初一数学尺规作图

合集下载

七年级数学同步拔高第四讲《尺规作图》讲义

七年级数学同步拔高第四讲《尺规作图》讲义

第四讲尺规作图(讲义)一、知识点睛1.五种基本作图:①作一条线段等于已知线段;②作一个角等于已知角;③作已知线段的垂直平分线;④作已知角的角平分线;⑤过平面内一点,作已知直线的垂线.书写作法时注意:________________,________________.2.应用作图:①______________________,设计作图方案;②调用__________________完成图形.二、精讲精练1.作一条线段等于已知线段.已知:如图,线段a.求作:线段AB,使AB=a.作法:(1)作射线AP;(2)以为圆心,为半径作弧,交射线AP于点B;___________即为所求.2.作一个角等于已知角.已知:如图,∠ABC.求作:∠DEF,使∠DEF=∠ABC.作法:(1)作射线EF;(2)以_____为圆心,______为半径作弧,交BA于点M,交BC于点N;(3)以____为圆心,_____为半径作弧,交EF于点P;(4)___________,___________作弧,交前弧于点D;(5)作射线ED.∠DEF______________.证明:连接_____,_____.在______和______中___________()___________()___________()⎧⎪⎨⎪⎩已作已作已作∴_______________()∴_______________3.作已知线段的垂直平分线.已知:线段MN .求作:直线AB ,使AB 垂直平分MN.作法:(1)分别以_______,______为圆心,___________为半径作弧,两弧相交于点A 和点B ;(2)_______________________________________._______________________________________.4.作已知角的角平分线.已知:如图,∠AOB .求作:射线OP ,使∠AOP =∠BOP (即OP 平分∠AOB).作法:(1)________________,________________作弧,交OA 于点M ,交OB 于点N ;(2)分别以_______,_______为圆心,_________为半径作弧,两弧在交于点P ;(3)_____________________________________._____________________________________.5.(1)过直线上一点,作已知直线的垂线.已知:A为直线MN上一点.求作:直线AB,使AB⊥MN.作法:(1)___________________________________________ ______________________________________;(2)__________________________________________ ______________________________________;(3)________________________________________.___________________________________________.5.(2)过直线外一点,作已知直线的垂线.已知:A为直线MN外一点.求作:直线AB,使AB⊥MN.作法:(1)__________________________________________ _______________________________________;(2)__________________________________________;_______________________________________;(3)__________________________________________;(4)__________________________________________.____________________________________.6.已知三边作三角形.已知:如图,线段a,b,c.求作:△ABC,使AB=c,AC=b,BC=a.作法:(1)作线段__________;(2)___________________作弧,_______________作弧与前弧相交于点B;(3)连接AB,BC.__________________.7.过直线外一点作已知直线的平行线.已知:如图,A是直线MN外一点.求作:直线AB,使AB∥MN.作法:(1)过点A作_____________________________;(2)过点A作_____________________________.直线AB即为所求.8.已知两边及夹角作三角形.已知:如图,线段m,n,∠α.求作:△ABC,使∠A=∠α,AB=m,AC=n.作法:(1)___________________;(2)在射线______上截取__________,在射线______上截取____________;(3)连接BC.___________________.9.以下叙述的作图方法中能够实现的有____________.①过点A作直线BC的垂线;②过点A作线段BC的垂直平分线;③作∠AOB的平分线;④延长AB交CD的中点于E;⑤延长AB使AB⊥CD.10.电信部门要修建一座电视信号发射塔,如下图,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条高速公路m,n的距离也必须相等,发射塔P应修建在什么位置?11.为打造“宜居城市”,某市拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A,B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A,B,C的位置如图所示.请在题目给的原图上利用尺规作图作出音乐喷泉M的位置.12.请画出草图,解决下列问题:(1)已知:在△ABC中,CE平分∠ACB交AB于E,过点E 作ED∥AC交BC于D,过D作DF∥CE交AB于F,则∠EDF和∠BDF的数量关系是______________________.(2)在△ABC中,BD平分∠ABC交AC于点D,过D作DE∥BC交AB于点E,则∠AED和∠EDB的数量关系是____________________________.(3)已知:在△ABC中,BO平分∠ABC,CO平分∠ACB,BO与CO交于点O,过点O作DE∥BC交AB于D,交AC 于E,则DE_____BD+CE(选填“>”、“<”或“=”)(4)已知:在Rt△ABC中,∠C=90º,BD平分∠B交AC于点D,在AB边上取一点E,使BE=BC,连结ED.则∠BED=_________.三、回顾与思考________________________________________________________ ________________________________________________________ ________________________________________________________。

数学人教版七年级上册尺规作图

数学人教版七年级上册尺规作图

5、已知线段AC = 1,BC = 3则线段AB的长度 是( D ). A .4 B.2 C. 2或4 D. 以上答案都不对
变式:已知A、B、C是同一条直线上的三
点,且线段AC = 1,BC = 3,则线段AB的
长度是( C ).
现有A、B两个村庄位于小河边,要修一水 库,供应村民饮用水,请问该水库应当修 在哪里,费用最少?
间的距离.
A
B
C
D
线段AC的中点
A B C
你记住什么 是线段的中 点了吗?
定义:把一条线段分成相等的两条线段的点, 叫做这条线段的中点.
数量关系: AB + BC=AC 如上图,若AB=2cm,
1 AC 2
AB = BC=
则线段AC= 4 cm,
线段BC= 2 cm.
AC=2AB=2BC
例3 如图,点P是线段AB的中点,点C、D
6
∴ AB=6PC=6×1.5=9(cm) 即 AB的长是9cm.
例2 已知线段a、b,画一条线段c,使它 的长度等于两条已知线段的长度的和.
a b
画法: 1、画射线AD. 2、用圆规在射线AD上截取AB=a.
3、用圆规在射线BD上截取BC=b.
c a b B C D
A
线段AC就是所求的线段c.
线段c的长度是线段a、b的长度的和, 我们就说线段c是线段a、b的和, 记做c=a+b,即AC=AB+BC.
把线段AB三等分.已知线段CP的长为1.5cm, 求线段AB的长.
A C P
1.5cm
D
B
?
∵ 解:
点P是线段AB的中点,
1 ∴ AP=PB= AB. 2 ∵ 点 C、D把线 段AB三等分,

初中尺规作图详细讲解(含图)

初中尺规作图详细讲解(含图)

初中数学尺规作图讲解初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种.限用直尺和圆规来完成的作图方法,叫做尺规作图法。

最简单的尺规作图有如下三条:⑴经过两已知点可以画一条直线;⑵已知圆心和半径可以作一圆;⑶两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点;以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题。

历史上,最著名的尺规作图不能问题是:⑴三等分角问题:三等分一个任意角;⑵倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;⑶化圆为方问题:作一个正方形,使它的面积等于已知圆的面积.这三个问题后被称为“几何作图三大问题”。

直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半径1r=时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问题.若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意.数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书。

还有另外两个著名问题:⑴正多边形作法·只使用直尺和圆规,作正五边形.·只使用直尺和圆规,作正六边形.·只使用直尺和圆规,作正七边形—-这个看上去非常简单的题目,曾经使许多著名数学家都束手无策,因为正七边形是不能由尺规作出的。

初中中考尺规作图十例(打印)

初中中考尺规作图十例(打印)

BPAaOQPNM 尺规作图【常识归纳】1.尺规作图的界说:尺规作图是指用没有刻度的直尺和圆规作图.最根本,最经常应用的尺规作图,平日称根本作图.一些庞杂的尺规作图都是由根本作图构成的.2.五种根本作图:1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知线段的垂直等分线;4.作已知角的角等分线;5.过一点作已知直线的垂线; (1)标题一:作一条线段等于已知线段. 已知:如图,线段a . 求作:线段AB,使AB = a .作法:(1) 作射线AP;(2) 在射线AP 上截取AB=a . 则线段AB 就是所求作的图形.(2)标题二:作已知线段的中点. 已知:如图,线段MN.求作:点O,使MO=NO (即O 是MN 的中点). 作法:(1)分离以M.N 为圆心,大于的雷同线段为半径画弧,ON MBPA NM BOA③②①A'A'N'O'B'M'O'A'N'M'M'O'两弧订交于P,Q;(2)衔接PQ 交MN 于O .则点O 就是所求作的MN的中点.(3)标题三:作已知角的角等分线. 已知:如图,∠AOB,求作:射线OP, 使∠AOP =∠BOP (即OP 等分∠AOB ). 作法:(1)以O 为圆心,随意率性长度为半径画弧,分离交OA,OB 于M,N;(2)分离以M.N为圆心,大于 的线段长 为半径画弧,两弧交∠AOB 内于P; (3) 作射线OP.则射线OP 就是∠AOB 的角等分线.(4)标题四:作一个角等于已知角. 已知:如图,∠AOB. 求作:∠A ´O ´B ´,使∠A ´O ´B ´=∠AOB作法:(1)作射线O ´A ´;(2)以O 为圆心,随意率性长度为半径画弧,交OA 于M,交OB 于N;PBBAP(3)以O ´为圆心,以OM 的长为半径画弧,交O ´A ´于M ´; (4)以M ´为圆心,以MN 的长为半径画弧,交前弧于N ´; (5)衔接O ´N ´并延伸到B ´. 则∠A ´O ´B ´就是所求作的角.(5)标题五:经由直线上一点做已知直线的垂线. 已知:如图,P 是直线AB 上一点. 求作:直线CD,是CD 经由点P,且CD ⊥AB. 作法:(1)以P 为圆心,随意率性长为半径画弧,交AB 于M.N;(2)分离以M.N 为圆心,大于MN 21的长为半径画弧,两弧交于点Q;(3)过D.Q 作直线CD. 则直线CD 是求作的直线.(6)标题六:经由直线外一点作已知直线的垂线 已知:如图,直线AB 及外一点P.求作:直线CD,使CD 经由点P,且CD ⊥AB.作法:(1)以P 为圆心,随意率性长为半径画弧,交AB 于M.N;(2)分离以M.N 圆心,大于MN 21长度的一半为半径画弧,两弧交于点Q;(3)过P.Q 作直线CD.ca bmn 则直线CD 就是所求作的直线.(7)标题七:已知三边作三角形. 已知:如图,线段a,b,c.求作:△ABC,使AB = c,AC = b,BC = a. 作法:(1) 作线段AB = c;(2) 以A 为圆心,以b 为半径作弧,以B 为圆心,以a 为半径作弧与 前弧订交于C;(3) 衔接AC,BC.则△ABC 就是所求作的三角形.(8)标题八:已知双方及夹角作三角形. 已知:如图,线段m,n, ∠α.求作:△ABC,使∠A=∠α,AB=m,AC=n. 作法:(1) 作∠A=∠α;(2) 在AB 上截取AB=m ,AC=n; (3) 衔接BC.则△ABC 就是所求作的三角形.(9)标题九:已知两角及夹边作三角形. 已知:如图,∠α,∠β,线段m .求作:△ABC,使∠A=∠α,∠B=∠β,AB=m.作法:(1)作线段AB=m;在AB的同旁作∠A=∠α,作∠B=∠β,∠A与∠B的另一边订交于C.则△ABC就是所求作的图形(三角形).(10)标题十:已知三角形,作三角形的外接圆和内切圆.已知:如图,△ABC.求作:△ABC外接圆和内切圆.作法:(1)外接圆的圆心是△ABC三条边的垂直等分线的交点(转化为作AB.BC的垂直等分线交点,半径是交点与△ABC个中一个极点的长度)(2)内切圆的圆心是△ABC三个角的角等分线的交点(转化为作∠B.∠C的角等分线交点,半径是交点到△ABC个中一条边的长度)。

(初一)尺规作图

(初一)尺规作图

E C
A
α
B F
几何作图Βιβλιοθήκη 基本作图三、利用基本作图解决实际问题
例2 如图,107国道OA和320国道OB在某市相交于 点O,在∠AOB的内部有工厂C和D,现要修建一个 货站P,使P到OA、OB的距离相等且PC=PD,用尺
规作出货站P的位置(不写作法,保留作图痕迹,写出
结论).
A D O C
实际作图
B A
灌 溉总 渠
2、A、B是两个村庄,要从灌溉总渠 引两条水渠,使它们到A、B两村距 离之和最短,请你作出方案,不写 作法,保留作图痕迹。
B A
灌 溉总 渠
四、反思与提高
对尺规作图再认识的过程中,你有何 新的收获? 实际作图
几何作图
基本作图
作业: 书本P86习题2、3、4、6。
校本:尺规作图(2)
第19章 全等三角形
19.3 尺规作图
一、基本尺规作图
1、作一条线段等于已知线段.
2、作一个角等于已知角. 3、作已知角的平分线.
α a
4、过一点做已知直线的垂线;
(1) 过在直线上的点C 作出直线的垂线。
(2) 过直线外的点C ,作出直线的垂线。
5、作已知线段的垂直平分线.
小耍一下!看你怎么样
1.作线段PQ=BC; 2.作∠EDF=∠ABC ; 3.作射线AG平分∠BAC; 4.作线段AB的垂直平分线DH.
B C
A
5. 作BP⊥AC
二、基本作图的应用
例1 已知两边及其夹角,求作三角形.
E
C
α a
A
α
B F
b
练习:在上题图形的基础上,以线段 a、b为邻边作一个平行四边形.

初一数学第四章《几何图形初步》尺规作图——作线段

初一数学第四章《几何图形初步》尺规作图——作线段

教案尺规作图——线段一、学习目标:1.会用尺规画一条线段等于已知线段;2.会比较两条线段的长短;3.理解线段中点的概念,了解“两点之间,线段最短”的性质;4.体验运用“两点之间,线段最短”解决生活中的问题;5.了解两点之间的距离的定义,并会求两点之间的距离.二、知识回顾:1.已知一条线段,如何画一条线段等于已知线段?先量出已知线段的长,再画一条这个长度的线段.2. 怎样比较两条线段的长短?用刻度尺分别量出两条线段的长度来比较.三、知识梳理:1.尺规作图和基本作图在几何里,把只用直尺和圆规画图的方法称为尺规作图;最基本、最常用的尺规作图,通常成为基本作图. 2.作一条线段等于已知线段已知线段a,画一条线段等于已知线段.作法:(1)作射线AM(2)在AM上截取AB= a.则线段AB为所求.3.比较两条线段的长短两条线段可能相等,也可能不相等,那么怎样比较两条线段的长短呢?(1)度量法:用刻度尺分别量出两条线段的长度从而进行比较.(2)叠合法:把一条线段移到另一条线段上,使一端对齐,从而进行比较.(如下图)4.线段的中点及等分点如图(1),点M把线段AB分成相等的两条线段AM与BM,点M叫做线段AB的中点;记作AM=MB或AM=MB=1/2AB或2AM=2MB=AB.如图(2),点M、N把线段AB分成相等的三段AM、MN、NB,点M、N叫做线段AB的三等分点.类似地,还有四等分点,等等.5.线段的性质两点所连的线中,线段最短.简单地说成:两点之间,线段最短.6.两点间的距离连接两点间的线段的长度,叫做这两点的距离.注意:距离是用“数”来度量的,它是线段的长度,而不是线段本身.四、典例探究1.用尺规作已知线段的和、差【例1】如下图,已知线段a,b,画一条线段,使它等于a+b.总结:1.画线段的和时,一般在第一条线段向右的延长线上画,画图工具可选用直尺和圆规,注意保留圆弧的痕迹.2.画线段的差时,一般从被减的那线段的右端点向左在线段上画.3.所画线段含已知线段的和、差时,通常先画和,再画差.4.画完线段后,最后别忘了写结论.练1如图,已知线段a,b,c,画一条线段,使它等于a-b+c.2.线段中点的有关计算【例2】如图,已知线段AD=6,线段AC=BD=4,E、F分别是线段AB,CD的中点,求线段EF的长.总结:1.一条线段的中点只有一个.2.某一点要成为一条线段的中点,必须同时满足两个条件:①点必须在这条线段上;②它把这条线段分为相等的两条线段.3.若点C是线段AB 的中点,则AB=2AC=2BC,或AC=BC=12AB.反之,若AB=2AC=2BC,或AC=BC=12AB,则点C是线段AB 的中点.练2已知线段AB=12,直线AB上有一点C,且BC=6,M是线段AC的中点,求线段AM的长.3.两点之间线段最短的实际应用【例3】如图,A、B是公路l两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A、B两村的距离和最小,试在l上标注出点P的位置,并说明理由.总结:解决平面图形中最短路径(即最小距离或距离之和最小)问题时,通常会运用到线段的基本性质:两点之间,线段最短.练3如下图,一只壁虎要从圆柱体A点沿着表面尽快地爬到B点,因为B点有它要吃的一只蚊子,而它饿的十分厉害,问壁虎怎样爬行路线最短?4.两点之间的距离问题【例4】A,B,C三点在同一直线上,线段AB=5cm,BC=4cm,那么A,C两点的距离是()A.1cm B.9cm C.1cm或9cm D.以上答案都不对总结:对于题目中没有给出图的几何问题,要注意考虑全面,必要时需分类讨论. 结合题目已知条件正确画图很重要,既直观形象,又不易漏掉情况.练4已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm五、课后小测一、选择题1.把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是()A.两点确定一条直线 B.垂线段最短C.两点之间线段最短 D.三角形两边之和大于第三边2.如图,C、D是线段AB上的两点,且D是线段AC的中点,若AB=10cm,BC=4cm,则AD的长为()A.2cm B.3cm C.4cm D.6cm3.已知线段AB=16cm,O是线段AB上一点,M是AO的中点,N是BO的中点,则MN=()A.10cm B.6cm C.8cm D.9cm4.如图,点C在线段AB上,点D是AC的中点,如果CD=3cm,AB=10cm,那么BC的长度是()A.3cm B.3.5cm C.4cm D.4.5cm5.在直线l上顺次取A、B、C三点,使得AB=5cm,BC=3cm,如果O是线段AC的中点,那么线段OB的长度是()A.0.5cm B.1cm C.1.5cm D.2cm6.如图所示,A、B两点所对的数分别为a、b,则AB的距离为()A.a﹣b B.a+b C.b﹣a D.﹣a﹣b7.如图,O是线段AB的中点,C在线段OB上,AC=4,CB=3,则OC的长等于()A.0.5 B.1 C.1.5 D.28.已知A,B两点之间距离是10cm,C是线段AB上任意一点,则AC的中点与BC的中点距离是()A.3cm B.4cm C.5cm D.不能确定9.下列说法中,正确的有()A.两点之间,直线最短 B.连结两点的线段叫做两点的距离C.过两点有且只有一条直线 D.AB=BC,则点B是线段AC的中点10.下列说法错误的是()A.若AP=BP,则点P是线段的中点 B.若点C在线段AB上,则AB=AC+BCC.若AC+BC>AB,则点C一定在线段AB外 D.两点之间,线段最短11.A、B两点的距离是()A.连接A、B两点的线段 B.连接A、B两点间的线段的长度C.过A、B两点的直线 D.过A、B两点的射线12.下列说法正确的是()A.两点之间的连线中,直线最短 B.如果AP=BP,那么点P是线段AB的中点C.两点之间的线段叫做这两点之间的距离 D.如果点P是线段AB的中点,那么AP=BP13.下列说法中,正确的是()A.若AC=12AB,则C是AB的中点 B.若AC=BC,则C是AB的中点C.若C在线段AB上,且AC=BC,则C是AB的中点 D.若C在直线AB上,且AC=12AB,则C是线段AB的中点二.填空题14.已知线段AB=10,如图,若C为线段AB的中点,D在线段CB上,DA=6,DB=4,则CD的长度是.15.(1)线段的大小比较可以用测量出它们的长度来比较,也可以把一条线段另一条线段上来比较;(2)将一条线段分成两条相等的线段的点叫做_________,若P是AB•的中点,•则PA=12_____,或AB=2________.三、解答题16.如图,已知线段a,b,c,画一条线段,使它等于a+3b-2c.17.如图,P是线段AB上一点,M,N分别是线段AB,AP•的中点,若AB=16,BP=6,求线段MN的长.18.知识是用来为人类服务的,我们应该把它们用于有意义的方面.从教室到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题.19.平面上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池,不考虑其他因素,请你画图确定蓄水池H的位置,使它与四个村庄的距离之和最小(A,B,C,D四个村庄的地理位置如图所示),你能说明理由吗?20.如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.21.如图所示,A,B,C三棵树在同一直线上,量得树A与树B的距离为4m,树B与树C的距离为3m,小亮正好在A,C两树的正中间O处,请你计算一下小亮距离树B多远?22.如图所示,已知点C是线段AB的中点,D是AC上任意一点,M、N分别是AD、DB的中点,若AB=16,求MN的长.六、小结。

新北师大版七年级数学下册第二章《尺规作图》公开课课件.ppt

新北师大版七年级数学下册第二章《尺规作图》公开课课件.ppt
• 10、人的志向通常和他们的能力成正比例。2021/1/142021/1/142021/1/141/14/2021 3:25:40 PM • 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2021/1/142021/1/142021/1/14Jan-2114-Jan-21 • 12、越是无能的人,越喜欢挑剔别人的错儿。2021/1/142021/1/142021/1/14Thursday, January 14, 2021 • 13、志不立,天下无可成之事。2021/1/142021/1/142021/1/142021/1/141/14/2021

THE END 17、一个人如果不到最高峰,他就没有片刻的安宁,他也就不会感到生命的恬静和光荣。2021/1/142021/1/142021/1/142021/1/14
谢谢观看
。2021年1月14日星期四2021/1/142021/1/142021/1/14
• 15、会当凌绝顶,一览众山小。2021年1月2021/1/142021/1/142021/1/141/14/2021
• 16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2021/1/142021/1/14January 14, 2021
尺规作图
用没有刻度的直尺和圆规画图 (不能使用测量工具测量)
z```xxk
1、已知线段a,作线段AB=a,保留作图痕迹, 不写做法。
a
2、已知∠ABC,作∠A’B’C’, 使得∠A’B’C’=∠ABC,保留作图痕迹, 不写做法。
A
B
C
3、已知∠ABC,作∠A’B’C’, 使得和∠2,作∠ABC和∠DEF z``xxk
使得∠ABC= ∠1+∠2,∠DEF= ∠2 -∠1

尺规作图(含五种基本作图)

尺规作图(含五种基本作图)
角平分线定义:把一个角分成两个相等的 角的射线,叫做这个角的平分线。
O
c
B
第十三页,共32页。
探索
基本作图3 "平分已知角".
(1)以O 为圆心,以适当长为半径画弧,交OA 于C 点,交OB 于D 点;
(2)分别以C、D 为圆心,以大于
1 C2 D
长为半
径画弧,两弧相交于P 点;
A
(3)作射线OP ,
你想自己画出它来吗?
那就让我们从最初的步骤开始吧!
1、 以点O为圆心, r 为半径作圆O;
以2、圆O上任意一点为圆心, r 为半径作圆,与圆O交于两点;
3、 分别以两个交点为圆心, r 为半径作圆;
4、继续作下去,
在适当的区域涂上颜色, 你作出美丽的“邹菊图案” 吗?
第十二页,共32页。
什么叫做角平分线?
D、作线段AB,使它等于已知线段m
第四页,共32页。
基本作图1、“作一条线段等于已知线段。”
已知:线段a.
求作:线段AB,使AB=a.
作法与示范:
a
(1) 作射线AC ;
(2) 以点A为圆心,
以a的长为半径 画弧,
交射线AC 于点B,
则:AB即所求。
A
第五页,共32页。
BC
练习:
求作一条线段AB,使AB=2a.
O
A
C
O`
C`
A`
证明:
,由作法可知
△C`O`D`≌△COD(SSS),
∴∠C`O`D`=∠COD(全等三角形的对 应角相等),
即∠A`O`B`=∠AOB。
第九页,共32页。
练习
1、已知: ∠AOB。 求作: ∠A’O’B’ ,使∠A’O’B’=2∠AOB。

七年级数学用尺规作线段和角

七年级数学用尺规作线段和角

04 尺规作图的实践应用
作几何图形的中线
作几何图形的中线
首先确定给定图形的顶点,然后使用尺规按照中线的定义进 行作图。对于三角形,中线连接顶点与对边中点;对于平行 四边形,中线连接对角顶点。
注意事项
在作图过程中,要确保尺规的准确性,避免误差。同时,要 理解中线的性质和作用,以便更好地应用。
作三角形的高
作三角形的高
首先确定三角形的顶点,然后使 用尺规按照高的定义进行作图。 高是从三角形的一个顶点垂直到 对边的线段。
注意事项
在作图过程中,要确保尺规的准 确性,避免误差。同时,要理解 高的性质和作用,以便更好地应 用。
作平行四边形的对角线
作平行四边形的对角线
首先确定平行四边形的顶点,然后使 用尺规按照对角线的定义进行作图。 对角线连接平行四边形的相对顶点。
03
通过角的顶点,以角的边为半径,向外作弧,交角的两边于两点,连接这两点的线段即为角的角平分 线。
详细描述
首先,确定角的顶点和角的两边。然后,使用圆规,以角的边为半径,从角的顶点向外作弧。接着, 将圆规的另一脚放在角的另一边上,同样以角的边为半径,从角的顶点向外作弧。最后,连接两个弧 的交点和角的顶点,得到的线段即为角的角平分线。
02 用尺规作线段
作已知线段的延长线
总结词
通过延长已知线段,我们可以得到新的线段。
详细描述
首先,确定已知线段的两个端点。然后,使用直尺,从已知线段的一个端点出 发,沿着与已知线段相同的方向,延长一定的距离,得到新的端点。这样,我 们就得到了已知线段的延长线。
过一点作已知直线的垂线
总结词
通过使用直角三角形的性质,我们可以找到一个点,使得该点到已知直线的距离 为定值。

初中数学速记笔记:15.尺规作图

初中数学速记笔记:15.尺规作图

在几何里,用无刻度的直尺和圆规作图,就是尺规作图.最基本、最常用的尺规作图通常称为基本作图.已知:线段a(如图所示).求作:一条线段长度等于a.作法:(1)任作一条射线OA;(2)在射线OA上截取OB=a (以O为圆心,以a的长为半径画弧,交OA于点B),则OB即为所求作的线段.已知:∠AOB(如图所示).(一)尺规作图的概念(二)基本作图求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)以点O为圆心,以任意长为半径画弧,分别交OA,OB 于点C,D;(2)作射线O′A′,以点O′为圆心,以OC长为半径画弧,交O′A′于点C′;(3)以点C′为圆心,以CD长为半径画弧,交前弧于点D′;(4)过点D′作射线O′B′,则∠A′O′B′=∠AOB.已知:∠AOB(如图所示).求作:∠AOB内的射线OC,使∠AOC=∠BOC.作法:(1)以点O为圆心,适当长为半径画弧,交OA于点D,交OB于点E;(2)分别以点D,E为圆心,大于12DE长为半径画弧,两弧在∠AOB内相交于点C;(3)画射线OC,则OC就是所求作的射线.已知:线段AB(如图所示).求作:直线CD,使CD垂直平分线段AB.作法:(1)分别以点A,B为圆心,大于12AB的长为半径画弧,两弧相交于点C,D;(2)过点C,D作直线CD,则直线CD就是线段AB的垂直平分线.(1)经过直线上一点作这条直线的垂线.已知:直线AB和AB上的一点C(如图所示).求作:AB的垂线,使它经过点C.作法:①以点C为圆心,以任意长为半径画弧,交直线AB于点D ,E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径画弧,两弧交于点F ;③作直线CF ,则直线CF 就是所求作的垂线.(2)经过已知直线外一点作已知直线的垂线.已知:直线AB 和AB 外一点C (如图所示).求作:AB 的垂线,使它经过点C.作法:①任取一点K ,使点K 和点C 在AB 的两侧;②以点C 为圆心,CK 的长为半径画弧,交AB 于点D ,E ;③分别以D ,E 为圆心,以大于12DE 的长为半径画弧,两弧交于点F ;④作直线CF ,则直线CF 就是所求作的垂线.(1)已知:写出已知的线段和角,画出图形.(2)求作:求作什么图形,它符合什么条件,一一具体化.(3)作法:应用“五种基本作图”(作一条线段等于已知线段,作一个角等于已知角,作已知角的平分线,经过一点作已知直线的垂线,作线段的垂直平分线),叙述时不需重述基本作图的过程,但图中必须保留基本作图的痕迹.(4)结论:对所作图形下结论. (三) 尺规作图的基本步骤。

数学人教版七年级上册线段的尺规作图

数学人教版七年级上册线段的尺规作图

16-14
练习:
• 完成 课本128页练习2。
16-15
谢谢!
16-16
b
B C A • 记作:AB=AC+CB=a+b。 a b A B C • 记作:AB=AC-CB=a-b。
16-9
例题3、
• 画一条线段AB,使得AB=2a。
a
a
a
A
C
B
• 此时,AB=AC+CB=2a。
16-10
线段的中点
• 一条线段上有一个点把这条线段的长度分 成相等的两部分,则这个点叫做这条线段 的中点(也叫二等分点)。
将两条线段画到同一条直线上, 让其中一个端点重合,比较另 一个端点的位置关系。
端点重合的相等,
端点在外侧的长。
16-7
例题2、
• 比较线段AB、线段CD的大小。(重叠法)
A C
D
B
• 完成课本128页练习1。
16-8
思考问题3、
• 任意两条线段能不能叠加?
• 当然可以叠加!(使用尺规作图)
a
b
a
• ……
……
……
……
(M-1) •如果一条线段上有 个点,将该线段分成相等的 M 部分,那么这两个点就是该线段的M等分点。
16-12
小结本节:
• • • • 本节课的主要内容: 1、尺规作图; 2、线段的和差作法; 3、线段的中点(二等分点),M等分点。
16-13
作业:
• 1、课本第130页第7题,第9题。 • 2、《南方新课堂》第87、88页。
16-5
动手画一画:
• 同桌之间相互出题(画一条线段), • 然后另一人用尺规作图的办法, • 作出另一条线段与已知线段相等。 • 最后,互相批改。

初中数学总复习尺规作图

初中数学总复习尺规作图

尺规作图尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。

五种基本作图:1、作一条线段等于已知线段;2、作一个角等于已知角;3、作已知线段的垂直平分线;4、作已知角的角平分线;5、过一点作已知直线的垂线;题目一:作一条线段等于已知线段。

已知:如图,线段 a .求作:线段AB,使AB = a .作法:①作射线AP;②在射线AP上截取AB=a .则线段AB就是所求作的图形。

题目二:作已知线段的中点。

已知:如图,线段MN.求作:点O,使MO=NO(即O是MN的中点).作法:①分别以M、N为圆心,大于1/2MN的相同线段为半径画弧,两弧相交于P,Q;②连接PQ交MN于O.则点O就是所求作的MN的中点。

(试问:PQ与MN有何关系?)题目三:作已知角的角平分线。

已知:如图,∠AOB,求作:射线OP, 使∠AOP=∠BOP(即OP平分∠AOB)。

作法:①以O为圆心,任意长度为半径画弧,分别交OA,OB于M,N;②分别以M、N为圆心,大于1/2MN的相同线段为半径画弧,两弧交∠AOB内于P;③作射线OP。

则射线OP就是∠AOB的角平分线。

题目四:作一个角等于已知角。

(请自己写出“已知”“求作”并作出图形,不写作法)题目五:已知三边作三角形。

已知:如图,线段a,b,c.求作:△ABC,使AB = c,AC = b,BC = a.作法:①作线段AB = c;②以A为圆心b为半径作弧,以B为圆心a为半径作弧与前弧相交于C;③连接AC,BC。

则△ABC就是所求作的三角形。

题目六:已知两边及夹角作三角形。

已知:如图,线段m,n, ∠.求作:△ABC,使∠A=∠,AB=m,AC=n.作法:①作∠A=∠;②在AB上截取AB=m ,AC=n;③连接BC。

则△ABC就是所求作的三角形。

题目七:已知两角及夹边作三角形。

已知:如图,∠,∠,线段m .求作:△ABC,使∠A=∠,∠B=∠,AB=m.作法:①作线段AB=m;②在AB的同旁作∠A=∠,作∠B=∠,∠A与∠B的另一边相交于C。

七年级用尺规作图知识点

七年级用尺规作图知识点

七年级用尺规作图知识点用尺规作图是中学数学中的一项重要知识,是解决各种几何问题的基础。

在七年级中学生将开始接触用尺规作图知识点。

以下是一个简要的概述。

1. 用尺规作图概述用尺规作图是指使用直尺和圆规配合使用,以确定几何图形的位置和形状。

它能够帮助学生更好地理解几何图形和几何问题,并使其更容易解决各种形状和排列的几何问题。

2. 用尺作直线、测量线段在正式开展尺规作图之前,学生需要掌握用尺作直线和测量线段的基本技能。

使用直尺作直线需要将直尺上的两点对准,并顺着直尺边缘引线,以此来绘制直线。

测量线段则需要使用直尺的两个刻度,在线段的两端各取一点后,将它们顺着直尺边缘连接。

3. 用圆规作圆和弧圆规在尺规作图中也起着非常重要的作用。

使用圆规作圆时,需要将圆规的两个脚放在纸面上并打开,然后用铅笔在圆规上顺着刻度引轮,转动圆规来绘制所需大小的圆。

用圆规作弧时同理。

4. 构造一些基本几何图形在掌握了基本技能之后,学生需要掌握构造更加复杂的几何图形的方法。

例如,构造等边三角形、正方形、正六边形等等。

这些基本几何图形的构造方法是学生挖掘复杂图形的基础。

5. 通过尺规作图解决问题在掌握了以上技能之后,学生可以通过用尺规作图来解决各种几何问题。

例如,构造内含角度、绘画等等。

这些问题的解决将为学生今后的学习打下坚实的基础。

总结用尺规作图可以帮助学生更好地理解几何图形和几何问题,并培养其解决问题的能力。

学生需要掌握用尺规作图的基本技术,包括用尺作直线和测量线段,用圆规作圆和弧以及构造基本几何图形。

掌握这些技能之后,学生可以将它们应用于实际问题的解决中。

初中数学中的尺规作图

初中数学中的尺规作图

尺规作图是一种古老而神奇的工具,能够用简单的工具和技巧绘制出精确的几何图形。

在初中数学中,尺规作图是一个必修的内容,对于学生来说,掌握它是非常重要的。

本文将详细介绍尺规作图的基础知识、步骤和实践技巧。

一、什么是尺规作图?尺规作图,又称欧氏几何作图,是一种利用尺子和圆规进行的几何作图方法。

它的基本原理是:利用尺子测量长度,用圆规画出圆和弧,然后通过将这些线段和圆弧相交、平移、旋转等操作,得到所需的几何图形。

尺规作图是欧几里得几何的基础,也是很多复杂几何问题的解决方法之一。

二、尺规作图的基本步骤1. 给定图形尺规作图的第一步是给定一个几何图形,通常是已知几条线段或者角度的大小关系。

例如,给定一个直角三角形,其中两条直角边的长度分别为3cm和4cm,要求作出这个三角形。

2. 作出基础线段根据给定的条件,用尺子和圆规作出基础线段。

例如,在一个纸上画一条长度为3cm的线段AB,再画一条长度为4cm的线段AC,其中∠BAC为直角。

3. 作出辅助线段根据需要,作出一些辅助线段,以便通过相交、平移、旋转等操作得到所需的图形。

例如,可以在线段AB上取一点D,再以点C为圆心、AC为半径画一个圆,得到一个圆弧,将其与线段AB相交于点E,再连接线段AE和BE,就得到了一个直角三角形ABC。

三、尺规作图的实践技巧1. 细心测量尺规作图需要精确测量线段的长度和角度的大小,因此必须细心认真地进行测量,避免出现误差。

特别是在作大型图形时,必须使用长尺和精密测量工具,以确保准确性。

2. 多加练习尺规作图需要的是手眼协调能力和灵活性,这些技能需要通过不断地练习才能掌握。

建议初学者多做练习题,逐渐提高自己的技巧和速度。

3. 熟练运用尺规尺规作图需要灵活运用圆规和尺子,掌握不同的测量技巧和作图方法。

例如,可以利用圆规的不同刻度测量半径和角度,或者利用尺子的折叠功能作出垂线等。

四、总结归纳尺规作图是一种重要的几何工具,能够在解决复杂几何问题时提供有力的支持。

初中数学专题讲解——尺规作图技巧典型题全汇总!务必掌握

初中数学专题讲解——尺规作图技巧典型题全汇总!务必掌握

初中数学专题讲解——尺规作图技巧典型题全汇总!务必掌握
初中数学尺规作图专题讲解
尺规作图是起源于古希腊的数学课题,是指用没有刻度的直尺和圆规作图。

其中直尺必须没有刻度,只能用来作直线、线段、射线或延长线段;圆规可以开至无限宽,但上面也不能有刻度,只能用来作圆和圆弧.因此,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不可以度量的.
1、尺规作图规范用语
2、尺规作图基本步骤
3、五种基础的尺规作图题型(掌握基础才能挑战复杂题型)
基本作图一:作一条线段等于已知线段。

基本作图二:作一个角等于已知角。

基本作图三:作已知线段的垂直平分线。

基本作图四:作已知角的角平分线
基本作图五:过一点作已知直线的垂线。

4、典型例题分析
5、题目练习
▎编辑:小名老师。

【初中数学】尺规作图重要知识点8种典型题解析!

【初中数学】尺规作图重要知识点8种典型题解析!

【初中数学】尺规作图重要知识点8种典型题解析!1、尺规作图规范用语第一、、用直尺作图的几何语言有三种,分别为:1、过点x、点x作直线xx;或作直线xx;或作射线xx;2、过两点xx做线段xx;或连结xx:3、延长xx到点x;或延长(反向延长)xx到点x,使xx=xx;或延长xx交xx于点x;第二、用圆规作图的几何语言可总结为四种,分别为:1、在xx 上截取xx=xx:2、以点x为圆心,xx的长为半径作圆(或弧);3、以点x 为圆心,xx的长为半径作弧,交xx于点x:4、分别以点x、点x为圆心,以xxxx的长为半径作弧,两弧相交于点x、x.2、尺规作图基本步骤当发现作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件:2能根据题目可以画出要求作出的图形,以及可以列出该图形应满足的条件有哪些:3能根据作图的过程写出每一步的操作过程当不要求写作法时,一般会保留作图痕迹应该注意的是,对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法。

3、尺规作图典型题分析典型题1:难度★如图(a),已知∠AOB和点C、D.求作一点M,使点M到∠AOB两边的距离相等,且与C、D组成以CD为底边的等腰三角形.【答案解析】因为到一个角两边距离相等的点在这个角的平分线上;而根据题意,点M应满足条件MC=MD,所以点M又在连结CD所得线段的垂直平分线上.(1)作∠AOB的平分线OG;(2)连结CD,作CD的垂直平分线,交OG于点M,如图(b),M就是所要求作的点.典型题2:难度★如图,桌面上有黑白两球P、Q,试用尺规在边AD上找出一点,使黑球射向这点后反弹,正好击中白球.【答案解析】(1)以P为圆心,适当长为半径作弧,交AD于两点E、F;(2)分别以E、F为圆心,以同样长(即PE)为半径作弧,在AD的另一侧交于点R(即P关于AD的对称点);(3)连结RQ,交AD于点M,M就是所求作的点. 典型题3:难度★★如图(a),A、B、C三个城市准备共建一个飞机场,希望机场到B、C两市的距离相等,到较大城市A的距离最近,试确定飞机场的位置.【答案解析】机场到B、C两市的距离相等,则应在线段BC的垂直平分线上;而这条垂直平分线上的点到A的最短距离是点A到这条直线的垂线段的长.(1)连结BC,作线段BC的垂直平分线l;(2)过点A作直线⊥的垂线,垂足P,如图(b),点P就是飞机场的位置典型题4:难度★★如图(a),已知线段a、b和∠AOB,C是边OB上一点,求作点M,使M到OA的距离为a,到点C的距离为b.【答案解析】(1)在OA上任取一点D,过D作OA的垂线l;(2)在⊥上截取DE=DF=a,过E、F作l的垂线l1、l2;(3)以C为圆心,b 为半径作弧,与直线l2相交于点M1、M2,如图(b),则点M1、M2都是所要求作的点.典型题5:难度★★如图(a),已知线段a、b,求作△ABC,使BC=a,AB=b,∠C=90°.【答案解析】(1)作线段BC=a;(2)过点C作CD⊥BC;(3)以B为圆心,b为半径作弧,交CD于点A;(4)连结BA,如图(b),△ABC就是所求作的三角形.典型题6:难度★★如图(a),已知线段a,∠a,求作△ABC,使∠C=90°,∠A=∠a,AB=a.【答案解析】(1)作∠DAE=∠a;(2)在AD上截取AB=a;(3)过点B作BC⊥AE于C,如图(b),△ABC即所求作的三角形.典型题7:难度★★已知等腰三角形的底角及底边上的中线,求作这个等腰三角形。

初中尺规作图详细讲解含图

初中尺规作图详细讲解含图

初中数学尺规作图讲解初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种.限用直尺和圆规来完成的作图方法,叫做尺规作图法.最简单的尺规作图有如下三条:⑴经过两已知点可以画一条直线;⑵已知圆心和半径可以作一圆;⑶两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点;以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题.历史上,最着名的尺规作图不能问题是:⑴三等分角问题:三等分一个任意角;⑵倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;⑶化圆为方问题:作一个正方形,使它的面积等于已知圆的面积.这三个问题后被称为“几何作图三大问题”.直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根r=时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺号π(即当圆半径1规作图不能问题.若干着名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意.数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书.还有另外两个着名问题:⑴正多边形作法·只使用直尺和圆规,作正五边形.·只使用直尺和圆规,作正六边形.·只使用直尺和圆规,作正七边形——这个看上去非常简单的题目,曾经使许多着名数学家都束手无策,因为正七边形是不能由尺规作出的.·只使用直尺和圆规,作正九边形,此图也不能作出来,因为单用直尺和圆规,是不足以把一个角分成三等份的.·问题的解决:高斯,大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件:尺规作图正多边形的边数目必须是2的非负整数次方和不同的费马素数的积,解决了两千年来悬而未决的难题.⑵四等分圆周只准许使用圆规,将一个已知圆心的圆周4等分.这个问题传言是拿破仑·波拿巴出的,向全法国数学家的挑战.尺规作图的相关延伸:用生锈圆规(即半径固定的圆规)作图1.只用直尺及生锈圆规作正五边形==.2.生锈圆规作图,已知两点A、B,找出一点C使得AB BC CA3.已知两点A、B,只用半径固定的圆规,求作C使C是线段AB的中点.4.尺规作图,是古希腊人按“尽可能简单”这个思想出发的,能更简洁的表达吗?顺着这思路就有了更简洁的表达.10世纪时,有数学家提出用直尺和半径固定的圆规作图. 1672年,有人证明:如果把“作直线”解释为“作出直线上的2点”,那么凡是尺规能作的,单用圆规也能作出!从已知点作出新点的几种情况:两弧交点、直线与弧交点、两直线交点 ,在已有一个圆的情况下,那么凡是尺规能作的,单用直尺也能作出!.五种基本作图:初中数学的五种基本尺规作图为:1.做一线段等于已知线段 2.做一角等于已知角 3.做一角的角平分线4.过一点做一已知线段的垂线5.做一线段的中垂线下面介绍几种常见的尺规作图方法:⑴ 轨迹交点法:解作图题的一种常见方法.解作图题常归结到确定某一个点的位置.如果这两个点的位置是由两个条件确定的,先放弃其中一个条件,那么这个点的位置就不确定而形成一个轨迹;若改变放弃另一个条件,这个点就在另一条轨迹上,故此点便是两个轨迹的交点.这个利用轨迹的交点来解作图题的方法称为轨迹交点法,或称交轨法、轨迹交截法、轨迹法.【例1】 电信部门要修建一座电视信号发射塔,如下图,按照设计要求,发射塔到两个城镇A 、B 的距离必须相等,到两条高速公路m 、n 的距离也必须相等,发射塔P 应修建在什么位置?【分析】 这是一道实际应用题,关键是转化成数学问题,根据题意知道,点P 应满足两个条件,一是在线段AB 的垂直平分线上;二是在两条公路夹角的平分线上,所以点P 应是它们的交点.【解析】 ⑴ 作两条公路夹角的平分线OD 或OE ;⑵ 作线段AB 的垂直平分线FG ;则射线OD ,OE 与直线FG 的交点1C ,2C 就是发射塔的位置.【例2】 在平面直角坐标系中,点A 的坐标是(4,0),O 是坐标原点,在直线3y x =+上求一点P ,使AOP ∆是等腰三角形,这样的P 点有几个?【解析】 首先要清楚点P 需满足两个条件,一是点P 在3y x =+上;二是AOP ∆必须是等腰三角形.其次,寻找P 点要分情况讨论,也就是当OA OP =时,以O 点为圆心,OA 为半径画圆,与直线有两个点1P 、2P ;当OA AP =时,以A 点为圆心,OA 为半径画圆,与直线无交点;当PO PA =时,作OA 的垂直平分线,与直线有一交点3P ,所以总计这样的P 点有3个.【例3】 设O ⊙与'O ⊙相离,半径分别为R 与'R ,求作半径为r 的圆,使其与O ⊙及'O ⊙外切.【分析】 设M ⊙是符合条件的圆,即其半径为r ,并与O ⊙及'O ⊙外切,显然,点M 是由两个轨迹确定的,即M 点既在以O 为圆心以R r +为半径的圆上,又在以'O 为圆心以'R r +为半径的圆上,因此所求圆的圆心的位置可确定.若O ⊙与'O ⊙相距为b ,当2r b <时,该题无解,当2r b =有唯一解;当2r b >时,有两解.【解析】 以当O ⊙与'O ⊙相距为b ,2r b >时为例:⑴ 作线段OA R r =+,''O B R r =+.⑵ 分别以O ,'O 为圆心,以R r +,'R r +为半径作圆,两圆交于12,M M 两点.⑶ 连接1OM ,2OM ,分别交以R 为半径的O ⊙于D 、C 两点.⑷ 分别以12M M ,为圆心,以r 为半径作圆.∴12,M M ⊙⊙即为所求.【思考】若将例3改为:“设O ⊙与'O ⊙相离,半径分别为R 与'R ,求作半径为r ()r R >的圆,使其与O ⊙ 内切,与'O ⊙外切.”又该怎么作图?⑵ 代数作图法:解作图题时,往往首先归纳为求出某一线段长,而这线段长的表达式能用代数方法求出,然后根据线段长的表达式设计作图步骤.用这种方法作图称为代数作图法.【例4】 只用圆规,不许用直尺,四等分圆周(已知圆心).【分析】 设半径为1.,也就是说用这个长度去等分圆周.我们的任务就是做出这个长度..设法构造斜边为1的的长度自然就出来了.【解析】 具体做法:⑴ 随便画一个圆.设半径为1.⑵ 先六等分圆周.⑶ 以这个距离为半径,分别以两个相对的等分点为圆心,同向作弧,交于一点.(“两个相对的等分点”其实就是直径的两端点啦!两弧交点与“两个相对的等分点”形成的是一个底为2.)⑷【例5】 求作一正方形,使其面积等于已知ABC ∆的面积.【分析】 设ABC ∆的底边长为a ,高为h ,关键是在于求出正方形的边长x ,使得212x ah =,所以x 是12a 与h 的比例中项.【解析】 已知:在ABC ∆中,底边长为a ,这个底边上的高为h ,求作:正方形DEFG ,使得:ABC DEFG S S ∆=正方形作法:⑴ 作线段12MD a =; ⑵ 在MD 的延长线上取一点N ,使得DN h =;⑶ 取MN 中点O ,以O 为圆心,OM 为半径作O ⊙;⑷ 过D 作DE MN ⊥,交O ⊙于E ,⑸ 以DE 为一边作正方形DEFG .正方形DEFG 即为所求.【例6】 在已知直线l 上求作一点M ,使得过M 作已知半径为r 的O ⊙的切线,其切线长为a .【分析】 先利用代数方法求出点M 与圆心O 的距离d ,再以O 为圆心,d 为半径作圆,此圆与直线l的交点即为所求.【解析】 ⑴ 作Rt OAB ∆,使得:90A ∠=︒,OA r =,AB a =.⑵ 以O 为圆心,OB 为半径作圆.若此圆与直线l 相交,此时有两个交点1M ,2M .1M ,2M 即为所求.若此圆与直线l 相切,此时只有一个交点M .M 即为所求.若此圆与直线l 相离,此时无交点.即不存在这样的M 点使得过M 作已知半径为r 的O ⊙的切线,其切线长为a .⑶ 旋转法作图:有些作图题,需要将某些几何元素或图形绕某一定点旋转适当角度,以使已知图形与所求图形发生联系,从而发现作图途径.【例7】 已知:直线a 、b 、c ,且a b c ∥∥.求作:正ABC ∆,使得A 、B 、C 三点分别在直线a 、b 、c 上.【分析】 假设ABC ∆是正三角形,且顶点A 、B 、C 三点分别在直线a 、b 、c 上.作AD b ⊥于D ,将ABD ∆绕A 点逆时针旋转60︒后,置于'ACD ∆的位置,此时点'D 的位置可以确定.从而点C 也可以确定.再作60BAC ∠=︒,B 点又可以确定,故符合条件的正三角形可以作出.【解析】 作法:⑴ 在直线a 上取一点A ,过A 作AD b ⊥于点D ;⑵ 以AD 为一边作正三角形'ADD ;⑶ 过'D 作''D C AD ⊥,交直线c 于C ;⑷ 以A 为圆心,AC 为半径作弧,交b 于B (使B 与'D 在AC 异侧).⑸ 连接AB 、AC 、BC 得ABC ∆.ABC ∆即为所求.【例8】 已知:如图,P 为AOB ∠角平分线OM 上一点.求作:PCD ∆,使得90P ∠=︒,PC PD =,且C 在OA 上,D 在OB 上.【解析】 ⑴ 过P 作PE OB ⊥于E .⑵ 过P 作直线l OB ∥;⑶ 在直线l 上取一点M ,使得PM PE =(或'PM PE =);⑷ 过M (或'M )作MC l ⊥(或'M C l ⊥),交OA 于C (或'C )点;⑸ 连接PC (或'PC ),过P 作PD PC ⊥(或''PD PC ⊥)交OB 于D (或'D )点. 连接,PD CD (或',''PD C D ).则PCD ∆(或''PC D ∆)即为所求.⑷ 位似法作图:利用位似变换作图,要作出满足某些条件的图形,可以先放弃一两个条件,作出与其位似的图形,然后利用位似变换,将这个与其位似得图形放大或缩小,以满足全部条件,从而作出满足全部的条件.【例9】 已知:一锐角ABC ∆.求作:一正方形DEFG ,使得D 、E 在BC 边上,F 在AC 边上,G 在AB 边上.【分析】 先放弃一个顶点F 在AC 边上的条件,作出与正方形DEFG 位似的正方形''''D E F G ,然后利用位似变换将正方形''''D E F G 放大(或缩小)得到满足全部条件的正方形DEFG .【解析】 作法:⑴ 在AB 边上任取一点'G ,过'G 作''G D BC ⊥于'D⑵ 以''G D 为一边作正方形''''D E F G ,且使'E 在'BD 的延长线上.⑶ 作直线'BF 交AC 于F .⑷ 过F 分别作''FG F G ∥交AB 于G ;作''FE F E ∥交BC 于E .⑸ 过G 作''GD G D ∥交BC 于D .则四边形DEFG 即为所求.⑸ 面积割补法作图:对于等积变形的作图题,通常在给定图形或某一确定图形上割下一个三角形,再借助平行线补上一个等底等高的另一个三角形,使面积不变,从而完成所作图形.【例10】 如图,过ABC ∆的底边BC 上一定点,P ,求作一直线l ,使其平分ABC ∆的面积.【分析】 因为中线AM 平分ABC ∆的面积,所以首先作中线AM ,假设PQ 平分ABC ∆的面积,在AMC ∆中先割去AMP ∆,再补上ANP ∆.只要NM AP ∥,则AMP ∆和AMP ∆就同底等高,此时它们的面积就相等了.所以PN 就平分了ABC ∆的面积.【解析】 作法:⑴ 取BC 中点M ,连接,AM AP ;⑵ 过M 作MN AP ∥交AB 于N ;⑶ 过P 、N 作直线l .直线l 即为所求.【例11】 如图:五边形ABCDE 可以看成是由一个直角梯形和一个矩形构成.⑴ 请你作一条直线l ,使直线l 平分五边形ABCDE 的面积;⑵ 这样的直线有多少条?请你用语言描述出这样的直线.【解析】 ⑴ 取梯形AFDE 的中位线MN 的中点O ,再取矩形BCDF 对角线的交点'O ,则经过点O ,'O 的直线l 即为所求;⑵ 这样的直线有无数条.设⑴中的直线l 交AE 于Q ,交BC 于R ,过线段RQ 中点P ,且与线段AE 、BC 均有交点的直线均可平分五边形ABCDE 的面积.【例12】 (07江苏连云港)如图1,点C 将线段AB 分成两部分,如果AC BC AB AC=,那么称点C 为线段AB 的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S 的图形分成两部分,这两部分的面积分别为1S ,2S ,如果121S S S S =,那么称直线l 为该图形的黄金分割线. ⑴ 研究小组猜想:在ABC △中,若点D 为AB 边上的黄金分割点(如图2),则直线CD 是ABC △的黄金分割线.你认为对吗?为什么?⑵ 请你说明:三角形的中线是否也是该三角形的黄金分割线?⑶ 研究小组在进一步探究中发现:过点C 任作一条直线交AB 于点E ,再过点D 作直线DF CE ∥,交AC 于点F ,连接EF (如图3),则直线EF 也是ABC △的黄金分割线.请你说明理由.⑷ 如图4,点E 是ABCD 的边AB 的黄金分割点,过点E 作EF AD ∥,交DC 于点F ,显然直线EF 是ABCD 的黄金分割线.请你画一条ABCD 的黄金分割线,使它不经过ABCD 各边黄金分割点. 【解析】 ⑴ 直线CD 是ABC △的黄金分割线.理由如下: 设ABC △的边AB 上的高为h . 12ADC S AD h=△,12BDC S BD h =△,12ABC S AB h =△, ∴ADC ABC S AD S AB =△△,BDC ADC S BD S AD=△△. 又∵点D 为边AB 的黄金分割点,∴AD BD AB AD =.∴ADC BDC ABC ADC S S S S =△△△△.∴直线CD 是ABC △的黄金分割线.⑵ ∵三角形的中线将三角形分成面积相等的两部分,此时1212S S S ==,即121S S S S ≠, ∴三角形的中线不可能是该三角形的黄金分割线.⑶ ∵DF CE ∥,∴DEC △和FCE △的公共边CE 上的高也相等,∴DEC FCE S S =△△.A CB 图1 ADB 图2C AD B 图3 C FE 图4设直线EF 与CD 交于点G ,∴DGE FGC S S =△△. ∴ADC FGC AFGD S S S =+△△四边形DGE AEF AFGD S S S =+=△△四边形,BDC BEFC S S =△四边形. 又∵ADC BDC ABC ADC S S S S =△△△△,∴BEFC AEF ABC AEF S S S S =四边形△△△. ∴直线EF 也是ABC △的黄金分割线.⑷ 画法不惟一,现提供两种画法; 画法一:如答图1,取EF 中点G ,再过点G 作一直线分别交AB ,DC 于M ,N 点,则直线MN 就是ABCD 的黄金分割线.画法二:如答图2,在DF 上取一点N ,连接EN ,再过点F 作FM NE ∥交AB 于点M ,连接MN ,则直线MN 就是ABCD 的黄金分割线.E M (答案图1)E M (答案图2)。

七年级下尺规作图知识点

七年级下尺规作图知识点

七年级下尺规作图知识点尺规作图是数学中一个实用且重要的分支,也是中学数学教育中的核心内容之一。

在尺规作图的学习过程中,规范的步骤和正确的方法都非常重要。

本文将介绍七年级下尺规作图的知识点和注意事项。

1.尺规作图的基本概念尺规作图是通过使用尺子和圆规两种工具,按照一定的步骤和规律,画出平面几何图形的过程。

在做尺规作图时,需要先掌握以下几个基本概念:(1)尺规:是构成尺规作图的两种主要工具,尺子用来测量线段的长度,圆规用来画圆弧和测量长度。

(2)定点:在作图时,需要先指定一定数量的定点,这些定点是连接线条或画圆弧的基础。

(3)定线:在作图过程中,需要按照固定的步骤连接已有的定点来形成一条固定的线段。

(4)定圆:在作图过程中,需要按照固定的步骤使用圆规来画出一定半径和直径的圆。

2.尺规作图的基本步骤在学习尺规作图时,需要掌握正确的作图步骤和方法,才能在不出错的情况下完成指定的作图任务。

尺规作图的基本步骤如下:(1)首先画一个参考线段;(2)在参考线段上取若干等分点,以确定所需的点;(3)连接这些点,形成所需的线段;(4)在所需的点上画出所需的圆弧或线段。

3.尺规作图的注意事项在尺规作图的学习过程中,需要注意以下事项:(1)必须按照规定的步骤完成作图任务,不能随意发挥;(2)尺规作图需要细心仔细,每一步都要认真执行;(3)在尺规作图过程中,需要注意尺子和圆规的正确使用方法;(4)在作图完成后,需要检查作图的正确性,确保作图结果准确无误。

总之,在学习尺规作图的过程中,需要掌握基本概念、正确的步骤和方法,以及注意事项。

只有在掌握这些方面后,才能顺利完成各种尺规作图任务,也可以更好地理解数学中的各种几何概念和定理。

初中中考尺规作图十例(打印)

初中中考尺规作图十例(打印)

BPAaOQPNM 尺规做图之阳早格格创做【知识归纳】1、尺规做图的定义:尺规做图是指用不刻度的曲尺战圆规做图.最基原,最时常使用的尺规做图,常常称基原做图.一些搀纯的尺规做图皆是由基原做图组成的.2、五种基原做图:1、做一条线段等于已知线段;2、做一个角等于已知角;3、做已知线段的笔曲仄分线;4、做已知角的角仄分线;5、过一面做已知曲线的垂线; (1)题目一:做一条线段等于已知线段. 已知:如图,线段a .供做:线段AB ,使AB = a . 做法:(1) 做射线AP ;(2) 正在射线AP 上截与AB=a .则线段AB 便是所供做的图形. (2)题目二:做已知线段的中面. 已知:如图,线段MN.供做:面O ,使MO=NO (即O 是MN 的中面). 做法:ONMBPANM BOA③②①A'A'N'O'B'M'O'A'N'M'M'O'(1)分别以M 、N 为圆心,大于的相共线段为半径绘弧, 二弧相接于P ,Q ;(2)对接PQ 接MN 于O .则面O 便是所供做的MN的中面. (3)题目三:做已知角的角仄分线. 已知:如图,∠AOB ,供做:射线OP, 使∠AOP =∠BOP (即OP 仄分∠AOB ).做法:(1)以O 为圆心,任性少度为半径绘弧,分别接OA ,OB 于M ,N ;(2)分别以M 、N为圆心,大于 的线段少为半径绘弧,二弧接∠AOB 内于P;(3) 做射线OP.则射线OP 便是∠AOB 的角仄分线. (4)题目四:做一个角等于已知角. 已知:如图,∠AOB. 供做:∠A ´O ´B ´,使∠A ´O ´B ´=∠AOB 做法: (1)做射线O ´A ´;(2)以O 为圆心,任性少度为半径绘弧,接OA 于M ,接OB 于N ;(3)以O ´为圆心,以OM 的少为半径绘弧,接O ´A ´于M ´;PB(4)以M ´为圆心,以MN 的少为半径绘弧,接前弧于N ´; (5)对接O ´N ´并延少到B ´. 则∠A ´O ´B ´便是所供做的角.(5)题目五:通过曲线上一面干已知曲线的垂线. 已知:如图,P 是曲线AB 上一面. 供做:曲线CD ,是CD 通过面P 做法:(1)以P 为圆,任性少为半径绘弧,接AB 于M 、N ;(2)分别以M 、N 为圆心,大于MN 21的少为半径绘弧,二弧接于面Q ;(3)过D 、Q 做曲线CD. 则曲线CD 是供做的曲线.(6)题目六:通过曲线中一面做已知曲线的垂线 已知:如图,曲线AB 及中一面P. 供做:曲线CD ,使CD 通过面P ,且CD ⊥AB.做法:(1)以P 为圆心,任性少为半径绘弧,接AB 于M 、N ;(2)分别以M 、N 圆心,大于MN 21少度的一半为半径绘弧,二弧接于面Q ;(3)过P 、Q 做曲线CD. 则曲线CD 便是所供做的曲线.ca b mn (7)题目七:已知三边做三角形. 已知:如图,线段a ,b ,c.供做:△ABC ,使AB = c ,AC = b ,BC = a. 做法:(1) 做线段AB = c ;(2) 以A 为圆心,以b 以B 为圆心,以a前弧相接于C ;(3) 对接AC ,BC.则△ABC 便是所供做的三角形.(8)题目八:已知二边及夹角做三角形. 已知:如图,线段m ,n, ∠α. 供做:△ABC ,使∠A=∠α,AB=m ,AC=n. 做法:(1) 做∠A=∠α; (2) 正在AB 上截与AB=m ,AC=n ; (3) 对接BC.则△ABC 便是所供做的三角形.(9)题目九:已知二角及夹边做三角形. 已知:如图,∠α,∠β,线段m .供做:△ABC ,使∠A=∠α,∠B=∠β,AB=m. 做法:(1)做线段AB=m;正在AB的共旁做∠A=∠α,做∠B=∠β,∠A与∠B的另一边相接于C.则△ABC便是所供做的图形(三角形).(10)题目十:已知三角形,做三角形的中接圆战内切圆.已知:如图,△ABC.供做:△ABC中接圆战内切圆.做法:(1)中接圆的圆心是△ABC三条边的笔曲仄分线的接面(转移为做AB、BC的笔曲仄分线接面,半径是接面与△ABC其中一个顶面的少度)(2)内切圆的圆心是△ABC三个角的角仄分线的接面(转移为做∠B、∠C的角仄分线接面,半径是接面到△ABC其中一条边的少度)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B P A a O Q P N
M O N M B P A
尺规作图
【知识回顾】
1、尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。

最基本,最常用的尺规作图,通常称基本作图。

一些复杂的尺规作图都是由基本作图组成的。

2、五种基本作图:
1、作一条线段等于已知线段;
2、作一个角等于已知角;
3、作已知线段的垂直平分线;
4、作已知角的角平分线;
5、过一点作已知直线的垂线; (1)题目一:作一条线段等于已知线段。

已知:如图,线段a . 求作:线段AB ,使AB = a . 作法:
(1) 作射线AP ; (2) 在射线AP 上截取AB=a . 则线段AB 就是所求作的图形。

(2)题目二:作已知线段的中点。

已知:如图,线段MN.
求作:点O ,使MO=NO (即O 是MN 的中点). 作法:
(1)分别以M 、N 为圆心,大于 的相同线段为半径画弧, 两弧相交于P ,Q ; (2)连接PQ 交MN 于O .
则点O 就是所求作的MN的中点。

(3)题目三:作已知角的角平分线。

已知:如图,∠AOB ,
求作:射线OP, 使∠AOP =∠BOP (即OP 平分∠AOB )。

作法:
(1)以O 为圆心,任意长度为半径画弧,
分别交OA ,OB 于M ,N ;
(2)分别以M 、N为圆心,大于 的线段长 为半径画弧,两弧交∠AOB 内于P; (3) 作射线OP 。

则射线OP 就是∠AOB 的角平分线。

(4)题目四:作一个角等于已知角。

已知:如图,∠AOB 。




P B
B A P
求作:∠A ’O ’B ’,使A ’O ’B ’=∠AOB
作法:
(1)作射线O ’A ’;
(2)以O 为圆心,任意长度为半径画弧,交OA 于M ,交OB 于N ; (3)以O ’为圆心,以OM 的长为半径画弧,交O ’A ’于M ’; (4)以M ’为圆心,以MN 的长为半径画弧,交前弧于N ’; (5)连接O ’N ’并延长到B ’。

则∠A ’O ’B ’就是所求作的角。

(5)题目五:经过直线上一点做已知直线的垂线。

已知:如图,P 是直线AB 上一点。

求作:直线CD ,是CD 经过点P ,且CD ⊥AB 。

作法:
(1)以P 为圆心,任意长为半径画弧,交AB 于M 、N ;
(2)分别以M 、N 为圆心,大于MN 2
1
的长为半径画弧,两弧交于点Q ;
(3)过D 、Q 作直线CD 。

则直线CD 是求作的直线。

(6)题目六:经过直线外一点作已知直线的垂线 已知:如图,直线AB 及外一点P 。

求作:直线CD ,使CD 经过点P ,
且CD ⊥AB 。

作法:
(1)以P 为圆心,任意长为半径画弧,交AB 于M 、N ;
c a
b
m
n
(2)分别以M、N圆心,大于MN
2
1
长度的一半为半径画弧,两弧交于点Q;(3)过P、Q作直线CD。

则直线CD就是所求作的直线。

(5)题目七:已知三边作三角形。

已知:如图,线段a,b,c.
求作:△ABC,使AB = c,AC = b,BC = a.
作法:
(1)作线段AB = c;
(2)以A为圆心,以b为半径作弧,
以B为圆心,以a为半径作弧与
前弧相交于C;
(3)连接AC,BC。

则△ABC就是所求作的三角形。

题目八:已知两边及夹角作三角形。

已知:如图,线段m,n, ∠α.
求作:△ABC,使∠A=∠α,AB=m,AC=n.
作法:
(1)作∠A=∠α;
(2)在AB上截取AB=m ,AC=n;
(3)连接BC。

则△ABC就是所求作的三角形。

题目九:已知两角及夹边作三角形。

已知:如图,∠α,∠β,线段m .
求作:△ABC,使∠A=∠α,∠B=∠β,AB=m.
作法:
(1)作线段AB=m;
(2)在AB的同旁
作∠A=∠α,作∠B=∠β,
∠A与∠B的另一边相交于C。

则△ABC
【考点练习】
1、如图:107国道OA和320国道OB
A
内部有工厂C和D,现要修建一个货站P,使P到OA、OB的距离相等且PC=PD,用尺规作出货站P的位置(不写作法,保留作图痕迹,写出结论)
2、三条公路两两相交,交点分别为A,B,C,现计划建一个加油站,要求到三条公路的距离相等,问满足要求的加油站地址有几种情况?用尺规作图作出所有可能的加油站地址。

3、过点C作一条线平行于AB。

4、如图,平行四边形纸条ABCD中,E、F分别是边AD、BC的中点。

张老师请同学们将纸条的下半部分平行四边形ABEF沿EF翻折,得到一个V字形图案。

请你在原图中画出翻折后的图形平行四边形A1B1FE;(用尺规作图,不写画法,保留作图痕迹)。

5、如图,已知方格纸中的每个小方格都是全等的正方形,∠AOB画在方格纸上,请用利用格点和直尺(无刻度)作出∠AOB的平分线。

O
B
A
6、小芸在班级办黑板报时遇到一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助他设计一个合理的等分方案,图中AB 为直径,O 为圆心(要求用尺规作图,保留作图痕迹)。

7、已知线段AB 和CD ,如下图,求作一线段,使它的长度等于AB +2CD.
8、如图,已知∠A 、∠B ,求作一个角,使它等于∠A-∠B.
9、如图,画一个等腰△ABC ,使得底边BC=a ,它的高AD=h
10、如图,有A ,B ,C 三个村庄,现要修建一所希望小学,•使三个村庄到学校
H G F
E B A
的距离相等,学校的地址应选在什么地方?请你在图中画出学校的位置并说明理由(•保留作图痕迹).
11、如图,A 、B 两村在一条小河的的同一侧,要在河边建一水厂向两村供水. (1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置? (2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置? 请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹.
.B
A .
12、如图,A 为∠MON 内一点,试在OM 、ON 边上分别作出一点B 、C ,使△ABC 的周长最小.
13、如图,已知两点P 、Q 在锐角∠AOB 内,分别在OA 、OB 上求点M 、N ,使PM +MN +NQ 最短.
18.如图所示,EFGH 是一矩形的台球台面,有黑白两球分别位于A 、B 两点位置上,试问:怎样撞击黑球A ,使黑球先碰撞台边EF 反弹后再击中白球B ?
N
A
O
M Q P
B O A。

相关文档
最新文档