八年级数学尺规作图
新人教版数学八年级上册:尺规作图(共10张ppt)
'
' '
A’
A O B 就是所求作的角.
' ' '
基本作图3 平 分 已 知 角
已知:∠AOB 求作:射线OC, 使∠AOC=∠BOC 作法:1、在OA和OB上, B 分别截取OD、OE,使 OD=OE
2、分别以 D 、 E 为圆心, 1 以大于 2 DE 的长为半径 作弧,在∠AOB内,两 弧交于点C 3、作射线OC OC就是所求作的射线
E C
O
D
A
已知:线段a,b(a﹥b) 求作:一条线段,使它等于2a-b.
a
b
作法: 1.画射线AE. 2.在射线AE上顺次截取AB=BC=a. 3.在线段AC上截取CD=b. 线段AD就是所要画的线段.
A B D
C
E
基本作图2
作一个角等于已知角
作一个角等于已知角
已知:∠AOB. ' ' ' ' ' ' A O B ,使A O B AOB. 求作:
新人教版2019学年数学八年级
尺规作图(一)
教学目标:
1.了解什么是尺规作图. 2.能够用尺规完成下列基本作图: 作一条线段等于已知线段;作一 个角等于已知角;作角的平分线.
尺规作图:在几何里,把只用直
尺和圆规画图的方法称为尺规作图.
基本作图:最基本、最常用的尺规
作图,通常称为基本作图.
基本作图1 作一条线段等于已知线段.
B
O
A
作法: 1.作射线O A.DFra bibliotek'
'
2.以点O为圆心,以 任意长为 半径作弧,交OA于C ,交OB于D. ' 3.以点O 为圆心,以OC长为
第6课尺规作图(学生版)八年级数学上册讲义(浙教版)
第6课尺规作图目标导航学习目标1.了解尺规作图的含义和基本尺规作图的范围.2.会进行以下尺规作图,并了解作法的理由.①作一个角等于已知角;②作已知线段的垂直平分线;③在给定边角条件下,求作三角形.知识精讲知识点01 尺规作图用没有刻度的直尺和圆规作图简称尺规作图知识点02 基本尺规作图①作一个角等于已知角;②作已知线段的垂直平分线;③在给定边角条件下,求作三角形.能力拓展考点01 尺规作图【典例1】如图,已知线段m,n和∠α,求作△ABC,使AB=m,AC=n,∠B=∠α.【即学即练1】如图所示,已知∠α和∠β(∠α>∠β),求作:(1)∠α+∠β;(2)∠α﹣∠β.分层提分题组A 基础过关练1.如图,是尺规作图中“画一个角等于已知角”的示意图,该作法运用了“全等三角形的对应角相等”这一性质,则判定图中两三角形全等的条件是()A.SAS B.ASA C.AAS D.SSS2.下列尺规作图的语句正确的是()A.延长射线AB到D B.以点D为圆心,任意长为半径画弧C.作直线AB=3cm D.延长线段AB至C,使AC=BC3.在下列各题中,属于尺规作图的是()A.用直尺画一工件边缘的垂线B.用直尺和三角板画平行线C.利用三角板画45°的角D.用圆规在已知直线上截取一条线段等于已知线段4.如图,已知∠AOB,用尺规作∠FCE,使∠FCE=∠AOB,作图痕迹中弧FG是()A.以点E为圆心,OD为半径的弧B.以点C为圆心,OD为半径的弧C.以点E为圆心,DM为半径的弧D.以点C为圆心,DM为半径的弧5.如图,在Rt△ABC中,观察作图痕迹,若BF=2,则CF的长为()A.B.3 C.2 D.6.如图,若∠α=29°,根据尺规作图的痕迹,则∠AOB的度数为.7.如图,已知△ABC,利用尺规在BC上找一点D,使得∠BAD=∠CAD.(保留作图痕迹,不写作法)8.如图,已知△ABC,请用尺规作图法作出BC边上的中线AD.(保留作图痕迹,不写作法)9.如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,若AB⊥BC,证明:AB⊥AE.(尺规作图要求保留作图痕迹,不写作法)10.如图,BD为△ABC的中线,AC=2AB.(1)请用无刻度的直尺与圆规进行基本作图:作∠BAC的角平分线,交BD于点E,交BC于点F.(保留作图痕迹,不写作法)(2)在(1)所作的图形中,求证:△AEB≌△AED.题组B 能力提升练11.如图,已知∠AOB与∠EO'F,分别以O,O'为圆心,以同样长为半径画弧,分别交OA,OB于点A',B',交O'E,O'F于点E',F'.以B'为圆心,以E'F'长为半径画弧,交弧A'B'于点H.下列结论不正确的是()A.∠AOB=2∠EO'F B.∠AOB>∠EO'F C.∠HOB=∠EO'F D.∠AOH=∠AOB﹣∠EO'F 12.如图,△ABC中,AB<AC,观察图中尺规作图的痕迹,则下列结论正确的是()A.AM是∠BAC的角平分线B.AM是BC边上的中线C.AM是BC边的垂直平分线D.AM是BC边上的高13.如图,在△ABC中,分别以点A和点B为圆心,大于AB长为半径画弧,两弧相交于点M、N,连接MN,交BC于点D,交AB于点E,连接AD.若△ABC的周长等于17,△ADC的周长为9,那么线段AE的长等于()A.3 B.3.5 C.4 D.814.在△ABC中,∠BAC=90°,AB<AC.用尺规在BC边上找一点D,仔细观察、分析能使AD+DC=BC 的作法图是()A.B.C.D.15.尺规作图(保留作图痕迹,不要求写出作法):如图,已知线段m,n.求作△ABC,使∠A=90°,AB=m,BC=n.16.如图,在△ABC中,求作BC边上的高AD.(要求:尺规作图,保留作图痕迹,不写作法.)17.如图,在△ABC中,∠C>∠B,(1)尺规作图,作∠ABC的角平分线BM与AC相交于点D(不要求写作法,保留作图痕迹);(2)若(1)中∠A=60°,∠C=70°,求∠BDC的度数.题组C 培优拔尖练18.如图,在△ABC中,根据尺规作图痕迹,下列说法不一定正确的是()A.AF=BF B.AE=AC C.∠DBF+∠DFB=90°D.∠BAF=∠EBC19.如图,由作图痕迹做出如下判断,其中正确的是()A.FH>HG B.FH=HG C.EF>FH D.EF=FH20.在以下图形中,根据尺规作图痕迹,不能判断射线AD平分∠BAC的是()A.①B.②C.③D.④21.如图,在△ABC中,分别以A、B为圆心,大于AB的长为半径画弧,两弧交于P、Q两点,直线PQ 交BC于点D,连接AD;再分别以A、C为圆心,大于AC的长为半径画弧,两弧交于M,N两点,直线MN交BC于点E,连接AE.若CD=11,△ADE的周长为17,则BD的长为.22.如图,Rt△ABC中,∠ACB=90°,CD⊥AB于D.(1)尺规作图:作∠CAB的角平分线,交CD于点P,交BC于点Q(保留作图痕迹,不写作法);(2)若∠ABC=54°,求∠CPQ的度数.23.如图,OD平分∠AOB,点P为OA上一点.(1)尺规作图:以P为顶点,作∠APQ=∠AOB,交OD于点Q(不写作法,保留作图痕迹);(2)在(1)的条件下,若∠AOB=60°,求∠DQP的度数.。
青岛版八年级数学上册课件:1.3尺规作图 (共24张PPT)
1. 你能用尺规作一个直角三角形,使其两条直角 边分别等于已知线段a,b吗?并写出作法。
a
b
分析:先在草纸上画出一个假设的“已作出的 三角形”,会发现是“已知两边及夹角求作三 角形”,所以按照此方法作图。
已知:直角,线段a,b
求作:直角三角形ABC,使BC=a,AC=b
作法:
D
(1)作∠DCE=90°
1.基本尺规作图有哪些?
①作一条线段等于已知线段; ②作角的平分线
③作一个角等于已知角;
2.你会作已知哪三个元素的三角形,而且使 作出的三角形唯一?
已知元素
全等三角形条件
三边
(SSS)
两角及夹边
(ASA)
两边及其夹角
(SAS)
两角及其一角的对边
(AAS)
已知元素只要符合三角形全等条件的,就能作出三角形, 而且三角形是唯一的.
m
求作:以m为边长的等边三角形。 试根据下面的作图语言完成作图:
(1)作线段AB=m,
(2)分别以A、B为圆心,m长为半径画弧,两 弧在射线AX 同侧相交于C;
(3)连接AC、BC;
∴ABC 即为所求。
选一选
D 1、利用尺规不能唯一作出的三角形是(
)
A、已知三边
B、已知两边及夹角
C、已知两角及夹边 D、已知两边及其中一边的对角
4. 在3的基础上逐步向所求图形扩展。
3.已知三角形的三边,求作这个三角形.
已知:线段a,b,c.
a
bc求作:△AB来自,使AB=c,AC=b,BC=a.
(1)请写出作法并作出相应的图形.
(2)将你所作的三角形与同伴作出的三角形 进行比较,它们全等吗?为什么?
最新华师版八上数学 13.4 尺规作图 上课课件(共44张PPT)
1
2
1
2
课堂小结
工具→没有刻度的直尺、圆规
尺
规 作
图 作图
1.作一条线段等于已知线段→作线段的和与差 2.作一个角等于已知角→作角的和与差
3.作三角形
华东师大版·八年级数学上册
2.尺规作图(2)
新课导入
用圆规和直尺能不能作 出正七边形、正九边形、正 十一边形、正十三边形、正 十七边形呢?
两千年来,这一直是个未解之谜.
练习
1.
如图,已知∠A,试作∠B=
1 2
∠A(不写作
法,保留作图痕迹)
A
B
2. 做出图中三角形的三个角的平分线。
内心
如何过一点 C 作已知直线 AB 的垂线呢?
C
点C与已知直线 AB 的位置关系有两种: 点C在直线 AB 上或点C在直线 AB 外.
(1)当点 C 在直线 AB 上
① 做平角ACB的平分线CD;
华东师大版·八年级数学上册
1.尺规作图(1)
新课导入
三角尺 量角器
刻度尺
圆规
探究新知
没有刻度的直尺
只能使用圆规和 没有刻度的直尺这两 种工具作几何图形的 方法叫做尺规作图.
圆规
基本的尺规作图:
作一条线段等于已知线段
作一个角等于已知角 作已知角的平分线
尺规作图时通常 保留作图痕迹.
经过一已知点作已知直线的垂线
D
B
C
思考 如图,已知直线l是线段AB的垂 直平分线,则直线l是线段AB的对称轴, 对l上的任意两点C、D,总有:
A
CA=CB,DA=DB
由此,你能发现作垂直平分线的方法吗?
l C
B D
第11讲尺规作图八年级数学上册讲义(华师大版)(学生版)
第11讲尺规作图目标导航1.了解尺规作图的定义,会用尺规作图(1)作一条线段等于已知线段(2)作一个角等于已知角(3)作已知角的角平分线(4)作已知线段的垂直平分线2.应用三角形全等知识,解释角平分线的原理3.会用尺规作图,培养学生动手能力,会说求作过程。
知识精讲知识点01 常见基本作图1.尺规作图的定义利用直尺(没有刻度)和圆规完成基本作图,称之为尺规作图.要点诠释:尺规作图时使用的直尺是不能用来进行测量长度的操作,它一般用来将两个点连在一起.圆规可以开至无限宽,但上面也不能有刻度.它只可以拉开成之前构造过的长度或一个任意的长度.2.常见基本作图常见并经常使用的基本作图有:1.作一条线段等于已知线段;2.作一个角等于已知角;3.作角的平分线;4.作线段的垂直平分线;5.作三角形.【即学即练1】作一条线段等于已知线段作图:已知线段a、b,画一条线段使它等于2a﹣b.(要求:用尺规作图,并写出已知、求作、结论,保留作图痕迹,不写作法)已知:求作:结论:【即学即练2】尺规作角已知:∠AOB.利用尺规作:∠A′O′B′,使∠A′O′B′=2∠AOB.【即学即练3】尺规作垂直平分线尺规作图:经过已知直线外一点作这条直线的垂线,如图K292所示作图中,正确的是()图K292能力拓展考法01 尺规作三角形2.如图,已知线段a和b,a>b,求作直角三角形ABC,使直角三角形的斜边AB=a,直角边AC=b.(用尺规作图,保留作图痕迹,不要求写作法)考法02 尺规作垂直评分线为了推进农村新型合作医疗制度改革,准备在某镇新建一个医疗点P,使P到该镇所属A村、B村、C村的村委会所在地的距离都相等(A、B、C不在同一直线上,地理位置如下图),请你用尺规作图的方法确定点P的位置.要求:写出已知、求作;不写作法,保留作图痕迹.分层提分题组A 基础过关练1. 如图所示,已知∠α和∠β,利用尺规作∠AOB,使∠AOB=2(∠α∠β).2.如图K291,下面是利用尺规作∠AOB的平分线OC的作法:图K291(1)以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E;(2)分别以D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB内交于点C;(3)画射线OC,射线OC就是∠AOB的平分线.在用尺规作角平分线过程中,用到的三角形全等的判定方法是()A.ASAB.SASC.SSSD.AAS3.如图K294,在△ABC中,BA=BC,∠B=80°,观察图中尺规作图的痕迹,则∠DCE的度数为()图K294A.60°B.65°C.70°D.75°4.[2020·长春]如图K295,在△ABC中,∠BAC=90°,AB>AC.按下列步骤作图:①分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N;②作直线MN,与边AB相交于点D,连接CD.下列说法不一定正确的是()图K295A.∠BDN=∠CDNB.∠ADC=2∠BC.∠ACD=∠DCBD.2∠B+∠ACD=90°5.[2020·台州]如图K296,已知线段AB,分别以A,B为圆心,大于AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()图K296A.AB平分∠CADB.CD平分∠ACBC.AB⊥CDD.AB=CD题组B 能力提升练6.[2020·衢州]过直线l外一点P作直线l的平行线,下列尺规作图中错误的是()图K2977.[2020·襄阳]如图K298,Rt△ABC中,∠ABC=90°,根据尺规作图的痕迹判断以下结论错误的是 ()图K298A.DB=DEB.AB=AEC.∠EDC=∠BACD.∠DAC=∠C8.如图K299是利用直尺和三角尺过已知直线l外一点P作直线l的平行线的方法,其理由是.图K299【答案】同位角相等,两直线平行9.[2020·扬州]如图K2910,在△ABC中,按以下步骤作图:图K2910①以点B为圆心,任意长为半径作弧,分别交AB,BC于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧交于点F;③作射线BF交AC于点G.若AB=8,BC=12,△ABG的面积为18,则△CBG的面积为.题组C 培优拔尖练1.[2020·潍坊]如图K2911,在Rt△ABC中,∠C=90°,∠B=20°,PQ垂直平分AB,垂足为Q,交BC于点P.按以下步骤作图:①以点A为圆心,以适当的长为半径作弧,分别交边AC,AB于点D,E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧相交于点F;③作射线AF.若AF与PQ的夹角为α,则α=°.图K29112.如图K2912,在▱ABCD中,AB=3,BC=5,以点B为圆心,以任意长为半径作弧,分别交BA,BC于点P,Q,再分别以P,Q为圆心,以大于PQ的长为半径作弧,两弧在∠ABC内交于点M,连接BM并延长,交AD于点E,则DE的长为.图K29123.[2020·本溪]如图K2913,在Rt△ABC中,∠ACB=90°,AC=2BC,分别以点A和B为圆心,以大于AB的长为半径作弧,两弧相交于点M和N,作直线MN,交AC于点E,连接BE,若CE=3,则BE的长为.图K29134.[2019·嘉兴]如图K2914,在6×6的方格纸中,点A,B,C都在格点上,按要求画图.(1)在图①中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形;(2)在图②中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).图K29145.[2020·陕西]如图K2915,已知△ABC,AC>AB,∠C=45°,请用尺规作图法在AC边上求作一点P,使∠PBC=45°.(保留作图痕迹,不写作法)图K2915。
1.3.6 尺规作图 苏科版数学八年级上册课件
4.如图,在△ABC中,BA=BC,∠B=80°,观察图中尺规作图的痕
迹,则∠DCE的度数为(
A.60°
C.70°
B.65°
D.75°
B)
5.如图,在菱形ABCD中,∠A=30°,取大于
AB的长为半径,
分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边
于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为
作法:
①作一条直线l;
图示:
②在l上任取一点A,以点A为圆心,以线段a的
长度为半径画弧,交直线l于点B.
线段AB即为所求作的线段.
圆上的点到圆心的
距离等于半径
2.作一个角等于已知角
已知:∠AOB.
图示:
作图依据是
什么?
求作:∠DEF,使∠DEF=∠AOB.
作法:
①在∠AOB上以点O为圆心,任意长为半径画弧,分别交
②以B为圆心,BP为半径画弧;
③设两弧交于点Q(Q与P分别在l的两旁);
④连结PQ.
(2)求证:PQ⊥l.
A
B
l
课堂小结
作已知角的角
平分线
特例
过直线上的一点作
已知直线的垂线
作图依据:SSS
过直线外的一点作已 作法
知直线的垂线
过平面上一点作已知直线的垂线
方法1:活动3
方法2:拓展延伸
知识应用:一题多解
的长为半径画弧,两弧交于点M,N;
②过点M,N作直线.
直线MN即为线段AB的垂直平分线.
图示:
3
工人师傅常常利用角尺平分一个角.如
图,在∠AOB的两边OA、OB上分别任取OC=
1.6尺规作图 课件2024-2025学年浙教版数学八年级上册
作业布置
【综合实践类作业】 如图,A,B表示两个仓库,要在A,B一侧的河岸边建造一个码头, 使它到两个仓库的距离相等,码头应建造在什么位置?
解:连接AB,分别以A和B为圆心,以大于12AB为 半径的两弧交于点E和F,作直线EF,与河岸交于 点C,如右图,则码头应建在点C处.
板书设计
尺规作图:
1.6尺规作图
1.6尺规作图
浙教版 八年级上册
教材分析
尺规作图是“浙教版八年级数学(上)”第一章第六节的 内容。本节课的主要内容是让学生了解尺规作图的含义和基本 尺规作图的范围,并动手画图完成以下基本作图:①作一个角 等于已知角;②作已知线段的垂直平分线;③在给定边角条件下, 求作三角形.要求学生会进行简单的尺规作图,并了解作法的理 由.
课堂练习
【知识技能类作业】 必做题
3.在△ABC中,分别以点A和B为圆心,以大于
1 2
AB的长为半径画弧,
两弧交于点M、N;作直线MN,交BC于点D;连接AD.若△ADC的
周长为12,AB=6,则△ABC的周长为( C )
A.6
B.12
C.18
D.24
课堂练习
【知识技能类作业】 选做题: 1.下列关于作图的语句中正确的是( D ) A.画直线AB=10厘米 B.画射线OB=10厘米 C.已知A,B,C三点,过这三点画一条直线 D.过直线AB外一点画一条直线和直线AB平行
尺规作图是几何图形中的重要内容之一,是训练几何技能 的一个重要方面,有利于提高学生的思维能力,提高学生分析 问题、解决问题的能力,在教材中有着非常重要的地位和作用.
教学目标
1.了解尺规作图的含义和基本尺规作图的范围. 2.会进行以下尺规作图,并了解作法的理由. ①作一个角等于已知角; ②作已知线段的垂直平分线; ③在给定边角条件下,求作三角形. 3.提高分析问题、解决问题的能力.
尺规作图课件华东师大版数学八年级上册
探究讨论
通过上面的作图,你还能发现什么?你会作任意一个三 角形的三条中线吗? 通过作图,知道直线 CD 与线段 AB 的交点就是 AB 的 中点,因此我们可以用这种方法作出线段 AB 的中点, 从而可以作出任意一个三角形的的三条中线。
例2 如图,A,B 是路边两个 新建小区,要在公路边增设一
个公共汽车站,使两个小区到
作一条线段等于已知线段
已知:线段 MN. 求作线段 AC,使 AC=MN.
1. 画射线 AB; 2. 用圆规量出线段 MN 的长,在 射线 AB 上截取 AC=MN. 线段 AC
就是所要画的线段.
图 24.4.2
作一个角等于已知角
B
已知:∠AOB.
求作:∠A'O'B',
O
A
使 ∠A'O'B' = ∠AOB.
A
C
B
2.经过已知直线外一点作已知直线
的垂线. 已知直线 AB 和 AB 外一点 C,
AD
试按下列步骤用直尺和圆规准确
地经过点 C 作出直线 AB 的垂线.
C
B E F
步骤: (1)以点 C 为圆心,作弧与直线 AB 相交于点 D、点 E; (2)作∠DCE 的平分线 CF. 直线 CF 就是所要求作的垂线.
2. 已知: ∠1, ∠2.求作:
1
(1) ∠3,使得∠3 = ∠2 -∠1; B
2
解:1. 作法:
D
(1) 作射线 OA;
O
A
(2) 以 OA 为边做∠AOB =∠2;
(3) 以 O 为顶点,以射线 OA 为边,在∠AOB 内部作
∠AOD =∠1.则∠BOD 即为所求的∠3.
八年级数学《尺规作图(1)线段、角》课件
2.巩固练习
①已知线段AB、CD如图所示,画一条线段,使
其等于AB-2CD. A
B
C
D
②已知∠A、∠B如பைடு நூலகம்所示,画一个角,使其等 于∠A-2∠B.
A
B
③已知线段AB、CD如图所示,画一个等腰三角 形,使其腰长等于AB,底边长等于BC.
A
B
C
D
⑴已知:∠AOB,利用尺规作 ∠AˊOˊBˊ,使∠AˊOˊBˊ=2∠AOB。 ⑵已知角α,β(β<α<90°)求作一个角,使它 等于α+β。
xx于x点;) 5. 分别以点x,点x为圆心,以xx为半径作
弧,两弧相交于x点。
两个基本作图 (1)作一条线段等于已知线段
(2)作一个角等于已知角
《课课练》P51-P52 第1课时尺规作图 全做
α
β
练习: 1、分别画出满足下列条件的三角形ABC (1)已知两边及夹角 (2)已知两角及夹边
a
·· ·b ·
a
·a ·
a
β
(3)已知三边
2、已知:直线AB及直线AB外一点C; 求作:过点C作CD∥AB。
l
C
A
E
B
3、已知:线段a,c,∠α
求作:ΔABC,使BC=a,AB=c,∠ABC=∠ α
O
A C
O`
C`
A`
❖ 1、作射线O`A`。 ❖ 2、以点O为圆心,以任意长为半径作弧,交OA于C,交
OB于D。 ❖ 3、以点O`为圆心,以OC长为半径作弧,交O`A`于C`。 ❖ 4、以点C`为圆心,以CD长为半径作弧,交前弧于D`。 ❖ 5、经过点D`作射线O`B`,∠A`O`B`就是所求的角。
八年级数学上人教版《 尺规作图》课堂笔记
《尺规作图》课堂笔记
一、基本概念和定义
1.尺规作图:只使用圆规和无刻度直尺进行的作图方法。
2.基本作图:通过尺规可以完成的基本图形绘制。
二、尺规作图的基本步骤和要求
1.明确题目要求,确定需要绘制的图形。
2.选择合适的圆心和半径,用圆规进行作图。
3.使用无刻度直尺进行连线,完成图形。
4.标记必要的角度和长度信息。
5.检查图形是否符合题目要求,进行调整。
三、常见图形的尺规作图方法
1.等分线段:利用圆规和无刻度直尺将线段等分为指定份数。
2.作一个角等于已知角:利用圆规截取已知角两边等长线段,再在无刻度直尺上
画出等长线段,连接两端点得到所求角。
3.作已知线段的垂直平分线:分别以线段两端点为圆心,以大于线段长度一半为
半径画弧,两弧交于两点,连接这两点即为所求垂直平分线。
4.作一个角大于、小于或等于已知角:通过截取和比较已知角两边等长线段来得
到所求角。
四、注意事项
1.圆规使用时要固定好圆心,保持半径不变。
2.无刻度直尺只能用来进行连线和画直线,不能进行度量。
3.作图过程中要保持图形清晰、整洁,避免混淆。
4.完成作图后要进行检查,确保符合题目要求。
浙教八年级数学上册《尺规作图》课件课件(34张ppt)
探究: 画垂线
已知:直线l 及其外一点C . 求作:过C 点垂直于直线l 的直线.
C l
作 法 :(1)以C 点为圆心,以大于C 点到直线l 的距
离为半经画弧,交直线于A、B 两点; (2)分别以A、B 两点为圆心,以大于1/2AB的
长度为半径画弧,两弧相交于D 点;
(3)过C、D 两点作直线CD ,即为所求作的
尺规1.6作尺图规作图
在几何作图中,我们把用没有刻度的直尺和圆 规作图,简称尺规作图。
尺规作图源于希腊,一些古希腊人为了显示谁 的逻辑思维能力更强,而限制了作图工具。
1. 画线段
已知:线段MN=a,求作一条线段等于a.
a
M
N
作 法 :(1)先画射线AC;
(2)用圆规量出线段MN 的长; (3)在射线AC 上截取AB =a ,则线段
用一句话概括叙述就可以了.如:作线段 ××=××;作∠×××=∠×××;作线段 ××的垂直平分线××等。
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年4月22日星期五2022/4/222022/4/222022/4/22 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年4月2022/4/222022/4/222022/4/224/22/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/4/222022/4/22April 22, 2022
(5)经过点D′画射线O′ B′,则∠A′ O′ B′ 就是所要画的角.
B′
B
D
D′
O
八年级数学上册4 尺规作图 知识点解读:尺规作图素材 华东师大
知识点解读:尺规作图“尺规作图”问题是几何学习的重要内容之一,那么如何学好“用尺规作线段和角”呢?一、理解“尺规作图”的含义1、只用没有刻度的直尺和圆规作图称为尺规作图.显然,尺规作图的工具只能是直尺和圆规.其中直尺用来作直线、线段、射线或延长线段等;圆规用来作圆或圆弧等。
值得注意的是直尺是没有刻度的或不考虑刻度的存在。
2、基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角。
利用这两个基本作图,可以作两条线段或两个角的和或差.二、熟练掌握尺规作图题的规范语言1、用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2、用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、× 。
三、了解尺规作图题的一般步骤尺规作图题的步骤:1、已知:当题目是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;2、求作:能根据题目写出要求作出的图形及此图形应满足的条件;3、作法:能根据作图的过程写出每一步的操作过程。
1.6尺规作图课件浙教版数学八年级上册
C B
D
探究:为什么直线CD是线段AB的垂直平分线?
c
AC=b,BC=a.
作法:
A
(1) 作一条线段BC=a;
(2) 分别以B,C为圆心,以c,b为 B
C
半径画弧,两弧交于A点;
(3) 连接AB,AC,△ABC就是所求作的三角形.
课堂小结
尺规作图:在几何作图中,我们把只 使用_圆__规__和_没__有__刻__度__的直尺作图的 方法称为尺规作图. 概述下列尺规作图的步骤: ①作一个角等于已知角; ②作已知线段的垂直平分线.
证明:连结CA、CB、 DA、DB,
设AB与CD交于点O 由作法可得 AC=AD=BC=BD
AC=BC
C
在△ACD和△BCD中
∠ACO=∠BCO
AC=BC
CO=CO
AD=BD
Aபைடு நூலகம்
O
B
∴△ACO≌△BCO(SAS)
CD=CD
∴∠AOC =∠BOC,AO=B0
∴△ACD≌△BCD(SSS)∵∠AOC +∠BOC=180°
∴△OCD ≌ △O’C’D’(SSS) ∴ ∠A’O’B’=∠AOB
O
CA
B′ D′
O′
C′
A′
典例精讲
例1 已知: ∠α和∠β. 用直尺和圆规求作 ∠ABC, 使 ∠ABC=∠α-∠β.
作两个角等于∠α和∠β,且他们的一条边重合
人教版八年级数学上册13.1.2 尺规作图 (共13张PPT)
•
新课讲解
作法:(1)分别以点A和B为圆心,
以大于1 AB的长为半径作弧,
2
两弧交于C、D两点.
A
(2)作直线CD.
CD就是所Байду номын сангаас作的直线.
C B
D
特别说明:这个作法实际上就是线段垂直平分线的尺规作图, 我们也可以用这种方法确定线段的中点.
新课讲解
2 作轴对称图形的对称轴
【想一想】下图中的五角星有几条对称轴?如何作出这
距离相等的两点,即线段AB的垂直平分线上的两点,从 而作出线段AB的垂直平分线.
•
9、要学生做的事,教职员躬亲共做; 要学生 学的知 识,教 职员躬 亲共学 ;要学 生守的 规则, 教职员 躬亲共 守。21.8.1021.8.10T uesday, August 10, 2021
•
10、阅读一切好书如同和过去最杰出 的人谈 话。21:41:1121:41:1121:418/10/2021 9:41:11 PM
些对称轴呢?
l
作法:(1)找出五角星的一对
A
B
对称点A和B,连结AB.
(2)作出线段AB的垂直平分线l.
则l就是这个五角星的一条对称轴.
用同样的方法,可以找出五条对称轴, 所以五角星有五条对称轴.
新课讲解
方法总结:对于轴对称图形,只要找到任意一组对称点,作出 对称点所连线段的垂直平分线,就能得此图形的对称轴.
•
15、一年之计,莫如树谷;十年之计 ,莫如 树木; 终身之 计,莫 如树人 。2021年8月下 午9时41分21.8.1021:41August 10, 2021
•
16、提出一个问题往往比解决一个更 重要。 因为解 决问题 也许仅 是一个 数学上 或实验 上的技 能而已 ,而提 出新的 问题, 却需要 有创造 性的想 像力, 而且标 志着科 学的真 正进步 。2021年8月10日星期 二9时41分11秒21:41:1110 August 2021
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§19.3 尺规作图(1)
一、教学目标
1.了解尺规作图.
2.掌握尺规的基本作图:画一条线段等于已知线段,画一个角等于已知角.
3.尺规作图的步骤.
4.尺规作图的简单应用,解尺规作图题,会写已知、求作和作法.
二、教学重点 画图,写出作图的主要画法.
三、教学难点 写出作图的主要画法,应用尺规作图.
四、教学方法 引导法,演示法.
五、教学过程
(一)引入 直尺、量角器、圆规都是都是大家很熟悉的工具,大家都知道用直尺可以画线,用量角器可以画角,用圆规可以画圆.
请大家画一条长4cm的线段,画一个48°的角,画一个半径为3cm的圆.
如果只用无刻度的直尺和圆规,你还能画出符合条件的线段、角吗?
实际上,只用无刻度的直尺和圆规作图,在数学上叫做尺规作图.
(二)新课
1.画一条线段等于已知线段.
请同学们探索用直尺和圆规准确地画一条线段等于已知的线段.
已知线段a,用直尺和圆规准确地画一条线段等于已知线段a.
请同学们讨论、探索、交流、归纳出具体的作图方法.
例1 已知三边作三角形.
已知:线段a、b、c.(画出三条线段a、b、c)
求作:△ABC,使得三边为线段a、b、c.
作法:(1)画一条线段AB,使得AB=c.
(2)以点A为圆心,以线段b的长为半径画圆弧;再以点B为圆心,以线段a的长为半径画圆
弧;两弧交于点C.
(3)连结AC,BC.
△ABC即为所求.
2.画一个角等于已知角.
请同学们探索用直尺和圆规准确地画一个角等于已知角.
已知角∠MPN,用直尺和圆规准确地画一个角等于已知角∠MPN.
请同学们讨论、探索、交流、归纳出具体的作图方法.
作法: (1)画射线OA.
(2)以角∠MPN的顶点P为圆心,以适当长为半径画弧,交∠MPN的两边于E、F.
(3)以点O为圆心,以PE长为半径画弧,交OA于点C.
(4)以点C为圆心,以EF长为半径画弧,交前一条弧于点D.
(5)经过点D作射线OB.
∠AOB就是所画的角.(如图)
注意:几何作图要保留作图痕迹.
探索如何过直线外一点做已知直线的平行线;
请同学们讨论、探索、交流、归纳出具体的作图方法.
例2 根据下列条件作三角形.
(1)已知两边及夹角作三角形;
(2)已知两角及夹边作三角形;
请同学们讨论、探索、交流、归纳出具体的作图方法(顺序).
练习:教材第82页练习第1、2题.
(三)小结 请同学们自己对本课内容进行小结.
(四)作业 习题1、2题.
§19.3 尺规作图(2)
一、教学目标
1.进一步熟练尺规作图.
2.掌握尺规的基本作图:画角平分线.
3.进一步学习解尺规作图题,会写已知、求作和作法,以及掌握准确的作图语言.
4.运用尺规基本作图解决有关的作图问题.
二、教学重点 分析尺规基本作图问题的解决过程,写好作图的主要画法,并完成作图.
三、教学难点 分析实际作图问题,运用尺规的基本作图,写出作图的主要画法.
四、教学方法 引导法,演示法,分析法,讨论法.
五、教学过程
(一)引入 我们已熟悉尺规的基本作图:画一条线段等于已知线段,画一个角等于已知角,那么利用尺规还能画角平分线吗?
(二)新课
前面我们学习了用尺规画线段,那么你能利用尺规作图将一个角两等分吗?
利用尺规作图画角平分线.
请同学们探索用直尺和圆规准确地画出一个角的平分线.
已知∠AOB,用直尺和圆规准确地画出已知∠AOB的平分线.
请各小组同学讨论、探索、交流、归纳出具体的作图方法.
例1 已知∠α与∠β,求作一个角,使它等于(∠α+∠β)的一半.
分析:要完成这个作图,先作出等于(∠α+∠β)的角,再作平分线即可. 已知、求作、作法由学生自行完成.(略)
例2 已知三角形中的一个角,此角的平分线长,以及这个角的一边长,求作三角形.
分析:首先作出符合条件的图形草图,分析图形的特征,然后确定作图的顺序,写出已知、求作、作法,作图中遇到属于基本作图的,只叙述基本作图即可.
已知:∠α,以及线段b、c(b<c).
求作:△ABC,使得∠BAC=∠α,AB=c,∠BAC的平分线AD=b.
作法:(1)作∠MAN=∠α.
(2)作∠MAN的平分线AE.
(3)在AM上截取AB=c,在AE上截取AD=b.
(4)连结BD,并延长交AN于点C.
△ABC就是所画的三角形.(如图)
例3 已知三角形的一边及这边上的中线和高(中线长大于高),求作三角形.同学们先自主思考探索,然后各小组同学讨论、交流、归纳出具体的作图方
法.再请学生代表上黑板示范,并解释原由.
例4 已知直线和直线外两点(过这两点的直线与已知直线不垂直),利用尺规作图在直线上求作一点,使其到直线外已知两点的距离和最小.
同学们先自主思考,然后各小组交流意见,完成作图.
练习教材练习第1、2题.
(三)小结
1.尺规作图的五种常用基本作图.
2.掌握一些规范的几何作图语句.
3.学过基本作图后,在以后的作图中,遇到属于基本作图的地方,只须用一句话概括叙述即可.
4.解决尺规作图问题,先作出符合条件的图形草图,再确定具体的作图方法.
(四)作业 教材第5题.
§19.3 尺规作图(3)
一、教学目标
1.进一步熟练尺规作图.
2.掌握尺规的基本作图:画线段的垂直平分线,画直线的垂线.
3.尺规作图的简单应用,解尺规作图题,会写已知、求作和作法.
二、教学重点画图,写出作图的主要画法.
三、教学难点 写出作图的主要画法,应用尺规作图.
四、教学方法 引导法,演示法,分析法,探索法.
五、教学过程
(一)引入 我们已熟悉尺规的两个基本作图:画线段,画角.
那么利用尺规还能解决什么作图问题呢?
(二)新课
1.画线段的垂直平分线.
请同学们探索用直尺和圆规准确地画出一条线段的垂直平分线.
已知线段a,用直尺和圆规准确地画出已知线段a的垂直平分线.
解决这一问题,要利用好线段垂直平分线的性质.
请同学们讨论、探索、交流、归纳出具体的作图方法.
例1 已知底边及底边上的高作等腰三角形.
分析:要完成这个作图,先作出底边,再作底边的垂直平分线,取高,最后完成三角形.
已知:底边a、及底边上的高h.(画出两条线段a、h)
求作:△ABC,使得一底边为a、底边上的高为h.
作法:(略).
2.画直线的垂线.
请同学们探索用直尺和圆规准确地画出一条直线的垂线.
请同学们讨论、探索、交流、归纳出具体的作图方法.
实际上,画出一条直线的垂线,就是转化为画线段的垂直平分线.
例2 过直线外一点作直线的垂线.
已知:直线a、及直线a外一点A.(画出直线a、点A)
求作:直线a的垂线直线b,使得直线b经过点A.
作法:(1)以点A为圆心,以适当长为半径画弧,交直线a于点C、D.
(2)以点C为圆心,以AD长为半径在直线另一侧画弧.
(3)以点D为圆心,以AD长为半径在直线另一侧画弧,交前一条弧于点B. (4)经过点A、B 作直线AB.
直线AB就是所画的垂线b.(如图)
3.(优生)探索如何过一点、两点和不在同一直线上的三点作圆.
思考:如何解决这一实际问题?下面我们共同探寻解决这一问题的办法.
练习教材练习第1、2题.
探究1:过一个已知点A如何作圆?(如图,让学生动手去完成)
学生讨论并发现:过点A所作圆的圆心在哪儿?半径多大?可以作几个这样的圆?(圆心不定,半径不定,可以作无数个圆)
探究1 探究2 探究2:过已知两点A、B如何作圆?(如图,学生动手去完成)
学生继续讨论并发现:它们的圆心到A、B两点的距离怎样?能用式子表示吗?圆心在哪里?过点
A、B两点的圆有几个?(OA=OB,圆心在直线AB的垂直平分线上,有无数个圆)
探究3:过同一平面内三个点的情况会怎样呢?
分两种情况研究:
(1)求作一个圆,使它经过不在一直线上三点A、B、C.
已知:不在一直线上三点A、B、C,求作一个圆,使它同时经过点A、B、C.(学生口述作法,
教师示范作图过程)
学生讨论并发现:这样一共可作几个圆?圆心在哪里?圆心到A、B、C三点的距离怎样?(可作一
个圆,圆心是线段AB、AC、BC的垂直平分线的交点,圆心到A、B、C三点距离相等)
(2)过在一直线上的三点A、B、C可以作几个圆?(不能作出)
发现结论:不在同一直线上的三点确定一个圆:
(三)小结 请同学们自己对本课内容进行小结.
(四)作业 习题3、4题.。