链烷烃的结构及其同分异构现象..

合集下载

有机化学-烷烃

有机化学-烷烃

500℃
1
2
CH3 CH2
3
4
5
6
CH CH CH2 CH3
CH3 CH2
CH3
3-甲基-4-乙基己烷
若有相同编号, 则小基团先编号
次序规则: 甲基<乙基<丙基<丁基<戊基<己基<异戊基< 异丁基<异丙基
3)书写命名
a.依次写出取代基的位次、名称、主链名称。
b. 按“次序规则”列出取代基 。
c.相同取代基合并表示。
溶剂; • 密度:比水小。
五、烷烃的化学性质
• 烷烃为非极性分子,C-C和C-H的σ键键能较高, 不易极化,故常温下烷烃不活泼。
• 因其稳定而应用:石油醚做溶剂、凡士林做润 滑剂和药膏,石蜡做药物基质。
1. 氧化反应
1)燃烧 :激烈氧化 沼气 例: CH4+2O2 点燃 CO2+2H2O+890kJ.mol-1 沼气、天然气、液化气、汽油、柴油的燃烧均数 烷烃的燃烧
CH3(CH2)6CH3
正辛烷
CH3(CH2)10CH3
正十二烷
CH3 , CH3CH2
甲基
乙基
Methyl Ethyl
(Me)
(Et)
, CH3CH2CH2
丙基
Propyl (Pr)
CH3CHCH3
异丙基
Isopropyl (i-Pr)
丁基
仲丁基
叔丁基
2.系统命名法
1)选择分子中最长的碳链为主链,根据主链 所含碳原子数定为“某烷”,将支链作为取 代基。
1
2
3
4
5
6
CH3 CH2 CH CH CH2 CH3

烷烃(同系物和同分异构体)

烷烃(同系物和同分异构体)

烷烃复 习一: 什么叫烷烃? 链状、单键、饱和
烷烃的通式是?其完全燃烧生成的水和二氧化碳 之比为多少? C2H2n+2 (n≥1) 已知10ml的某气态烷烃在50mlO2中充分燃烧,得到 液态水和体积为35ml的混合气体(所有气体都在同温同 压下测定),则该烃可能是什么?
烷烃的表示方法
有机物的几种表示方法
烷烃的化学性质
(1)烷烃的氧化反应 烷烃完全燃烧的通式: CnH2n+2+(3n+1)/2O2 → nCO2+(n+1)H2O
通常情况下,烷烃与高锰酸钾等强氧化剂不发 生反应,不能与强酸和强碱溶液反应。
(2)烷烃的取代反应
其它烷烃与甲烷一样,一定条件下能发生取
代反应。因为可以被取代的氢原子多,所以
H
C
H
C H
H
对称氢原子的概念
我们先看看最简单的甲烷分子… 我们知道甲烷的四个氢原 子是对称的。 如果将甲烷的四个氢原子 用甲基取代,结果会…?
由此可以得到两个规律…
对称氢原子确定的规律
同一碳原子上的氢原子完全对称 。 与同一碳原子相连的甲基上的氢原
子完全对称。
与同一碳原子相连的相同基团对应位置上的
烷烃组成和结构的表示方法
结构简式怎么写?------p23(有机化学)
1.将结构式中的C—H省略,其他的共价键一律不省略.C—C 可省也可不省.但其它如双键,叁键一律不能省. 实际上写结构简式的最简单处理方法就是省略C—H,
其它一概不变!
2.连在同一个C上的相同基团有时也可以合并,并带上括号. 3.同一条链上连续的相同的基团也可以合并,并带上括号
4、主链少三个碳原子
C C ∣ ∣ C -C - C - C ∣ ∣ C C

烷烃同分异构体写法要领

烷烃同分异构体写法要领

烷烃同分异构体的写法1. 同分异构体:分子式相同,性质不同的有机化合物叫同分异构体。

这种现象叫同分异构现象。

书写技巧:先写最长链;然后从最长链减少一个碳原子作为取代基,在剩余的碳链上连接,即主链由长到短,支链由整到散,位置由中心排向两边 2. 烷烃的同分异构现象CH 4、CH 3CH 3、CH 3CH 2CH 3 无同分异构体,但从丁烷开始有同分异构体。

丁烷结构式写法CH 3CH 2CH 2CH 3CCCC H HH H H HHHH C C C C¹Ôìʽ1¡£2¡£3¡£CHCH 3CH 3CH 3正烷烃(b.p ,-0.5 ℃) 异丁烷(b.p ,-11.7℃)结构简式:CH 3CH 2CH 2CH 3CH CH 3CH 3CH 3以戊烷(C 5H 12)为例:(1)先写出最长的碳链:C-C-C-C-C 正戊烷 (氢原子及其个数省略了)CCC CC|1234 CCCC C43|21(2)然后写少一个碳原子的直链:()(3)然后写少二个碳原子的直链 :CH 3C(CH 3)2CH 3 戊烷:CH 3CH 2CH 2CH 2CH 2CH 3CH 3CHCH 2CH 3C CH 3CH3CH3CH3(b.p, 36.1)°(b.p, 28 )°(b.p, 9.5 )°ÕýÎìÍéÒìÎìÍéÐÂÎìÍé这种碳干异构可造成数目庞大的异构体个数,例:C 10 时,75个;C 13 时,802个;C 20 时,366319个。

己烷 C 6H 14a .写出碳链最长的直链 C —C —C —C —C —C (1)b .将直链减少一个C ,将取下的C 分别取代每个C 原子的HC-C-C-C-C C-C-C-C-C CC()(2)C-C-C-C-C(3)( C-C-C-C-C )C所以记住:不取代首位C 原子,注意碳干的对应性。

烷烃

烷烃
12 C和14 C 6 6
相互关系 E F C A D B
白磷与红磷 正丁烷与异丁烷
H H H C C H H H
H H H H C C C H H H H
丙烷( 丙烷(C3H8) 结构简式: 结构简式:CH3CH2CH3
乙烷( 乙烷(C2H6) 结构简式: 结构简式:CH3CH3 CH3—CH3
H H H H C C C 丁烷(C4H10) 结构简式: 结构简式:CH3CH2CH2CH3 或CH3(CH2)2CH3 CnH2n+2(n≥1) ) CnH2n(n≥3) )
(三)同系物
结构相似,在分子组成上相差一个或若干个 结构相似,在分子组成上相差一个或若干个CH2 原子团的物质 相差一个或若干个 互称同系物。 互称同系物。 同:通式同,组成元素同,同类物质 通式同,组成元素同, 原子团,(分子式不同) ,(分子式不同 异:组成上相差n个CH2原子团,(分子式不同) 组成上相差 个 式量相差: 式量相差:14n 电子数相差: 电子数相差:8n
同系物一定不是同分异构体; 同系物一定不是同分异构体;同分异构体一定不是同系物
练习:选择正确答案的序号, 练习:选择正确答案的序号, 填入下表空格中 A.同位素 B.同分异构体 . . C.同系物 D.同素异形体 . . E.同一物质 F.同类物质 . . 物质名称 氯仿与三氯甲烷 一氯甲烷与四氯化碳 乙烷与新戊烷
气态, (1)状态:常温常压下的烷烃, C1~C4,气态, )状态:常温常压下的烷烃, C5~C16,液态, 液态, C17及以上,固态。 及以上,固态。 (2)密度: 液态时密度均小于1g/cm3(均比水轻)。 )密度: 液态时密度均小于 均比水轻)。 (3)溶解性:均难溶于水,易溶于有机溶剂。 )溶解性:均难溶于水,易溶于有机溶剂。

十烷六个碳为主链的同分异构体

十烷六个碳为主链的同分异构体

十烷六个碳为主链的同分异构体
我们要找出以6个碳为主链,并且在主链上只有10个碳的烷烃同分异构体。

首先,我们需要了解烷烃的结构规则和命名原则。

在烷烃中,碳原子是四面体结构,每个碳原子都与四个其他碳原子或氢原子相连。

在主链上,碳原子是从一端到另一端的顺序编号。

在烷烃中,所有碳原子的化学键都必须填满,所以总共有2n个碳原子的烷烃会有 n - 1 个双键(包括链中和环中的双键)。

基于这些原则,我们可以找到所有符合条件的同分异构体。

经过计算和检查,我们找到了以下满足条件的同分异构体:
1.正己烷 (C6H14)
2.2-甲基戊烷 (C6H16)
3.3-甲基戊烷 (C6H16)
4.2,3-二甲基丁烷 (C6H14)
5.2,2-二甲基丁烷 (C6H14)
6.所以,以6个碳为主链,并且在主链上只有10个碳的烷烃同分异构体共有
5种。

有机物的结构特点(同分异构体)

有机物的结构特点(同分异构体)

4种。
练习4: 消去反应) 有几种?
CH2CH2COOH 的同分异构体(且满足能发生银镜反应和
练习5:
— CH CH COOH
2 2
的同分异构体且满足
(1)苯环上只有一个侧链 (2)属于饱和脂肪酸的酯类 有多少种?写出结构 简式
2种 硼氮苯结构类似苯,则其一氯取代产物有__ 其二氯取代产物有__ 4种
④ ③ ②

并五苯
判断与书写规律二---技巧性 常见烷基的种类要
请快速判断出满足以下条件的物质的同分 异构体的个数。 1、分子式为C4H10O的醇的同分异构体有___ 4 种; 4 种。 2、分子式为C5H10O的醛的同分异构体有___ 变式提高: 1、 分子式为C4H10O的醇中能氧化成醛的同分 2 种; 异构体有___ 2、(2011年海南卷) C4H8O2的同分异构体中
练习6:
醛A的同分异构体甚多,其中
属于酯类化合物,而且结构式中有苯环结构的同分
异构体就有6个,它们是___、_____ 、____、 ______、____、______。
2005北京;26、有机物A(C6H8O4)为食品包装 纸的常用防腐剂。A可以使溴水褪色。A难溶于 水,但在酸性条件下可发生水解反应,得到B (C4H4O4)和甲醇。通常状况下B为无色晶体, 能与氢氧化钠溶液发生反应。
2 CH3CH2CH2OH和 CH3CHCH3
3 CH3CH2CHO和 CH3COCH3
位置异构
官能团异构
4 CH3— CH — CH3和 CH3 CH2CH2 CH3 碳链异构
CH3 5 CH2=CHCH2CH2CH3和CH3CH2CH = CHCH3 位置异构
2、同分异构体的书写

烷烃的同系列及同分异构现象

烷烃的同系列及同分异构现象

2-1第2章 烷 烃一、 烷烃的同系列及同分异构现象(一) 烷烃的同系列最简单的烷烃是甲烷,依次为乙烷、丙烷 、丁烷、戊烷等,它们的分子式、构造式为:分子式 构造式 构造简式 甲烷 CH 4 CH 4乙烷 C 2H 6 CH 3CH 3 丙烷 C 3H 8 CH 3CH 2CH 3丁烷 C 4H 10 CH 3CH 2CH 2CH 3从上述结构式可以看出,链烷烃的组成都是相差一个或几个CH 2(亚甲基)而连成碳链,碳链的两端各连一个氢原子。

故:通式烷烃的为 或 C n H 2n+2 。

具有同一通式,结构和化学性质相似,组成上相差一个或多个CH 2的一系列化合物称为同系列。

同系列中的化合物互称为同系物。

由于同系列中同系物的结构和性质相似,其物理性质也随着分子中碳原子数目的增加而呈规律性变化,所以掌握了同系列中几个典型的有代表性的成员的化学性质,就可推知同系列中其他成员的一般化学性质,为研究庞大的有机物提供了方便。

在应用同系列概念时,除了注意同系物的共性外,还要注意它们的个性(因共性易见,个性则比较特殊),要根据分子结构上的差异来理解性质上的异同,这是我们学习有机化学的基本方法之一。

(二) 烷烃的同分异构现象H CH H C H H H H C H H C H H C H HH H C H H C H H C H H C H HH H CH 2H()H C H H H2-2 1. 异构现象甲、乙、丙烷只有一种结合方式,无异构现象,从丁烷开始有同分异构现象,可由下面方式导出,正丁烷(沸点-0.5℃)异丁烷 (沸点-10.2)由两种丁烷可异构出三种戊烷上述这种分子式相同而构造式不同的化合物称为同分异构体,这种现象称为构造异构现象。

构造异构现象是有机化学中普遍存在的异构现象的一种,这种异构是由于碳链的构造不同而形成的,故又称为碳链异构。

随着碳原子数目的增多,异构体的数目也增多。

2. 异构体的导出步骤(三) 伯、仲、叔、季碳原子在烃分子中仅与一个碳相连的碳原子叫做伯碳原子(或一级碳原子,用1°表示) 在烃分子中与两个碳相连的碳原子叫做仲碳原子(或二级碳原子,用2°表示) 在烃分子中与三个碳相连的碳原子叫做叔碳原子(或三级碳原子,用3°表示) 在烃分子中与四个碳相连的碳原子叫做季碳原子(或四级碳原子,用4°表示) 例如:H C H H C C H H H H H H C C C C H H H H H H H HH H C C C H H H CHH HH H H CH 3-CH 2-CH 2-CH 3CH 3CH 2CH 2CH 2CH 3CH 3-CH 2-CH-CH 3正戊烷 b.p 36.1℃异戊烷 b.p 28℃CH 3-CH 2-CH-CH 3CH 3C CH 3CH 3CH 3新戊烷 b.p 9.5℃CH 3CH 3CH 3 C CH 2 CH CH 3CH3CH 31234CH 31°°°°°2-3与伯、仲、叔碳原子相连的氢原子,分别称为伯、仲、叔氢原子。

烷烃的分子结构及碳原子类型

烷烃的分子结构及碳原子类型

烷烃的分子结构及碳原子类型
一、烷烃碳的杂化态
sp 3杂化,以头碰头方式形成σ键,沿键轴方向旋转σ键不会被破坏。

二、烷烃分子结构
(一)组成通式:C n H 2n+2 (二)甲烷:正四面体 (三)直链烷烃:“之”字型
(四)同分异构:存在构造异构和构象异构
三,开链烷烃的立体结构表示 (一)伞形式 (二)纽曼投影式 (三)萨哈斯透视式 以乙烷为例:
投影式
全交叉
全重叠
H
H Newman
H H H H
H
H
透视式全交叉全重叠H
H H
H
H H Sawhorse
H H H
四、碳原子类型 (一)分类
分为一级二级三级四级碳原子,亦称伯仲叔季碳原子,也可表示为1º,2º,3º,4º碳。

(二)分类意义
1、命名“基”(基=烃-H ,熟悉表2-1,尤其异丙基,叔丁基等);
2、与不同类C 相连的基团性质不同;
3、不同类C 形成的中间体性质不同。

高中化学(新人教版)必修第二册:有机化合物中碳原子的成键特点 烷烃的结构【精品课件】

高中化学(新人教版)必修第二册:有机化合物中碳原子的成键特点 烷烃的结构【精品课件】
说明 ①同系物所含元素种类一定相同,除C、H外其他种类元素原子数必须相同。②同系物一定具有不同的碳、氢原子数和分子式。③同系物一定具有不同的相对分子质量(相差14n)。
(2) 11个C原子以上的直链烷烃:如:C11H24 称为十一烷 (3) 带支链的烷烃:用正、异、新表示
戊烷
辛烷
CH3CH2CH2CH2CH3
氢原子
饱和
饱和烃
CnH2n+2
当碳原子与4个原子以单键相连时,碳原子与周围的4个原子都以四面体取向成键,因此,烷烃中碳碳结合成链状,链状不是“直线状”,而是呈锯齿状,链上还可分出支链,如图所示:
正戊烷
异戊烷
新戊烷
结构相似,在分子组成上相差一个或若干个CH2原子团的物质互称为同系物。
只含碳和氢两种元素,分子中的碳原子之间都以单键结合,碳原子的剩余价键均与氢原子结合,使碳原子的化合价都达到“饱和”。
(2)烷烃的结构
链状烷烃的结构特点①单键:碳原子之间以碳碳单键相结合。②饱和:碳原子剩余价键全部与氢原子相结合,烷烃是饱和烃,相同碳原子数的有机物分子里,链状烷烃的含氢量最大。
B D
E
A F
5.写出下列烷烃的分子式(1)同温同压下,烷烃的蒸气密度是H2的43倍:______。(2)分子中含有22个共价键的烷烃:________。(3)分子中含有30个氢原子的烷烃:________。(4)室温下相对分子质量最大的直链气态烷烃:______。
C6H14
C7H16
C14H30
学习目标1、了解有机物中碳原子的成键特点、成键类型及方式。2、认识甲烷的组成、结构、烷烃的组成及结构。3、理解同系物、同分异构体的概念,学会判断简单烷烃的同分异构体,建立同系物、同分异构体判断及书写的思维模型。

烷烃

烷烃

CH3CHCH2 CH3
异丁基 (i-Bu) isobutyl
isopropyl
CH3
CH3CH2CH CH3
仲丁基(s-Bu) sec-butyl
CH3C CH3
叔丁基(t-Bu) tert-butyl
两价的烷基称为亚基。
CH2
亚甲基
methylidene
CHCH3
亚乙基
ethylidene
C(CH3)2
16 C 结晶像冰
HO O C C O O H 草酸

冰醋酸
CH4
—— 甲烷,
沼气
凡士林(C18-C22的烷烃混合物) 石油醚(C5-C9的烷烃混合物)
液体石蜡(C9-C17的烷烃混合物)
作业:

P43-44页 1,2,3, 思考:4,5
分子的构型(Configuration),
是指具有一定构造的分子中各种基团在空间的分布。 一、 碳原子的四面体概念(以甲烷为例) 甲烷分子为正四面体构型 。甲烷分子中,碳原子位于正四面 体构的中心,四个氢原子在四面体的四个顶点上,四个C-H键长都 为0.109nm,所有建角 ∠H-C-H都是109.5º,σ 键可以饶轴旋转 。
亚异丙基
isopropylidene
CH2CH2
1,2-亚乙基 dimethylene
CH2CH2CH2
1,3-亚丙基 trimethylene
三价的烷基叫次基,命名中使用的次基限于三个价在
同一个碳原子上的结构。 英文词尾是-ylidyne。
C
次甲基
H
C
CH3
次乙基
methylidyne
ethylidyne
五、烷烃分子立体构型的表示方法:

有机化学考研考点归纳与2021年考研真题上

有机化学考研考点归纳与2021年考研真题上

有机化学考研考点归纳与2021年考研真题上第1章烷烃与环烷烃1.1 考点归纳一、烃的基本概念1.定义烷烃是只含碳、氢两种元素且碳原子均以单键相连的有机化合物,又称为饱和烃,也称石蜡烃。

2.分类(1)链烷烃:分子中没有环的烷烃,又称为脂肪烃,其通式为C n H2n+2,n为碳原子数;(2)环烷烃:碳骨架是环状的饱和烃,又称为脂环化合物(alicyclic compound),其通式为;(3)单环烷烃:只含有一个环的环烷烃称为单环烷烃,单环烷烃的通式为C n H2n,与单烯烃互为同分异构体。

环烷烃按环的大小,分为:(1)小环:三、四元环;(2)普通环:五、六、七元环;(3)中环:八至十一元环;(4)大环:十二元环以上;(4)多环烷烃:含有两个或多个环的环烷烃称为多环烷烃;(5)集合环烷烃:环系各以环上一个碳原子用单键直接相连而成的多环烷烃;(6)桥环烷烃:两个环共用两个或多个碳原子的多环烷烃;(7)螺环烷烃:单环之间共用一个碳原子的多环烷烃称为。

二、烷烃的同系列及同分异构现象1.烷烃的同系列凡是有同一个通式,结构相似,化学性质也相似,物理性质则随着碳原子数的增加而有规律地变化的化合物系列称为同系列。

同系列中的化合物互称为同系物。

相邻同系物在组成上相差CH2,这个CH2称为系列差。

2.烷烃的构造异构(1)分子式相同而结构相异的化合物叫做同分异构体。

烷烃的构造异构实质上是由于碳干构造的不同而产生的,所以往往又称为碳干异构。

书写构造式时,可用简式、碳干式、键线式等表示;(2)烷烃分子中,随着碳原子数的增加,构造异构体的数目也愈多;(3)构造异构体的物理性质都不同。

直链烷烃的沸点要比带有支链的构造异构体的沸点高。

3.碳原子分类及烷基(1)按它们所连碳原子数目的不同,可分为:①只连有一个碳原子的称为伯碳原子(或称第一碳原子),通常也用“l°”来表示;②连有两个碳原子的称为仲碳原子(或称第二碳原子),常用“2°”表示;③连有三个碳原子的称为叔碳原子(或称第三碳原子),常用“3°”表示;④连有四个碳原子的称为季碳原子(或称第四碳原子),常用“4°”表示。

第二章 链烃-1

第二章 链烃-1

CH3
2° 3° 2° CH3—CH2—CH—CH2—C—CH3 1° 1° CH3 CH3 1° 1°
不同类型的氢反应活性不一样
分子结构表示方式:
短线式 缩简式 键线式 dash formulas condensed formulas bond-line formulas)
H H H 1-丙醇 H C C C O H H H H H H
柴油C15-18, 润滑油C16-20,
石蜡C18-30, 沥青C30-40
煤 芳香烃等
第一节 链烃的结构
一、烷烃的结构
图 2-1 甲烷的结构
sp3 –1s σ键 4个C-H σ键
H
H
C H
H
图 2-2 甲烷的球棍模型
乙烷 (CH3CH3)
σ键: 旋转不影响轨道重叠程度, 即σ 键可沿键轴“自由”转动; 重叠程度 大, 稳定性高; 键的极化度小.
正戊烷在液态和气态碳架运动的几种形式
高碳数正构烷烃的优势构象: 相邻碳的结构均为对位交叉
癸烷 C10H22
二十烷 C20H42
二、烯烃的结构与构型异构
z
1s22(sp2)12(sp2)12(sp2)12pz1
轨道杂化后电子排布
x
y
sp2杂化
2s
2px
2py
2pz
激发态: 2s 1 + 2px1 + 2py1 + 2pz1
R
CH3
(烷基)
中文名
甲基 乙基
英文名
methyl ethyl
缩写
Me Et
CH3CH2
CH3CH2CH2 CH3 CH3CH
(正)丙基
n-propyl

烷烃的系统命名及同分异构现象

烷烃的系统命名及同分异构现象

第二章烷烃一、重点1.烷烃的系统命名及同分异构现象;2.烷烃的结构与相应的物理性质如熔点、沸点、溶解度等之间的关系;3.烷烃的构象:透视式和纽曼投影式的写法及各构象之间的能量关系;4.烷烃卤化的自由基反应机理及各类自由基的相对稳定性。

二、难点1.烷烃卤化的自由基反应机理反应机理:1)链的引发;2)链的增长;3)链的终止。

注:较复杂的烷烃被卤代时,各种不同的氢被取代,从而生成不同的产物,有三种因素决定产物的相对比例:1)概率因素;2)氢原子的活泼性;3)卤素的活泼性:氯的活泼性较大,但选择性较差,对3,2,1类型氢的活泼性为5 :4 :1,受概率影响较大;溴的活泼性较小,但选择性较强,对3,2,1类型氢的活泼性为1600 :82 :1。

2.烷烃的构象:透视式和纽曼式的写法及各构象之间的能量关系。

三、教学方法采用模型、多媒体课件和板书相结合的课堂讲授方法。

四、教学内容及过程引言只含碳和氢两种元素的化合物称碳氢化合物(hydrocarbon ),简称烃。

烃是最简单的有机化合物,其它的有机化合物都可以看作是烃的衍生物。

烃可分为开链烃及环烃。

开链烃又可分为饱和烃和不饱和烃二类。

这一章讨论饱和烃,即烷烃。

烷烃分子中碳原子以单键相互成键,其余的价键完全与氢原子相连,分子中氢的含量已达最高限度,因此是饱和烃。

2.1烷烃的通式、同系列及构造异构1.烷烃的同系列甲烷:CH 4 乙烷:C 2H 6 丙烷:C 3H 8 丁烷:C 4H 10…….二个烷烃分子式之间之差为CH2或其倍数,这些烷烃性质也很相似,这样的一系列化合物叫做同系列。

同系列中的化合物互称同系物。

CH2叫做同系列的系列差。

烷烃同系列的通式:C n H 2n+2有机化合物中除了烷烃同系列外,还有其它同系列,同系列是有机化学的普遍现象。

在有机化学研究中,同系列给我们带来了方便。

研究同系列中几个典型化合物性质后,便可推断其它化合物的性质。

2.烷烃的构造异构象如下两式,分子式相同,而结构不同的,叫做构造异构。

第二章烷烃

第二章烷烃

11
(一)普通命名法
对于结构较简单的烷烃,常用普通命名法命 名。基本原则是: 1.直连烷烃:正“某”烷。例如: CH3CH2CH2CH3命名为“正丁烷”。 2.含有10个以上碳原子的直链烃,用小写中 文数字表示碳原子的数目。如: CH3(CH2)9CH3命名为“正十一烷”。

12

3.对于含有支链的烷烃,则必须在“某烷” 前面加上一个汉字来区别。在链端第二位碳 原子上连有1个甲基时,称为“异某烷”,在 链端第二位碳原子上连有2个甲基时,称为 “新某烷”。 如:
27
2px 2py 2pz
烷烃碳原子采用sp3杂化,正四面体 结构,键角为109.5°结构如图:
结构式
构造式
28
(二) σ 键的形成及其特性
两个成键原子轨道沿对称轴方向相互重叠 (头碰头”方式重叠 )而形成的键叫σ 键。
29
30
31
四、烷烃的构象
1.乙烷的构象 构象的定义:当围绕烷烃分子中的C-C σ键旋转时,分子中 的氢原子或烷基在空间的排列方式即分子的立体形象不断 地变化。这种由于围绕C-C键旋转所产生的分子的各种立 体形象称为构象( conformation )。 乙烷有两种典型构象,重叠式和交叉式, 表示形式:纽曼投影式和透视式.
第一种: 正丁烷
8
4、饱和碳原子的类型:
伯碳:-CH3 仲碳:-CH2 叔碳:-CH 季碳: -C
1oC 2oC 3oC 4 oC
伯氢 1oH 仲氢 2oH 叔氢 3oH
注意:氢原子的类型:同碳原子相对应
9
例:
H H C H
1oC
CH3 H C
4oC
H C
2oC
H C H

大学有机化学第四章 链烃和环烃

大学有机化学第四章 链烃和环烃
环烷烃加氢反应的活性:环丙烷>环丁烷>环戊烷。环已烷或大环脂环烃加氢开环非常困难。
2、加卤素:环丙烷、环丁烷与烯烃相似,在常温下可以与卤素发生加成反应。
3、加卤代氢:环丙烷、环丁烷及其衍生物很容易与卤化氢发生加成反应。开环发生在含氢最多和含氢最少的两个碳原子之间,加成反应遵循马氏规则。
环戊烷以上的环烷烃,在室温下难以与卤代氢发生加成反应。
炔氢也能与重金属(Ag或Cu)作用形成不溶于水的炔化物。常用试剂为硝酸银或氯化亚铜的氨溶液。
6、聚合反应
(五)、炔烃的制备
二卤代烷在强碱性条件下脱卤化氢及金属炔化物与伯卤代烃亲核取代反应是制备炔烃的常用方法。
二、二烯烃
分子中含有两个双键的开链烃称为二烯烃(diene),其通式为CnH2n-2。
(一)、分类和命名
2、其它烷烃的氯代反应
其它烷烃在相似条件下也可以发生氯代反应,但产物更复杂。
3、烷烃和其它卤素的取代反应
4、甲烷卤代反应历程
反应历程是指由反应物至产物所经历的过程。一个反应历程是根据这一反应的许多实验事实,总结归纳作出的理论假设。这种假设必须符合并能说明已经发生的实验事实。
(1)、甲烷氯代反应机制
甲烷的卤代反应历程是自由基取代反应历程。
烯烃在一定条件下,发生自身加成反应生成分子量很大的聚合物,这种反应称为聚合反应,参加反应的烯烃称为单体。
六、烯烃的制备
1、醇的脱水
2、卤代烷脱卤化氢
卤代烷与强碱(如氢氧化钾、乙醇钠)的醇溶液共热时,脱去一分子卤化氢生成烯烃。
3、邻二卤代烷脱卤化氢
邻二卤代烷与锌粉一起共热,可脱去一分子卤素生成烯烃。
第三节炔烃和二烯烃
三、烷烃的结构
根据杂化理论认为碳原子在形成甲烷分子时发生了sp3杂化,所以甲烷分子是正四面体结构。烷烃分子中的碳原子是正四面体结构,因此除乙烷外烷烃分子中的碳原子并不排布在一条直线上,而是以锯齿形或其他可能的形式存在。所以“直链烷烃”仅指不带支链的烷烃。

1mol某链烃

1mol某链烃

1mol某链烃,假设该链烃为烷烃,则其分子式为CnH2n+2,其中n 为碳原子数。

1. 分子式:CnH2n+2
2. 摩尔质量:12n + 2n + 2 g/mol
3. 分子结构:每个碳原子通过四个共价键与其他碳原子相连,形成碳链;每个碳原子还连接一个氢原子。

4. 化学性质:烷烃的化学性质相对稳定,不易发生氧化、还原等化学反应。

5. 同分异构体:烷烃存在同分异构现象,即分子式相同但结构不同的现象。

6. 燃烧反应:烷烃完全燃烧生成二氧化碳和水,放出大量热能。

7. 应用:烷烃在化工、燃料等领域有广泛应用。

以上是1mol某链烃(假设为烷烃)的一些基本信息。

如需了解更多信息,请查阅相关化学书籍或咨询专业人士。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、链烷烃的结构及其同分异构现象1、烷烃的结构特征1)烃、饱和烃只由碳氢元素组成,这类有机物称为烃,也叫碳氢化合物烃的分子里碳原子间都以单键互相相连接成链状,碳原子的其余的价键全部跟氢原子结合,总共4个化学建,这样的结合使得碳的每个化学键都从分利用,达到饱和状态。

所以这类型的烃又叫饱和烃。

由于C-C 连成链状,所以又叫饱和链烃,或叫烷烃。

甲烷是最简单的烃,在烃里面还有许多结构和性质与甲烷相似的分子,如乙烷,丙烷等。

2)烷烃的结构碳原子的最外层上有4个电子,电子排布为1S22S22P2,碳原子通过SP3杂化形成四个完全相同的SP3杂化轨道,所谓杂化就是由若干个不同类型的原子轨道混合起来,重新组合成数目相等的.能量相同的新轨道的过程。

由1个S轨道与3个P轨道通过杂化后形成的4个能量相等的新轨道叫做SP3杂化轨道,这种杂化方式叫做SP3杂化。

在形成甲烷分子时,4个氢原子的S轨道分别沿着碳原子的SP3杂化轨道的对称轴靠近,当它们之间的吸引力与斥力达到平衡时,形成了4个等同的碳氢σ键。

实验证明甲烷分子是正四面体型的。

4个氢原子占据正四面体的四个顶点,碳原子核处在正四面体的中心,四个碳氢键的键长完全相等,所有键角均为109.5。

σ键的特点:(1)重叠程度大,不容易断裂,性质不活泼。

(2)能围绕其对称轴进行自由旋转。

3)有机分子结构式的表达4)烷基烷基:在直链烷烃分子链端的碳原子上去掉一个氢原子生成的基,称为烷基。

2.亚基:比烷基少一个氢原子的基团叫亚基。

3.次基:比亚基少一个氢原子的基团就叫着次基。

5)6)碳原子的级2、烷烃的同系列(Homologous series)烷烃的通式为:C n H2n+2,n表示碳原子数目。

最简单的烷烃是甲烷,其次是乙烷、丙烷……,凡具有同一个通式,结构相似,化学性质也相似,物理性质则随着碳原子数目的增加而有规律地变化的化合物系列,称为同系列。

同系列中的化合物互称为同系物(Homologs)。

相邻的同系物在组成上相差CH2,这个CH2称为系列差。

3、烷烃的同分异构现象烷烃同系列中,甲烷、乙烷、丙烷只有一种结合方式,没有异构现象,从丁烷起就有同分异构现象。

分子中碳原子的排列方式不同。

我们把分子式相同,而构造不同的异构体称为构造异构体。

实质上是由于碳干构造的不同而产生的,所以往往又称为碳干异构体。

在烷烃分子中随着碳原子数的增加,异构体的数目增加得很快。

对于低级烷烃的同分异构体的数目和构造式,可利用碳干不同推导出来。

以己烷为例其基本步骤如下:①写出这个烷烃的最长直链式:(省略了氢)②写出少一个碳原子的直链式作为主链把剩下的碳当作支链。

依次当取代基连在各碳原子上,就能写出可能的同分异构体的构造式。

③写出少二个碳原子的直链式作为主链。

把两个碳原子当作支链(2个甲基),连接在各碳原子上,或把两个碳原子当作(乙基),接在各碳上。

把重复者去掉。

这样己烷的同分异构体只有5个。

书写构造式时,常用简化的式子为:CH3CH2CH2CH2CH3或CH3(CH2)4CH3。

④伯、仲、叔和季碳原子。

如戊烷的三个同分异构体为:我们把直接与一个碳原子相连的称为“伯”(Primary)或一级碳原子,用1o表示;直接与二个碳原子相连的称为“仲”(Secondary)或二级碳原子,用2o表示;直接与三个碳原子相连的称为“叔”(Tertary)或三级碳原子,用3o表示;直接与四个碳原子相连的称为“季”(Quaternary)或四级碳原子,用4o表示;在伯、仲、叔碳上的氢分别叫伯、仲、叔氢。

二、烷烃的系统命名1、普通命名法通常把烷烃泛称为“某烷”,“某”是指烷烃中碳原子的数目。

由一到十用甲、乙、丙、丁、戊、己、庚、辛、壬、癸表示。

如:C11H24,叫十一烷。

凡直链烷烃叫正某烷。

如:CH3CH2CH2CH2CH3正戊烷把在碳链的一末端有两个甲基的特定结构的烷烃称为“异某烷”。

在五或六个碳原子烷烃的异构体中含有季碳原子的可加上“新某烷”衡量汽油品质的基准物质异辛烷则属例外,因为它的名称沿用日久,已成习惯了。

二、系统命名法1892年在日内瓦开了国际化学会议,制定了系统的有机化合物的命名法,叫做日内瓦命名法。

其基本精神是体现化合物的系列和结构的特点。

后来由国际纯粹和应用化学联合会(International Union of Pure and Applied Cherristry 简写IUPAC)作了几次修订,简称为IUPAC命名法。

我国参考这个命名法的原则结合汉字的特点制定了我国的系统命名法(1960)。

1980年进行增补和修订,公布了《有机化学命名原则》。

在系统命名法中,对于直链烷烃的命名和普通命名法是基本相同的,仅不写上“正”字。

如;CH3CH2CH2CH2CH3 普通命名法叫正戊烷,系统命名法叫戊烷。

对于支链烷烃,把它看作是直链烷烃的烷基取代衍生物。

支链烷烃的命名法的步骤:1.选取主链(母体)。

选一个含碳原子数最多的碳链作为主链。

(写出相当于这个主链的直链烷烃的名称)含多取代基时,编号采用“最低次序”原则。

所谓“最低序列”指的是碳链以不同方向编号,得到两种或两种以上的不同编号序列,则顺次比较各系列的不同位次,最先遇到的位次最小者为“最低系列”。

2.主链碳原子的位次编号。

确定主链位次的原则是要使取代基的位次最小。

从距离支链最近的一端开始编号。

位次和取代基名称之间要用“一”连起来,写出母体的名称。

3.⑴、如果有几个不同的取代基时,把小的取代基名称写在前面,大的写在后面;⑵、如果含有几个相同的取代基时,把它们合并起来,取代基的数目用二、三、四……等表示,写在取代基的前面,其位次必须逐个注明,位次的数字之间要用“,”隔开。

(1)(2)3.烷基大小的次序:甲基 < 乙基 < 丙基 < 丁基 < 戊基 < 己基.4.当具有相同长度的链可作为主链时,则应选择具有支链数目最多的链作为主链。

5.如果支链上还有取代基时,从与主链相连的碳原子开始,把支链的碳原子依次编号,支链上取代基的位置就由这个编号所得的号数来表示。

这个取代了的支链的名称可放在抬号中,或用带撇的数字来表明支链中的碳原子。

(1)用括号表示:2—甲基—5、5一、二(1、1—二甲基丙基)葵烷(2)用带撇的数字表示:2—甲基—5、5一、二—1‘、1’—二甲基丙烷葵烷。

说明:1969年IUPAC命名法放弃了按取代基大小的次序,而按照取代基英文名称的第一个字母的次序来命名。

三、烷烃的物理性质有机化合物的物理性质通常包括化合物的状态、熔点、沸点、比重、折光率、溶解度、旋光度,这些物理常数是用物理方法测定出来的,可以从化学和物理手册中查出来。

1.物质状态:在室温和一个大气压下,C1-C4是气体,C5-C16是液体,C17以上是固体。

2.沸点:正烷烃的沸点是随着分子量的增加而有规律升高。

液体沸点的高低决定了分子间引力的大小,分子间引力愈大,使之沸腾就必须提供更多的能量,所以沸点就愈高。

而分子间引力的大小取决了分子结构。

分子间的引力称为范德华引力。

正烷烃的偶极距都等于零。

是非极性分子。

范德华引力随着距离的增大而减弱。

在分子量相同的烷烃中,含支链的分子中由于支链的阻碍,使分子间靠近接触的程度不如正烷烃。

所以正烷烃的沸点高于它的异构体。

正戊烷 b.p. 36.10C 新戊烷 b.p. 9.50C3.熔点:正烷烃的熔点,同系列C1-C3不那么规则,但C4以上的是随着碳原子数的增加而升高。

不过,其中偶数的升高多一些,以至含奇数和含偶数的碳原子的烷烃各构成一条熔点曲线,偶数在上,奇数在下。

解释:在晶体中,分子间的作用力不仅取决于分子的大小,而且取决于警惕中碳链的空间排布情况。

排列紧密(分子间的色散力就大)熔点就高。

在共价化合物晶格中的质点是分子,偶数碳的烷烃具有较高的对称性,使碳链之间的排列比奇数的紧密(分子间的色散力大)。

所以。

含偶数的烷烃的熔点比奇数的升高就多一些。

正戊烷 m.p. –1290C 新戊烷 m.p. –16.60C4.比重:正烷烃的比重是随着碳原子的数目增加逐渐有所增大,二十烷以下的按近于0.78。

这也与分子间引力有关,分子间引力增大,分子间的距离相应减小,比重则增大。

5.溶解度:烷烃不容与水,能溶于某些有机溶剂,尤其是烃类中。

“相似相溶”,结构相似,分子间的引力相似,就能很好溶解。

四、烷烃的化学性质烷烃是非极性分子,分子中的碳碳键或碳氢键是非极性或弱极性的σ键,因此在常温下烷烃是不活泼的,它们与强酸.强碱.强氧化剂.强还原剂及活泼金属都不发生反应。

氧化反应:烷烃很容易燃烧,燃烧时发出光并放出大量的热,生成CO 2和 H 2O 。

CH 4 + 2O 2 CO 2 + 2H 2O 在控制条件时,烷烃可以部分氧化,生成烃的含氧衍生物。

例如石蜡(含20—40个碳原子的高级烷烃的混合物)在特定条件下氧化得到高级脂肪酸。

RCH 2CH 2R + O 2 RCOOH + RCOOH1、取代反应 点燃 MnO 2烷烃的氢原子可被卤素取代,生成卤代烃,并放出卤化氢。

这种取代反应称为卤代反应。

氟、氯、溴、碘与烷烃反应生成一卤和多卤代烷,其反应活性为:F2> Cl2 > Br2,碘通常不反应。

除氟外,在常温和黑暗中不发生或极少发生卤代反应,但在紫外光漫射或高温下,氯和溴易发生反应。

有时甚至剧烈到爆炸的程度。

1)氯代反应:甲烷的氯代反应较难停留在一氯代甲烷阶段。

但控制一定的反应条件和原料的用量比,可以使其中一种氯代烷为主要产品。

碳链较长的烷烃氯代时,反应可以在分子中不同的碳原子上取代不同的氢,得到各种氯代烃。

CH3CH2CH3Cl2 , hv25O CCH3CHCH3Cl2-chloropropaneCH3CH2CH2Cl+1-chloropropane57%在丙烷分子中伯氢有六个,仲氢有两个,如果只考虑碰撞频率和推测概率因子,我们预计丙烷的氯代将按3:1生成1?/FONT>2κ闪看笾孪嗟取#?/FONT>1:1.3);每个氢原子的相对活性为:仲氢/伯氢=(57/2)/(43/6)=4/1这就是说仲氢和伯氢的相对活性为4:1。

叔氢与伯氢的相对活性:叔氢/伯氢=(36.1/1)/(64/9)=(5.1/1)实践结果表明,叔、仲、伯氢在室温时的相对活性位5:4:1,即每个伯、仲、叔氢被氯取代生成相应氯代烷底相对比例。

这说明,烷烃的氯代,在室温下有选择性。

(选择性就是产物有多有少)据此,可以预测某一烷烃在室温一氯代产物中异构体的得率。

如:(1—氯丁烷)/(2—氯丁烷)=(伯氢的总数*伯氢的相对活性)/仲氢的总数*仲氢的活性)=(6*1)/(4*)=6/16=3/81—氯丁烷的酸得率=(1—氯丁烷的比例数)/[(1—氯丁烷+2—氯丁烷)的比例总数]=3/11=0.27=27%2—氯丁烷的酸得率=8/11=0.72=72%当升高温度 (>450o C)时,叔:仲:伯氢的相对活性逐步接近1:1:1。

相关文档
最新文档