时瞬时速度与瞬时加速度
考点一由纸带求瞬时速度和瞬时加速度
答案
• 解析 (1)由题图中所标纸带每段位移的大小,可知在相邻相等时 间内的位移差相等,可近似认为Δy=8 mm. • (2)由题图中的x轴作为时间轴,以纸带的宽度表示相等的时间间 隔T=0.1 s,每段纸带最上端中点对应v轴上的速度恰好表示每段 时间的中间时刻的瞬时速度,即vn=;因此可以用纸带的长度表 示每小段时间中间时刻的瞬时速度,将纸带上端中间各点连接起 来,可得到v-t图象,如图所示. • (3)利用图象求斜率 • 或用Δy=aT2均可 • 以求得小车的加速 • 度a=0.8 m/s2. • 答案 (1)相邻相等 • 的时间内的位移差 • 相等(2)见解析图 • (3)0.8 m/s2
• 若无法再做实验,可由以上信息推知: • (1)相邻两计数点的时间间隔为________ s; • (2)打C点时物体的速度大小为________m/s(取2位有效数 字); • (3)物体的加速度大小为____(用sA、sB、sD和f表示).
习题
• 在“测定匀变速直线运动的加速度”的实验中,用打点 计时器记录纸带运动的时间。计时器所用电源的频率为 50Hz,下图为一次实验得到的一条纸带,纸带上每相邻 的两计数点间都有四个点未画出,按时间顺序取0、1、2 3、4、5六个计数点,用米尺量出1、2、3、4、5点到0点 的距离如图所示(单位:cm)。由纸带数据计算可得计 数点4所代表时刻的即时速度大小v4=________m/s,小 车的加速度大小a=________m/s2
• • •
图实Ⅰ-9 (1)OD间的距离为________ cm. (2)图实Ⅰ-10是根据实验数据绘出的s-t2图线 (s为各计数点至同一起点的距离),斜率表示________, 其大小为________ m/s2(保留三位有效数字).
瞬时速度矢量与瞬时加速度矢量
v
vb(t t)
①说到平均加速度,一定要明确是哪一段时间或
哪一段位移中的平均加速度.
②一般 v与v方向不同.
上页 下页 返回 结束
第二章 质点运动学
2. 瞬时加速度(简称加速度)
定义
a
lim v
dv
t 0 dt
dt
d dt
( dr) dt
d 2 r dt 2
a是矢量, 一般a与v方向不同.
v
r4
dt
dr
Q
Q
r3
r2
Q
r1
P
瞬时速度反映质点在某时或某位置的运动状态.
上页 下页 返回 结束
第二章 质点运动学
在直角坐标系中的分解式
v
vxi
vy
j
vzk
dx dt
i
dy dt
j
dz dt
k
v | v|
v
2 x
v
2 y
v
2 z
cos v
vx v
cos
v
vy v
cos
v
第二章 质点运动学
§2.2 瞬时速度矢量与瞬时加速度矢量
§2.2.1 平均速度与瞬时速度 §2.2.2 平均加速度与瞬时加速度
上页 下页 返回 结束
第二章 质点运动学
§2.2 瞬时速度矢量与瞬时加速度矢量
§2.2.1 平均速度与瞬时速度
1.平均速度
定义
v
r
t
__ v
是
矢
量,
方 向 与r相 同
大小为
[解]
(1)
v
dr
15 j
10tk
瞬时加速度的计算
A
在木板C 上,三者静置于地面,它们的质量之比是
1:2:3,设所有接触面都光滑,当沿水平面方向迅速抽
出木板C的瞬时,A和B的加速度大小分别为多大?
解:撤去木板C前, 对A、B球进行受力分析 C
B
kxmg ① Nkx2mg② kx
N
撤去木板C瞬时,A和B的重力及弹簧
A
的弹力不变 ,B物体受到的支持力突
例10. 竖直光滑杆上套有一个小球和两根弹簧,两弹簧的
M
一端各 与小球相连,另一端分别用销钉M N固定于杆上,
小球处于静止状态.若拔去销钉M的瞬间,小球的加速度
大小为12m/s2,若不拔去销钉M而拔去销钉N的瞬间,
小球的加速度
B. 22m/s2,方向竖直向下 C. 2m/s2, 方向竖直向上
瞬时加速度的计算
物体的加速度a与物体所受合外力F合瞬时对应。a为某一瞬时 的加速度,F合即为该时刻物体所受的合力。
求物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受 力情况及其变化.先看不变量,再看变化量;加速度与合外力瞬 时一一对应.
轻绳(线、弹簧、橡皮绳)即其质量和重力均可视为等于零, 同一根绳(线、弹簧、橡皮绳)的两端及其中间各点的弹力大小 相等。
A
θB O
解F :O剪A断弹m簧gc前,o小t 球F受O力B 分析smi如ng图 所示.
弹簧在B处剪断瞬间, FOB立即消失, mg和FOA不变,小球将受到地面对它的 支持力N,它与重力平衡,小球受到的 FOA 合外力为FOA,根据牛顿第二定律得
aFOAgcot
m
θ FOB
mg
球和墙之间发生的是微小形变,弹簧发生的明显形变.发生微小形变产生 的弹力可以突变,发生明显形变产生的弹力发生变化需要一定的时间.
瞬时速度与瞬时加速度
设物体作直线运动的速度为v=f(t),以t0为起始
时刻,物体在t 时间内的平均加速度为
a v f (t0 t) f (t0 ).
t
t
可作为物体在t0时刻的加速度的近似值, t 越小,
近似的程度就越好.所以当t0时,极限 v
t
就是物体在t0时刻的瞬时加速度,即
a v
������ҧ = ������(������0+∆������)−������(������0)
∆������
当∆������ → 0, ������ҧ →常数 即为在������0时刻的瞬时速度
课堂练习
一质点的运动方程为 ������ = ������2 + 10(位移单位:������,时间单位: ������),求该 质点在t=3时的瞬时速度
4
9
12.25
16
25
时间t 0 1
2
3
3.5
4
5
如何算出在t=3时刻的瞬时速度? 算出[3,4]时间段的平均速度 算出[3,3.5]时间段的平均速度
在这一个时刻,经过的路程为0,
时间也为0,总不能用0来算
0
因为时间间隔
������ 4 − ������(3) ������ҧ = 4 − 3 = 7
∆������
从而,在时刻3的瞬时速度为6
建构数学 速度是位移相对时间的变化率
设物体作直线运动所经过的路程为s=f(t).
以t0为起始时刻,物体在△t时间内的平均速度为
v= s = f (t0+t)-f (t0 ) . 如果△t足够小
t
t
`v 可作为物体在t0时刻的速度的近似值,△ t 越小,近似的程度就越好.
3.求瞬时速度和加速度
1一、求瞬时速度求解依据:做匀变速直线运动的物体,一段时间中间时刻的瞬时速度等于这段时间内的平均速度。
表达式:v v t =2平均速度的两种表达形式 t xv = 20t v v v +=求中间点的瞬时速度 t xv t =2例如 OBOB A t x v = 求端点的瞬时速度(以O 点为例) (1)先求A v 和B v ,然后根据 2BO A v v v +=求出A v (2)先求A v 和加速度a ,OA A O at v v -=相比两种解法,第一种简单。
二、求加速度依据:做匀变速直线运动的物体,在相邻相等时间间隔内的位移差为恒量。
表达式 2a T x =∆ 逐差法求加速度4段 21132T a x x =- 22242T a x x =- 221a a a +=6段 21143T a x x =- 22253T a x x =- 23363T a x x =- 3321a a a a ++=1.偶数段逐差法求加速度例 如图所示,某同学在做“研究匀变速直线运动”实验中,由打点计时器得到表示小车运动过程的一条清晰纸带,纸带上两相邻计数点的时间间隔为T =0.10s ,其中x 1=7.05cm 、x 2=7.68cm 、x 3=8.33cm 、x 4=8.95cm 、x 5=9.61cm 、x 6=10.26cm ,则A 点处瞬时速度的大小是_______m/s ,小车运动的加速度计算表达式为________________,加速度的大小是_______m/s 2(计算结果保留两位有效数字)。
2.奇数段变偶数段逐差法求加速度(01年全国)一打点计时器固定在斜面上某处,一小车拖着穿过打点计时器的纸带从斜面上滑下,如图所示.打出的纸带的一段如图所示.已知打点计时器使用的交流电频率为50H Z ,利用纸带图给出的数据可求出小车下滑的加速度a = . 4.00m/s 2 (3.90~4.10 m/s 2)23.已知不相邻的两段相等时间内的位移求加速度一条残缺的纸带如图所示,打点计时器所用交流电频率为50 Hz 。
高中物理纸带打点瞬时公式
高中物理纸带打点瞬时公式瞬时公式是高中物理中非常重要的一个概念,它在解决物理问题时起到了至关重要的作用。
本文将围绕高中物理纸带打点瞬时公式展开讨论,深入探究其原理和应用。
我们来了解一下纸带打点实验。
纸带打点实验是一种常用的物理实验,它通过在纸带上打上等时间间隔的点,然后通过测量点之间的距离和时间来研究物体的运动规律。
纸带打点瞬时公式就是用来描述打点实验中物体瞬时速度的公式。
纸带打点瞬时公式的表达形式为v=Δx/Δt,其中v表示瞬时速度,Δx表示物体在Δt时间内的位移。
这个公式非常重要,因为它可以帮助我们计算物体在任意瞬时时刻的速度。
在纸带打点实验中,我们通常会记录下物体在不同时间的位置,然后根据这些位置数据计算出物体在不同时间的速度。
这个过程可以通过纸带打点瞬时公式来实现。
假设我们有一个纸带打点实验的数据,如下所示:时间(s) 0 1 2 3 4位置(m) 0 5 10 15 20根据这些数据,我们可以计算出物体在不同时间的瞬时速度。
例如,在t=1s时,物体的位置为5m,在t=2s时,物体的位置为10m。
根据纸带打点瞬时公式,我们可以计算出物体在这两个时刻的瞬时速度。
Δx=10m-5m=5mΔt=2s-1s=1s根据纸带打点瞬时公式,我们可以得到物体在t=1s时的瞬时速度为v=5m/1s=5m/s。
同理,在t=2s时的瞬时速度为v=5m/1s=5m/s。
通过这个简单的例子,我们可以看到纸带打点瞬时公式的实际应用。
通过测量物体在不同时间的位置,我们可以计算出物体在任意时刻的瞬时速度。
这对于研究物体的运动规律非常有帮助。
除了计算瞬时速度,纸带打点瞬时公式还可以用来计算物体在不同时间的瞬时加速度。
瞬时加速度是指物体在某一时刻的瞬时速度的变化率。
根据纸带打点瞬时公式,我们可以通过计算物体在不同时间的速度差来计算出物体在不同时间的瞬时加速度。
假设我们有一个纸带打点实验的数据,如下所示:时间(s) 0 1 2 3 4速度(m/s) 0 5 10 15 20根据这些数据,我们可以计算出物体在不同时间的瞬时加速度。
高一第一学期物理-2-平均速度、瞬时速度和加速度
辅导讲义加速度的方向同我们规定的正方向相同,也和初速度的方向相同。
分析方法二:△v 与a 同向,与v 0方向相同。
物体在做加速直线运动时,加速度的方向与初速度的方向相同3. 减速运动分析方法一:速度是矢量,我们规定汽车的初始方向为正方向,经过2s 后,那么△v=﹣3m/s,a=﹣1.5m/s.加速度为负值,说明加速度的方向同我们规定的正方向相反,也和初速度的方向相反。
分析方法二:△v 与a 同向,与v 0方向相反。
物体在做减速直线运动时,加速度的方向与初速度的方向相反结论:在直线运动的过程中,物体加速运动时,物体的加速度的方向与初速度相同,物体减速运动时,物体加速度的方向与初速度的方向相反。
【课堂练习】一、平均速度与瞬时速度1、某次列车20:00准点从A站发车,至次日18:00到达B站,行程1150Km 。
该列车在A.B站间行驶的平均速度约为 Km/h 。
2、物体先以11m/s 的速度行驶了10s,再以5m/s 的速度行驶了2s,那么该物体在全程中的平均速度是 。
3、某物体在一条直线上运动,它在前10s 中通过的路程是15m,在接下去的第二个10s 钟通过的路程是17m,那么,物体在第一个10s 钟内的平均速度为 ,在第二个10s 钟内的平均速度为 ,它在前20s 钟的平均速度为 。
4、某物体运动速度为4m/s,最有可能属于下列哪个物体的平均速度( )A.飞机B.火车C.小汽车D.跑步的人5、两辆汽车同时从甲地开出沿同一公路驶往乙地,4h 后,两车同时开到相距100Km 的乙地,则下列说法中错误的是v ∆ 0v t vv ∆5m/s 0v 2m/st v( )A.在这4h 中两车的平均速度相等 B.在这100Km 路程上两车的平均速度相等C.前60Km 路程上两车平均速度可能相等也可能不等D.在前2h 内两车的平均速度一定相等6、下列关于平均速度的说法正确的是( )A.平均速度是反映物体位置变化的物理量B.平均速度只能大体上反映物体运动的快慢程度C.平均速度可以精确地反映物体在某一位置的快慢程度D.平均速度可以精确的反映物体在某一时刻的快慢程度7、运动员百米赛跑时,起跑的速度为8m/s,中途的速度是9m/s,最后冲刺的速度是10m/s,如果他的成绩是12.5s, 则他跑完全程的平均速度是( )A.9.67m/sB.12m/sC.8m/sD.9m/s8、用刻度尺和表可测出小车从斜面滚下的平均速度。
物理瞬时加速度问题
牛顿运动定律:瞬时加速度问题知识点睛牛顿第二定律:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,即m Fa ,ma F ,适用于惯性参考系中宏观、低速的物体;牛顿第二定律具有以下性质:①矢量性:加速度的方向与合外力方向一致;②瞬时性:ma F 对于过程中的每一瞬间都成立,a 和F 具有瞬时对应关系;③相对性:mFa 求得的a 是相对于惯性参考系地面而言的;④独立性:若F 是物体所受的合外力,则a 为实际加速度;若F 是某一方向上的合外力,则a 是该方向上的加速度关于力的瞬时性:(1) 物体运动的加速度a 与其所受的合外力F 有瞬时对应关系,每一瞬时的加速度只取决于这一瞬时的合外力,而与这一瞬时之前或之后的力无关,不等于零的合外力作用在物体上,物体立即产生加速度;若合外力的大小或方向改变,加速度的大小或方向也立即(同时)改变;若合外力变为零,加速度也立即变为零,也就是说物体运动的加速度可以突变(2) 对于中学物理的几个理想模型,如刚性绳、轻杆、轻弹簧、接触面等产生的弹力能否突变,关键要看在受力时形变是否明显,若形变不明显,则可以突变;若形变明显,则不能突变,详细如下: 比较模型 刚性绳 轻杆 接触面 弹性绳 轻弹簧 形变类型 拉伸 拉伸、压缩、扭曲 压缩 拉伸拉伸、压缩弹力方向沿着绳指向 绳收缩方向能沿着杆也可以 和杆成任意角度 垂直于接触面 指向受力物体 沿着绳指向 绳收缩方向 沿着弹簧指向弹簧 恢复原长的方向 形变大小 形变不明显 形变不明显 形变不明显 形变明显 形变明显 能否突变 可以突变可以突变可以突变不能突变不能突变例题精讲例题1:如图1,一质量为m 的物体系于长度分别为1l 和2l 的两根细绳上,1l 的一端悬挂在天花板上,与竖直方向夹角为 , 2l 水平拉直,物体处于平衡状态图1 图2(1)现将2l 线剪断,求剪断瞬间物体的加速度? 下面是某同学对该题的一种解法:设1l 线上拉力为1F ,2l 线上拉力为2F ,重力为mg ,物体在三力作用下保持平衡:mg F cos 1,21sin F F , tan 2mg F ,剪断2l 线的瞬间,2F 突然消失,物体即在2F 反方向上获得加速度,因为ma mg tan ,所以加速度 tan g a ,方向沿2F 反方向 你认为这个结果正确吗?请对该解法作出评价并说明(2)若将图中的细线1l 改为长度相同、质量不计的轻弹簧,如图2所示,其他条件不变,求解步骤与(1)完全相同,即 tan g a ,你认为这个结果正确吗?请说明理由解析:(1)结果不正确,因为2l 被剪断瞬间,轻绳1l 上张力大小发生了突变,此瞬间 cos 1mg F ,它与重力沿绳方向的分力抵消,重力垂直于绳方向的分力 sin mg 产生加速度 sin g a (2)结果正确,因为2l 被剪断瞬间,弹簧1l 的长度不能发生突变,即1F 大小方向都不变,它与重 力的合力与2F 方向相反,大小与2F 相等,所以物体的加速度大小为 tan g a例题2:光滑水平面上有一质量kg 1 m 的小球,小球与水平轻弹簧和与水平方向夹角 为 30的轻绳的一端相连,如图,此时小球处于静止状态,且水平面对小球的弹力恰好为零,当剪断轻绳的瞬间,小球加速度的大小和方向如何?此时轻弹簧弹力与水平面对球的弹力比值是多少?解析:小球在绳末断时受三个力的作用, 绳剪断的瞬间,作用于小球的拉力T 立即消失,但弹簧的形变还存在,故弹簧的弹力F 存在.(1)绳未断时:F T 30cos ,mg T 30sin ,解得:N 20 T , N 310 F(2)绳断的瞬间:0 T ,在竖直方向支持力mg N ,水平方向F 大小方向不变,且ma F 所以310mFa 2/s m ,此时3 N F 说明:当将弹簧改为轻绳时,斜向上拉绳剪断的瞬间,水平绳的拉力立即为零.例题3:如图,木块B A 、用轻弹簧相连,放在悬挂的木箱C 内,处于静止状态,它们质量之比是3:2:1当剪断细绳的瞬间,各物体的加速度大小及其方向?解析:设A 的质量为m ,则C B 、的质量分别为m 2、m 3在未剪断细绳时,C B A 、、均受平衡力作用,受力如图所示。
动力学中的加速度计算方法
动力学中的加速度计算方法在动力学中,加速度是一个非常重要的物理概念,用来描述物体在单位时间内速度变化的快慢。
在学习动力学的过程中,了解如何计算加速度是至关重要的。
本文将介绍几种常见的加速度计算方法,帮助读者更好地理解动力学中的加速度概念。
一、平均加速度计算方法平均加速度是指物体在某段时间内速度变化的平均快慢。
计算平均加速度的方法是通过测量物体在两个时刻的速度,并使用以下公式进行计算:平均加速度 = (末速度 - 初始速度)/ 时间间隔其中,末速度是物体在时间间隔末时刻的速度,初始速度是物体在时间间隔起始时刻的速度,时间间隔表示两个时刻之间的时间差。
二、瞬时加速度计算方法瞬时加速度是指物体在某一时刻的加速度。
当时间间隔趋近于0时,平均加速度趋近于瞬时加速度。
因此,可以通过以下方法计算物体在某一时刻的瞬时加速度:1. 利用速度-时间图像计算:在速度-时间图像中,瞬时加速度等于速度-时间图像上某一时刻的斜率。
可以通过绘制速度-时间图像,并计算某一时刻的斜率来得到瞬时加速度。
2. 利用加速度-时间图像计算:在加速度-时间图像中,瞬时加速度等于加速度-时间图像上某一时刻的数值。
可以通过测量加速度-时间图像上某一时刻的数值来得到瞬时加速度。
三、加速度计算实例为了更好地理解加速度的计算方法,现举一个实例进行说明。
假设一个物体在2秒钟内的速度从5m/s增加到15m/s。
我们可以使用平均加速度的计算方法来计算这段时间内的加速度。
首先,我们可以得到初始速度为5m/s,末速度为15m/s,时间间隔为2s。
代入平均加速度公式:平均加速度 = (15m/s - 5m/s) / 2s = 10m/s²因此,在这个例子中,物体的平均加速度为10m/s²。
四、其他与加速度相关的计算方法除了上述介绍的平均加速度和瞬时加速度的计算方法外,还有一些与加速度相关的计算方法。
1. 位移与加速度的关系:位移与加速度之间也存在一定的关系。
瞬时速度的三种公式
瞬时速度的三种公式
瞬时速度是衡量物体在某一方向上运动速度的量。
它与传统的速度有所不同,
通常涉及一段时间的运动情况,而瞬时速度更多地涉及物体在特定时刻的瞬时运动状态。
平常我们提到的速度有可能只是某一段时间内物体的运动速度,而以“瞬时”去使用它,暗示着对物体短时间段内的瞬时运动状况进行测量。
计算瞬时速度有三种公式,第一种是瞬时加速度公式,它的计算公式是v = v₀+ at,即瞬时速度等于初速加上加速度乘以时间。
另外两种分别是“位移法”和“相似三角形法”,位移法计算公式是v=Δd/Δt,即以两个时刻物体的位移差除
以时间跨度来求得瞬时速度;而相似三角形法计算公式是v= V₀ / (1 + at/V₀),
即特定时刻物体瞬时速度等于初始速度除以1加上加速度与初始速度的乘积。
瞬时速度是科学家精确测量物体运动状态的指标,但它也很容易在日常生活中
被观察到。
比如在追赶飞机的时候,正前方的飞机在比自己原来更快的速度前行,我们就可以对它计算出瞬时加速度;比如在上山时,有个人正快步爬行,从它面前瞬息的距离可以一眼看出瞬时速度的大致方向和数值,根据位移法进行计算。
究其原因,由于瞬时速度的定义便容易被理解,因此可以使用普通的直观原理
来对它进行大致的观察与计算。
虽然它的数值不能满足严格的精确测量,但已足够满足我们生活中的测量需求。
质点的瞬时速度和瞬时加速度计算方法研究
质点的瞬时速度和瞬时加速度计算方法研究质点的瞬时速度和瞬时加速度是描述物体运动状态的重要物理量。
在研究物体的运动规律和动力学性质时,准确计算质点的瞬时速度和瞬时加速度是必不可少的。
本文将探讨质点瞬时速度和瞬时加速度的计算方法。
一、质点的瞬时速度计算方法瞬时速度是指物体在某一瞬间的瞬时位移与瞬时时间的比值。
在一段时间内,如果物体的位移随时间的变化率保持不变,那么该物体的运动是匀速直线运动。
在这种情况下,质点的瞬时速度等于平均速度,即位移与时间的比值。
但是,在大多数情况下,物体的运动是变速运动,因此需要使用微积分的方法来计算质点的瞬时速度。
对于一维运动,质点的瞬时速度可以通过求导数来计算。
设质点的位移函数为s(t),其中t表示时间。
则质点的瞬时速度v(t)等于位移函数对时间的导数,即v(t)= ds(t)/dt。
这个导数表示了位移随时间的变化率,也可以理解为质点在某一瞬间的瞬时速度。
对于二维或三维运动,质点的瞬时速度的计算稍微复杂一些。
在这种情况下,需要将质点的运动分解为各个方向上的运动,并对每个方向上的位移函数分别求导数。
例如,在平面直角坐标系中,设质点的位移函数为s(t) = (x(t), y(t)),其中x(t)和y(t)分别表示质点在x轴和y轴上的位移。
则质点的瞬时速度v(t)等于(x'(t), y'(t)),其中x'(t)和y'(t)分别表示x(t)和y(t)对时间的导数。
二、质点的瞬时加速度计算方法瞬时加速度是指物体在某一瞬间的瞬时速度与瞬时时间的比值。
与瞬时速度类似,质点的瞬时加速度也可以通过求导数来计算。
对于一维运动,设质点的速度函数为v(t),则质点的瞬时加速度a(t)等于速度函数对时间的导数,即a(t) = dv(t)/dt。
对于二维或三维运动,质点的瞬时加速度的计算也需要将运动分解为各个方向上的运动,并对每个方向上的速度函数分别求导数。
例如,在平面直角坐标系中,设质点的速度函数为v(t) = (v_x(t), v_y(t)),其中v_x(t)和v_y(t)分别表示质点在x轴和y轴上的速度。
物理中的瞬时速度
物理中的瞬时速度
在物理学中,瞬时速度是指物体在某一瞬间的运动速率。
它是一个描述物体在极短时间内位移变化率的量。
瞬时速度通常用微积分中的导数来表示。
瞬时速度是一个瞬时值,与平均速度不同。
平均速度是指物体在一段时间内的总位移除以该时间段。
而瞬时速度描述的是物体在一个极短的时间内的运动状态。
在研究物体运动时,瞬时速度是一个非常重要的概念。
它能够精确地描述物体在任何给定时刻的运动状态,而不受时间间隔的影响。
通过计算瞬时速度,我们可以了解物体的加速度、动能、动量等动力学量。
瞬时速度的数学表达式为:
v(t) = lim(Δt→0) (Δs/Δt)
其中,v(t)表示时刻t的瞬时速度,Δs是位移增量,Δt是时间增量。
当时间增量Δt趋近于0时,该比值的极限就是物体在时刻t的瞬时速度。
瞬时速度是描述物体运动状态的一个重要物理量,在动力学研究中有着广泛的应用。
高一数学复习考点知识讲解课件42---瞬时速度与瞬时加速度
高一数学复习考点知识讲解课件第2课时瞬时速度与瞬时加速度考点知识1.理解平均速度、瞬时速度、瞬时加速度的概念.2.会求实际问题中的瞬时速度和瞬时加速度.导语同学们,上节课我们研究了几何中的割线斜率和切线斜率,在解决问题时,采用了“无限逼近”的思想,实现了由割线斜率到切线斜率的转化,反映到物理当中,就是研究某运动物体的瞬时速度的问题,但现实中,瞬时速度是否存在呢,比如大家在经过红绿灯路口时,容易发现,测速探头会在极短的时间内拍两次,然后看你发生的位移,这其实就是利用了极短时间内的平均速度来逼近瞬时速度,其原理也是“无限逼近”的思想,今天我们就具体来研究这一现象.一、平均速度问题1平均速率是平均速度吗?提示平均速率不是平均速度.平均速率是物体通过路程与它通过这段路程所用的时间的比值,它是数量.例如一个物体围绕一个圆周(半径为r)运动一周,花的时间是t,平均速率是2πr/t,而平均速度为0.知识梳理平均速度在物理学中,运动物体的位移与所用时间的比称为平均速度.注意点:(1)平均速度反映一段时间内物体运动的平均快慢程度,它与一段位移或一段时间相对应.(2)平均速度是向量,其方向与一段时间Δt内发生的位移方向相同,与运动方向不一定相同.例1一质点的运动方程是s=5-3t2,则在时间[1,1+Δt]内相应的平均速度为()A.3Δt+6B.-3Δt+6C.3Δt-6D.-3Δt-6答案D解析v=[]5-3(1+Δt)2-()5-3×12Δt=-6-3Δt.反思感悟在变速直线运动中,平均速度的大小与选定的时间或位移有关,不同时间段内或不同位移上的平均速度一般不同,必须指明求出的平均速度是对应哪段时间内或哪段位移的平均速度,不指明对应的过程的平均速度是没有意义的.跟踪训练1某质点的运动方程是f(x)=x2-1,其在区间[]1,m上的平均速度为3,则实数m的值为()A.5B.4C.3D.2答案D解析根据题意,该质点的平均速度为ΔyΔx=m2-1-(12-1)m-1=m+1,则有m+1=3,解得m=2.二、瞬时速度问题2瞬时速率与瞬时速度一样吗?提示瞬时速率是数量,只有大小,没有方向,而瞬时速度是标量,即是位移对时间的瞬时变化率,既有大小,又有方向,其大小是瞬时速率,方向是该点在轨迹上运动的切线的方向.知识梳理瞬时速度一般地,如果当Δt无限趋近于0时,运动物体位移S(t)的平均变化率S(t0+Δt)-S(t0)Δt无限趋近于一个常数,那么这个常数称为物体在t=t0时的瞬时速度,也就是位移对于时间的瞬时变化率.注意点:(1)匀速直线运动中,平均速度即为瞬时速度;(2)在匀变速直线运动中,某一段时间的平均速度等于中间时刻的瞬时速度.例2某物体的运动路程S(单位:m)与时间t(单位:s)的关系可用函数S(t)=t2+t+1表示,求物体在t=1s时的瞬时速度.解在1到1+Δt的时间内,物体的平均速度v=ΔSΔt=S(1+Δt)-S(1)Δt=(1+Δt)2+(1+Δt)+1-(12+1+1)Δt=3+Δt,∴当Δt无限趋近于0时,v无限趋近于3,∴S(t)在t=1处的瞬时变化率为3.即物体在t=1s时的瞬时速度为3m/s.延伸探究1.若本例中的条件不变,试求物体的初速度.解求物体的初速度,即求物体在t=0时的瞬时速度.∵ΔSΔt=S(0+Δt)-S(0)Δt=(0+Δt)2+(0+Δt)+1-1Δt=1+Δt,∴当Δt无限趋近于0时,1+Δt无限趋近于1,∴S(t)在t=0时的瞬时变化率为1,即物体的初速度为1m/s.2.若本例中的条件不变,试问物体在哪一时刻的瞬时速度为9m/s? 解设物体在t0时刻的瞬时速度为9m/s.又ΔSΔt =S(t0+Δt)-S(t0)Δt=2t0+1+Δt.∴当Δt无限趋近于0时,ΔSΔt无限趋近于2t0+1.则2t0+1=9,∴t0=4.则物体在4s时的瞬时速度为9m/s.反思感悟求运动物体瞬时速度的三个步骤(1)求时间改变量Δt 和位移改变量ΔS =S (t 0+Δt )-S (t 0).(2)求平均速度v =ΔS Δt .(3)求瞬时速度,当Δt 无限趋近于0时,ΔS Δt 无限趋近于的常数v 即为瞬时速度.跟踪训练2(1)高台跳水运动员在t 秒时距水面高度h (t )=-4.9t 2+6.5t +10(单位:米),则该运动员的初速度为________米/秒.答案6.5解析Δh Δt =-4.9(Δt )2+6.5·(Δt )+10-10Δt=6.5-4.9Δt ,∵当Δt 无限趋近于0时,-4.9Δt +6.5无限趋近于6.5,∴该运动员的初速度为6.5米/秒.(2)如果一个物体的运动方程S (t )=⎩⎨⎧t 2+2,0≤t <3,29+3(t -3)2,t ≥3,试求该物体在t =1和t =4时的瞬时速度.解当t =1时,S (t )=t 2+2,则ΔS Δt =S (1+Δt )-S (1)Δt =(1+Δt )2+2-3Δt =2+Δt , 当Δt 无限趋近于0时,2+Δt 无限趋近于2,∴该物体在t =1时的瞬时速度为2;∵t=4∈[3,+∞),∴S(t)=29+3(t-3)2=3t2-18t+56,∴ΔSΔt=3(4+Δt)2-18(4+Δt)+56-3×42+18×4-56Δt=3(Δt)2+6·ΔtΔt=3·Δt+6,∴当Δt无限趋近于0时,3·Δt+6无限趋近于6,即ΔSΔt无限趋近于6,∴该物体在t=4时的瞬时速度为6.三、瞬时加速度知识梳理瞬时加速度一般地,如果当Δt无限趋近于0时,运动物体速度v(t)的平均变化率v(t0+Δt)-v(t0)Δt无限趋近于一个常数,那么这个常数称为物体在t=t0时的瞬时加速度,也就是速度对于时间的瞬时变化率.注意点:瞬时速度就是位移对于时间的瞬时变化率;瞬时加速度就是速度对于时间的瞬时变化率.例3质点运动的速度v(单位:m/s)是时间t(单位:s)的函数,且v=v(t),则当Δt无限趋近于0时,v(1+Δt)-v(1)Δt表示()A.t=1s时的速度B.t=1s时的加速度C .t =1s 时的位移D .t =1s 时的平均速度答案B解析当Δt 无限趋近于0时,v (1+Δt )-v (1)Δt表示t =1时刻的加速度. 反思感悟瞬时加速度为状态量,反映某一时刻物体运动规律,是表征速度变化快慢的物理量.跟踪训练3一辆汽车从停止时开始加速行驶,并且在5秒内速度v (m/s)与时间t (s)的关系可近似地表示为v =f ()t =-t 2+10t ,则汽车在时刻t =1s 时的加速度为()A .9m/sB .9m/s 2C .8m/s 2D .7m/s 2答案C解析由题意得,Δv Δt =-(t +Δt )2+10(t +Δt )+t 2-10t Δt=-2t +10-Δt ,当Δt 无限接近于0时,汽车在时刻t =1s 时的加速度为8m/s 2.1.知识清单:(1)平均速度.(2)瞬时速度.(3)瞬时加速度.2.方法归纳:无限逼近的思想.3.常见误区:不能将物体的瞬时速度转化为函数的瞬时变化率.1.质点运动规律s =t 2+3,则在时间()3,3+Δt 中,质点的平均速度等于()A .6+ΔtB .6+Δt +9ΔtC .3+ΔtD .9+Δt答案A解析平均速度为v =(3+Δt )2+3-()32+33+Δt -3=6+Δt .2.如果质点按规律S =2t 3运动,则该质点在t =3时的瞬时速度为()A .6B .18C .54D .81答案C解析∵ΔS Δt =S (3+Δt )-S (3)Δt =2·(3+Δt )3-2×33Δt=2(Δt )2+18Δt +54,∴当Δt 无限趋近于0时,ΔS Δt 无限趋近于54.3.某物体的运动速度与时间的关系为v (t )=2t 2-1,则t =2时的加速度为()A .2B .-2C .8D .-8答案C解析由题意知,Δv Δt =2(t +Δt )2-1-2t 2+1Δt=4t +2Δt ,当Δt 无限接近于0时,该物体在t =2时的加速度为8.4.物体做匀速运动,其运动方程是s =v t ,则该物体在运动过程中的平均速度与任何时刻的瞬时速度的关系是__________.答案相等解析物体做匀速直线运动,所以任何时刻的瞬时速度都是一样的.课时对点练1.某质点沿曲线运动的方程为f (x )=-2x 2+1(x 表示时间,f (x )表示位移),则该质点从x =1到x =2的平均速度为()A .-4B .-8C .6D .-6答案D解析由题意得该质点从x =1到x =2的平均速度为f (2)-f (1)2-1=-8+1-(-2+1)1=-6. 2.一质点运动的方程为S =5-3t 2,若该质点在时间段[1,1+Δt ]内相应的平均速度为-3Δt -6,则该质点在t =1时的瞬时速度是()A .-3B .3C .6D .-6答案D解析由平均速度和瞬时速度的关系可知,当Δt 无限趋近于0时,ΔS Δt 无限趋近于-6,即质点在t =1时的瞬时速度是-6.3.一物体做加速直线运动,假设t s 时的速度为v (t )=t 2+3,则t =2时物体的加速度为()A .4B .3C .2D .1答案A解析因为Δv Δt =(t +Δt )2+3-t 2-3Δt=2t +Δt . 所以当Δt 无限趋近于0时,Δv Δt 无限趋近于2t .所以t =2时物体的加速度为4.4.某物体做直线运动,其运动规律是s =t 2+3t (t 的单位是秒,s 的单位是米),则它在4秒末的瞬时速度等于()A.12516米/秒B.316米/秒C.2564米/秒D .0米/秒答案A解析因为Δs Δt =(4+Δt )2+34+Δt -16-34Δt =(Δt )2+8Δt +-3Δt 4(4+Δt )Δt =Δt +8-316+4Δt , 当Δt 无限趋近于0时,Δs Δt 无限趋近于12516.5.汽车在笔直公路上行驶,如果v (t )表示t 时刻的速度,则当Δt 无限趋近于0的时候,v (t 0-Δt )-v (t 0)-Δt的意义是() A .表示当t =t 0时汽车的加速度B .表示当t =t 0时汽车的瞬时速度C .表示当t =t 0时汽车的路程变化率D .表示当t =t 0时汽车与起点的距离答案A解析由于v (t )表示时刻t 的速度,由题意可知,当Δt 无限趋近于0的时候,v (t 0-Δt )-v (t 0)-Δt表示当t =t 0时汽车的加速度.6.(多选)甲、乙速度v 与时间t 的关系如图,a (b )是t =b 时的加速度,S (b )是从t =0到t =b 的路程,则下列说法正确的是()A .a 甲(b )>a 乙(b )B .a 甲(b )<a 乙(b )C .S 甲(b )>S 乙(b )D .S 甲(b )<S 乙(b )答案BC解析加速度是速度对t 函数的切线斜率,由图可得在b 处,甲的切线斜率小于乙的切线斜率,即甲在b 处的加速度小于乙在b 处的加速度;由图知t =0到t =b 甲的速度总大于等于乙的速度,所以甲从t =0到t =b 的路程大于乙从t =0到t =b 的路程.7.一物体的运动方程为s =3t 2-2,则其在t =________时瞬时速度为1. 答案16 解析Δs Δt =3(t +Δt )2-2-3t 2+2Δt=6t +3Δt . 当Δt 无限趋近于0时,Δs Δt 无限趋近于6t ,因为瞬时速度为1,故6t =1,即t =16.8.已知汽车行驶的路程s 和时间t 之间的函数图象如图所示,在时间段[t 0,t 1],[t 1,t 2],[t 2,t 3]上的平均速度分别为v 1,v 2,v 3,则三者的大小关系为________. (由小到大排列)答案v 1<v 2<v 3解析∵v 1=s (t 1)-s (t 0)t 1-t 0=k OA ,v 2=s (t 2)-s (t 1)t 2-t 1=k AB ,v 3=s (t 3)-s (t 2)t 3-t 2=k BC , 又∵由图象得k OA <k AB <k BC ,∴v 3>v 2>v 1.9.一作直线运动的物体,其位移s 与时间t 的关系是s (t )=3t -t 2(s 的单位是:m ,t 的单位是:s).(1)求t=0s到t=2s时的平均速度;(2)求此物体在t=2s时的瞬时速度.解(1)v=s(2)-s(0)2=6-4-02=1.(2)s(2+Δt)-s(2)Δt=3(2+Δt)-(2+Δt)2-(3×2-22)Δt=-Δt-1.当Δt无限趋近于0时,s(2+Δt)-s(2)Δt无限趋近于-1,所以t=2时的瞬时速度为-1.10.子弹在枪筒中的运动可以看作匀加速直线运动,运动方程为S=12at2,如果它的加速度是a=5×105m/s2,子弹在枪筒中的运动时间为1.6×10-3s,求子弹射出枪口时的瞬时速度.解运动方程为S=12at2.因为ΔS=12a(t0+Δt)2-12at20=at0(Δt)+12a(Δt)2,所以ΔSΔt =at0+12a(Δt).所以当Δt无限趋近于0时,ΔSΔt无限趋近于at0. 由题意知,a=5×105 m/s2,t0=1.6×10-3 s,所以at0=8×102=800(m/s),即子弹射出枪口时的瞬时速度为800 m/s.11.物体做直线运动所经过的路程s可以表示为时间t的函数s=s(t),则物体在时间间隔[t0,t0+Δt]内的平均速度是()A.v0B.Δts()t0+Δt-s()t0C.s()t0+Δt-s()t0Δt D.s()tt答案C解析由平均变化率的概念知平均速度是s()t0+Δt-s()t0Δt.12.若小球自由落体的运动方程为s(t)=12gt2(g为重力加速度),该小球在t=1到t=3时的平均速度为v,在t=2时的瞬时速度为v2,则v和v2的大小关系为() A.v>v2B.v<v2C.v=v2D.不能确定答案C解析平均速度为v=s(3)-s(1)3-1=12g(32-12)2=2g.Δs Δt =s(2+Δt)-s(2)Δt=12g(Δt)2+2gΔtΔt=12gΔt+2g,∵当Δt无限趋近于0时,ΔsΔt无限趋近于2g,∴v2=2g,∴v=v2.13.火车开出车站一段时间内,速度v(单位:米/秒)与行驶时间t(单位:秒)之间的关系是v(t)=0.4t+0.6t2,则火车开出几秒时加速度为2.8米/秒2?()A.23秒B.2秒C.52秒D.73秒答案B解析由题意可知,Δv Δt =0.4(t+Δt)+0.6(t+Δt)2-0.4t-0.6t2Δt=0.4+1.2t+0.6Δt,当Δt无限接近于0时,由0.4+1.2t=2.8可得,t=2(秒).14.质点的运动方程是s=t+1t(s的单位为m,t的单位为s),则质点在t=3s时的瞬时速度为________m/s.答案8 9解析ΔsΔt=s(3+Δt)-s(3)Δt=3+Δt+13+Δt-3-13Δt=1-19+3Δt,当Δt无限趋近于0时,ΔsΔt 无限趋近于89,所以质点在t=3秒时的瞬时速度为89m/s.15.某人拉动一个物体前进,他所做的功W是时间t的函数W=W(t),则当Δt无限趋近于0时,W(t0+Δt)-W(t0)Δt表示()A.t=t0时做的功B.t=t0时的速度C.t=t0时的位移D.t=t0时的功率答案D解析由题意知当Δt无限趋近于0时,W(t0+Δt)-W(t0)Δt表示t=t0时的功率.16.某机械厂生产一种木材旋切机械,已知生产总利润c元与生产量x台之间的关系式为c(x)=-2x2+7000x+600.(1)求产量为1000台的总利润与平均利润;(2)求产量由1000台提高到1500台时,总利润的平均改变量;(3)当Δx无限趋近于0时,求c(1000+Δx)-c(1000)Δx与c(1500+Δx)-c(1500)Δx,并说明它们的实际意义.解(1)产量为1 000台时的总利润为c(1 000)=-2×1 0002+7 000×1 000+600=5 000600(元),平均利润为c()1 0001 000=5 000.6(元).(2)当产量由1 000台提高到1 500台时,总利润的平均改变量为c()1 500-c()1 0001 500-1 000=6 000 600-5 000 600500=2 000(元).(3)∵当Δx无限趋近于0时,ΔcΔx=-4x+7 000,∴c(1 000+Δx)-c(1 000)Δx=3 000,c(1 500+Δx)-c(1 500)Δx=1 000,它们指的是当产量为1 000台时,生产一台机械可多获利3 000元;. 而当产量为1 500台时,生产一台机械可多获利1 000元.。
2-1.1.1.3瞬时速度与瞬时加速度
a
v t
f (t0 t ) f (t0 ) t
v t
a 可 作 为 物 体 在 t 0时 刻 的 加 速 度 的 近 似 值 , t 越 小 , 近 似 的 程 度 就 越 好 .所 以 当 t 0时 , 极 限 lim 就 是 物 体 在 t 0时 刻 的 瞬 时 加 速 度 . 即
例 2、 一 块 岩 石 在 月 球 表 面 上 以 2 4 m / s的 速 度 垂 直 上 抛 , ts时 达 到 的 高 度 h 2 4 t 0 .8 t ( 单 位 : m ) .
2
1) 求 岩 石 在 ts时 的 速 度 、 加 速 度 ; 2) 多 少 时 间 后 岩 石 达 到 最 高 点 .
t 0
就是物
vt t0 Fra bibliotekimS t
t 0
lim
f (t0 t ) f (t0 ) t
t 0
2、瞬时加速度:
设 物 体 作 直 线 运 动 的 速 度 为 v f ( t ), 以 t 0为 起 始 时 刻 , 物 体 在 t时 间 内 的 平 均 加 速 度 为
S t
f (t0 t ) f (t0 ) t
S t
v 可 作 为 物 体 在 t 0时 刻 的 速 度 的 近 似 值 , t 越 小 , 近 似 的 程 度 就 越 好 .所 以 当 t 0时 , 极 限 lim 体 在 t 0时 刻 的 瞬 时 速 度 , 即
2
试 确 定 t 2 s时 运 动 员 的 速 度 .
1 计 算 运 动 员 在 2 s 到 2 .1 s t 2, 2 .1 内 的 平 均 速 度 .
思想方法 1.极限思维法
思想方法 1.极限思维法1.极限思维法:如果把一个复杂的物理全过程分解成几个小过程,且这些小过程的变化是单一的.那么,选取全过程的两个端点及中间的极限来进行分析,其结果必然包含了所要讨论的物理过程,从而能使求解过程简单、直观,这就是极限思想方法.极限思维法只能用于在选定区间内所研究的物理量连续、单调变化(单调增大或单调减小)的情况.2.用极限法求瞬时速度和瞬时加速度(1)公式v =Δx Δt中当Δt →0时v 是瞬时速度. (2)公式a =Δv Δt中当Δt →0时a 是瞬时加速度. 【典例】 为了测定气垫导轨上滑块的加速度,滑块上安装了宽度为3.0 cm 的遮光板,如图1-1-4所示,滑块在牵引力作用下先后匀加速通过两个光电门,配套的数字毫秒计记录了遮光板通过第一个光电门的时间为Δt 1=0.30 s ,通过第二个光电门的时间为Δt 2=0.10 s ,遮光板从开始遮住第一个光电门到开始遮住第二个光电门的时间为Δt =3.0 s .试估算:(1)滑块的加速度多大?(2)两个光电门之间的距离是多少?即学即练 如图1-1-5所示,物体沿曲线轨迹的箭头方向运动,在AB 、ABC 、ABCD 、ABCDE 四段轨迹上运动所用的时间分别是1 s 、2 s 、3 s 、4 s ,已知方格的边长为1 m .下列说法正确的是( ).A .物体在AB 段的平均速度为1 m/sB .物体在ABC 段的平均速度为52m/s C .AB 段的平均速度比ABC 段的平均速度更能反映物体处于A 点时的瞬时速度D .物体在B 点的速度等于AC 段的平均速度附:对应高考题组1.[2010·上海综合(理),4]右图是一张天文爱好者经长时间曝光拍摄的“星星的轨迹”照片.这些有规律的弧线的形成,说明了( ).A .太阳在运动B .月球在公转C .地球在公转D .地球在自转2.(2012·上海卷,23)质点做直线运动,其s -t 关系如图所示.质点在0~20 s 内的平均速度大小为______ m/s ;质点在________时的瞬时速度等于它在6~20 s 内的平均速度.【典例】解析 (1)遮光板通过第一个光电门的速度v 1=L Δt 1=0.030.30m/s =0.10 m/s 遮光板通过第二个光电门的速度v 2=L Δt 2=0.030.10m/s =0.30 m/s 故滑块的加速度a =v 2-v 1Δt≈0.067 m/s 2. (2)两个光电门之间的距离x =v 1+v 22Δt =0.6 m. 答案 (1)0.067 m/s 2 (2)0.6 m即学即练解析 由v =x t 可得:v AB =11 m/s =1 m/s ,v AC =52m/s ,故A 、B 均正确;所选取的过程离A 点越近,其阶段的平均速度越接近A 点的瞬时速度,故C 正确;由A 经B 到C 的过程不是匀变速直线运动过程,故B 点虽为中间时刻,但其速度不等于AC 段的平均速度,D 错误.答案 ABC附:对应高考题组1.答案 D2.解析 质点在0~20 s 内的位移为16 m ,由平均速度v =s t 可得v =1620m/s =0.8 m/s ;s -t 图象切线的斜率表示速度,连接6 s 、20 s 两个时刻对应的位移点得直线MN ,如图所示,直线MN 的斜率等于6~20 s 这段时间内的平均速度,用作平行线的方法上下平移MN 得直线b 、a ,与图象相切于10 s 和14 s 在图线上对应的位置,这两个时刻的瞬时速度与6~20 s 内的平均速度相等.答案 0.8 10 s 和14 s。
瞬时速度与加速度
主备人:郑志刚 审核人:张格波教学目标了解平均速度的概念,掌握运动物体的瞬时速度瞬时加速度的概念及求法 教学重点、难点瞬时速度瞬时加速度的概念及求法.教学过程一.问题情境1.情境:跳水运动员从10m 跳台腾空到入水的过程中,不同时刻的速度是不同的,假设t s 后运动员相对于水面的高度为H(t)= -4.9t 2+6.5t+102.问题:求出t=2s 时运动员的速度二.学生活动与数学建构1、运动员2s 到2.1s 的平均速度是多少?还能算出更短时间内的平均速度吗?2、运动员2s 到2+△t s 的平均速度是多少?三.数学理论一般地,运动物体在0t 到0t t +∆这一段时间内的平均速度v =____________________,当t ∆______________时,_____________________趋近于一个________,那么这个___________称为物体在0t t =时的瞬时速度.也就是位移时的瞬时变化率。
类似的当t ∆______________0时,运动物体速度v(t)的平均变化率___________________________无限趋近于________.那么这个___________称为物体在0t t =时的瞬时加速度,也就是速度对于时间的瞬时变化率。
说明:四.数学运用例1、设质点按函数216015s t t =-所表示的规律运动,求质点在时刻3t =时的瞬时速度(其中s 表示在时刻t 的位移,时间单位:秒,位移单位:米).小结:例2.一质点运动方程为210s t =+,(其中s 表示在时刻t 的位移,时间单位:秒,位移单位:米);求质点在时刻3t =处的瞬时速度.说明:例3.设一辆轿车在公路上做加速直线运动,假设t s 时的速度为2()3v t t =+,求0t t s = 时轿车的瞬时加速度a.说明:练习: P12 1,2五.回顾小结:六.课外作业:P17 习题12,13,14。
3.1.2瞬时速度与瞬时加速度
班级 姓名学习目标:1、了解在非常短时间内的平均速度、平均加速度十分接近一个时刻的瞬时速度、瞬时加速度;2、了解求瞬时速度和瞬时加速的的方法。
学习重难点:1、瞬时速度和瞬时加速的定义2、求瞬时速度和瞬时加速的的方法。
一、课前自主学习1.设物体的运动规律是s=s(t),则物体在t 到t+△t 这段时间内的平均速度为t s ∆∆= ,如果△t 无限趋近于0, ts ∆∆无限趋近于某个常数v 0,这时v 0就是物体在时刻t 的 。
2.设物体运动的速度函数()v t ν=,则物体在t 到△t 这段时间内的平均变化率为t v ∆∆= ,如果△t 无限趋近于0,tv ∆∆无限趋近于某个常数a ,这时a 就是物体在时刻t 的 。
3.已知一动点的运动规律满足等式232s t =-(t 的单位:s ,s 的单位:m ),则t=3s 的瞬时速度是小结:求运动物体在某一时刻的速度,即求瞬时速度的步骤: (1)设非匀速直线运动的规律为:s =s (t );(2) 时间改变量Δt ,位置改变量Δs =s (t 0+Δt )-s (t 0);(3)平均速度v =ΔsΔt.二、例题讲解例1:设一辆轿车在公路上做加速直线运动,假设t s 时的速度为3)(2+=t t v ,(1)求t=3s 时轿车的加速度;(2)求t=0t s 时轿车的加速度。
例2:.一做直线运动的物体,其位移s 与时间t 的关系式是23s t t =-。
(1)求此物体的初速度;(2)求此物体在t=2时的瞬时速度;(3)求t=0到t=2的平均速度。
1.一质点沿直线运动的方程为221y x =-+(x 表示时间,y 表示位移),则该质点从12x x ==到的平均速度为2.某物体的运动方程为4134s t =-(t(s)表示时间,s(m)表示位移),则t=5s 时该物体的瞬时速度为 .3.一物体做直线运动,在时刻ts 时,该物体的位移是2182s t =-(单位:m ),则当t=3s 时物体的瞬时速度为 .4. 已知自由落体的运动方程为s =12gt 2,求:(1)落体在t 0到t 0+Δt 这段时间内的平均速度; (2)落体在t 0时的瞬时速度;(3)落体在t 0=2秒到t 1=2.1秒这段时间内的平均速度; (4)落体在t 0=2秒时的瞬时速度.5. 若一物体运动方程如下:(位移:m ,时间:s) s =⎩⎪⎨⎪⎧3t 2+2 t ≥3 ①29+3(t -3)20≤t <3 ②. 求:(1)物体在t ∈[3,5]内的平均速度; (2)物体的初速度v 0; (3)物体在t =1时的瞬时速度.学习目标:1.通过实例分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的广阔背景,体会导数的思想及内涵; 2.掌握导数的概念.学习重难点:导数的概念.一、课前自主学习1.导数的概念:设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),若Δx 无限趋近于0时,比值Δy Δx =f (x 0+Δx )-f (x 0)Δx 无限趋近于一个常数A ,则称f (x )在x =x 0处_____,并称该常数A 为f (x )在x =x 0处的_____,记作_______,导数______的几何意义就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的_______. 2. 求函数y =f (x )在x 0处的导数的步骤: ①求函数的增量Δy =________________; ②求平均变化率ΔyΔx=_________________;③当Δx 无限趋近于0时,确定ΔyΔx 无限趋近的常数A ,则___________.3.导函数的概念:若函数f(x)对于区间(a ,b)内任一点都可导,则f(x)在各点的导数也随着自变量x 的变化而变化,因而也是自变量x 的函数,该函数称为f(x)的____ __,也简称__ __,记作__ __ 4.)(0x f '与)(x f '之间的关系:5.设函数()f x 可导,则△x 无限趋近于0时,()()xf x f ∆-∆+11无限趋近于二.例题讲解例1. 已知 ()f x =2x +2.(1)求()f x 在x=1处的导数。
加速度的计算方法
加速度的计算方法加速度是物理学中一个重要的概念,用来描述物体在单位时间内速度变化的快慢。
在实际应用中,计算加速度可以帮助我们理解物体运动的特性和进行相关的物理分析。
本文将介绍几种计算加速度的方法,并通过实例进行说明。
一、平均加速度的计算方法平均加速度是指物体在一段时间内速度变化的平均值。
其计算方法如下:平均加速度(a)= (末速度(v)- 初速度(u))/ 时间间隔(Δt)其中,末速度指物体在时间间隔结束时的速度,初速度指物体在时间间隔开始时的速度,时间间隔则为两次速度测量之间的时间差。
示例:假设一个物体在1秒内由静止开始,以每秒2米的速度递增,求其平均加速度。
解析:根据上述公式,可以得到:平均加速度(a)= (2m/s - 0m/s)/ 1s = 2m/s²因此,该物体的平均加速度为2m/s²。
二、瞬时加速度的计算方法瞬时加速度是指物体在某一瞬间的加速度值,也可以理解为物体在某一时刻的加速度。
其计算方法如下:瞬时加速度 = lim(Δv /Δt)其中,lim代表极限,Δv是速度的变化量,Δt为运动的时间间隔。
示例:假设一个物体以匀速运动,在3秒的时刻速度从4m/s瞬间变为8m/s,求其瞬时加速度。
解析:根据上述公式,可以得到:瞬时加速度 = lim(8m/s - 4m/s)/ 3s = 1.33m/s²因此,该物体在3秒时刻的瞬时加速度为1.33m/s²。
三、自由落体加速度的计算方法自由落体加速度是指物体在自由下落过程中受重力作用所获得的加速度。
在地球表面附近条件下,自由落体加速度的近似取值约为9.8m/s²,可以通过实验进行精确测量。
计算自由落体加速度的方法如下:自由落体加速度(g)= 重力加速度示例:在地球上,计算自由落体加速度的近似值。
解析:根据上述公式,可以得到:自由落体加速度(g)≈ 9.8m/s²因此,地球上的自由落体加速度近似为9.8m/s²。
高中物理:极限思想在运动学中的应用
第 1 页 共 1 页 高中物理:极限思想在运动学中的应用
1.方法概述
极限法是把某个物理量推向极端,即极大和极小,并依此做出科学的推理分析,从而给出判断或导出一般结论.极限法只能用于在选定区间内所研究的物理量连续、单调变化(单调增大或单调减小)的情况.
2.方法应用:用极限法求瞬时速度和瞬时加速度.
(1)在公式v =Δx Δt
中,当Δt →0时v 是瞬时速度. (2)在公式a =Δv Δt
中,当Δt →0时a 是瞬时加速度.
如图所示,在气垫导轨上安装有两个光电门A 、B ,A 、
B 间距离为L =30 cm.为了测量滑块的加速度,在滑块上安装
了一宽度为d =1 cm 的遮光条.现让滑块以某一加速度通过光
电门A 、B ,记录了遮光条通过两光电门A 、B 的时间分别为0.010 s 、0.005 s ,滑块从光电门A 到B 的时间为0.200 s .则下列说法正确的是( )
A .滑块经过A 的速度为1 cm/s
B .滑块经过B 的速度为2 cm/s
C .滑块的加速度为5 m/s 2
D .滑块在A 、B 间的平均速度为3 m/s
解析:滑块经过A 的速度为v A =d t A =1 m/s ,经过B 的速度为v B =d t B
=2 m/s ,选项A 、B 错误;滑块在A 、B 间的平均速度为v =L t =1.5 m/s ,选项D 错误;由a =v B -v A t
,解得滑块的加速度为a =5 m/s 2,选项C 正确.
答案:C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学教学案
第三章 导数及其应用
第3课时瞬时速度与瞬时加速度
教学目标:
1.理解瞬时速度与瞬时加速度的定义,掌握如何由平均速度和平均加速度“逼近” 瞬时 速度与瞬时加速度的过程.理解平均变化率的几何意义;理解△x 无限趋近于0的含义;
2.运用瞬时速度与瞬时加速度的定义求解瞬时速度与瞬时加速度.
教学重点:
瞬时速度与瞬时加速度的定义
教学难点:
瞬时速度与瞬时加速度的求法
教学过程:
Ⅰ.问题情境
Ⅱ.建构数学
1.平均速度:
2.位移的平均变化率:
3.瞬时速度:
4.瞬时加速度:
Ⅲ.数学应用
例1:一跳水运动员从10m 高跳台腾空到入水的过程中,不同时刻的速度是不同的,假设t s 后运动员相对于水面的高度为()105.69.42++-=t t t H ,试确定2=t s 时运动员的速度.
练习:一质点的运动方程为52+=t s (位移单位:m ,时间单位:s ),试求该质点在3=t s
的瞬时速度.
例2:设一辆轿车在公路上做加速直线运动,假设t s 时的速度为()32+=t t v ,求0t t =s 时轿车的加速度.
练习:1.一块岩石在月球表面上以s m /24的速度垂直上抛,t s 时达到的高度为2240.8h t t =-(单位:m ).
(1)求岩石在t s 时的速度、加速度;
(2)多少时间后岩石达到最高点.
2.质点沿x 轴运动,设距离为xm ,时间为t s ,1052
+=t x ,则当t t t t ∆+≤≤00时,质点的平均速度为;当0t t =时,质点的瞬时速度为;当t t t t ∆+≤≤00时,质点的平均加速度为;当0t t =时,质点的瞬时加速度为.
Ⅳ.课时小结
Ⅴ.课堂检测
Ⅵ.课后作业
书本P 64 1,2
1.
2.自由落体运动的位移s m 与时间t s 的关系为22
1gt s =
(g 为常数). (1)求0t t =时的瞬时速度;
(2)分别求3,2,1=t s 时的瞬时速度.。