第七章 图像分割

合集下载

第七章 图像分割_PPT课件

第七章 图像分割_PPT课件
•关键点
– 鲁棒局部特征,抗变形能力强,适用于匹配
• 7.3 阈值法 —— 全局阈值法
• 思路
– 将分割问题视为面向每一个像素的分类问题,通常使用简单的阈 值不等式判断像素的类别。
• 条件
– 待分割区域与背景区域在像素级特征上存在明显的差异,而两个 区域内部像素在统计上各自具有较强的相似性。从特征直方图上 看,具有明显的双峰分布的图像比较适合使用阈值法进行分割
• 自然图像理解
• 7.2 图像特征概述
•亮度 •直方图 •变换系数 •边缘 •纹理 •关键点
• 7.2 图像特征概述
•亮度
– 空间连续性,稠密性,直观,敏感性
•直方图
– 统计特征,抗线性几何变换
•变换系数
– 频域统计特征,提供一种完全不同的视角
•边缘
– 符合视觉习惯,是形状信息的基础
•纹理
– 局部不连续性和全局相似性的统一
• 7.3 阈值法 —— 全局阈值法
• 如何确定阈值T?
–迭代法 –大津法 (OTSU) –最优阈值法 –最大熵法 –众数法 –矩不变法 ……
• 7.3 阈值法 —— 全局阈值法
• 迭代阈值法
1)选取一个的初始估计值T; 2)用T分割图像。这样便会生成两组像素集合:G1由所有灰度值大 于T的像素组成,而G2由所有灰度值小于或等于T的像素组成。 3)对G1和G2中所有像素计算平均灰度值u1和u2。 4)计算新的阈值:T=1/2(u1 + u2)。 重复步骤(2)到(4),直到T值更新后产生的偏差小于一个事先定 义的参数T0。
• 从优化的角度看,迭代阈值法的目标函数:
• 7.3 阈值法 —— 全局阈值法
• 大津法(OTSU) – 寻找使类间离散度最大化的阈值T – 类间离散度的数学定义

《图像分割技术》课件

《图像分割技术》课件

Canny边缘检测
由John Canny在1986年提出,通 过求解梯度幅值的局部最大值来 检测图像中的边缘。
Laplacian边缘检测
通过计算图像的二阶导数来检测 边缘。
基于图像信息的分割
1 区域生长法
从像素点开始逐渐生长, 形成相似的区域。
2 分水岭算法
通过将图像看作地理地形 图,使用水的流动路线来 进行分割。
图像分割技术
本课程介绍图像分割技术的定义、分类、应用和发展历程。我们将介绍传统 方法和深度学习应用,并展望未来的研究方向。
概述
定义与意义
图像分割是将图像分成多个部分或对象的过程。 广泛应用于计算机视觉、医学图像处理、自动 驾驶和图像语义分析等领域。
分类与应用领域
根据分割结果的类型和得到的方式,可以将图 像分割分为像素分割、基于边缘的分割、基于 图像信息的分割和基于深度学习的分割等。 分 割技术在医学图像处理、自动驾驶、图像语义 分析等领域得到了广泛的应用。
使用在深度学习领域中最新技术, 为不同的图像分配像素级别的标 签,从而识别和分类。
研究前沿
1
图像分割中的深度学习新方法研究
使用新的深度学习技术,如GAN和Transformer网络,来进一步提高图像分割的 准确性和鲁棒性。
2
图像分割中的多模态融合研究
将多种分割方法结合起来,例如结合像素级别的分割和语义级别的分割。
3
U-Net网络的应用
使用更加深入的卷积网络 U-Net,在较少的数据集上进行训练,得到高质量的分 割结果。
实例应用
医学图像处理中的应用
自动驾驶中的应用
图像语义分割中的应用
采用分割算法对脑部 MRI 扫描图 像中肿瘤进行分割、测量和定位, 为医生的诊断提供支持。

图像分割技术 PPT

图像分割技术 PPT

Roberts算子:边缘定位准,但是对噪声敏感。适用于边缘明显且噪声 较少的图像分割。 Prewitt算子:对噪声有抑制作用,抑制噪声的原理是通过像素平均, 但是像素平均相当于对图像的低通滤波,所以Prewitt算子对边缘的定位不 如Roberts算子。 Sobel算子:Sobel算子和Prewitt算子都是加权平均,但是Sobel算子 认为,邻域的像素对当前像素产生的影响不是等价的,所以距离不同的像 素具有不同的权值,对算子结果产生的影响也不同。一般来说,距离越远, 产生的影响越小。 Isotropic Sobel算子:加权平均算子,权值反比于邻点与中心点的距 离,当沿不同方向检测边缘时梯度幅度一致,就是通常所说的各向同性。 上面的算子是利用一阶导数的信息。 Laplacian算子:是二阶微分算子。其具有各向同性,即与坐标轴方向 无关,坐标轴旋转后梯度结果不变。但是,其对噪声比较敏感,所以,图 像一般先经过平滑处理,因为平滑处理也是用模板进行的,所以,通常的 分割算法都是把Laplacian算子和平滑算子结合起来生成一个新的模板。
串行边界分割


并行边缘检测的方法,对图像的每一点上所做的处理 不依赖于其它的点处理结果。串行边界分割在处理图像时不 但利用了本身像素的信息,而且利用前面处理过像素的结果。 对某个像素的处理,以及是否把它分类成为边界点,和先前 对其它点的处理得到的信息有关。 串行边界分割技术通常是通过顺序的搜索边缘点来工作 的,一般有三个步骤: 1.起始边缘点的确定。 2.搜索准则,将根据这个准则确定下一个边缘点。 3.终止条件,设定搜索过程结束的条件。
区域分割与边界分割的比较
区域分割实质:把具有某种相似性质的像素连 通,从而构成最终的分割区域。它利用了图像的局 部空间信息,可有效地克服其他方法存在的图像分 割空间不连续的缺点。 基于区域的分割方法往往会造成图像的过度分 割,而单纯的基于边缘检测方法有时不能提供较好 的区域结构,为此可将基于区域的方法和边缘检测 的方法结合起来,发挥各自的优势以获得更好的分 割效果。

07-图像分割

07-图像分割
-1 -1
2
-1 -1
-1
2 -1
-1
-1 2
水平模板
45度模板
垂直模板
135度模板
43
例: 图像
1
1
1
1
1
1
1
1
1
5
1
5
1
5
1
5
1
5
1
5
1
5
1
5
1
5
1
用4种模板分别计算 R水平 = -6 + 30 = 24
R45度 = -14 + 14 = 0
R垂直 = -14 + 14 = 0 R135度 = -14 + 14 = 0
相同;

当R的值足够大时,说明该点的值与周围的点非常不
同,是孤立点。通过阈值T来判断: |R| > T 检测到一个孤立点。
42
2. 线的检测
通过比较典型模板的计算值,确定一个点是否在某个 方向的线上:
-1
2 -1
-1
2 -1
-1
2 -1
-1
-1 2
-1
2 -1
2
-1 -1
-1
-1 -1
2
2 2-1128 8 源自 8-1-18
-1
-1
-1
R = (-1 * 8 * 8 + 128 * 8) / 9
= (120 * 8) / 9 = 960 / 9 = 106 设 :阈值:T = 64 R>T
41
算法描述:

设定阈值 T,如T = 32、64、128等,并计算高通滤波值
R;

如果R值等于0,说明当前检测点的灰度值与周围点的

图像分割经典教材

图像分割经典教材
-1 -2 -1 0 1 0 2 0 1 -1 -2 -1 0 0 0 1 2 1 z1 z2 z3 z4 z5 z6 z7 z8 z9
边缘检测
z
结论
Prewitt和Sobel算子是计算数字梯度时最常 用的算子
9 9
Prewitt模板比Sobel模板简单,但Sobel模板 能够有效抑制噪声
边缘检测
|Gy|,y方向上的梯度分量, 梯度图像|Gx|+|Gy|,突出水平和 突出垂直细节 垂直细节
边缘检测
Sobel45o模板的检测结果 Sobel-45o模板的检测结果
拉普拉斯算子
z
图像函数的拉普拉斯变换定义为
∇2 f = ∂2 f ∂x 2 + ∂2 f ∂y 2
z1 z2 z3 z4 z5 z6 z7 z8 z9

数字边缘模型
理想数字边缘模型 斜坡数字边缘模型
斜坡的产生是由光学系统、取样和图像采集系统的不完善带来 的边缘模糊造成的
间断检测
边缘 在边缘斜面上,一阶导数为正, 其它区域为零 在边缘与黑色交界处,二阶导数为正 在边缘与亮色交界处,二阶导数为负 沿着斜坡和灰度为常数的区域为零
间断检测
z
结论
一阶导数可用于检测图像中的一个点是否在 边缘上
R = ω1 z1 + ω 2 z 2 + ... + ω9 z9 =
∑ω z
i =1
9
i i
间断检测
z
点检测
使用如图所示的模板,如果 R ≥ T ,则在模 板中心位置检测到一个点 其中,T是阈值,R是模板计算值
基本思想:如果一个孤立点与它周围的点不 同,则可以使用上述模板进行检测。
9

第七章图像分割 海事 朱虹

第七章图像分割 海事 朱虹

均匀性度量法



所谓的均匀性度量方法,是根据“物以类 聚”的思想而设计的。 其基本设计思想是:属于“同一类别”的 对象具有较大的一致性。 实现的手段是:以均值与方差作为度量均 匀性的数字指标。
均匀性度量法算法步骤

1)给定一个初始阈值Th=Th0 (例如,可以默认为1,或者是128等), 则将原图像素点分为C1和C2两类

P-参数法算法步骤
1)设图像的大小为m*n,计算得到原图的 灰度直方图h;
2)输入目标物所占的画面的比例p;

3)尝试性地给定一个阈值 Th=Th0; 4)计算在Th下判定的目标物的像素点数N;

5)判断ps=N/(m*n)是否接近p? 是,则输出结果; 否则,Th=Th+dT; (if ps<p,则dT>0; else dT<0); 转至第四步,直到满足条件。

图像分割说明示例

图像分割示例:条码的二值化

图像分割示例:肾小球区域的提取

图像分割示例:细菌检测

图像分割示例:印刷缺陷检测

图像分割示例:印刷缺陷检测
图像分割的难点

从前面的例子可以看到,图像分割是比较 困难的。原有是画面中的场景通常是复杂 的,要找出两个模式特征的差异,并且可 以对该差异进行数学描述都是比较难的。

均匀性度量法处理效果示例
聚类方法

基本设计思想: 1. 聚类方法是采用了模式识别中的聚类思 想。 2. 以类内保持最大相似性以及类间保持最 大距离为最佳阈值的求取目标。
聚类方法算法步骤

1)给定一个初始阈值Th=Th0 (例如,可以默认为1,或者是128等), 则将原图像素点分为C1和C2两类

图像分割与特征提取 ppt课件

图像分割与特征提取  ppt课件

ppt课件
5
7.1 图像分割的概念
2. 图像分割的依据和方法
◆图像分割的依据是各区域具有不同的特性,这些 特性可以是灰度、颜色、纹理等。而灰度图像分割的 依据是基于相邻像素灰度值的不连续性和相似性。也 即,子区域内部的像素一般具有灰度相似性,而在区 域之间的边界上一般具有灰度不连续性。
◆灰度图像分割是图像分割研究中最主要的内容,其 本质是按照图像中不同区域的特性,将图像划分成不 同的区域。
7.2.1 图像边缘
图像
剖面
一阶导数
二阶导数
上升阶跃边缘 (a)
下降阶跃边缘 (b)
脉冲状边缘 (c)
屋顶边缘 (d)
图7.1 图像边缘及其导数曲线规律示例
ppt课件
11
7.2 基于边缘检测的图像分割
7.2.1 图像边缘
综上所述,图像中的边缘可以通过对它们求导数 来确定,而导数可利用微分算子来计算。对于数字图 像来说,通常是利用差分来近似微分。
方向:
f (x, y) = arctan(Gx / Gy )
(7.5)
ppt课件
14
7.2.2 梯度边缘检测
(1) Roberts算子
是一个交叉算子,其在点(i,j)的梯度幅值表示为:
G(i, j) = f (i, j) f (i 1, j 1) f (i 1, j) f (i, j 1) (7.6)
ppt课件
2
7.1 图像分割的概念
◆目标或前景 ◆背景 ◆目标一般对应于图像中特定的、具有独特性质的 区域。
ppt课件
3
7.1 图像分割的概念
1. 图像分割
图像分割就是依据图像的灰度、颜色、纹理、边 缘等特征,把图像分成各自满足某种相似性准则或具 有某种同质特征的连通区域的集合的过程。

7-第七章图像分割1、2

7-第七章图像分割1、2

30
拉普拉斯算子
0 1 0
1 -4 1
0 1 0
1 1
1 -8
1 1
1
1
1
图7.5 两种常用的拉普拉斯算子模板
31
拉普拉斯算子一般不以其原始形式用于边缘检测,原因在于: (1)它是一个二阶导数,对噪声非常敏感。 (2)拉普拉斯算子的幅值产生双边缘。(最大负值和最大正值) (2)不能检测边缘的方向。(无方向模版) 那么它在分割中所起的作用: (1)利用它的零交叉性质进行边缘定位----该算子与平滑过程一起利 用零交叉作为找到边缘的前兆。 (2)确定一个象素在边缘暗的一边还是亮的一边。
I=imread(„rice.tif‟);
imshow(I); BW1=edge(I,‟prewitt‟); BW2=edge(I,‟canny‟); figure;
Imshow(BW1); figure; imshow(BW2);
37
38
7.3
边缘连接(跟踪)
利用前面的方法检测出边缘点,但由于噪声、光照 不均等因素的影响,获得边缘点有可能是不连续的,必 须使用连接过程将边缘像素组合成有意义的边缘信息, 以备后续处理。 边缘跟踪的方法 1. 局部边缘连接法; 2. 光栅扫描跟踪法; 3. Hough 变换法。
第七章 图像分割
1
2
图像分割
作用
图像分割是图像识别和图像理解的基本前提步骤,图像分割质量的好坏 直接影响后续图像处理的效果。
图 像
图像 预处理 图像 分割
图像 识别
图像 理解
图7.1图像分割在整个图像处理过程中的作用
3
4
图像分割
◘灰度图像分割的依据 基于亮度值的两个基本特性: 不连续性 --- 区域之间; 相似性 ----- 区域内部。

数字图像处理课程第七章_图像分割

数字图像处理课程第七章_图像分割

特点:仅计算相邻像素的灰度差,对噪声比较 敏感,无法抑止噪声的影响。
Roberts算子
• 公式:
fx f (x 1, y 1) f (x 1, y 1) f y f (x 1, y 1) f (x 1, y 1)
• 模板: -1
1
• 特点:
fx’
1
fy’ -1
– 与梯度算子检测边缘的方法类似,对噪声敏感,但效果较梯度算 子略好
2
c 1 3 f (x, y) f (x 1, y) f (x, y 1)
4
按梯度的定义,由平面p(x,y)=ax+by+c的偏导数很容易
求得梯度。
a为两行像元平均值的差分,b为两列像元平均值的差分

这种运算可简化为模板求卷积进行,计算a和b对应的模板如下: Nhomakorabea1
1/
2
1
1
1
1 1/ 21
1 1
如果取最大值的绝对值为边缘强度,并用考虑 最大值符号的方法来确定相应的边缘方向,则考 虑到各模板的对称性,只要有前四个模板就可以 了。
Nevitia算子
拉普拉斯算子
• 定义:
– 二维函数f(x,y)的拉普拉斯是一个二阶的微分定义为: 2f = [2f / x2 , 2f / y2]
• 离散形式: 2 f (x, y) f (x 1, y) f (x 1, y) f (x, y 1) f (x, y 1) 4 f (x, y)
预处理 图像分割 特征提取 对象识别
7.1 概述
• 图像分割的概念
– 把图像分成互不重叠的区域并提取感兴趣目标的技术
图像分割的定义:
令集合R代表整个图像区域,对R的分割可看作将R分成N

第7章图像分割技术2

第7章图像分割技术2

19
自动阈值
分水岭算法
(a)原始图像
(b)图像对应的拓扑地形图 图7.5 图像对应的拓扑表面图
20
自动阈值
分水岭算法
三类点:①属于局部性最小值的点;②当一滴水放在
某点的位置上时,水一定会下落到一个单一的最小值点;
③当水处在某个点的位置时,水会等概率地流向不止一个 这样的最小值点。 对于一个特定的区域最小值,满足条件②的点的集合称 为这个最小值的“汇水盆地”或“分水岭”。满足条件③ 的点的集合组成地形表面的峰线,称为“分水线”或“分 割线”。
灰度变化等,固定的全局阈值分割,效果不好。
解决方法:利用与坐标相关的一组阈值对图像进行分割 ——变化阈值法、自适应阈值法。
18
自动阈值
分水岭算法
分水岭算法(watershed)是一种借鉴了形态学理论的分
割方法,它将一幅图象看成为一个拓扑地形图,其中灰度
值被认为是地形高度值。高灰度值对应着山峰,低灰度值 处对应着山谷。
g (i, j ) k k 0,1,...,K ; Tk 1 f (i, j ) Tk
阈值选择直接影响分割效果,通常可以通过对灰度直方图
的分析来确定它的值。
9
阈值选择
利用灰度直方图求双峰或多峰 选择两峰之间的谷底作为阈值
10
人工阈值
人工选择法是通过人眼的观察,应用人对图像的知识,在 分析图像直方图的基础上,人工选出合适的阈值。也可以 在人工选出阈值后,根据分割效果,不断的交互操作,从 而选择出最佳的阈值。
11
人工阈值
原始图像
T=155的二值化图像
T=210的二值化图像
图像直方图
12
自动阈值
迭代法

教学课件第七章图像分割与边缘检测

教学课件第七章图像分割与边缘检测
2. p
p尾法仅适用于事先已知目标所占全图像百分比 的场合。
若一幅图像由亮背景和黑目标组成,已知目标占 图像的(100-p)%面积,则使得至少(100-p)%的像素 阈值化后匹配为目标的最高灰度, 将选作用于二值化 处理的阈值。
第七章 图像分割与边缘检测
7.1.3 区域生长
分割的目的是把一幅图像划分成一些区域,最直接 的方法就是把一幅图像分成满足某种判据的区域,也就 是说, 把点组成区域。
第七章 图像分割与边缘检测
7.2.2 高斯-拉普拉斯(LOG)
噪声点对边缘检测有较大的影响,效果更好的边缘检测器是 高斯-拉普拉斯(LOG)算子。它把高斯平滑滤波器和拉普拉斯锐化 滤波器结合起来,先平滑掉噪声,再进行边缘检测,所以效果更 好。
常用的LOG算子是 5×2 5的 4模板 4: 4 2
第七章 图像分割与边缘检测
本章内容
7.1 图像分割 7.2 边缘检测 7.3 轮廓跟踪与提取 7.4 图像匹配 7.5 投影法与差影法 7.6 应用实例
第七章 图像分割与边缘检测
7.1 图 像 分 割
7.1.1 概述
图像分割是将图像划分成若干个互不相交的小区 域的过程, 小区域是某种意义下具有共同属性的像素 的连通集合。
如不同目标物体所占的图像区域、 前景所占的图 像区域等。
第七章 图像分割与边缘检测
连通是指集合中任意两个点之间都存在着完全属于 该集合的连通路径。对于离散图像而言,连通有4连通 和8连通之分,如图7-1所示。
(a)
(b)
图7-1 4连通和8连通
第七章 图像分割与边缘检测
4连通指的是从区域上一点出发,可通过4个方向, 即上、 下、左、右移动的组合,在不越出区域的前提 下,到达区域内的任意像素;

(完整版)天津理工大学《数字图像处理》数字图像处理复习题2

(完整版)天津理工大学《数字图像处理》数字图像处理复习题2

第一章引言一.填空题1. 数字图像是用一个数字阵列来表示的图像。

数字阵列中的每个数字,表示数字图像的一个最小单位,称为像素2.像增强等;二是从图像到非图像的一种表示,如图像测量等。

5. 数字图像处理包含很多方面的研究内容。

其中,图像重建的目的是根据二维平面图像数据构造出三维物体的图像。

二.简答题1. 数字图像处理的主要研究内容包含很多方面,请列出并简述其中的4种。

①图像数字化:将一幅图像以数字的形式表示。

主要包括采样和量化两个过程。

②图像增强:将一幅图像中的有用信息进行增强,同时对其无用信息进行抑制,提高图像的可观察性。

③图像的几何变换:改变图像的大小或形状。

④图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。

如傅利叶变换等。

⑤图像识别与理解:通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。

2. 什么是图像识别与理解?图像识别与理解是指通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。

比如要从一幅照片上确定是否包含某个犯罪分子的人脸信息,就需要先将照片上的人脸检测出来,进而将检测出来的人脸区域进行分析,确定其是否是该犯罪分子。

5. 简述图像几何变换与图像变换的区别。

①图像的几何变换:改变图像的大小或形状。

比如图像的平移、旋转、放大、缩小等,这些方法在图像配准中使用较多。

②图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。

比如傅里叶变换、小波变换等。

第二章图像的基本概念一.填空题1. 量化可以分为均匀量化和非均匀量化两大类。

2. 采样频率是指一秒钟内的采样次数。

3. 图像因其表现方式的不同,可以分为连续图像和离散图像两大类。

3.5. 对应于不同的场景内容,一般数字图像可以分为二值图像、灰度图像和彩色图像三类。

数字图像处理PPT——第七章 图像分割

数字图像处理PPT——第七章 图像分割

p-参数法
针对已知目标物在画面中所占比例的情况。 基本设计思想 选择一个值Th,使前景目标物所占的比例 为p,背景所占比例为1-p。 基本方法 先试探性地给出一个阈值,统计目标物的 像素点数在整幅图中所占的比例是否满足 要求,是则阈值合适;否则,阈值则偏大 或者偏小,再进行调整,直到满足要求。
p-参数法算法步骤
⎧ σ b2 ⎫ η | Th* = max ⎨ 2 ⎬ ⎩σ in ⎭
局部阈值方法
提出的原因 阈值方法对于较为简单的图像(目标 与背景差别大,容易区分的图像)简 单有效,对于较为复杂的图像,分割 效果不稳定。 方法 把图像分成子块,在每个子块上再采 样前述阈值分割方法
灰度-局部灰度均值散布图法
σ 12 =
f ( x , y )∈C 1

( f ( x, y ) − μ1 )2
2 σ2 =
f ( x , y )∈C 22 )2
1 μ1 = N C1
f ( x , y )∈C 1

f ( x, y )
1 μ2 = NC 2
f ( x , y )∈C 2

f ( x, y )
参数空间的一条直线对应xy空间的一 个点
Hough变换提取直线原理
Xy空间一条直线上的n个点,对应kb 空间经过一个公共点的n条直线 Kb空间一条直线上的n点对应于xy空 间中过一公共点的n条直线
Hough变换提取直线算法
假设原图像为二值图像,扫描图中的每一 个像素点: 背景点,不作任何处理 目标点,确定直线: b = − xk + y 参数空间上的对应直线上所有的值累加1 循环扫描所有点 参数空间上累计值为最大的点(k*,b*)为所求 直线参数 按照该参数与原图像同等大小的空白图像 上绘制直线

数字图像处理-SJTUMediaLab-上海交通大学

数字图像处理-SJTUMediaLab-上海交通大学

第七章 图像分割-3
Digital Image Processing
引言
人们观察景物时,所看到的是一个个物体。
数字图像处理设法把图像分成像素集合,每个集合代表一 个物体。
上海交通大学 图像通信与网络工程研究所 第七章 图像分割-4
Digital Image Processing
引言
图像分割的目的:
数字图像处理
Digital Image Processing
主讲:张重阳
上海交通大学图像通信与网络工程研究所
Email :sunny_zhang@ 上海交通大学图像通信研究所
Digital Image Processing
上海交通大学 图像通信与网络工程研究所
第七章 图像分割-2
把图像分解成构成它的部件和对象;
有选择性地定位感兴趣对象在图像中的位置和范围。
上海交通大学 图像通信与网络工程研究所
第七章 图像分割-5
Digital Image Processing
本章概述
相关章节的关系:
增强/复原:输出的是“质量有提高”的数字图象,目的在于看得
“更清楚”;
压缩/变换:为了更有效地传输、存储; 分割/描述:输出的是目标的特性,是对图象的描述。
原来仅用一个特征:“灰度值”,在一维特征空间里分类。 若再加一个“特征”,根据二个特征共同来判别更好,因为二维特征空间分类,类别 可分离性↑
问题:另一维是什么特征?它和空间信息有关
上海交通大学 图像通信与网络工程研究所 第七章 图像分割-11
(2)可变门限
(3)利用空间信息进行门限选择
Digital Image Processing
灰度门限

数字图像处理-图像分割课件

数字图像处理-图像分割课件
差分定义:
xfi,jfi,jfi1,j yfi,jfi,jfi,j1
梯度算子 梯度是图像处理中最为常用的一次微分方法。
图像函数 fx,y在点 x, y 的梯度幅值为
f 2 x
fy2
其方向为 arctgf y
f x
图像经过梯度运算能灵敏地检测出边界, 但是梯度运算 比较复杂。
对于数字图像,可用一阶差分替代一阶微分:
非连续性分割: 首先检测局部不连续性,然后将它们 连接起来形成边界,这些边界把图像分以不同的区域。 这种基于不连续性原理检出物体边缘的方法称为基于 点相关的分割技术
两种方法是互补的。有时将它们地结合起来,以求 得到更好的分割效果。
人眼图像示例
分类—连续性与处理策略 连续性: 不连续性: 边界 相似性: 区域 处理策略: 早期处理结果是否影响后面的处理 并行: 不 串行: 结果被其后的处理利用 四种方法 并行边界;串行边界;并行区域;串行区域
n
(1) Ri
i1
(2)对所有的 i和j, i j, 有Ri R j
(3)对i 1,2,..., n, 有P ( Ri ) true (4)对i j, 有P ( Ri R j ) false (5)对i 1,2,..., n, Ri 是连通的区域
分类—分割依据
相似性分割: 将相似灰度级的像素聚集在一起。形成 图像中的不同区域。这种基于相似性原理的方法也称 为基于区域相关的分割技术
高斯拉普拉斯(LOG)
高斯拉普拉斯(Laplacian of Gaussian, LOG, 或 Mexican hat, 墨西哥草帽)滤波器使用了Gaussian 来进行噪声去除并使用 Laplacian来进行边缘检测
高斯拉普拉斯举例
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


1 2 G2 y

7.1 点、线和边缘检测
边缘检测
Roberts交叉梯度算子
• f |Gx|+|Gy| • =|z9 - z5| + |z8 – z6|
z1 z2 z3 z4 z5 z6 z7 z8 z9
梯度计算由两个模板组成,第一个求
得梯度的第一项,第二个求得梯度的 第二项,然后求和,得到梯度。 -1 0 0 两个模板称为Roberts 0 1 1 交叉梯度算子
直接搜寻区域进行分割,在基于区域的分割中介绍
7.1 点、线和边缘检测
间断检测
点检测 线检测 边缘检测 寻找间断的一般方法:模板检测
R 1z1 2 z2 ... 9 z9
z
i i
7.1 点、线和边缘检测
点检测 使用如图所示的模板,如果 R 检测到一个点
Step2:梯度运算
' Bx Bx ( x, y ) A( x 1, y ) A( x, y ) A( x 1, y 1) A( x, y 1) ' By By ( x, y ) A( x, y 1) A( x, y ) A( x 1, y 1) A( x 1, y )
线检测 4个线检测模板

第一个模板对水平线有最大响应


第二个模板对45o方向线有最大响应
第三个模板对垂直线有最大响应

第四个模板对-45o方向线有最大响应
7.1 点、线和边缘检测
线检测 用R1,R2,R3和R4分别代表水平、45o、垂直和-45o方向线的模板响 应,在图像中心的点,如果:
高斯平 滑去噪
B(x,y) 求导
偏导 (Bx,By)
非极 大值 抑制
图像边缘
双阈值检测 连结边缘
初步得到 边缘点
7.1 点、线和边缘检测
边缘检测 :Canny算子
Step1:高斯平滑
x2 y 2 h( x, y) exp( ) 2 2 2 2 B( x, y) A( x, y)* h( x, y); 1
出来,在此基础上对目标进一步利用,如 进行特征 提取和测量 图像分割就是指把图像分成各具特性的区域 并提
取出感兴趣目标的技术和过程
图像分割

分割的目的:将图像划分为不同区域
三大类方法
根据区域间灰度不连续搜寻区域之间的边 界,在间断
检测、边缘连接和边界检测介绍

以像素性质的分布进行阈值处理,在阈值处理介绍
Ri Rj , j i
则此点被认为与在模板i方向上的线更相关

例:如果
R j , j 2,3,4
R1
则该点与水平线有更大的关联

在灰度恒定的区域,上述4个模板的响应为零
7.1 点、线和边缘检测
线检测
clc;clear f = imread('wirebond_mask.tif'); subplot(321),imshow(f);title('原始连线掩模图像') w = [2 -1 -1; -1 2 -1; -1 -1 2]; g = imfilter(double(f),w); subplot(322),imshow(g,[]) title('使用[-45度]检测器处理后的图像') gtop = g(1:120,1:120); gtop = pixeldup(gtop,4); subplot(323),imshow(gtop,[]) title('左上角的放大图')
|Gy|,y方向上的梯度分量,
突出垂直细节
梯度图像|Gx|+|Gy|,突出水平和 垂直细节
7.1 点、线和边缘检测
边缘检测 拉普拉斯算子

图像函数的拉普拉斯变换定义为
2 2 f f 2 f x 2 y 2
z1 z2 z3 z4 z5 z6 z7 z8 z9
2 f 4z5z2 z4 z6 z8 2 f 8z5z1 z2 z3 z4 z6 z7 z8 z9
7.1 点、线和边缘检测
线检测
7.1 点、线和边缘检测
边缘检测

什么是边缘? 一组相连的像素集合,这些像素 位于两个区域的边界上

一阶导数和二阶导数在识别图像边缘中的应 用
7.1 点、线和边缘检测
边缘检测
数字边缘模型
理想数字边缘模型 斜坡数字边缘模型
斜坡的产生是由光学系统、取样和图像采集系统的不完善带来 的边缘模糊造成的
7.1 点、线和边缘检测
边缘检测 :Canny算子 Canny算子
Step3:非极大值抑制
3 0 1 2
G( x, y)
1 0 3
2
根据 ( x, y)判定梯度方向在哪个区 域内。 比较 G( x, y) 与该区域内两相邻像素 灰度比较,若 G( x, y) 最大,则不改 变,否则 G( x, y) 置0。
7.1 点、线和边缘检测
线检测
gbot = g(end-119:end,end-119:end); gbot = pixeldup(gbot,4); subplot(324),imshow(gbot,[]) title('右下角的放大图') g = abs(g); subplot(325),imshow(g,[]) title('绝对值') T = max(g(:)); g = g>=T; subplot(326),imshow(g) title('满足条件[g>=T]图片]')
三维曲线
灰色是零值区域
横截面
近似的5×5模板:一个正的 中心项,周围是一个相邻的 负值区域,并被一个零值的 外部区域包围。系数的总和 为零
7.1 点、线和边缘检测
边缘检测
高斯型拉普拉斯算子总结 高斯型函数的目的是对图像进行平滑
处理
拉普拉斯算子的目的是提供一幅用零
交叉确定边缘位置的图像
-1 0
7.1 点、线和边缘检测
边缘检测
Prewitt梯度算子——3x3的梯度模板
f |Gx|+|Gy|
=|(z7 +z8 + z9) - (z1 + z2 + z3) | + |(z3 +z6 + z9) - (z1 + z4 + z7) |
-1 -1 -1 -1 0 1 z1 z2 z3
平滑处理减少了噪声的影响
7.1 点、线和边缘检测
边缘检测
原图 Sobel算子检测结果
空间高斯型平滑函数
拉普拉斯算子模板
检测边缘:寻找零交
LoG检测结果
叉点,检测黑色和白
色区域之间的过渡点
对LoG图像设置阈值的结果,所有正值区
域为白色,所有负值区域为黑色
7.1 点、线和边缘检测
边缘检测
G( x, y) 如果G( x, y)沿梯度方向最大 N ( x, y) 其他 0
7.1 点、线和边缘检测
边缘检测 :Canny算子
Step4: 双阈值画边缘 对图像2进行扫描,当遇到一个非零灰度 的像素p(x,y)时,跟踪以p(x,y)为开始点的 轮廓线,直到轮廓线的终点q(x,y)。 考察图像1中与图像2中q(x,y)点位置对应 的点s(x,y)的8邻近区域。如果在s(x,y)点 的8邻近区域中有非零像素s(x,y)存在,则 将其包括到图像2中,作为r(x,y)点。从 r(x,y)开始,重复第一步,直到我们在图 像1和图像2中都无法继续为止。 当完成对包含p(x,y)的轮廓线的连结之后 ,将这条轮廓线标记为已经访问。回到第 一步,寻找下一条轮廓线。重复第一步、 第二步、第三步,直到图像2中找不到新 轮廓线为止。 至此,完成canny算子的边缘检测。
结论(对比二阶拉普拉斯算子和一阶 Sobel梯度算子)

缺点
边缘由许多闭合环的零交叉点决定

零交叉点的计算比较复杂

优点

零交叉点图像中的边缘比梯度边缘细 抑制噪声的能力和反干扰性能


结论:梯度算子具有更多的应用
7.1 点、线和边缘检测
边缘检测
7.1 点、线和边缘检测
边缘检测 :Canny算子 Step1:利用高斯滤波对图像平滑 Step2:利用梯度算子的计算图像的梯度和梯度方向 Step3: 进行非极大值抑制 Step4: 双阈值连接边缘 原始图像 A(x,y)
数字图像处理
主讲人:杜宏博
第七章 图像分割
7.1 点、线和边缘检测 7.2 Hough变换 7.3 阈值分割 7.4 基于区域的分割 7.5 分水岭分割算法
图像分割概述:
在对图像的研究和应用中,人们往往仅对图 像中
的某些部分感兴趣,这些部分一般称为目 标或前景 为了辨识和分析目标,需要将有关区域分离 提取
-1 -2 -1
0 1 0 2 0 1
-1
-2 -10Biblioteka 0 012 1
z1 z2 z3
z4 z5 z6 z7 z8 z9
7.1 点、线和边缘检测
边缘检测
结论
Prewitt和Sobel算子是计算数字梯度时最常 用 的算子

Prewitt模板比Sobel模板简单,但Sobel模
板能
够有效抑制噪声
7.1 点、线和边缘检测
7.1 点、线和边缘检测
点检测 点检测的另外一种方法是在m*n大小的邻域中,找到其最
大像素值点和最小像素值点,其差值大于阈值的那些点
则可认为是图像中的孤立点。
g= ordfilter2(f,m*n,ones(m,n))-ordfilter2(f,1,ones(m*n)); g= g>=T
相关文档
最新文档