不等式证明都有哪几种方法
不等式证明的基本方法
4. 放缩法是在证明不等式或变形中, 将条件或结论或变换中的 式子放大或缩小进行求证的方法.放缩时要看准目标,做到 有的放矢, 注意放缩适度. 放缩法是证明不等式的常用技巧, 有些不等式若恰当地运用放缩法可以很快得证,要控制难 度.
比较法
(2010 年高考江苏卷试题)设 a、b 是非负实数,求证:a3 +b3≥ ab(a2+b2). 【思路分析】 先作差,再用不等式的基本性质解答.
不等式证明的基本方法
1.比较法是证明不等式最常用最基本的方法,有两种: (1)求差法:a>b⇔a-b>0; a (2)求商法:a>b>0⇔b>1,(b>0).
2.分析法、综合法是证明数学问题的两大最基本的方法. 综合法是以已知的定义、公理、定理为依据,逐步下推,直 到推出问题的结论为止,简而言之,就是“由因导果”. 分析法是从问题的结论出发,追溯导致结论成立的条件,逐 步上溯,直到使结论成立的条件与已知条件或已知事实吻合 为止,简而言之,就是“执果索因”.
分析法与综合法
如果 a>0,b>0,求证:a3+b3≥a2b+ab2. 【证法一】 (用分析法) 要证 a3+b3≥a2b+ab2, 只需证(a+b)(a2-ab+b2)≥ab(a+b) ∵a>0,b>0,有 a+b>0,故只需证 a2-ab+b2≥ab, 只需证(a-b)2≥0 显然(a-b)2≥0 成立,以上各步均可逆, ∴a3+b3≥a2b+ab2
1.设 a>0,a≠1,0<x<1.求证:|loga(1-x)|>|loga(1+x)|.
证明:方法一:(平方后作差)
2 log2 (1 - x ) - log a a(1+x)
=[loga(1-x)+loga(1+x)]· [loga(1-x)-loga(1+x)]= 1-x loga(1-x )· loga . 1+x
不等式的几种证明方法
不等式证明的几种常用方法一、比较法(1)差值比较法要证明a >b ,只要证明a -b >0。
①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变 形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论。
应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法。
【例一】求证:233x x +>证明:()()()222233223333x x x x +-=-+-+23330244x ⎛⎫=-+≥> ⎪⎝⎭233x x ∴+>(2)商值比较法已知a ,b 都是正数,要证明a >b ,只要证明a/b >1 ①作商:将左右两端作商; ②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1。
应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法。
【例二】已知a,b>0,求证a b b a a b a b ≥证明: =∵a,b>0+,当a >b 时,>1,a-b >0,>1;当a≤b 时,≤1,a -b≤0, ≥1.∴≥1, 即a b b aa b a b ≥二、综合法利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”。
其逻辑关系为:A-B1- B2- B3… Bn -B ,即从已知A 逐步推演不等式成立的必要条件从而得出结论B 。
重点:基本不等式【例三】已知a ,b ,c 是不全等的正数,求证 a (c 2+b 2)+b (a 2+c 2)+c (a 2+b 2)>6abc .证明: 222a b ab +≥ ,222a c ac +≥,222c b bc +≥()222a b cabc ∴+≥,()222b acabc +≥,()222c ababc +≥∴a (c 2+b 2)+b (a 2+c 2)+c (a 2+b 2)≥6abc .又因为a ,b ,c 是不全等的正数所以有a (c 2+b 2)+b (a 2+c 2)+c (a 2+b 2)>6abc .三、分析法分析法是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”。
高中数学:不等式题目的七种证明方法
高中数学:不等式题目的七种证明方法压轴题目一般是开放型的题目,每年都是会变化。
但大概率题目是函数、数列、圆锥曲线、不等式等知识的综合问题。
我就来总结一下不等式的证明方法。
01比较法所谓比较法,就是通过两个实数a与b的差或商的符号(范围)确定a与b大小关系的方法,即通过来确定a,b大小关系的方法。
前者为作差法,后者为作商法。
但要注意作差法适用范围较广;作商法再用时注意符号问题,如果同为正的话是没有问题的,同为负的话记得改变不等式的符号。
02分析法和综合这两个方法我们一般会一起使用。
分析法是从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题。
如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立。
综合法是从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式。
我们来看一个例题,已知如果要用综合法或者分析法的话,对于过程上需要写明,即证,所以要证,也就是说,即等价于……一些转化的语句来过渡我们的题目。
当然这两个方法我们经常一起用,因为分析完条件,分析结论,两个一起分析做题速度更快一些呢。
03反证法从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的。
这个方法其实是按照集合的补集理论来的,正难则反,但是要注意用反证法证明不等式时,必须将命题结论的反面的各种情形都要考虑到,不能少的。
反证法证明一个命题的思路及步骤:1)假定命题的结论不成立;2)进行推理,在推理中出现下列情况之一:与已知条件矛盾;与公理或定理矛盾;3)由于上述矛盾的出现,可以断言,原来的假定“结论不成立”是错误的;4)肯定原来命题的结论是正确的。
04放缩法在证明过程中,利用不等式的传递性,作适当的放大或缩小,证明有更好的不等式来代替原不等式。
放缩法的目的性强,必须恰到好处,。
同时在放缩时必须时刻注意放缩的跨度,放不能过头,缩不能不及,灵活性很大。
证明不等式的八种方法
1 Math Part 比较法
证明:
∴a-1≥1,b-1≥1
ab-a-b =a(b-1)-b
∴(a-1)(b-1)≥1 例题:已知a≥2,b≥即2,(a求-1)证(b:-1)a-b1≥≥a0+b
6 Math Part 构造法
函数构造法
例题:已知a≥2,b≥2,求证:ab≥a+b
证明: 要证明的不等式为: ab≥a+b 移项得 ab-a-b≥0 即(b-1)a-b≥0 构造函数 f(x)=(b-1)x-b (x≥2)
f(x)是关于x的一次函数 其中一次项系数b-1>0 ∴f(x)为定义域上的增函数 ∴对于任意的x∈[2,+∞)都有 f(x)≥f(2)=(b-1)×2-b=b-2≥0 ∴(b-1)a-b≥0 所以原命题成立 证毕
与①式矛盾
所以原命题成立
证毕
5 Math Part
公式法
5 Math Part 公式法
伯公努式利法不:等利式用:已有的不等式的定理、公式等 (1证+x明1)不(1等+x式2)…的(一1+种xn方) ≥法1。+x高1+中x2常…+见xn的公式有: 对基 栖于本 西任不不意等等1≤式式i,、、j≤绝加n都对权有值平x不均i>-等不1且式 等所、 式有均 、x值 切i与不 比x等雪j同式夫号、不
4 Math Part 反证法
例题:已知a≥2,b≥2,求证:ab≥a+b
证明: 假设ab<a+b ab-a-b =a(b-1)-b =a(b-1)-(b-1)-1 =(a-1)(b-1)-1 ∵ab<a+b
不等式的常见证明方法
不等式常见的三种证明方法渠县中学 刘业毅一用基本不等式证明设c b a ,,都是正数。
求证:.c b a cab b ac a bc ++≥++ 证明:.22c bac a bc b ac a bc =•≥+ .22b cab a bc c ab a bc =•≥+ .22a cab b ac c ab b ac =•≥+ ).(2)(2c b a cab b ac a bc ++≥++ .c b a cab b ac a bc ++≥++ 点评:可用综合法分析乘积形式运用不等式可以转化为所求。
思维训练:设c b a ,,都是正数。
求证:.222c b a c b a a c b ++≥++ 二 放缩法证明不等式已知,对于任意的n 为正整数,求证: 1+221+321+ +n 21<47 分析:通过变形将数列{n 21}放缩为可求数列。
解: n 21=n n •1<)1(1-n n =11-n —n1(n ≥2) ∴1+221+321+ +n 21<1+221+231⨯+341⨯+ +)1(1-n n =1+41+(21—31+31—41+ +11-n —n1) =45+21—n1 =47—n 1 点评:放缩为可求和数列或公式是高考重要思想方法。
思维训练:设c b a ,,都是正数,a+b>c,求证:a a +1+b b +1>cc +1三 构造函数法证明 证明不等式3ln 3121112ln <+++++<nn n (n 为正整数) 分析:显然要构造一个含n 的不等式,然后用叠加法证明。
我们构造一个函数,1)(',ln 1)(2xx x f x x x x f -=+-=可得这个函数在x=1时取得最小值0.及对x>0有不等式x x 11ln -≥,如果令x=k k 1+,则有111ln +>+k k k ,如果令x=1+k k ,则kk k ->+11ln ,即kk k k 1ln )1ln(11<-+<+,然后叠加不等式即可。
【技巧题型】不等式题目的七种证明方法
【技巧题型】不等式题目的七种证明方法高考的题目中,有80%都是中低档难度,也就是说,要想脱颖而出成为佼佼者,压轴题是无论如何都要攻克的难关!压轴题目一般是开放型的题目,每年都是会变化。
但大概率题目是函数、数列、圆锥曲线、不等式等知识的综合问题。
今天,我就来总结一下不等式的证明方法。
1比较法所谓比较法,就是通过两个实数a与b的差或商的符号(范围)确定a与b大小关系的方法,即通过来确定a,b大小关系的方法。
前者为作差法,后者为作商法。
但要注意作差法适用范围较广;作商法再用时注意符号问题,如果同为正的话是没有问题的,同为负的话记得改变不等式的符号。
2分析法和综合这两个方法我们一般会一起使用。
分析法是从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题。
如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立。
综合法是从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式。
我们来看一个例题,已知如果要用综合法或者分析法的话,对于过程上需要写明,即证,所以要证,也就是说,即等价于……一些转化的语句来过渡我们的题目。
当然这两个方法我们经常一起用,因为分析完条件,分析结论,两个一起分析做题速度更快一些呢。
3反证法从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的。
这个方法其实是按照集合的补集理论来的,正难则反,但是要注意用反证法证明不等式时,必须将命题结论的反面的各种情形都要考虑到,不能少的。
反证法证明一个命题的思路及步骤:1)假定命题的结论不成立;2)进行推理,在推理中出现下列情况之一:与已知条件矛盾;与公理或定理矛盾;3)由于上述矛盾的出现,可以断言,原来的假定“结论不成立”是错误的; 4)肯定原来命题的结论是正确的。
4放缩法在证明过程中,利用不等式的传递性,作适当的放大或缩小,证明有更好的不等式来代替原不等式。
基本不等式的20种证明方法
基本不等式的20种证明方法
基本不等式“基本”在哪里?你认为怎样得引入最能体现他的本质?
(1)做差证明
(2)分析法证明
(3)综合法证明
(4)排序不等式
根据排序不等式所说的逆序和小于等于顺序和,便能得到
化简得
(5)函数证明
我们对原函数求导,并令导数等于零。
求的最小值
得出
(5)指数证明
首先这里要用到两个梯形的面积公式。
一个是大家小学都学过的
易得
进而有
进一步有
指取对有
(6)琴生不等式证明
取 y=lnx
由琴生不等式得到
进而有
(7)无字证明(Charles D. Gallant)
(8)无字证明(Doris Schattschneider)
(9)无字证明(Roland H. Eddy)
(10)无字证明(Ayoub B. Ayoub)
(11)无字证明(Sidney H. Kung)
(12)无字证明(Michael K. Brozinsky)
(13)无字证明(Edwin Beckenbach & RichardBellman)
(14)无字证明
(15)无字证明(RBN)
(16)无字证明
进而有
(17)无字证明
进而有
(18)无字证明
有
(19)构造函数证明
由
得
(20)构造期望方差证明
由
得
另外还有向量法,复数法,积分法等,均值定理在数学内外有广泛得运用,不仅可以推广,还可以联系多个领域,一个简单结论证明的背后往往可展示引人人胜的各种思路!。
不等式的几种证明方法及其应用
不等式的几种证明方法及其应用不等式的证明方法多种多样,常用的证法有初等数学中的综合法、分析法、比较法和数学归纳法等,高等数学中常用的方法是利用函数的单调性、凹凸性等方法.本文将对其中一些典型证法给出系统的归纳与总结,并以例题的形式展示这些方法的应用.1 利用构造法证明不等式“所谓构造思想方法就是指在解决数学问题的过程中,为完成从条件向结论的转化,利用数学问题的特殊性设计一个新的关系结构系统,找到解决原问题的具体方法.利用构造思想方法不是直接解决原问题,而是构造与原问题相关或等价的新问题.”)52](1[P 在证明不等式的问题中,构造思想方法常有以下几种形式:1.1 构造函数证明不等式构造函数指根据所给不等式的特征,巧妙地构造适当的函数,然后利用一元二次函数的判别式或函数的有界性、单调性、奇偶性等来证明不等式.1.1.1 利用判别式在含有两个或两个以上字母的不等式中,若根据题中所给的条件,能与一元二次函数有关或能通过等价形式转化为一元二次函数的,都可考虑使用判别式法.例1 设R z y x ∈,,,证明0)(322≥+++++z y x z y xy x 成立. 解 令22233)3()(z yz y x z y x x f +++++=为x 的二次函数. 由2222)(3)33(4)3(z y z yz y z y +-=++-+=∆知0≤∆,所以0)(≥x f . 故0)(322≥+++++z y x z y xy x 恒成立.对于某些不等式,若能根据题设条件和结论,结合判别式的结构特征,通过构造二项平方和函数)(x f =(11b x a -)2+(x a 2-22)b +…+2)(n n b x a -,由0)(≥x f 得出0≤∆,从而即可得出所需证的不等式.例2 设+∈R d c b a ,,,,且1=+++d c b a ,求证614141414<+++++++d c b a )18](2[P .证明 令)(x f =(x a 14+-1)2+(114-+x b )2+)114(-+x c 2+)114(-+x d 2=4)14141414(282++++++++-x d c b a x (因为1=+++d c b a ).由0)(≥x f 得0≤∆ 即0128)14141414(42≤-+++++++d c b a .所以62414141414<≤+++++++d c b a .1.1.2 利用函数有界性若题设中给出了所证不等式中各个变量的变化范围,可考虑利用函数的有界性来证明,具体做法是将所证不等式视为某个变量的函数.例3 设,1,1,1<<<c b a 求证1->++ca bc ab )18](2[P . 证明 令1)()(+++=ac x c a x f 为x 的一次函数. 因为,1,1<<c a 所以0)1)(1(1)1(>++=+++=c a ac c a f ,0)1)(1(1)()1(>--=+++-=-c a ac c a f .即∀)1,1(-∈x ,恒有0)(>x f .又因为)1,1(-∈b ,所以0)(>b f , 即01>+++ca bc ab . 1.1.3 利用函数单调性在某些问题中,若各种式子出现统一的结构,这时可根据这种结构构造函数,把各种式子看作同一函数在不同点的函数值,再由函数的单调性使问题得到解决.例4 求证121212121111n n n na a a a aa a a a a a a +++≤++++++++++)53](1[P .分析 通过观察可发现式中各项的结构均相似于式子M M +1,于是构造函数xxx f +=1)()0(≥x .证明 构造函数xxx f +=1)( )0(≥x . 因为0)1(1)(2'>+=x x f , 所以)(x f 在),0[+∞上严格递增.令n a a a x +++= 211,n a a a x +++= 212. 因为21x x ≤,所以)()(21x f x f ≤. 所以≤+++++++nn a a a a a a 21211nn a a a a a a +++++++ 21211=+++++na a a a 2111++++++ n a a a a 2121nna a a a ++++ 211nna a a a a a ++++++≤1112211 .1.1.4 利用函数奇偶性 例5 求证221xx x <-)0(≠x .证明 设)(x f 221x x x --=,对)(x f 进行整理得)(x f )21(2)21(xx x -+=, )(x f -=)21(2)21(xx x ---+-=)12(2)12(-+-x x x =)21(2)21(x x x -+=)(x f , 所以)(x f 是偶函数.当0>x 时,12>x ,所以021<-x,所以0)(<x f . 由偶函数的图象关于y 轴对称知,当0<x 时,0)(<x f . 即 当0≠x 时,恒有0)(<x f ,即221xx x <- )0(≠x . 注意 由以上几种情况可以看出,如何构造适当的函数并利用函数的性质来证明不等式是解题的关键.1.2 构造几何图形证明不等式构造几何图形,就是把题中的元素用一些点或线来取代,使题中的各种数量关系得以在图中表现出来,然后借助几何图形的直观性或几何知识来寻求问题的解答.一般是在问题的条件中数量关系有明显的几何意义,或可以通过某种方式与几何形(体)建立联系时宜采用此方法.)52](1[P 这种方法十分巧妙且有效,它体现了数形结合的优越性.下面将具体介绍用几何法证明不等式的几种途径:1.2.1 构造三角形)1](3[P例6 已知z y x ,,为正数,求证22y xy x +++22z xz x ++>22z yz y ++.分析 注意到︒-+=++120cos 22222xy y x y xy x ,于是22y xy x ++可看作是以y x ,为两边,夹角为︒120的三角形的第三边,由此,易得出下面的证明:证 如图1 ,在BC A ∆内取一点O ,分别连接OC OB OA ,,,使图1B︒=∠=∠=∠120COA BOC AOB ,z OC y OB x OA ===,,则22y xy x AB ++=,22z xz x AC ++=,22z yz y BC ++=.由BC AC AB >+, 即得所要证明的不等式.注 该题可做如下推广:已知z y x ,,为正数,πα<<0,πβ<<0,πγ<<0,且πγβα2=++,求证++-22cos 2y xy x α>+-22cos 2z xz x β22cos 2z yz y +-γ,令γβα,,为满足条件的特殊角可设计出一系列的不等式.例7 已知正数k n m c b a ,,,,,满足p k c n b m a =+=+=+,求证2p cm bk an <++. 证明 如图2,构造边长为p 的正三角形ABC ,在边BC AB ,,上依次截取 n FA b CF k EC c BE m DB a AD ======,,,,,.因为ABC FEC DBE ADF S S S S ∆∆∆∆<++所以243434343p bk cm an <++, 即2p cm bk an <++. 1.2.2 构造正方形)1](3[P例8 已知+∈R x ,d c b a ,,,均是小于x 的正数,求证+-+22)(b x a +-+22)(c x b +-+22)(d x c x a x d 4)(22<-+.分析 观察不等式的左边各式,易联想到用勾股定理,每个式子代表一直角三角形的一斜边,且)()()()(d x d c x c b x b a x a -+=-+=-+=-+,所以可构造边长为x 的正方形.证明 如图3,构造边长为x 的正方形ABCD ,在边DA CD BC AB ,,,上 依次截取,a AE =,a x EB -=,d BF =c CG d x FC =-=,,b DHc x GD =-=,,b x HA -=.则四边形EFGH 的周长为+-+22)(b x a +-+22)(c x b +-+22)(d x c 22)(a x d -+.由三角形两边之和大于第三边知,四边形EFGH 的周长小于正方形ABCD 的周长, 从而命题得证.1.2.3 构造矩形图2x-c 图3例9 已知z y x ,,为正数,证明))((z y y x yz xy ++≤+.分析 两个数的乘积,可看作以这两个数为边长的矩形的面积,也可以看成以这两个数为直角边长的三角形面积的两倍.证明 如图4 ,造矩形ABCD ,使,y CD AB ==,x BE =,z EC =设α=∠AED .由AED ECD ABE ABCD S S S S ∆∆∆++=矩形知 =+)(z x y ++yz xy 2121αsin ))((21z y y x ++. 化简得αsin ))((z y y x yz xy ++=+.因为1sin 0≤<α,所以))((z y y x yz xy ++≤+(当且仅当︒=90α时,等号成立).1.2.4 构造三棱锥例10 设,0,0,0>>>z y x 求证22y xy x +->+-+22z yz y 22x zx z +-)129](4[P .分析 注意到22y xy x +-︒-+=60cos 222xy y x ,可以表示以y x ,为边, 夹角为︒60的三角形的第三边,同理22z yz y +-,22x zx z +-也有类似意义.证明 如图5,构造顶点为O 的四面体ABC O -,使︒=∠=∠=∠60AOC BOC AOB ,z OC y OB x OA ===,,,则有22y xy x AB +-=,22z yz y BC +-=,22x xz z AC +-=.在ABC ∆中AC BC AB >+,即得原不等式成立.注 该题还可做如下推广:已知z y x ,,为正数,,0πα<<,0πβ<<πγ<<0时πγβα20<++<且,βαγβα+<<-求证22cos 2y xy x +-α+22cos 2z xz x +-β>22cos 2z yz y +-γ.例10便是当︒===60γβα时的特殊情况.1.3 构造对偶式证明不等式对偶思想是根据矛盾双方既对立又统一的二重性,巧妙地构造对偶数列,从而将问题解决的一种思想.⌒ADCBE y x +图4图5OAC例11 求证1212124321+<-⨯⨯⨯n nn .分析 令=P nn 2124321-⨯⨯⨯ ,由于P 中分子为奇数、分母为偶数,则由奇数的对偶数为偶数可构造出关于P 的一个对偶式Q ,1225432+⨯⨯⨯=n nQ .证明 设=P n n 2124321-⨯⨯⨯ ,构造P 的对偶式Q ,1225432+⨯⨯⨯=n nQ .因为Q P <<0,所以=<PQ P 2)2124321(n n -⨯⨯⨯ 121)1225432(+=+⨯⨯⨯n n n .所以121+<n P ,即原不等式成立.注 构造对偶式的途径很多,本题是利用奇偶性来构造对偶式,此外,还可利用倒数关系、相反关系、对称性关系等来构造对偶式.1.4 构造数列证明不等式这种方法一般用于与自然数有关的不等式证明,当问题无法从正面入手时,可考虑将它转化为数列,然后利用数列的单调性来证明.例12 求证:不等式!21n n ≤-,对任何正整数n 都成立)55](1[P .分析 不等式可变形为,1!21≤-n n n 是正整数,所以可构造数列{},n a 其中1,!211==-a n a n n ,则只需证1a a n ≤即可.对于任意正整数n ,=-+=--+!2)!1(211n n a a n n n n 0)!1(2)1()!1()1(2211≤+-=++---n n n n n n n , 所以{}n a 是递减数列.所以1a a n ≤,即原命题成立.1.5 构造向量证明不等式向量由于其自身的形与数兼备的特性,使得它成了数形结合的桥梁,也是解决一些问题的有利工具.对于某些不等式的证明,若能借助向量模的意义、数量积的性质等,可使不等式得到较易的证明.1.5.1 利用向量模的性质 例13 已知,,,,R d c b a ∈求证++++2222c b b a 2222a d d c +++)(2d c b a +++≥.证明 在原点为O 的直角坐标系内取四个点:()(),,,,c b b a B b a A ++(),,d c b c b a C ++++(),,a d c b d c b a D ++++++则原问题可转化为+,该不等式显然成立.1.5.2 利用向量的几何特征例14 设{}n a 是由正数组成的等比数列,n S 是前n 项和,求证)31](5[12.022.02.0log 2log log P n n n S S S ++>+. 分析 可将上述不等式转化为,212++<⋅n n n S S S 构造向量,用平行四边形的几何特征来证明.证明 设该等比数列的公比为q ,如图6,构造向量(),,11a a OA =(),,1n n qS qS OB +=()()12111,,+++=++=n n n n S S qS a qS a OC ,则OB OA OC +=,故B C A O ,,,构成平行四边形.由于OB OA ,在对角线OC 的两侧,所以斜率OB OA k k ,中必有一个大于OC k ,另一个小于OC k .因为{}n a 是由正数组成的等比数列,所以OA n n OC k S S k =<=++121, 所以OC OB k k <, 即<+1n n S S 21++n n S S . 所以212++<⋅n n n S S S . 此外,还可以利用向量的数量积证明不等式,一般是根据向量的数量积公式θb a =⋅找出不等关系,如b a ≤⋅≤等,然后利用不等关系证明不等式,在此对这种方法不再举例说明.综上所述,利用构造思想证明不等式时,需对题目进行全面分析,抓住可构造的因素,并借助于与之相关的知识,构造出所求问题的具体形式或是与之等价的新问题,通过解决所构造的问题使原问题获得解决.就构造的对象来说它的表现形式是多样的,这就需要我们牢固的掌握基础知识和解题技巧,综合运用所学知识将问题解决.2 利用换元法证明不等式换元法是数学解题中的一种重要方法,换元的目的是通过换元达到减元,或通过换元得到熟悉的问题形式.换元法主要有以下几种形式:图6O xyABC2.1 三角换元法例15 已知,122≤+y x 求证2222≤-+y xy x .证明 设θθsin ,cos r y r x ==()10≤≤r ,则=-+222y xy x θθθθ22222sin sin cos 2cos r r r -+θθθ222sin 2sin cos -+=r224sin 22sin 2cos 222≤≤⎪⎭⎫ ⎝⎛+=+=r r r πθθθ.注 这种方法一般是已知条件在结构上与三角公式相似时宜采用.若题设为,12=+y x 可设;sin 2,cos θθ==y x 题设为,122=-y x 可设θθtan ,sec ==y x 等.2.2 均值换元法例16 设,1,,,=++∈z y x R z y x 求证31222≥++z y x )12](2[P .证明 设,31α+=x ,31β+=y ,31γ+=z 其中0=++γβα 则 =++222z y x ++2)31(α++2)31(β=+2)31(γ31)(231222≥++++++γβαγβα(当且仅当γβα==时取等号).2.3 增量换元法这种方法一般用于对称式(任意互换两个字母顺序,代数式不变)和给定字母顺序的不等式的证明.例17 已知,0>>y x 求证 yx y x -<-)55](6[P .证明 由,0>>y x 可令t y x += )0(>t . 因为2)(2t y yt t y t y +=++<+, 所以t y t y +<+, 即y x y x -<-.总之,证明不等式时适当的引进换元,可以比较容易的找到解题思路,但具体使用何种代换,则因题而异,总的目的是化繁为简.3 利用概率方法证明不等式)51](7[P利用概率方法证明不等式,主要是根据实际问题,构造适当的概率模型,然后利用有关结论解决实际问题.3.1利用概率的性质:对任意事件A ,1)(0≤≤A P ,证明不等式例18 证明若,10,10≤≤≤≤b a 则1+≤+≤ab b a ab .分析 由,10,10≤≤≤≤b a 可把a 看做事件A 发生的概率,b 看做事件B 发生的概率. 证明 设事件A 与B 相互独立,且,)(,)(b B P a A P ==则ab b a B A P B P A P B A P -+=-+=)()()()( .因为,1)(0≤≤B A P 所以10≤-+≤ab b a ,所以1+≤+≤ab b a ab .3.2 利用Cauchy-Schwarz 不等式:2))((ξηE ≤22ηξE E 例19 设0>i a ,0>i b ,,2,1=i …n ,, 则 21)(∑=ni i i b a ≤))((1212∑∑==ni in i i ba .证明 设随机变量ξηηξ,,满足下列要求ξ概率分布:P (ξ=i a )=n 1(n i ,,2,1 =),η概率分布:P (η=i b )=n1(n i ,,2,1 =),ξη概率分布:⎪⎩⎪⎨⎧≠=== )(0)(1)(j i j i nb a P j i ξη, 则 2ξE =∑=n i i a n 121,2ηE =∑=n i i b n 121,)(ξηE =∑=n i i i b a n 11.由2))((ξηE ≤22ηξE E 得 212)(1∑=n i i i b a n ≤)1)(1(1212∑∑==n i i n i i b n a n .即 21)(∑=ni i i b a ≤))((1212∑∑==ni in i i ba .用概率证明不等式比较新颖,开辟了证明不等式的又一途径.但该法用起来不太容易,因为读者必须对概率这部分知识熟悉掌握,才能选择适当的结论加以利用,因此对这种方法只做简单了解即可.4 用微分方法证明不等式在高等数学中我们接触了微分, 用微分方法讨论不等式,为不等式证明方法开辟了新的视野. 4.1利用微分中值定理微分中值定理包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理,下面仅给出拉格朗日中值定理、泰勒定理的应用:拉格朗日中值定理)120](8[P 若函数)(x f 在[]b a ,上连续,()b a ,内可导,则在()b a ,内至少存在一点ξ,使得)('ξf =ab a f b f --)()(.例20 已知0>b ,求证b b bb<<+arctan 12. 证明 函数x arctan 在[]b ,0上满足拉格朗日中值定理的条件,所以有b arctan -0arctan =)0()(arctan '-=b x x ξ=21ξ+b,),0(b ∈ξ. 而b bx b <+<+2211ξ, 故原不等式成立.泰勒定理)138](8[P 若函数)(x f 在[]b a , 上有直至n 阶的连续导数,在()b a ,内存在()1+n 阶导函数,则对任意给定的0,x x ()b a ,∈,使得10)1(00)(200''00'0)()!1()()(!)()(!2)())(()()(++-++-++-+-+=n n nn x x n f x x n x f x x x f x x x f x f x f ξ 该式又称为带有拉格朗日余项的泰勒公式.例21 设函数)(x f 在[]b a ,上二阶可导,且M x f ≤)('',,1,0)2(=-=+a b ba f 试证 4)()(M b f a f ≤+)69](9[P .证明 将函数)(x f 在点20ba x +=展成二阶泰勒公式 ++-+++=)2)(2()2()('b a x b a f b a f x f 2'')2)((21b a x f +-ξ=)2)(2('ba xb a f +-++2'')2)((21b a x f +-ξ. 将b a x ,=代入上式得)21)(2()('b a f a f +-=+)(811''ξf ,)(81)21)(2(')(2''ξf b a f b f ++=. 相加得))()((81)()(2''1''ξξf f b f a f +=+. 取绝对值得))()((81)()(2''1''ξξf f b f a f +≤+≤4M .4.2 利用极值例22 设12ln ->a 为任一常数,求证xeax x <+-122()0>x )188](10[P .证明 原问题可转化为求证012)(2>-+-=ax x e x f x)0(>x .因为0)0(=f ,所以只需证022)('>+-=a x e x f x.由02)(''=-=xe xf 得)('x f 的稳定点2ln =x .当2ln <x 时,0)(''<x f . 当2ln >x 时,0)(''>x f . 所以 02)2ln 1(222ln 22)2(ln )(min ''>+-=+-==>a a f x f x .所以原不等式成立.4.3 利用函数的凹凸性定义)193](10[P )(x f 在区间I 上有定义,)(x f 称为I 上的凸(凹)函数,当且仅当:21,x x ∀∈I ,有)2(21x x f +≤2)()(21x f x f + ()2(21x x f +≥2)()(21x f x f +). 推论)201](10[P 若)(x f 在区间I 上有二阶导数,则)(x f 在I 上为凸(凹)函数的充要条件是:0)(''≥x f (0)(''≤x f ).例23 证明na a a n +++ 21≥n n a a a 21 ),,2,1,0(n i a i =>)125](11[P .证明 令,ln )(x x f =则01)(,1)(2'''<-==xx f x x f ,所以 x x f ln )(=在()+∞,0上是凹函数,对),0(,,,21+∞∈n a a a 有)ln ln (ln 1ln 2121n n a a a nn a a a +++≥⎪⎭⎫ ⎝⎛+++ ,所以na a a n +++ 21≥nn a a a 21.例24 对任意实数,,b a 有)(212b ab a e e e+≤+)80](12[P .证明 设xe xf =)(,则),(,0)(''+∞-∞∈>=x e x f x,所以)(x f 为),(+∞-∞上凸函数.从而对b x a x ==21,有2)()()2(b f a f b a f +≤+. 即)(212b ab a e e e+≤+. 5 利用几个著名的不等式来证明不等式5.1 均值不等式)133](4[P定理 1 设n a a a ,,,21 是n 个正数,则)()()()(n Q n A n G n H ≤≤≤称为均值不等式,其中,111)(21na a a nn H +++=,)(21n n a a a n G =,)(21na a a n A n+++=na a a n Q n22221)(+++=分别称为n a a a ,,,21 的调和平均值,几何平均值,算术平均值,均方根平均值.例25 已知,10<<a ,02=+y x 求证812log )(log +≤+a yx a a a . 证明 由,10<<a ,0,0>>yxa a 有y x y x y x a a a a a +=⋅≥+22,从而得22log )2(log )(log yx a a a a y x a y x a ++=≤++, 故现在只需证812≤+y x 或 41≤+y x 即可. 而4141)21(22≤+--=-=+x x x y x (当21=x 时取等号),所以812log )(log +≤+a yx a a a .5.2 Cauchy 不等式 定理2)135](4[P 设),,2,1(,n i R b a i i =∈,则∑∑∑===≥⋅n i ni i i ni ii b a ba 121122,)(当且仅当nn a b a b a b === 2211时等号成立. 例26 证明三角不等式 2112)(⎥⎦⎤⎢⎣⎡+∑=ni i i b a ≤2112⎪⎭⎫ ⎝⎛∑=ni i a +2112⎪⎭⎫ ⎝⎛∑=ni i b )33](12[P .证明 因为∑=+ni i ib a12)(=∑=+ni i i i a b a 1)(+∑=+ni i i i b b a 1)(根据Cauchy 不等式,可得∑=+ni i i ia b a1)(≤211212)(⎥⎦⎤⎢⎣⎡+∑∑==ni i n i i i a b a . (1)∑=+ni i i i b b a 1)(≤211212)(⎥⎦⎤⎢⎣⎡+∑∑==ni i ni i ib b a . (2) 把(1)(2)两个式子相加,再除以2112)(⎥⎦⎤⎢⎣⎡+∑=ni i i b a ,即得原式成立.5.3 Schwarz 不等式Cauchy 不等式的积分形式称为Schwarz 不等式. 定理3)271](10[P )(),(x g x f 在[]b a ,上可积,则⎰⎰⎰≤b ababadx x g dx x f dx x g x f .)()())()((222若)(),(x g x f 在[]b a ,上连续,其中等号当且仅当存在常数βα,,使得)()(x g x f βα≡时成立(βα,不同时为零).例27 已知)(x f 在[]b a ,上连续,,1)(=⎰badx x f k 为任意实数,求证2)cos )((⎰bakxdx x f 1)sin )((2≤+⎰b akxdx x f )272](10[P .证明 上式左端应用Schwarz 不等式得2)cos )((⎰bakxdx x f 2)cos )(()(⎥⎦⎤⎢⎣⎡=⎰badx kx x f x f⎰⎰⋅≤babakxdx x f dx x f 2cos )()(⎰=bakxdx x f 2cos )(. (1)同理2)sin )((⎰bakxdx x f ⎰≤bakxdx x f 2sin )(. (2)由(1)+(2)即得原不等式成立. 5.4 利用W.H.Young 不等式 定理4)288](10[P 设)(x f 单调递增,在),0[+∞上连续,,0)0(=f )(,0,1x fb a ->表示)(x f 的反函数,则⎰⎰-+≤bady y f dx x f ab 010,)()(其中等号当且仅当b a f =)(时成立.例28 设,0,>b a ,1>p ,111=+qp 试证q b p a ab q p +≤)290](10[P .证明 因为,1>p 所以1)(-=p xx f 单调递增且连续 (当0≥x 时),1111)(---==q p y yy f )111(-=-q p . 应用W.H.Young 不等式有 qb p a dy y f dx x f ab qp ba+=+≤⎰⎰-01)()(.。
证明不等式的几种常用方法
证明不等式的几种常用方法证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用.一、反证法如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理.反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的.用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A >B ,先假设A ≤B ,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A ≤B 不成立,而肯定A >B 成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效.例1 设a 、b 、c 、d 均为正数,求证:下列三个不等式:①a +b <c +d ;②(a +b)(c +d)<ab +cd ;③(a +b)cd <ab(c +d)中至少有一个不正确.反证法:假设不等式①、②、③都成立,因为a 、b 、c 、d 都是正数,所以不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④由不等式③得(a +b)cd <ab(c +d)≤(2b a )2·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d),综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31ab . 由不等式④,得(a +b)2<ab +cd <34ab ,即a 2+b 2<-32ab ,显然矛盾.∴不等式①、②、③中至少有一个不正确.例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0,c>0.证明:反证法由abc >0知a ≠0,假设a <0,则bc <0,又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0,从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾.∴假设不成立,从而a >0,同理可证b >0,c >0.例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2.证明:反证法假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8,∵p 3+q 3= 2,∴pq (p +q)>2.故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2),又p >0,q >0 p +q >0,∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.故假设p +q >2不成立,∴p +q ≤2.例4 已知)(x f = x 2+ax +b ,其中a 、b 是与x 无关的常数,求证:|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 反证法一:假设|)1(f |<21,|)2(f |<21,|)3(f |<21, 由于)1(f = 1+a +b ,)2(f = 4+2a +b ,)3(f = 9+3a +b ,∴)1(f +)3(f -)2(f =2,但是,2 = |)1(f +)3(f -)2(f |≤|)1(f |+|)3(f |+2|)2(f |<21+21+2×21= 2, 即2<2,矛盾,∴假设不成立,∴|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 反证法二:假设|)1(f |<21,|)2(f |<21,|)3(f |<21,即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<.21|)3(|,21|)2(|,21|)1(|f f f ⇒ ⎪⎪⎪⎩⎪⎪⎪⎨⎧<++<-<++<-<++<-③b a ②b a ①b a .219321,214221,21121 ①+③得:-1<4a +2b +10<1,即-21<2a +b +5<21, ∴-23<2a +b +4<-21,④ 显然②与④矛盾,因此,假设是不成立的, 故|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 例4 设a ,b ,c 均为小于1的正数,求证:(1-a)b ,(1-b)c ,(1-c)a 不能同时大于41. 证明:反证法假设(1-a)b ,(1-b)c ,(1-c)a 同时大于41,即(1-a)b >41,(1-b)c >41,(1-c)a >41, 则由41<(1-a)b ≤(21b a +-)2⇒21b a +->21, 同理:21c b +->21,21a c +->21, 三个同向不等式两边分别相加,得23>23,矛盾,所以假设不成立, ∴原结论成立.例6 若0<a <2,0<b <2,0<c <2,求证:(2-a)b ,(2-b)c ,(2-c)a不能同时大于1.证明:反证法假设⎪⎩⎪⎨⎧>->->-.1)2(,1)2(,1)2(a c c b b a 那么2)2(b a +-≥b a )2(->1,① 同理2)2(c b +->1,② 2)2(a c +->1,③ ①+②+③,得3>3矛盾,即假设不成立,故(2-a)b ,(2-b)c ,(2-c)a 不能同时大于1.二、三角换元法对于条件不等式的证明问题,当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑用三角代换,将复杂的代数问题转化为三角问题.若变量字母x 的取值围与sin θ或cos θ的变化围相同,故可采用三角换元,把所要证的不等式转换为求三角函数的值域而获证.一般地,题设中有形如x 2+y 2≤r 2,22a x +22b y = 1或22a x -22b y = 1的条件可以分别引入三角代换⎩⎨⎧==θθsin cos r y r x (| r |≤1),⎩⎨⎧==θθsin cos b y a x 或⎩⎨⎧==θθtan sec b y a x ,其中θ的取值围取决于x ,y 的取值围,凡不能用重要不等式证明的问题时,一般可以优先考虑换元(代数换元或三角换元),然后利用函数的单调性最终把问题解决.在三角换元中,由于已知条件的限制作用,根据问题需要,可能对引入的角度有一定的限制,应特别引起注意,否则可能会出现错误的结果.例2 已知1≤x 2+y 2≤2,求证:21≤x 2-xy +y 2≤3. 证明:∵1≤x 2+y 2≤2,∴可设x = rcos θ,y = rsin θ,其中1≤r 2≤2,0≤θ<π2.∴x 2-xy +y 2= r 2-r 2sin θ2= r 2(1-21sin θ2), ∵21≤1-21sin θ2≤23,∴21r 2≤r 2(1-21sin θ2)≤23r 2,而21r 2≥21,23r 2≤3, ∴ 21≤x 2-xy +y 2≤3. 例2 已知x 2-2xy +y 2≤2,求证:| x +y |≤10.证明:∵x 2-2xy +y 2= (x -y)2+y 2,∴可设x -y = rcos θ,y = rsin θ,其中0≤r ≤2,0≤θ<π2.∴| x +y | =| x -y +2y | = | rcos θ+2rsin θ| = r|5sin(θ+ractan21)|≤r 5≤10.例3 已知-1≤x ≤1,n ≥2且n ∈N ,求证:(1-x)n +(1+x)n ≤2n . 证明:∵-1≤x ≤1,设x = cos θ2 (0≤θ≤2π), 则1-x =1-cos θ2= 1-(1-2sin 2θ) = 2sin 2θ,1+x =1+cos θ2= 2cos 2θ,∴(1-x)n +(1+x)n = 2n sin n 2θ+2n cos n 2θ≤2n ( sin 2θ+cos 2θ) =2n ,故不等式(1-x)n +(1+x)n ≤2n 成立.例4 求证:-1≤21x --x ≤2.证明:∵1-x 2≥0,∴-1≤x ≤1,故可设x = cos θ,其中0≤θ≤π. 则21x --x =θ2cos 1--cos θ= sin θ-cos θ=2sin(θ-4π), ∵-4π≤θ-4π≤43π, ∴-1≤2sin(θ-4π)≤2,即-1≤21x --x ≤2. 三、增量代换法 在对称式(任意互换两个字母,代数式不变)和给定字母顺序(如a >b >c)的不等式,常用增量进行代换,代换的目的是减少变量的个数,使要证的结论更清晰,思路更直观,这样可以使问题化难为易,化繁为简.例7 已知a ,b ∈R ,且a +b = 1,求证:(a +2)2+(b +2)2≥225. 证明:∵a ,b ∈R ,且a +b = 1,∴设a =21+t ,b=21-t , (t ∈R) 则(a +2)2+(b +2)2= (21+t +2)2+(21-t +2)2= (t +25)2+(t -25)2= 2t 2+225≥225. ∴(a +2)2+(b +2)2≥225. 例8 已知a 1+a 2+…+a n = 1,求证:21a +22a +…+2n a ≥n1. 证明:设a 1= t 1+n 1,a 2= t 2+n 1,…,a n = t n +n1,其中t 1+t 2+…+t n = 0,则21a +22a +…+2n a = (t 1+n 1)2+(t 2+n 1)2+…+(t n +n 1)2= n ·21n+2×n 1( t 1+t 2+…+t n )+…+21t +22t +…+2n t =n 1+21t +22t +…+2n t ≥n 1. 四、放缩法放缩法是在顺推法逻辑推理过程中,有时利用不等式的传递性,作适当的放大或缩小,证明不原不等式更强的不等式来代替原不等式的证明.这种证题方法的实质是非等价转化,而它的证题方法没有一定的准则和程序,需按题意适当..放缩,否则是达不到目的.利用放缩法证明不等式,要根据不等式两端的特征及已知条件,采取舍掉式中一些正项或负项,或者在分式中放大或缩小分子、分母、把和式中的某些项换以较大或较小的数,从而达到证明不等式的目的.此类证法要慎审地采取措施,进行恰当地放缩,任何不适宜的放缩(放的过大或过小)都会导致推证的失败.例5 设n 为自然数,求证:91+251+…+2)12(1+n <41. 证明:∵2)12(1+k =14412++k k <k k 4412+=41(k1-11+k ), ∴91+251+…+2)12(1+n <41[(1-21)+(21-31)+…+(n 1-11+n ) =41(1-11+n )<41. ∴91+251+…+2)12(1+n <41[(1-21)+(21-31)+…+(n 1-11+n ) =41(1-11+n )<41. 例5 已知a n =21⨯+32⨯+…+)1(+n n ,其中n 为自然数, 求证:21n(n +1)<a n <21(n +1)2. 证明:∵)1(+k k <21++k k =212+k 对任意自然数k 都成立, ∴a n =21⨯+32⨯+…+)1(+n n <23+25+27+…+212+n =21[3+5+7+…+(2n +1)] =21(n +2n)<21(n +2n +1) =21(n +1)2. 又)1(+k k >2k = k ,∴a n =21⨯+32⨯+…+)1(+n n >1+2+3+…+n =21n(n +1), ∴21n(n +1)<a n <21(n +1)2. 评析:根据要证不等式的结构特征,应用均值不等式“放大”a n 为一个等差数列的和,求和后再添加一个数1,直到“放大”到要证的右边;而左边是通过“缩小”a n 的方法去根号而转化为等差数列的和.放大或缩小的技巧很多,如添项、减项、分子、分母加或减一个数,或利用函数的单调性、有界性等等,但要注意放缩要适度.11.设a 、b 为不相等的两正数,且a 3-b 3= a 2-b 2,求证:1<a + b <34. 证明:由题意得a 2+ab +b 2= a + b ,于是(a +b)2= a 2+2ab +b 2>a 2+ab +b 2= a + b ,故a + b >1,又(a +b)2>4ab ,而(a +b)2= a 2+2ab +b 2= a +b +ab <a +b +4)(2b a +, 即43(a +b)2<a +b ,解得a + b <34. ∴1<a + b <34. 例12 已知a 、b 、c 、d 都是正数,求证:1<c b a b +++d c b c +++a d c d +++ba d a ++<2. 证明:∵d cb a b +++<c b a b ++<ba b +, d c b a c +++<d c b c ++<dc c +,d c b a d +++<a d c d ++<dc d +, d c b a a +++<b a d a ++<ba a +, 将上述四个同向不等式两边分别相加,得:1<c b a b +++d c b c +++a d c d +++ba d a ++<2.。
证明不等式的八种方法
利用导数证明不等式的八种方法构造函数法---1研究其单调性2 极值、最值与0的关系 张红娟学习所得 2012.10.181、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。
2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。
以下介绍构造函数法证明不等式的八种方法:一、移项法构造函数【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(111 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数111)1ln()(-+++=x x x g ,从其导数入手即可证明。
【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 ,即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数,故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g ,∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方;分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f <⇔不等式问题, 即3232ln 21x x x <+,只需证明在区间),1(∞+上,恒有3232ln 21x x x <+成立,设)()()(x f x g x F -=,),1(+∞∈x ,考虑到061)1(>=F 要证不等式转化变为:当1>x 时,)1()(F x F >,这只要证明: )(x g 在区间),1(+∞是增函数即可。
第2节证明不等式的基本方法
第2节证明不等式的基本方法证明不等式的基本方法总结如下:一、利用数学分析中的中值定理、极值、单调性等性质进行证明。
1.利用中值定理:利用连续函数介值定理或拉格朗日中值定理,根据函数的一些性质,可以推出不等式的成立。
例如,证明一个凸函数在区间上的函数值不小于端点的函数值。
2.利用极值:通过求导或其他方法,找到函数的极值点,然后证明这些极值点就是不等式的最小(最大)值点。
例如,证明两数之积不大于它们的平方和,可以通过求导得到函数的极值点,然后通过证明这个极值点为最小值点来完成。
3.利用单调性:如果已知函数在一些区间上是严格递增(递减)的,可以通过证明不等式在一些特殊点成立,并通过函数的单调性推出在整个区间上成立。
例如,证明一个正数的倒数小于它自己,则可以先证明在0到1之间成立,然后利用单调性推出在整个正数范围内成立。
二、利用数学归纳法进行证明。
如果不等式中的变量是正整数,可以利用数学归纳法进行证明。
首先证明当n=1时不等式成立,然后假设当n=k时不等式成立,再证明当n=k+1时不等式也成立。
例如,证明n个正数的平均值不小于它们的几何平均值,可以先证明当n=1时成立,然后假设当n=k时成立,再证明当n=k+1时也成立,最后利用数学归纳法推出结论。
三、利用代数方法。
1.利用等价变形:对于一个复杂的不等式,可以通过进行等价变形来简化证明。
通过将不等式的两边同时加上或减去一些式子,或者将不等式两边同时乘以或除以一些式子,可以得到一个等价的不等式,然后证明这个等价的不等式。
例如,证明正数的n次方大于等于它的平方,可以将不等式两边同时开方,然后证明这个等价的不等式。
2. 利用加减法、乘除法不等式:对于一个分式或多项式不等式,可以通过利用加减法、乘除法的不等式性质,将不等式化简为更简单的形式,再进行证明。
例如,证明a+b≤2ab,则可以将两边同时减去a+b再加上2,利用不等式的性质简化后得到ab≥1,再证明这个等价的不等式。
不等式的推导和证明方法
不等式的推导和证明方法不等式是数学中不可或缺的一个概念,它用于表示数值之间的关系。
不等式的形式可以很简单,例如$x>2$,也可以非常复杂,例如 $\sqrt{x^2+y^2}>\frac{x+y}{2}$。
在解决各类数学问题时,推导和证明不等式的方法是非常重要的一步。
本文将介绍一些常见的不等式的推导和证明方法。
一、数学归纳法数学归纳法是一种证明数学命题的通用方法。
若要证明某个命题对于自然数 $n$ 成立,则需要证明该命题在 $n=1$ 时成立,并证明若该命题在 $n=k$ 时成立,则该命题在 $n=k+1$ 时也成立。
不等式的证明中,归纳法常常被用于证明柯西不等式、阿贝尔不等式等一些数列不等式。
例如,考虑柯西不等式:$(a_1^2+a_2^2+\cdots+a_n^2)(b_1^2+b_2^2+\cdots+b_n^2)\geq(a_1b _1+a_2b_2+\cdots+a_nb_n)^2$。
对于 $n=1$,该不等式显然成立。
假设对于 $n=k$ 时该不等式成立,即$$(a_1^2+a_2^2+\cdots+a_k^2)(b_1^2+b_2^2+\cdots+b_k^2)\geq(a_1b_1+a_2b_2+\cdots+a_kb_k)^2$$现在考虑 $n=k+1$ 时该不等式是否成立。
根据柯西不等式,有\begin{align*}&(a_1^2+a_2^2+\cdots+a_{k+1}^2)(b_1^2+b_2^2+\cdots+b_{k+1 }^2)\\=&[(a_1^2+a_2^2+\cdots+a_k^2)+a_{k+1}^2][(b_1^2+b_2^2+\cd ots+b_k^2)+b_{k+1}^2]\\\geq&(a_1b_1+a_2b_2+\cdots+a_kb_k+a_{k+1}b_{k+1})^2\end{align*}因此,该命题对于 $n=k+1$ 成立,由数学归纳法可知对于所有$n\in\mathbb{N}$,柯西不等式成立。
例谈证明不等式的四种常用措施
=
cos2 a, a
∈
(0,
π 2
)
,
æ è
x
+
1 x
öøæèç
y
+
1 y
ö
÷
ø
=
æ
ç
sin2
a
è
+
1 sin2a
öæ
֍
cos2
a
øè
+
1 cos2a
ö
÷
ø
=
sin4 a
+
cos4a - 2 sin2a 4 sin22a
cos2 a
+
2
,
( ) =
4 - sin2a 2 + 16 , 4 sin22a
(x)
=
(
cos sin
α β
)x
+
(
cos sin
β α
)x,
且x < 0,
α,β ∈
æ è
0,
π 2
öø,若
f (x) > 2, 求证:α + β >
π 2
.
证明:假设0
<
α
+
β
≤
π 2
,
由α, β
∈
(0,π2 )可得0
<
α
≤
π 2
-
β
≤
π 2
,
则
cos
α
≥
cosæè
π 2
-
β
ö ø
=
sin
β
>
1)
=
2n2
+
不等式证明常用方法
不等式证明常用方法不等式是中学数学最基本内容之一,它有着丰富的实际背景,与生产实践联系十分密切;因此,无论普通高考,还是对口高考,不等式,历年都是考试的重点、热点,甚至难点。
下面就不等式的证明,介绍几种常见方法,如有不对,敬请同行、同学们斧正. 一、作差法例1、对于任意实数x ,求证:x x 232>+.证明:∵x x 232-+=2)1(2+-x 0> ∴x x 232>+.评注:1.作差法步骤:作差—变形—判断与0的关系—结论.2.作差后的变形常用方法有因式分解、配方、通分、有理化等,应注意结合式子的形式,适当选用.二、作商法例2、设a ,b 均是正实数,求证:a b b a b a b a ≥.证明:首先,由条件0>bab a ,0>abb a , 其次, b a a b b a b aba b a -=)(,⑴当0>≥b a 时,1≥ba,0≥-b a ,∴1)(≥-b a b a .⑵当0>>a b 时,10<<b a ,0<-b a ,∴1)(>-b a ba.综合⑴、⑵:1)(≥-b a ba,∴a b b a b a b a ≥.评注:1.作商法步骤:作商—变形—判断与1的关系—结论.2.作差法是通法,运用较广;作商法,要注意条件,不等式两边必须是正数。
作商法常用于证幂、指数形式的不等式。
三、综合法例3、设a ,b ,c 均是正实数,求证:c b a c ab b ca a bc ++≥++ 证明:∵a ,b ,c 均是正实数,∴a bc ,b ca ,cab也均是正实数.∴2,2,2bc ca ca ab ab bc c a b a b b c c a+≥+≥+≥∴2(bc a +)(2c b a c abb ca ++≥+, ∴c b a cab b ca a bc ++≥++ 评注:1.利用某些已经证明过的不等式(例如正数的算术均值不小于几何均数等)和不等式的性质(例如||||||||||b a b a b a +≤+≤-等)推导出所要证明的不等式成立,这种证明方法通常叫做综合法.2.综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法.3.运用综合法证明不等式,必须发现式子的结构特征,结合重要不等式和常用不等式,找到解题的方法。
初等不等式的证明方法
初等不等式的证明方法
初等不等式的证明方法有以下几种:
1. 直接法:根据不等式的条件和要求,将不等式的两边进行运算,最终可以证明不等式的成立。
2. 数学归纳法:对于一些特殊的不等式,可以使用数学归纳法来证明。
首先验证不等式成立的初始情况,然后假设当k为正整数时不等式成立,然后证明当k+1时不等式也成立。
3. 反证法:假设不等式不成立,通过推理和推导可以得到矛盾的结论,从而证明原始假设的不成立,即不等式成立。
4. 分类讨论法:将不等式的条件进行分类讨论,对于每一种情况分别进行证明,最终得到整体的证明结果。
5. 差分法:通过差分的方式将不等式转化为前后差的形式,然后利用差分的性质进行证明。
这些方法可以根据不同的不等式和条件的特点进行选择和运用。
同时,还可以结合数学的基本原理和性质,如数学的基本运算性质、函数性质等,来进行不等式的证明。
不等式的八种证明方法及一题多证
不等式的证明:一、比较法:比较法是证明不等式的最基本、最重要的方法,它常用的证明方法有两种: 1.作差比较法方法:欲证A>B,只需要证A-B>0 步骤:“作差----变形----判断符号”。
使用此法作差后主要变形形式的处理:○将差变形为常数或一个常数与几个平方和的形式常用配方法或实数特征a2≥0判断差的符号。
○将差变形为几个因式的积的形式,常用因式分解法。
○若变形后得到二次三项式,常用判别式定符号。
总之,变形的目的是有利于判断式子的符号,而变形方法不限定,也就是说,关键是变形的目标。
2.作商比较法方法:要证A>B,常分以下三种情况:若B>0,只需证明1AB >; 若B=0,只需证明A>0; 若B<0,只需证明1AB<。
(3)步骤:“作商-----变形-----判断商数与1的大小” 例:已知a , b , m 都是正数,并且a < b ,求证:bam b m a >++解析:用作差比较法∵)()()()()(m b b a b m m b b m b a m a b b a m b m a +-=++-+=-++ ∵a ,b ,m 都是正数,并且a <b ,∴b + m > 0 , b - a > 0 ∴0)()(>+-m b b a b m 即:b a m b m a >++ 例:已知a>b>0,求证:()2a ba ba b ab +>解析:用作商比较法∵()222222a b a b a b a b a b a b a b a b a ba ababb ab -++-----+⎛⎫=== ⎪⎝⎭又∵a>b>0,()221,012a b a ba ba ab a b b a b ab -+-⎛⎫∴>>∴> ⎪⎝⎭∴>例:已知0 < x < 1, 0 < a < 1,试比较|)1(log | |)1(log |x x a a +-和的大小。
高等数学中不等式证明的方法示例
高等数学中不等式证明的方法示例在高等数学中,不等式证明是一个十分重要的概念,它可以用来证明或者反证某个数学命题是否正确。
研究不等式的证明方法,至关重要,下面就来介绍一些不等式证明的方法示例。
一、集合与集合之间的不等式证明1. 左边≦右边:证明A∪B⊆C;首先,因为A⊆C及B⊆C,那么A∪B也是⊆C。
因此,A∪B⊆C证毕。
2. 左边>右边:证明A∩B≠A;首先,因为A∩B的元素满足A的全部条件及B的全部条件,那么A∩B的元素定小于A。
因此,A∩B≠A,证毕。
二、集合和标量之间的不等式证明1. 左边>右边:证明x∈A,x>c;首先,如果x∈A,那么x满足A的全部条件,那么x一定大于c。
因此,x∈A,x>c,证毕。
2. 左边≦右边:证明x∈A,x≤b;首先,如果x∈A,那么x满足A的全部条件,那么x一定小于等于b。
因此,x∈A,x≤b,证毕。
三、定义的不等式证明1. 左边>右边:证明x⋅y≠0;首先,由x⋅y=0的定义我们知道,x⋅y等于零只有在两个值a、b均为零时才成立。
但是,如果其中一个值不等于零,那么x⋅y一定不等于零。
因此,x⋅y≠0,证毕。
2. 左边≦右边:证明x⋅y≤0;首先,由x⋅y=0的定义我们知道,x⋅y等于零只有在两个值a、b均为零时才成立,当其中一个值不等于零时,则x⋅y一定小于等于零。
因此,x⋅y≤0,证毕。
四、映射的不等式证明1. 左边>右边:证明f(x)>f(y);首先,如果x>y ,根据函数f的定义,我们知道f(x)满足y的全部条件及x超出了y,那么f(x)肯定大于f(y)。
因此,f(x)>f(y),证毕。
2. 左边≦右边:证明f(x)≤f(y);首先,如果x≤y,根据函数f的定义,我们知道f(x)满足y的全部条件及x的全部条件,那么f(x)肯定小于等于f(y)。
因此,f(x)≤f(y),证毕。
以上就是高等数学中不等式证明的方法示例。
通过以上介绍,我们可以看出,不等式证明是高等数学中一个十分重要的概念,熟捻这种证明方法对于我们正确理解不等式非常有利,正确使用它们可以让我们更轻松地证明不等式的正确性。
不等式的证明方法
不等式的证明方法不等式的证明非常活跃,具体问题具体分析是证明不等式的精髓。
不等式仍将是高考的重点内容之一,但是单独考查解不等式或证明不等式的题目明显较少。
高考近几年加大了在知识支汇点处命题的力度。
不等式试题更多的是与集合,函数,方程,数列,三角,解析几何,立体几何及实际应解决的问题相互交叉和渗透,充分体现了不等式在知识网络中所具有的极强辐射作用,这就要求我们对不等式证明的基本方法应熟练掌握。
不等式的证明除了比较法(差比商比),分析法,综合法等常用方法外,还有其它一些比较重要的方法,本文就不等式证明的其它方法作一介绍,仅供参考。
一.换元法:换元法是指对结构较为复杂,量与量之间的关系不甚明了的命题,通过恰当引入新变量代原题中的部分式子,简化原有的结构,使其转化为便于研究的形式,换元法也是不等式证明中重要变形方法,常见的换元手段有:三角代换,平均值代换,此值代换,对称代换,增量代换例1,若X+Y+Z=1试用代换法证明证:设X=Y=Z==()2+()2+()2=(当且仅当时,即时,等号成立)说明:(1)三角代换是常见的变量代换,凡条件为或或均可以运用三角换元法(2)代换时应该注意新变量要确保原来的变量的范围不发生变化二。
反证法:从否定结论出发,经过逻辑推证,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法,叫做反证法用反证法证明不等式必须注意两点1. 必须先从否定结论,即肯定结论的反面,当结论的反面呈现多样性的时,必须罗列出各种情况,缺少任何一种都有可能,反证法都是不完全的2. 反证法必须从否定的结论进行推理,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法例2,已知a. b .c . 求证:不大于证法1:假设三式同时大于即,,三式相乘的又=同理:这个与题设矛盾证法2.假设三式同时大于即+ + >又00同理:三式相加得即:即: >矛盾原命题成立. 即不能同时大于说明: 结论若是”都是……” “至少…….” “至多……”或”…………”形式的不等式命题,即当命题”结论反面”比”结论”更为明确具体时,宜用反证法三。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式证明都有哪几种方法
不等式的证明方法(1)比较法:作差比较: . 作差比较的步骤:①作差:对要比较大小的两个数(或式)作差. ②变形:对差进行因式分解或配方成几个数(或式)的完全平方和. ③判断差的符号:结合变形的结果及题设条件判断差的符号. 注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小. (2)综合法:由因导果. (3)分析法:执果索因.基本步骤:要证……只需证……,只需证…… ①“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件.
②“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可以利用分析法寻找证题的途径,然后用“综合法”进行表达. (4)反证法:正难则反. (5)放缩法:将不等式一侧适当的放大或缩小以达证题目的. 放缩法的方法有:①添加或舍去一些项,如:;;
②将分子或分母放大(或缩小);③利用基本不等式,如:;;(6)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元. 如:已知,可设;已知,可设 ( );已知,可设;已知,可设;(7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式;证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.⑻数学归纳法法:数学归纳法法证明不等式在数学归纳法中专门研究.。