二.填空题(共8小题,每小题2分,满分16分)
9.分解因式:m2﹣10m= .
10.如图,∠A+∠B+∠C+∠D=度.
11.在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第象限.12.若方程组,则3(x+y)﹣(3x﹣5y)的值是.
13.△ABC中,∠C=90°,AB=8,cosA=,则BC的长.
14.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(﹣1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是.
15.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为220cm,此时木桶中水的深度是 cm.
16.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.
三.计算题(共2小题,每小题6分,满分12分)
17.先化简,再求值:,其中x=.
18.某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.
(1)试求y与x之间的函数关系式;
(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?
四.应用题(共2小题,每小题6分,满分12分)
19.小明和小亮玩一种游戏:三张大小,质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从
中任意抽取一张,计算小明和小亮抽得的两个数字之和,如果和为奇数,则小明胜,若和为偶数则小亮胜.
(1)用列表或画树状图等方法,列出小明和小亮抽得的数字之和所有可能出现的情况.(2)请判断该游戏对双方是否公平?并说明理由.
20.如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜度由45°降为30°,已知原滑滑板AB的长为5米,点D、B、C在同一水平地面上.
求:改善后滑滑板会加长多少?(精确到0.01)(参考数据:=1.414,=1.732,=2.449)
五.应用题(共2小题,每小题6分,满分12分)
21.如图,已知线段a及∠O,只用直尺和圆规,求做△ABC,使BC=a,∠B=∠O,∠C=2∠B (在指定作图区域作图,保留作图痕迹,不写作法)
22.如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.
求证:(1)△AFD≌△CEB;
(2)四边形ABCD是平行四边形.
六.应用题(共2小题,每小题6分,满分12分)
23.如图,点A、B在⊙O上,直线AC是⊙O的切线,OC⊥OB,连接AB交OC于点D.(1)AC与CD相等吗?问什么?
(2)若AC=2,AO=,求OD的长度.
24.如图所示,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.
(1)求点A、B、D的坐标;
(2)求一次函数和反比例函数的解析式.
七.应用题(满分10分)
25.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;
(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
八.应用题(满分10分)
26.如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数y=ax2+bx+c的图象交于y轴上的一点B,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.(1)求二次函数y=ax2+bx+c的解析式;
(2)设一次函数y=0.5x+2的图象与二次函数y=ax2+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD为直角三角形,求点P的坐标.