高考物理经典解题模型及答题技巧

合集下载

高中物理48个解题模型高考物理题型全归纳

高中物理48个解题模型高考物理题型全归纳

⾼中物理48个解题模型⾼考物理题型全归纳最后两个⽉,快速掌握⾼考物理150道易错题+30个常考物理模型,⼀定拿⾼分!不看太可惜!历年⾼考物理解题经典模型,⽼师都没讲得这么全!常考物理模型及易错题常考物理模型及隐含条件30条1.绳:只能拉,不能压,即受到拉⼒时F≠0,受压时F=0.2.杆:既能拉也能压,即受到拉⼒.压⼒时,有F≠0.3.绳刚要断:此时绳的拉⼒已经达到最⼤值,即F=Fmax.4.光滑:意味着⽆摩擦⼒.5.长导线:意味着长度L可看成⽆穷⼤.6.⾜够⼤的平板:意味着平板的⾯积S可看成⽆穷⼤.7.轻杆.轻绳.轻滑轮:意味着质量m=0.8.物体刚要离开地⾯.物体刚要飞离轨道等物体和接触⾯之间作⽤⼒:FN=0.9.绳恰好被拉直,此时绳中拉⼒:F=0.10.物体开始运动.⾃由释放:表⽰初速度为0.11.锤打桩⽆反弹:碰撞后,锤与桩有共同速度.12.理想变压器:⽆功率损耗的变压器.13.细杆:体积为零,仅有长度.14.质点:具有质量,但可忽略其⼤⼩.形状和内部结构⽽视为⼏何点的物体.15.点电荷:在研究带电体间的相互作⽤时,如果带电体的⼤⼩⽐它们之间的距离⼩得多,即可认为分布在带电体上的电荷是集中在⼀点上的.16.基本粒⼦如电⼦.质⼦.离⼦等是不考虑重⼒的粒⼦,⽽带电的质点.液滴.⼩球等(除说明不考虑重⼒外)则要考虑重⼒.17.“轻绳.弹簧.轻杆”模型:注意三种模型的异同点,常考查直线与圆周运动中三种模型的动⼒学问题和功能问题.18.“挂件”模型:考查物体的平衡问题.死结与活结问题,常采⽤正交分解法,图解法,三⾓形法则和极值法解题.19.“追碰”模型:考查运动规律.碰撞规律.临界问题.常通过数学法(函数极值法.图像法等)和物理⽅法(参照物变换法.守恒法)等解题.20.“⽪带”模型:注意摩擦⼒的⼤⼩和⽅向.常考查⽜顿运动定律.功能关系及摩擦⽣热等问题.21.“平抛”模型:物体做平抛运动(或类平抛运动),考查运动的合成与分解.⽜顿运动定律.动能定理等知识.22.“⾏星”模型:万有引⼒提供向⼼⼒.注意相关物理量.功能问题.数理问题(圆⼼.半径.临界问题).23.“⼈船”模型:不仅是动量守恒问题中典型的物理模型,也是最重要的⼒学综合模型之⼀.通过类⽐和等效⽅法,可以使许多动量守恒问题的分析思路和解答步骤变得简捷.24.“⼦弹打⽊块”模型:⼦弹和⽊块组成的系统动量守恒,机械能不守恒.系统损失的机械能等于阻⼒乘以相对位移.25.“限流与分压器”模型:电路设计中经常遇到.考查串.并联电路规律及闭合电路的欧姆定律.电能.电功率以及实际应⽤等.26.“电路的动态变化”模型:考查闭合电路的欧姆定律.27.“回旋加速器”模型:考查带电粒⼦在磁场中运动的典型模型.注意加速电场的平⾏极板接的是交变电压,且它的周期和粒⼦的运动周期相同.28.电磁场中的“单杆”模型:导体棒主要是以棒⽣电或电⽣棒的内容出现,从组合情况来看有棒与电阻.棒与电容.棒与电感.棒与弹簧等.导体棒所在的导轨有平⾯导轨.竖直导轨等.29.电磁场中的“双电源”模型:考查⼒学中的三⼤定律.闭合电路的欧姆定律.电磁感应定律等知识.30.“远距离输电变压器”模型:注意变压器的三个制约问题.⾼中物理模型有哪些⒈"质⼼"模型:质⼼(多种体育运动).集中典型运动规律.⼒能⾓度.⒉"绳件.弹簧.杆件"三件模型:三件的异同点,直线与圆周运动中的动⼒学问题和功能问题.⒊"挂件"模型:平衡问题.死结与活结问题,采⽤正交分解法,图解法,三⾓形法则和极值法.⒋"追碰"模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理⽅法(参照物变换法.守恒法)等.⒌"运动关联"模型:⼀物体运动的同时性.独⽴性.等效性.多物体参与的独⽴性和时空联系.⒍"⽪带"模型:摩擦⼒.⽜顿运动定律.功能及摩擦⽣热等问题.⒎"斜⾯"模型:运动规律.三⼤定律.数理问题.⒏"平抛"模型:运动的合成与分解.⽜顿运动定律.动能定理(类平抛运动).⒐"⾏星"模型:向⼼⼒(各种⼒).相关物理量.功能问题.数理问题(圆⼼.半径.临界问题).⒑"全过程"模型:匀变速运动的整体性.保守⼒与耗散⼒.动量守恒定律.动能定理.全过程整体法.⒒"⼈船"模型:动量守恒定律.能量守恒定律.数理问题.⒓"⼦弹打⽊块"模型:三⼤定律.摩擦⽣热.临界问题.数理问题.⒔"爆炸"模型:动量守恒定律.能量守恒定律.⒕"单摆"模型:简谐运动.圆周运动中的⼒和能问题.对称法.图象法.⒖"限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应⽤.⒗"电路的动态变化"模型:闭合电路的欧姆定律.判断⽅法和变压器的三个制约问题.⒘"磁流发电机"模型:平衡与偏转.⼒和能问题.⒙"回旋加速器"模型:加速模型(⼒能规律).回旋模型(圆周运动).数理问题.⒚"对称"模型:简谐运动(波动).电场.磁场.光学问题中的对称性.多解性.对称性.⒛电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平⾯导轨.竖直导轨等,处理⾓度为⼒电⾓度.电学⾓度.⼒能⾓度.21.电磁场中的"双电源"模型:顺接与反接.⼒学中的三⼤定律.闭合电路的欧姆定律.电磁感应定律.22.交流电有效值相关模型:图像法.焦⽿定律.闭合电路的欧姆定律.能量问题.23."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题.24.远距离输电升压降压的变压器模型.。

高中物理知识点总结 高考物理48个解题模型

高中物理知识点总结 高考物理48个解题模型

高中物理知识点总结高考物理48 个解题模型高中阶段的物理常常会以模型的形式出现,这些模型应用在解题中提供了支持和辅助作用。

1高中物理解题模型汇总必修一1、传送带模型:摩擦力,牛顿运动定律,功能及摩擦生热等问题。

2、追及相遇模型:运动规律,临界问题,时间位移关系问题,数学法(函数极值法。

图像法等)3、挂件模型:平衡问题,死结与活结问题,采用正交分解法,图解法,三角形法则和极值法。

4、斜面模型:受力分析,运动规律,牛顿三大定律,数理问题。

必修二1、“绳子、弹簧、轻杆”三模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题。

2、行星模型:向心力(各种力),相关物理量,功能问题,数理问题(圆心。

半径。

临界问题)。

3、抛体模型:运动的合成与分解,牛顿运动定律,动能定理(类平抛运动)。

选修3-11、“回旋加速器”模型:加速模型(力能规律),回旋模型(圆周运动),数理问题。

2、“磁流发电机”模型:平衡与偏转,力和能问题。

3、“电路的动态变化”模型:闭合电路的欧姆定律,判断方法和变压器的三个制约问题。

4、“限流与分压器”模型:电路设计,串并联电路规律及闭合电路的欧姆定律,电能,电功率,实际应用。

选修3-21、电磁场中的单杆模型:棒与电阻,棒与电容,棒与电感,棒与弹簧组合,平面导轨,竖直导轨等,处理角度为力电角度,电学角度,力能角度。

2、交流电有效值相关模型:图像法,焦耳定律,闭合电路的欧姆定律,能量问题。

选修3-41、“对称”模型:简谐运动(波动),电场,磁场,光学问题中的对称性,多解性,对称性。

2、“单摆”模型:简谐运动,圆周运动中的力和能问题,对称法,图象法。

选修3-51、“爆炸”模型:动量守恒定律,能量守恒定律。

2、“能级”模型:能级图,跃迁规律,光电效应等光的本质综合问题。

1 高考物理必考知识点总结一、运动的描述1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。

物体位置的变化,准确描述用位移,运动快慢S 比t ,a 用Δv与t 比。

2024届高考物理规范答题与得分技巧

2024届高考物理规范答题与得分技巧
计算题联系所学物理模型,匀变速直线,匀变速曲线(平抛、斜上 抛还是斜下抛、亦或是类抛体运动),匀速圆周(水平面还是竖直 面还是斜面),变速圆周(绳模型还是杆模型)、或者几种运动模 型的和运动等分析计算
5.检查与验算
1.防止漏题。有没有跳过的题目,试卷反面有没有未做的题目,计算题是 否有某一问未做等
高考物理 规范答题与得分技巧
一、物理答题时间安排及高分答题技巧!
(一)、物理试卷结构
1、选择题 43分 (单选7个小题,每小题4分,多选3个小题, 每小题5分) 2、 非选择题57分 实验题目2个(预测15分左右) 计算题目3个 (二)、考试时间75分钟
做题时,基础题要力争全对,中档题少丢分或者不丢 分。中、低档题得分数通常占全卷的80%以上。
•总之,对于多数考生来讲,要在有限 的时间内获得比较高的分数,就要学 会主动地暂时放弃,暂时放弃费时费 力的难题,腾出更多的时间做容易题, 拿到更多的分数——古人田忌赛马不 就是这个道理吗?
•做题顺序的选择,因人而异。
二、考场应试策略
1.考前调整
开考前一般会有一小段时间,可能会有情绪上的小波动,要适当调 整,安定情绪,如果有点小紧张,可以尝试深呼吸,喝口水等
5.所列方程的依据名称和对应的物理过程或状态,有时候所得结果的物理意 义也要说明
特别提醒:
考场时间有限,答题卡容量有限,文字说明必要的简明扼要,不是必须一般 不写
(二)必要的方程
1.写基本方程式(最好是原始式子),不能用变形的结果来替代原
始式子比如带电粒子在磁场中运动时有 qvB mv2 不要直接写成 r mv
r
qB
2.要用字母表达的不要掺有数字,比如重力加速度写字母,不要写
成9.8等

高考物理经典解题模型及答题技巧

高考物理经典解题模型及答题技巧

高考物理经典解题模型及答题技巧1、"质心"模型:质心(多种体育运动).集中典型运动规律.力能角度.2."绳件.弹簧.杆件"三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题.3."挂件"模型:平衡问题.死结与活结问题,采用正交分解法,图解法,三角形法则和极值法.4."追碰"模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理方法(参照物变换法.守恒法)等.5."运动关联"模型:一物体运动的同时性.独立性.等效性.多物体参与的独立性和时空联系.6."皮带"模型:摩擦力.牛顿运动定律.功能及摩擦生热等问题.7."斜面"模型:运动规律.三大定律.数理问题.8."平抛"模型:运动的合成与分解.牛顿运动定律.动能定理(类平抛运动).9."行星"模型:向心力(各种力).相关物理量.功能问题.数理问题(圆心.半径.临界问题).10."全过程"模型:匀变速运动的整体性.保守力与耗散力.动量守恒定律.动能定理.全过程整体法.11."人船"模型:动量守恒定律.能量守恒定律.数理问题.12."子弹打木块"模型:三大定律.摩擦生热.临界问题.数理问题.13."爆炸"模型:动量守恒定律.能量守恒定律.14."单摆"模型:简谐运动.圆周运动中的力和能问题.对称法.图象法.15."限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应用.16."电路的动态变化"模型:闭合电路的欧姆定律.判断方法和变压器的三个制约问题.17."磁流发电机"模型:平衡与偏转.力和能问题.18."回旋加速器"模型:加速模型(力能规律).回旋模型(圆周运动).数理问题.19."对称"模型:简谐运动(波动).电场.磁场.光学问题中的对称性.多解性.对称性.20.电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平面导轨.竖直导轨等,处理角度为力电角度.电学角度.力能角度.21.电磁场中的"双电源"模型:顺接与反接.力学中的三大定律.闭合电路的欧姆定律.电磁感应定律.22.交流电有效值相关模型:图像法.焦耳定律.闭合电路的欧姆定律.能量问题.23."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题.24.远距离输电升压降压的变压器模型.1、注意看清题目,比如选择的是错误的、可能的、不正确的、或者一定的,这些关键字眼一定要仔细看清楚,以免丢了冤枉分。

高中物理总复习 15种快速解题技巧

高中物理总复习 15种快速解题技巧

技巧一、巧用合成法解题【典例1】 一倾角为θ的斜面放一木块,木块上固定一支架,支架末端用丝线悬挂一小球,木块在斜面上下滑时,小球与木块相对静止共同运动,如图2-2-1所示,当细线(1)与斜面方向垂直;(2)沿水平方向,求上述两种情况下木块下滑的加速度.解析:由题意可知小球与木块相对静止共同沿斜面运动,即小球与木块有相同的加速度,方向必沿斜面方向.可以通过求小球的加速度来达到求解木块加速度的目的. (1)以小球为研究对象,当细线与斜面方向垂直时,小球受重力mg和细线的拉力T ,由题意可知,这两个力的合力必沿斜面向下,如图2-2-2所示.由几何关系可知F 合=mgsin θ根据牛顿第二定律有mgsin θ=ma 1所以a 1=gsin θ(2)当细线沿水平方向时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力也必沿斜面向下,如图2-2-3所示.由几何关系可知F 合=mg /sin θ根据牛顿第二定律有mg /sin θ=ma 2所以a 2=g /sin θ.【方法链接】 在本题中利用合成法的好处是相当于把三个力放在一个直角三角形中,则利用三角函数可直接把三个力联系在一起,从而很方便地进行力的定量计算或利用角边关系(大角对大边,直角三角形斜边最长,其代表的力最大)直接进行力的定性分析.在三力平衡中,尤其是有直角存在时,用力的合成法求解尤为简单;物体在两力作用下做匀变速直线运动,尤其合成后有直角存在时,用力的合成更为简单.技巧二、巧用超、失重解题【典例2】 如图2-2-4所示,A 为电磁铁,C 为胶木秤盘,A和C (包括支架)的总质量为M ,B 为铁片,质量为m ,整个装置用轻绳悬挂于O 点,当电磁铁通电,铁片被吸引上升的过程中,轻绳上拉力F 的大小满足A.F=MgB.Mg <F <(M+m )gC .F=(M+m )g D.F >(M+m )g解析:以系统为研究对象,系统中只有铁片在电磁铁吸引下向上做加速运动,有向上的加速度(其它部分都无加速度),所以系统有竖直向上的加速度,系统处于超重状态,所以轻绳对系统的拉力F 与系统的重力(M+m )g 满足关系式:F >(M+m )g ,正确答案为D.【方法链接】对于超、失重现象大致可分为以下几种情况:θ 图2-2-1 θ mg TF 合 图2-2-2 θ mgF 合 T 图2-2-3 图2-2-4(1)如单个物体或系统中的某个物体具有竖直向上(下)的加速度时,物体或系统处于超(失)重状态.(2)如单个物体或系统中的某个物体的加速度不是竖直向上(下),但有竖直向上(下)的加速度分量,则物体或系统也处于超(失)重状态,与物体水平方向上的加速度无关.在选择题当中,尤其是在定性判断系统重力与支持面的压力或系统重力与绳子拉力大小关系时,用超、失重规律可方便快速的求解.技巧三、巧用碰撞规律解题【典例3】 在电场强度为E 的匀强电场中,有一条与电场线平行的几何线,如图2-2-5虚线所示.几何线上有两个可视为质点的静止小球A 和B.两小球的质量均为m ,A 球带电量+Q ,B 球不带电.开始时两球相距L ,释放A 球,A 球在电场力的作用下沿直线运动,并与B 发生正碰,碰撞中A 、B 两球的总动能无损失.设在每次碰撞中,A 、B 两球间无电量转换,且不考虑重力及两球间的万有引力.求(1)A 球经多长时间与B 球发生第一次碰撞. (2)第二次碰撞前,A 、B 两球的速率各为多少? (3)从开始到第三次相碰,电场力对A 球所做的功. 解析:(1)设A 经时间t 与B 球第一次碰撞,根据运动学规律有L=at 2/2A 球只受电场力,根据牛顿第二定律有QE=ma∴(2)设第一次碰前A 球的速度为V A ,根据运动学规律有V A 2=2aL碰后B 球以速度V A 作匀速运动,而A 球做初速度为零的匀加速运动,设两者再次相碰前A 球速度为V A1,B 球速度为V B .则满足关系式V B = V A1/2= V A∴V B = V A =V A1=2 V A =2(3)第二次碰后,A 球以初速度V B 作匀加速运动,B 球以速度V A1作匀速运动,直到两者第三次相碰.设两者第三次相碰前A 球速度为V A2,B 球速度为V B1.则满足关系式V B1= V A1=(V B + V A2)/2∴V B1=2 V A ;V A2=3 V A第一次碰前A 球走过的距离为L ,根据运动学公式V A 2=2aL设第二次碰前A 球走过的距离为S 1,根据运动学公式V A12=2aS 1∴S 1=4L设第三次碰前A 球走过的距离为S 2,有关系式V A22-V A12=2aS 2∴S 2=8L即从开始到第三次相碰,A 球走过的路程为S=13L此过程中电场力对A 球所做的功为W=QES=13 QEL .【技巧点拨】 利用质量相等的两物体碰撞的规律考生可很容易判断出各球发生相互作用前后的运动规律,开始时B 球静止,A 球在电场力作用下向右作匀加速直线运动,当运m m L B A 图2-2-5图2-2-6 动距离L 时与B 球发生相碰.两者相碰过程是弹性碰撞,碰后两球速度互换,B 球以某一初速度向右作匀速直线运动,A 球向右作初速度为零的匀加速运动.当A 追上B 时两者第二次发生碰撞,碰后两者仍交换速度,依此类推.技巧四、巧用阻碍规律解题【典例4】 如图2-2-6所示,小灯泡正常发光,现将一与螺线管等长的软铁棒沿管的轴线迅速插入螺线管内,小灯泡的亮度如何变化A 、不变B 、变亮C 、变暗D 、不能确定解析:将软铁棒插入过程中,线圈中的磁通量增大,感应电流的效果要阻碍磁通量的增大,所以感应电流的方向与线圈中原电流方向相反,以阻碍 磁通量的增大,所以小灯泡变暗,C 答案正确.【方法链接】 楞次定律“效果阻碍原因”的几种常见形式.(1)就磁通量而言:感应电流的磁场总是阻碍引起感应电流的磁通量(原磁通量)的变化.即当原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,简称口诀“增反减同”.(2)就相对运动而言:感应电流的效果阻碍所有的相对运动,简称口诀“来拒去留”,从运动效果上看,也可形象的表述为“敌进我退,敌逃我追”.(3)就闭合电路的面积而言:致使电路的面积有收缩或扩张的趋势.收缩或扩张是为了阻碍电路磁通量的变化.若穿过闭合电路的磁感线都为同一方向,则磁通量增大时,面积有收缩趋势;磁通量减少时,面积有扩张趋势.简称口诀“增缩减扩”.若穿过回路的磁感线有两个相反的方向,则以上结论不一定成立,应根据实际情况灵活应用,总之要阻碍磁通量的变化.(4)就电流而言:感应电流阻碍原电流的变化,即原电流增大时,感应电流与原电流反向;原电流减小时,感应电流与原电流同向,简称口诀“增反减同”.技巧五、巧用整体法解题【典例5】 如图2-2-7所示,光滑水平面上放置质量分别为m 和2m 的四个木块,其中两个质量为m 的木块间用一不可伸长的轻绳相连,木块间的最大静摩擦力是μmg .现用水平拉力F 拉其中一个质量为2 m 的木块,使四个木块以同一加速度运动,则轻绳对m 的最大拉力为A 、5mg 3μB 、4mg 3μC 、2mg 3μ D 、mg 3μ解析:以上面2个木块和左边的质量为2m 的木块整体为研究对象,根据牛顿第二定律有μmg=4ma再以左边两木块整体为研究对象,根据牛顿第二定律有T=3ma∴T=4mg 3μ B 答案正确. 【技巧点拨】 当系统内各物体有相同加速度时(一起处于静止状态或一起加速)或题意要求计算系统的外力时,巧妙选取整体(或部分整体)为研究对象可使解题更为简单快捷.技巧六、巧用几何关系解题图2-2-7图2-2-9 图2-2-10 图2-2-11 【典例6】 如图2-2-8所示,在真空区域内,有宽度为L 的匀强磁场,磁感应强度为B ,磁场方向垂直纸面向里,MN 、PQ 是磁场的边界.质量为m ,带电量为-q 的粒子,先后两次沿着与MN 夹角为θ(0<θ<90º)的方向垂直磁感线射入匀强磁场B 中,第一次,粒子是经电压U 1加速后射入磁场,粒子刚好没能从PQ 边界射出磁场.第二次粒子是经电压U 2加速后射入磁场,粒子则刚好垂直PQ 射出磁场.不计重力的影响,粒子加速前速度认为是零,求:(1)为使粒子经电压U 2加速射入磁场后沿直线运动,直至射出PQ 边界,可在磁场区域加一匀强电场,求该电场的场强大小和方向.(2)加速电压12U U 的值. 解析:(1)如图答2-2-9所示,经电压2U 加速后以速度2v 射入磁场,粒子刚好垂直PQ 射出磁场,根据几何关系可确定粒子在磁场中做匀速圆周运动的圆心在PQ 边界线的O 点,半径2R 与磁场宽L 的关系式为2cos L R θ=又因为22mv R Bq =所以2cos BqL v m θ= 加匀强电场后,粒子在磁场中沿直线运动射出PQ 边界的条件为Eq =Bq 2v ,电场力的方向与磁场力的方向相反. 所以2cos B qL E m θ=,方向垂直磁场方向斜向右下,与磁场边界夹角为2παθ=-,如图答2-2-10所示.(2)经电压1U 加速后粒子射入磁场后刚好不能从PQ 边界射出磁场,表明在磁场中做匀速圆周运动的轨迹与PQ 边界相切,要确定粒子做匀速圆周运动的圆心O 的位置,如图答2-2-11所示,圆半径1R 与L 的关系式为:111cos ,1cos L L R R R θθ=+=+ 又11mv R Bq= 所以1(1cos )BqL v m θ=+ 根据动能定理有21112U q mv =,22212U q mv =, 所以22112222cos (1cos )U v U v θθ=+. 【方法链接】 解决带电粒子在匀强磁场中匀速圆周运动问题,关键是确定圆心的位置,正确画出粒子运动的草图,利用几何关系结合运动规律求解.技巧七:巧用可逆原理解题【典例7】 某同学在测定玻璃折射率时得到了多组入射角i 与折射角r ,并作出了sini 与sinr 的图象如图2-2-12所示.则下列说法正确的是 A . 实验时,光线是由空气射入玻璃 B . 实验时,光线是由玻璃射入空气C . 利用sini /sinr 可求得玻璃的折射率D . 该玻璃的折射率为1.5解析:由图象可知入射角的正弦值小于折射角的正弦值.根据折射定律可知光线是从光密介质射向光疏介质,即由玻璃射向空气,B 答案正确;根据折射定律n=sini /sinr 可求得介质的折射率,但一定要注意此公式一定要满足光线从空气射向介质,而本题中光线是由玻璃射入空气,所以不能直接利用sini /sinr 求介质的折射率,根据光路可逆原理,当光线反转时,其传播路径不变,即光从空气中以入射角r 射到该玻璃界面上时,折射后的折射角一定为i ,根据折射定律可得玻璃的折射率n= sinr / sini=1.5(这里要注意很容易错选C ),C 错误,D 正确.正确答案为B 、D.【方法链接】 在光的反射或折射现象中,光路具有可逆性.即当光线的传播方向反转时,它的传播路径不变.在机械运动中,若没有摩擦阻力、流体的粘滞阻力等耗散力做功时,机械运动具有可逆性.如物体的匀减速直线运动可看作反向的加速度不变的匀加速运动.方法八:巧用等效法解题【典例8】 如图2-2-13所示,已知回旋加速器中,D 形盒内匀强磁场的磁感应强度B =1.5T ,盒的半径R =60 cm ,两盒间隙d =1.0 cm ,盒间电压U =2.0×104 V ,今将α粒子从近于间隙中心某点向D 形盒内以近似于零的初速度垂直B 的方向射入,求粒子在加速器内运行的总时间.解析:带电粒子在回旋加速器转第一周,经两次加速,速度为v 1,则根据动能定理得:0.1 0.2 sinrsini0.3 0.4 0.5 0.2 0.1 0.40.3 0.5 图2-2-122qU =21mv 12 设运转n 周后,速度为v ,则:n 2qU =21 mv 2 由牛顿第二定律有qvB =m Rv 2粒子在磁场中的总时间:t B =nT =n ·qB m π2=qmU R q B 4222·qB m π2 =UB R 22π 粒子在电场中运动就可视作初速度为零的匀加速直线运动,由公式:t E =a v v t 0-,且v 0=0,v t = ,a =dmqU 得:t E =UBRd 故:t =t B +t E =U BR (2R π+d )=4.5×10-5×(0.94+0.01) s =4.3×10-5s.【技巧点拨】 粒子在间隙处电场中每次运动时间不相等,且粒子多次经过间隙处电场,如果分段计算,每一次粒子经过间隙处电场的时间,很显然将十分繁琐.我们注意到粒子离开间隙处电场进入匀强磁场区域到再次进入电场的速率不变,且粒子每在电场中加速度大小相等,所以可将各段间隙等效“衔接”起来,把粒子断断续续在电场中的加速运动等效成初速度为零的匀加速直线运动.技巧九:巧用对称法解题【典例9】 一根自由长度为10 cm 的轻弹簧,下端固定,上端连一个质量为m 的物块P ,在P 上放一个质量也是m 的物块Q.系统静止后,弹簧长度为6 cm ,如图2-2-14所示.如果迅速向上移去Q ,物块P 将在竖直方向做简谐运动,此后弹簧的最大长度为A .8 cmB .9 cmC .10 cmD .11 cm 解析:移去Q 后,P 做简谐运动的平衡位置处弹簧长度8 cm ,由题意可知刚移去Q 时P 物体所处的位置为P 做简谐运动的最大位移处.即P 做简谐运动的振幅为2 cm.当物体P 向上再次运动到速度为零时弹簧有最大长度,此时P 所处的位置为另一最大位移处,根据简谐运动的对称性可知此时弹簧的长度 为10 cm ,C 正确.【方法链接】在高中物理模型中,有很多运动模型有对称性,如(类)竖直上抛运动的对称性,简谐运动中的对称性,电路中的对称性,带电粒子在匀强磁场中匀速圆周运动中几何关系的对称性.方法十:巧用假设法解题假设法是解决物理问题的一种常见方法,其基本思路为假设结论正确,经过正确的逻辑推理,看最终的推理结果是否与已知条件相矛盾或是否与物理实际情境相矛盾来判断假设是否成立.【典例10】如图2-2-15,abc 是光滑的轨道,其中图2-2-14 P Q 6cmdd 21 ab 是水平的,bc 为与ab 相切的位于竖直平面内的半圆,半径R =0.3m.质量m =0.2kg 的小球A 静止在轨道上,另一质量M=0.6kg ,速度V 0=5.5m/s 的小球B 与小球A 正碰.已知相碰后小球A 经过半圆的最高点C ,落到轨道上距b 为L = 处,重力加速度g =10m/s 2,试通过分析计算判断小球B 是否能沿着半圆轨道到达C 点.解析 :A 、B 组成的系统在碰撞前后动量守恒,碰后A 、B 运动的过程中只有重力做功,机械能守恒,设碰后A 、B 的速度分别为V 1、V 2,由动量守恒定律得M V 0=M V 2+m V 1A 上升到圆周最高点C 做平抛运动,设A 在C 点的速度为V C ,则A 的运动满足关系式2R=gt 2/2 V C t=LA 从b 上升到c 的过程中,由机械能守恒定律得(以ab 所在的水平面为零势面,以下同)m V 12/2= m V C 2/2+2mgR∴V 1=6 m/s ,V 2=3.5 m/s方法1:假设B 球刚好能上升到C 点,则B 球在C 点的速度V C '应满足关系式Mg=M V C '2/R所以V C '=1.73 m/s则B 球在水平轨道b 点应该有的速度为(设为V b )由机械能守恒定律得M V b 2/2=M V C '2/2+2MgR则由V b 与V 2的大小关系可确定B 能否上升到C 点若V 2≥V b ,B 能上升到C 点若V 2<V b ,B 不能上升到C 点代入数据得V b =3.9 m/s >V 2 =3.5 m/s ,所以B 不能上升到C 点.【方法链接】 假设法在物理中有着很广泛的应用,凡是利用直接分析法很难得到结论的问题,用假设法来判断不失为一种较好的方法,如判断摩擦力时经常用到假设法,确定物体的运动性质时经常用到假设法.技巧十一、巧用图像法解题【典例11】 部队集合后开发沿直线前进,已知部队前进的速度与到出发点的距离成反比,当部队行进到距出发点距离为d 1的A位置时速度为V 1,求(1)部队行进到距出发点距离为d 2的B 位置时速度为V 2是多大? (2)部队从A 位置到B 位置所用的时间t 为多大.解析:(1)已知部队前进的速度与到出发点的距离成反比,即有公式V =k/d (d 为部队距出发点的距离,V 为部队在此位置的瞬时速度),根据题意有V 1=k / d 1 V 2=k / d 2 ∴ V 2=d 1 V 1 / d 2. (2)部队行进的速度V 与到出发点的距离d 满足关系式d =k/V ,即d -图象是一条过原点的倾斜直线,如图2-2-16所示,由题意已知,部队从A 位置到B 位置所用的时间t 即为图中斜线图形(直角梯形)的面积.由数学知识可知t =(d 1 + d 2)(1/V 2-1/V 1)/2∴t =(d 22-d 12)/2 d 1 V 1【方法链接】1.此题中部队行进时速度的变化即不是匀速运动,也不是匀变速运动,很图2-2-16V 图2-2-18难直接用运动学规律进行求解,而应用图象求解则使问题得到简化.2.考生可用类比的方法来确定图象与横轴所围面积的物理意义.v-t图象中,图线与横轴围成图形的面积表示物体在该段时间内发生的位移(有公式S =v t ,S 与v t 的单位均为m );F -S 图象中,图线与横轴围成图形的面积表示F 在该段位移S 对物体所做的功(有公式W =FS ,W 与FS 的单位均为J ).而上述图象中t =d ×1/V (t 与d ×1/V 的单位均为s ),所以可判断出该图线与横轴围成图形的面积表示部队从出发点到此位置所用的时间.技巧十二、巧用极限法解题【典例12】 如图2-2-17所示,轻绳的一端系在质量为m的物体上,另一端系在一个轻质圆环上,圆环套在粗糙水平杆MN上,现用水平力F 拉绳上一点,使物体处于图中实线位置,然后改变F 的大小使其缓慢下降到图中虚线位置,圆环仍在原来的位置不动,则在这一过程中,水平拉力F 、环与杆的摩擦力F 摩和环对杆的压力F N 的变化情况是A.F 逐渐增大,F 摩保持不变,F N 逐渐增大B.F 逐渐增大,F 摩逐渐增大,F N 保持不变C.F 逐渐减小,F 摩逐渐增大,F N 逐渐减小D.F 逐渐减小,F 摩逐渐减小,F N 保持不变解析:在物体缓慢下降过程中,细绳与竖直方向的夹角θ不断减小,可把这种减小状态推到无限小,即细绳与竖直方向的夹角θ=0;此时系统仍处于平衡状态,由平衡条件可知,当θ=0时,F=0,F 摩 =0.所以可得出结论:在物体缓慢下降过程中,F 逐渐减小,F 摩也随之减小,D 答案正确. 【方法链接】 极限法就是运用极限思维,把所涉及的变量在不超出变量取值范围的条件下,使某些量的变化抽象成无限大或无限小去思考解决实际问题的一种解题方法,在一些特殊问题当中如能巧妙的应用此方法,可使解题过程变得简捷.方法十三、巧用转换思想解题【典例13】 如图2-2-18所示,电池的内阻可以忽略不计,电压表和可变电阻器R 串联接成通路,如果可变电阻器R 的值减为原来的1/3时,电压表的读数由U 0增加到2U 0,则下列说法中正确的是A .流过可变电阻器R 的电流增大为原来的2倍B .可变电阻器R 消耗的电功率增加为原来的4倍C .可变电阻器两端的电压减小为原来的2/3D .若可变电阻器R 的阻值减小到零,那么电压表的示数变为4U 0确 解析: 在做该题时,大多数学生认为研究对象应选可变电阻器,因为四个选项中都问的是有关R的问题;但R 的电阻、电压、电流均变,判断不出各量的定量变化,从而走入思维的误区.若灵活地转换研究对象,会出现“柳暗花明”的意境;分析电压表,其电阻为定值,当它的读数由U 0增加到2U 0时,通过它的电流一定变为原来的2倍,而R 与电压表串联,故选项A 正确.再利用P =I 2R 和U =IR ,R 消耗的功率P ′=(2I )2R/3=4P/3;R 后来两端的电压U =2IR/3,不难看出C 对B 错.又因电池内阻不计,R 与电压表的电压之和为U 总,当R 减小到零时,电压表的示数也为总电压U总;很轻松地列出U 总=IR +U 0=2 IR/3+2U 0,解得U 总=4U 0,故D 也对.图2-2—17图2-2-22 2-2-19【方法链接】 常见的转换方法有研究对象的转换、时间角度的转换、空间角度的转换、物理模型的转换,本例题就是应用研究对象的转换思想巧妙改变问题的思考角度,从而达到使问题简化的目的.技巧十四、巧用结论解题【典例14】如图2-2-19所示,如图所示,质量为3m 的木板静止放在光滑的水平面上,木板左端固定着一根轻弹簧.质量为m 的木块(可视为质点),它从木板右端以未知速度V 0开始沿木板向左滑行,最终回到木板右端刚好未从木板上滑出.若在小木块压缩弹簧的过程中,弹簧具有的最大弹性势能为E P ,小木块与木板间的动摩擦因数大小保持不变,求: (1)木块的未知速度V 0(2)以木块与木板为系统,上述过程中系统损失的机械能解析:系统在运动过程中受到的合外力为零,所以系统动量定恒,当弹簧压缩量最大时,系统有相同的速度,设为V ,根据动量守恒定律有m V 0=(m+3m )V木块向左运动的过程中除了压缩弹簧之外,系统中相互作用的滑动摩擦力对系统做负功导致系统的内能增大,根据能的转化和守恒定律有m V 02/2-(m+3m )V 2/2=E P +μmgL (μ为木块与木板间的动摩擦因数,L 为木块相对木板走过的长度)由题意知木块最终回到木板右端时刚好未从木板上滑出,即木块与木板最终有相同的速度由动量守恒定律可知最终速度也是V.整个过程中只有系统内相互作用的滑动摩擦力做功(弹簧总功为零),根据能量守恒定律有m V 02/2-(m+3m )V 2/2=2μmgL∴有 , E P =μmgL故系统损失的机械能为2 E P .【误点警示】根据能的转化和守恒定律,系统克服滑动摩擦力所做的总功等于系统机械能损失,损失的机械能转化为系统的内能,所以有f 滑L 相对路程=△E (△E 为系统损失的机械能).在应用公式解题时,一定要注意公式成立所满足的条件.当系统中只有相互作用的滑动摩擦力对系统做功引起系统机械能损失(其它力不做功或做功不改变系统机械能)时,公式f 滑L 相对路程=△E 才成立.如果系统中除了相互作用的滑动摩擦力做功还有其它力对系统做功而改变系统机械能,则公式f 滑L 相对路程=△E 不再成立,即系统因克服系统内相互作用的滑动摩擦力所产生的内能不一定等于系统机械能的损失.所以同学们在应用结论解题时一定要注意公式成立的条件是否满足,否则很容易造成错误.方法十五、巧用排除法解题【典例15】 如图2-2-22所示,由粗细均匀的电阻丝制成的边长为L 的正方形线框abcd ,其总电阻为R .现使线框以水平向右的速度v匀速穿过一宽度为2L 、磁感应强度为B 的匀强磁场区域,整个过程中ab 、cd 两边始终保持与磁场边界平行.令线框的cd 边刚好与磁场左边界重合时开始计时(t =0),电流沿abcda 流动的方向为正,U o =BLv .在下图中线框中a 、b 两点间电势差U ab 随线框cd 边的位移x 变化的图像正确的是下图中的x x解析:当线框向右穿过磁场的过程中,由右手定则可判断出总是a点的电势高于b点电势,即U ab>0,所以A、C、D错误,只有B项正确.【方法链接】考生可以比较题设选项的不同之外,而略去相同之处,便可得到正确答案,或者考生能判断出某三个选项是错误的,就没必要对另外一个选项做出判断而应直接把其作为正确答案.对本例题,考生只需判断出三个过程中(进磁场过程、全部进入磁场过程、出磁场过程)中a、b两点电势的高低便可选择出正确答案,而没有必要对各种情况下a、b 两点电势大小规律做出判断.。

高三物理常见模型与方法

高三物理常见模型与方法

高三物理常见模型与方法高三物理常见模型与方法如下:1. 质心模型:研究多种体育运动中的集中典型运动规律、力能角度。

2. 绳件、弹簧、杆件模型:研究三者在直线与圆周运动中的动力学问题和功能问题,以及异同点。

3. 挂件模型:解决平衡问题,包括死结与活结问题,并采用正交分解法、图解法、三角形法则和极值法等。

4. 追碰模型:研究运动规律、碰撞规律和临界问题,可采用数学法(函数极值法、图像法等)和物理方法(参照物变换法、守恒法)等。

5. 运动关联模型:研究一物体运动的同时性、独立性、等效性,以及多物体参与的独立性和时空联系。

6. 皮带模型:研究摩擦力、牛顿运动定律、功能及摩擦生热等问题。

7. 斜面模型:研究运动规律、三大定律和数理问题。

8. 平抛模型:研究运动的合成与分解、牛顿运动定律和动能定理(类平抛运动)。

9. 行星模型:研究向心力(各种力)、相关物理量、功能问题和数理问题(圆心、半径、临界问题)。

10. 全过程模型:研究匀变速运动的整体性、保守力与耗散力、动量守恒定律、动能定理和全过程整体法。

11. 人船模型:研究动量守恒定律、能量守恒定律和数理问题。

12. 子弹打木块模型:研究三大定律、摩擦生热、临界问题和数理问题。

13. 爆炸模型:研究动量守恒定律、能量守恒定律。

14. 单摆模型:研究简谐运动、圆周运动中的力和能问题,可采用对称法、图象法等。

15. 限流与分压器模型:研究电路设计、串并联电路规律及闭合电路的欧姆定律、电能、电功率和实际应用。

16. 电路的动态变化模型:研究闭合电路的欧姆定律、判断方法和变压器的三个制约问题。

17. 磁流发电机模型:研究平衡与偏转、力和能问题。

18. 回旋加速器模型:研究加速模型(力能规律)和回旋模型(圆周运动)及数理问题。

19. 对称模型:研究简谐运动(波动)、电场、磁场、光学问题中的对称性、多解性和对称性。

20. 电磁场中的单杆模型:处理角度为力电角度、电学角度和力能角度,涉及棒与电阻、棒与电容、棒与电感、棒与弹簧组合、平面导轨和竖直导轨等。

高考物理常考的24个模型,经典解题思维,最有用的公式总结!

高考物理常考的24个模型,经典解题思维,最有用的公式总结!

高考物理常考的24个模型,经典解题思维,最有用的公式总结!考前最有用的公式总结高中物理五种经典解题思维,记住就拿分直线运动问题题型概述:直线运动问题是高中物理考试的热点,可以单独考查,也可以与其他知识综合考查。

单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题。

思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系。

物体的动态平衡问题题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题。

物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题。

思维模板:(1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化.运动的合成与分解问题题型概述:运动的合成与分解问题常见的模型有两类。

一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解.思维模板:(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等。

(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析。

抛体运动问题题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都是采用正交分解法,一般是将速度分解到水平和竖直两个方向上。

经典高考物理解题模型(吐血整理)

经典高考物理解题模型(吐血整理)

第一章 运动和力解题模型:一、追及、相遇模型模型讲解:1. 火车甲正以速度v 1向前行驶,司机突然发现前方距甲d 处有火车乙正以较小速度v 2同向匀速行驶,于是他立即刹车,使火车做匀减速运动。

为了使两车不相撞,加速度a 应满足什么条件?解析:设以火车乙为参照物,则甲相对乙做初速为)(21v v -、加速度为a 的匀减速运动。

若甲相对乙的速度为零时两车不相撞,则此后就不会相撞。

因此,不相撞的临界条件是:甲车减速到与乙车车速相同时,甲相对乙的位移为d 。

即:dv v a ad v v 2)(2)(0221221-=-=--,,故不相撞的条件为dv v a 2)(221-≥2. 甲、乙两物体相距s ,在同一直线上同方向做匀减速运动,速度减为零后就保持静止不动。

甲物体在前,初速度为v 1,加速度大小为a 1。

乙物体在后,初速度为v 2,加速度大小为a 2且知v 1<v 2,但两物体一直没有相遇,求甲、乙两物体在运动过程中相距的最小距离为多少?解析:若是2211a v a v ≤,说明甲物体先停止运动或甲、乙同时停止运动。

在运动过程中,乙的速度一直大于甲的速度,只有两物体都停止运动时,才相距最近,可得最近距离为22212122a v a v s s -+=∆ 若是2221a v a v >,说明乙物体先停止运动那么两物体在运动过程中总存在速度相等的时刻,此时两物体相距最近,根据t a v t a v v 2211-=-=共,求得1212a a v v t --=在t 时间内甲的位移t v v s 211+=共乙的位移t v v s 222+=共代入表达式21s s s s -+=∆求得)(2)(1212a a v v s s ---=∆3. 如图1.01所示,声源S 和观察者A 都沿x 轴正方向运动,相对于地面的速率分别为S v 和A v 。

空气中声音传播的速率为P v ,设P A P S v v v v <<,,空气相对于地面没有流动。

高考物理常见解题模型

高考物理常见解题模型

t 2m(g a)
图7
ka
例题精析
例.如图所示,一轻质弹簧竖直
F 固定在地面上,自然长度为1m,
B
上端连着一个质量为m1=1kg的物
A 体A,平衡时物体A离地面0.9m。
物体A上方叠放一质量为m2=1kg的 物体B(不连结),在力F作用下
一起由静止开始以加速度a=1m/s2
竖直向上匀加速运动。求物体A、
A、6s B、7s C、8s D、9s
注意“刹车”运动的单向性!
4:两辆完全相同的汽车,沿水平直路一前一后匀
速行驶,速度均为V,若前车突然以恒定加速度刹
车,在它刚停止时,后车以前车刹车时的加速度开
始刹车,已知前车在刹车过程中行驶距离S,在上
述过程中要使两车不相撞,则两车在匀速运动时,
保持的距离至少应为: B
间两车相距最远?此时距离是多少?
解1:(公式法)
当汽车的速度与自行车的
x汽
速度相等时,两车之间的 距离最大。设经时间t两
△x
车之间的距离最大。则
x自
v汽 at v自 t v自 6 s 2s
a3
xm
x自
x汽
v自t
1 2
at 2
6 2m
1 2
3 22 m
6m
解2:(图像法)
在同一个v-t图中画出自行车和汽车的速度时间图像,
解1:(公式法)
两车恰不相撞的条件是两车速度相同时相遇。
由A、B 速度关系: v1 at v2
(包含时
由A、B位移关系:
v1t
1 2
at
2
间关系)
v2t x0
a (v1 v2 )2 (20 10)2 m / s2 0.5m / s2

高中典型物理模型及解题方法

高中典型物理模型及解题方法

高中典型物理模型及方法(精华)◆1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。

解决这类问题的基本方法是整体法和隔离法。

整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程 隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。

连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒) 与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。

平面、斜面、竖直都一样。

只要两物体保持相对静止 记住:N= 211212m F m F m m ++ (N 为两物体间相互作用力),一起加速运动的物体的分子m 1F 2和m 2F 1两项的规律并能应用⇒F 212m m m N +=讨论:①F 1≠0;F 2=0 122F=(m +m )a N=m aN=212m F m m +② F 1≠0;F 2≠0 N=211212m F m m m F ++(20F =就是上面的情况)F=211221m m g)(m m g)(m m ++F=122112m (m )m (m gsin )m m g θ++ F=A B B 12m (m )m F m m g ++F 1>F 2 m 1>m 2 N 1〈N 2(为什么)N 5对6=F Mm (m 为第6个以后的质量) 第12对13的作用力 N 12对13=F nm12)m -(n◆2。

水流星模型(竖直平面内的圆周运动——是典型的变速圆周运动)研究物体通过最高点和最低点的情况,并且经常出现临界状态。

(圆周运动实例) ①火车转弯②汽车过拱桥、凹桥3③飞机做俯冲运动时,飞行员对座位的压力。

④物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等)。

高中物理48个解题模型 高考物理经典题型归纳

高中物理48个解题模型 高考物理经典题型归纳

高中物理48个解题模型高考物理经典题型归纳
学好高中物理可以多积累些做题解题的经典模型。

下文小编给大家整理了高中物理最常用的几种解题模型,供参考!
 高中物理解题常用经典模型1、&#39;皮带&#39;模型:摩擦力,牛顿运动定律,功能及摩擦生热等问题.
 2、&#39;斜面&#39;模型:运动规律,三大定律,数理问题.
 3、&#39;运动关联&#39;模型:一物体运动的同时性,独立性,等效性,多物体参与的独立性和时空联系.
 4、&#39;人船&#39;模型:动量守恒定律,能量守恒定律,数理问题.
 5、&#39;子弹打木块&#39;模型:三大定律,摩擦生热,临界问题,数理问题.
 6、&#39;爆炸&#39;模型:动量守恒定律,能量守恒定律.
 7、&#39;单摆&#39;模型:简谐运动,圆周运动中的力和能问题,对称法,图象法.
 8.电磁场中的&#39;双电源&#39;模型:顺接与反接,力学中的三大定律,闭合电路的欧姆定律.电磁感应定律.
 9.交流电有效值相关模型:图像法,焦耳定律,闭合电路的欧姆定律,能量问题.
 10、&#39;平抛&#39;模型:运动的合成与分解,牛顿运动定律,动能定理(类平抛运动).
 11、&#39;行星&#39;模型:向心力(各种力),相关物理量,功能问题,数理问题(圆心.半径.临界问题).。

高考物理答题技巧及解题模型

高考物理答题技巧及解题模型

高考物理答题技巧下面为大家整理了高中物理题常见的题型和答题技巧,希望这些答题技巧能帮助大家找到物理的解题规律,总结出自己的答题方法,这样才能在物理高考中立于不败之地!力学综合型力学综合试题往往呈现出研究对象的多体性、物理过程的复杂性、已知条件的隐含性、问题讨论的多样性、数学方法的技巧性和一题多解的灵活性等特点,能力要求较高。

具体问题中可能涉及到单个物体单一运动过程,也可能涉及到多个物体,多个运动过程,在知识的考查上可能涉及到运动学、动力学、功能关系等多个规律的综合运用。

答题技巧1. 对于多体问题,要灵活选取研究对象,善于寻找相互联系。

选取研究对象和寻找相互联系是求解多体问题的两个关键。

选取研究对象需根据不同的条件,或采用隔离法,即把研究对象从其所在的系统中抽取出来进行研究;或采用整体法,即把几个研究对象组成的系统作为整体来进行研究;或将隔离法与整体法交叉使用。

2. 对于多过程问题,要仔细观察过程特征,妥善运用物理规律。

观察每一个过程特征和寻找过程之间的联系是求解多过程问题的两个关键。

分析过程特征需仔细分析每个过程的约束条件,如物体的受力情况、状态参量等,以便运用相应的物理规律逐个进行研究。

至于过程之间的联系,则可从物体运动的速度、位移、时间等方面去寻找。

3. 对于含有隐含条件的问题,要注重审题,深究细琢,努力挖掘隐含条件。

注重审题,深究细琢,综观全局重点推敲,挖掘并应用隐含条件,梳理解题思路或建立辅助方程,是求解的关键.通常,隐含条件可通过观察物理现象、认识物理模型和分析物理过程,甚至从试题的字里行间或图象图表中去挖掘。

4. 对于存在多种情况的问题,要认真分析制约条件,周密探讨多种情况。

解题时必须根据不同条件对各种可能情况进行全面分析,必要时要自己拟定讨论方案,将问题根据一定的标准分类,再逐类进行探讨,防止漏解。

5. 对于数学技巧性较强的问题,要耐心细致寻找规律,熟练运用数学方法。

耐心寻找规律、选取相应的数学方法是关键.求解物理问题,通常采用的数学方法有:方程法、比例法、数列法、不等式法、函数极值法、微元分析法、图象法和几何法等,在众多数学方法的运用上必须打下扎实的基础。

高考物理模型及解题大招

高考物理模型及解题大招

高考物理模型及解题大招高考物理模型及解题大招一、背景介绍在高考中,物理作为一门重要的科目,是很多考生必须面对的难关。

为了在高考中获得更好的成绩,考生需要掌握物理相关的模型和解题大招。

二、高考物理模型介绍高考物理涉及的模型较多,下面将列举一些常见的模型及其应用。

1. 运动学方程这是物理中最基本的模型之一,适用于描述任何类型的运动。

在高考中,考生需要掌握各种运动学方程及其应用,如速度、位移、时间等。

熟练掌握这些方程是解题的基础。

2. 牛顿运动定律牛顿运动定律是经典力学中最重要的定律之一,它描述了物体的运动状态和受力情况之间的关系。

在高考中,考生需要掌握牛顿运动定律的表述方式和应用,包括如何确定受力方向和大小等。

3. 能量守恒定律能量守恒定律是热力学中最基本的定律之一,也是物理中最重要的定律之一。

它描述了能量在物理学中的变换和守恒。

在高考中,考生需要熟悉如何使用能量守恒定律来解决各种物理问题。

4. 热力学定律热力学定律是热力学中的基本原理,主要描述了热力学体系在热学平衡状态下的特性。

在高考中,考生需要掌握热力学定律的表述和应用,如热力学第一定律和第二定律等。

三、高考物理解题大招除了掌握各种物理模型,考生还需要掌握一些解题技巧,以下是一些常见的解题大招。

1. 分析题目在解题之前,考生需要认真仔细地阅读题目,了解题目所涉及的知识点和要求,分析题目的难度,然后再结合自己的知识、经验和思维来解决问题。

2. 列出解题步骤解题时,考生需要按照题目要求列出解题步骤,逐步分析和推导,以确保解题的正确性和完整性。

3. 注意数值和单位在解题过程中,考生需要注意数值和单位的转换,同时也要注意各种量之间的关系,以确保答案的准确性。

4. 多练习最后,考生需要多练习各种物理题目,熟悉各种解题技巧和知识点,以提高自己的解题能力,从而在高考中取得好成绩。

总之,高考物理是一个重要的科目,需要考生掌握各种物理模型和解题技巧。

只有通过不断的学习和练习,才能够在高考中取得好成绩。

高中物理必考经典题型+解题技巧

高中物理必考经典题型+解题技巧

高中物理考试常见的类型总结下来有16种,怎样才能做好每一类型的题目呢?就是要掌握这16种常见题型的解题方法和思维模板!题型1:直线运动问题题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查。

单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题.思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系。

题型2:物体的动态平衡问题题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题。

物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题。

思维模板:常用的思维方法有两种.(1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化。

题型3:运动的合成与分解问题题型概述:运动的合成与分解问题常见的模型有两类。

一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解.思维模板:主要有两种情况。

(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等.(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析。

模型一、挂件模型 -【巧解题】2024高考物理模型全归纳

模型一、挂件模型 -【巧解题】2024高考物理模型全归纳

模型一、挂件模型该模型一般由轻绳(轻杆)和物块模型组合而成,可分为静态和动态两类。

常出现在选择、计算题中。

静态模型的受力情况满足共点力的平衡条件F = 0动态模型则满足牛顿第二定律F = ma解析两种不同模型的关键是抓住物体的受力分析,然后结合平衡条件或牛顿定律。

同时也要根据具体的题目具体分析,采用正交分解法,图解法,三角形法则,极值法等不同方法。

A、轻绳、轻杆、轻弹簧弹力比较1、轻绳拉力一定是沿绳子方向,指向绳子收缩的方向。

轻绳拉力的大小可以突变。

用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失。

2、轻杆受力不一定沿轻杆方向。

3、轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。

①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F = kx (胡克定律),其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。

B、滑轮模型与死结模型问题的分析1、跨过滑轮、光滑杆、光滑钉子的细绳两端张力大小相等.2、死结模型:如几个绳端有“结点”,即几段绳子系在一起,谓之“死结”,那么这几段绳中的张力不一定相等.3、同样要注意轻质固定杆的弹力方向不一定沿杆的方向,作用力的方向需要结合平衡方程或牛顿第二定律求得,而轻质活动杆中的弹力方向一定沿杆的方向.【例1】如图所示,在光滑水平面上有一小车,小车上固定一竖直杆,总质量为M,杆顶系一长为l的轻绳,绳另一端系一质量为m的小球,绳被水平拉直处于静止状态,小球处于最右端。

将小球由静止释放,求:ml2mMgA .轻杆对小铁球的弹力方向与细线平行B .轻杆对小铁球的弹力方向沿轻杆方向向上C .轻杆对小铁球的弹力方向既不与细线平行也不沿着轻杆方向D .小车一定以加速度tan g α向右运动【答案】A【详解】ABC .对右边的小球分析,其受重力以及绳子的拉力,产生的加速度方向为水平向右,有tan F mg ma α==合解得tan a g α=因为左边的小球与右边的小球同在小车上,所以运动情况相同,即左边的小球也在以加速度大小为tan g α,方向水平向右。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理经典解题模型及答题技巧
高中物理被称为所有学科中最难的一科,在高考中物理自然也是难度最大的。

不过高考物理考高分也不是不可能。

小编整理了高考物理经典解题模型以及答题技巧,帮助大家在高考的时候物理取得高分。

1高考物理经典解题模型1、”质心”模型:质心(多种体育运动).集中典型运动规律.力能角度.
2.”绳件.弹簧.杆件”三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题.
3.”挂件”模型:平衡问题.死结与活结问题,采用正交分解法,图解法,三角形法则和极值法.
4.”追碰”模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理方法(参照物变换法.守恒法)等.
5.”运动关联”模型:一物体运动的同时性.独立性.等效性.多物体参与的独立性和时空联系.
6.”皮带”模型:摩擦力.牛顿运动定律.功能及摩擦生热等问题.
7.”斜面”模型:运动规律.三大定律.数理问题.
8.”平抛”模型:运动的合成与分解.牛顿运动定律.动能定理(类平抛运动).
9.”行星”模型:向心力(各种力).相关物理量.功能问题.数理问题(圆心.半径.临界问题).
10.”全过程”模型:匀变速运动的整体性.保守力与耗散力.动量守恒定律.动能定理.全过程整体法.
11.”人船”模型:动量守恒定律.能量守恒定律.数理问题.。

相关文档
最新文档