高考理科数学第一轮复习测试题20
2020版高考人教A版理科数学一轮复习文档:选修4-4 第二节 参 数 方 程 Word版含答案
姓名,年级:时间:第二节参数方程2019考纲考题考情1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数:错误!①并且对于t 的每一个允许值,由方程组①所确定的点M(x,y)都在这条曲线上,那么方程组①就叫做这条曲线的参数方程,t叫做参变数,简称参数。
相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。
2.直线的参数方程过定点P0(x0,y0)且倾斜角为α的直线的参数方程为错误!(t为参数),则参数t的几何意义是有向线段错误!的数量。
3.圆的参数方程圆心为(a,b),半径为r,以圆心为顶点且与x轴同向的射线,按逆时针方向旋转到圆上一点所在半径形成的角α为参数的圆的参数方程为错误!(α为参数)α∈[0,2π).4.椭圆的参数方程以椭圆的离心角θ为参数,椭圆错误!+错误!=1(a>b>0)的参数方程为错误!(θ为参数),θ∈[0,2π).1.将参数方程化为普通方程时,要注意防止变量x 和y取值范围的扩大或缩小,必须根据参数的取值范围,确定函数f(t)和g(t)的值域,即x和y的取值范围。
2.直线的参数方程中,参数t的系数的平方和为1时,t才有几何意义且几何意义为:|t|是直线上任一点M(x,y)到M0(x0,y0)的距离。
一、走进教材1.(选修4-4P26T4改编)在平面直角坐标系中,曲线C:错误!(t为参数)的普通方程为________。
解析消去t,得x-y=1,即x-y-1=0。
答案x-y-1=02.(选修4-4P37例2改编)在平面直角坐标系xOy 中,若直线l:错误!(t为参数)过椭圆C:错误!(φ为参数)的右顶点,求常数a的值。
解直线l的普通方程为x-y-a=0,椭圆C的普通方程为错误!+错误!=1,所以椭圆C的右顶点坐标为(3,0),若直线l过(3,0),则3-a=0,所以a=3.二、走出误区微提醒:①不注意互化的等价性致误;②直线参数方程中参数t的几何意义不清致误;③交点坐标计算出错致错。
江西省临川第一中学暨临川一中实验学校2023届高三一轮复习验收考试理科数学试卷
临川一中暨临川一中实验学校2023届高三一轮复习验收理科数学命题人:谭华审题人:肖婷琴本试卷共4页,23小题,满分150分,考试时间120分钟【注意事项】1.答题前,请您务必将自己的姓名、准考证号用书写黑色字迹的0.5毫米签字笔填写在答题卡和答题纸上.2.作答非选择题必须用书写黑色字迹的0.5毫米签字笔写在答题纸上的指定位置,在其它位置作答一律无效.作答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其它答案,请保持卡面清洁和答题纸清洁,不折叠、不破损.3.考试结束后,请将试卷和答题纸一并交回.一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21xA y y ==-,()12log 2B x y x ⎧⎫⎪⎪==-⎨⎬⎪⎪⎩⎭,则A B =A.(]1,2-B.()1,2- C.(],2-∞ D.(),2-∞2.已知i5ia +=-,则正实数=a A.1B.2C.3D.23.下表为某外来生物物种入侵某河流生态后的前3个月繁殖数量y (单位:百只)的数据,通过相关理论进行分析,知可用回归模型()1eR aty a +=∈对y 与t 的关系进行拟合,则根据该回归模型,预测第6个月该物种的繁殖数量为A.3e 百只B. 3.5e 百只C.4e 百只D. 4.5e 百只4.平面向量a ,b 满足3=a b ,且4-=a b ,则a 与-a b 夹角的正弦值的最大值为A.14B.13C.12D.235.青铜器是指以青铜为基本原料加工而成的器皿、用器等.青铜器以其独特的器形,精美的纹饰,典雅的铭文向人们揭示了我国古代杰出的铸造工艺和文化水平.图中所示为觚,长身,侈口,口底均成喇叭状,外形近似双曲线的一部分绕虚轴所在直线旋转而成的曲面.已知,该曲面高15寸,上口直径为10寸,下口直径为7.5寸.最小横截面直径为6寸,则该双曲线的离心率为第t 个月123繁殖数量y1.4e 2.2e 2.4eA.53B.135C.52D.746.已知函数()2ln f x a x x =+的图象在1x =处的切线方程为30x y b -+=,则a b +=A.-2B.-1C.0D.17.在ABC △中,39A B C ==,cos cos cos cos cos cos A B B C C A ++=A.14B.14-C.13D.13-8.已知C ,D 是圆O :229x y +=上两个不同动点,直线()()120m x y m ++-+=恒过定点P ,若以CD 为直径的圆恒过点P ,则CD 的最小值为A.42- B.42+ C.822- D.822+9.对于2()(221)T n n n =++单位时间(表示代码中一条语句执行一次的耗时)的算法A 来说,由于分析的是代码执行总时间()T n 和代码执行次数n 之间的关系,可不考虑单位时间.此外,若用()f n 来抽象表示一个算法的执行总次数,则前面提到的算法可抽象为2(1)22n f n n =++,因此我们可以记作()(())T n O f n =,其中O 表示代码的执行总时间()T n 和其执行总次数()f n 成正比.这种表示称为大O 记法,其表示算法的时间复杂度.在大O 记法中,非最高次项及各项之前的系数及对数的底数可以忽略,即上面所提的算法A 的时间复杂度可以表示为2()O n .对于如下流程所代表的算法,其时间复杂度可以表示为A.(log )O nB.(log )O n nC.2()O nD.(1)O 10.已知正项数列{}n a 满足11a =,且11111n n n n n a a a a a ++⎛⎫-=⎪⎪⎭,100S 为{}n a 前100项和,下列说法正确的是A.1007665S <<B.1006554S << C.1005443S << D.1004332S <<11.如图,在三棱柱111ABC A B C -中,侧棱1AA ⊥底面ABC ,12AA =,1AB BC ==,90ABC ∠=︒,三棱柱外接球的球心为O ,点E 是侧棱1BB 上的一动点.下列说法不正确的是A.直线AC 与直线1C E 是异面直线B.1A E 与1AC 不垂直C.三棱锥1E AA O -的体积为定值D.1AE EC +的最小值为2212.已知215,sin ,lg 933a b c ===,则,,a b c 的大小关系为A.a b c >>B.a c b >>C.c b a>> D.c a b>>二、填空题:本题共4小题,每小题5分,共20分.13.若2023220230122023(13)a a x a x a x +=++++…,则01234520222023a a a a a a a a +--+++--=…__________.14.在棱长为1的正方体1111ABCD A B C D -的8个顶点中,随机选取4个构成一个四面体,记该四面体的体积为V ,则V 的数学期望EV =__________.15.已知()sin f x x ω=的周期2T =,将()f x 的图象向右平移23个单位长度得到()g x 的图象.记()f x 与()g x 在y 轴左侧的交点依次为12,n A A A …,在y 轴右侧的交点依次为12,n B B B …,O为坐标原点,则1122n n OA OB OA OB OA OB ⋅+⋅+++=…__________.16.已知曲线C 是抛物线[]28(1),1,3y x x =-∈的一部分,将曲线C 绕坐标原点O 逆时针旋转α,得到曲线C'.若曲线C'是函数()f x 的图象,且()f x 始终在其定义域内单调递减,则tan α的取值范围是__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17—21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知ABC △的内角,,A B C 所对边的长分别为,,a b c ,且22222b c a +=.(1)若1tan 3C =,求A 的大小;(2)当A C -取得最大值时,试判断ABC △的形状,并说明理由.18.如图,四棱锥P ABCD -的底面ABCD 为平行四边形,平面PAB ⊥平面PBC ,22PB PC ==,AB AP =,,M N 分别为,BP AD 的中点,且PC MN ⊥.(1)证明:PC AD ⊥;(2)若ABP △为正三角形,求直线MN 与平面PAC 所成角的余弦值.19.疫情防控期间,某学校为保障师生们的安全,建立了值日教师定点巡逻机制.已知X 老师被安排在高二年级教学楼第3层,该层共有高二9班、高二10班,高二11班3个班.假设X 老师每天早上7点开始巡逻,首先来到高二10班,此后每停留5分钟后其巡逻地点按如下方式变化:①若X 老师在高二9班,则有50%的可能前往高二11班,50%的可能前往高二10班;②若X 老师在高二10班,则有80%的可能前往高二9班,20%的可能前往高二11班;③若X 老师在高二11班,则有50%的可能前往高二9班,50%的可能前往高二10班.设X 老师在9班的可能性为i P (i 为转换地点的次数).(1)求早上7:15时X 老师在9班的可能性2P ;(2)随着时间的推移,X 老师在哪个班结束巡逻的概率最大?请说明理由.20.已知,A B 是椭圆2222:1(0)x y E a b a b+=>>的左、右顶点,12,F F 是E 的左、右焦点,5(2,3M 是椭圆上一点,且12MF F △的内心的纵坐标为23.(1)求椭圆E 的标准方程;(2)若P 是椭圆E 上异于,A B 的一动点,过,A B 分别作12,l PA l PB ⊥⊥,12,l l 相交于点Q .则当点P 在椭圆E 上移动时,求1211QF QF +的取值范围.21.已知()()21ln ,2f x x x a x a a =---∈R .(1)判断函数()f x 的单调性;(2)已知()()112g x f x a a x a ⎛⎫=+-+-⎪⎝⎭,若12,x x 是函数()g x 的两个极值点,且12x x <,求证:()()12102f x f x <-<.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.【选修4-4:坐标系与参数方程】22.在直角坐标系xOy 中,曲线C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l的极坐标方程为πsin 06ρθ⎛⎫-= ⎪⎝⎭.(1)写出l 的直角坐标方程;(2)已知点()0,2P m ,若l 与C 交于A ,B 两点,且32PA PB =,求m 的值.【选修4-5:不等式选讲】23.已知()(,,)f x x a x b c a b c =-+++∈R 的最小值为3.(1+(2)证明:2222221()1112b c a ab bc ac a b c ++≥+++++。
2020届高考理科数学一轮复习第9章 第7节 抛物线含答案
第七节抛物线1.抛物线的定义满足以下三个条件的点的轨迹是抛物线: (1)在平面内;(2)动点到定点F 的距离与到定直线l 的距离相等; (3)定点不在定直线上.❶其中点F 叫做抛物线的焦点,直线l 叫做抛物线的准线. 2.抛物线的标准方程❷和几何性质若定点F 在定直线l 上,则动点的轨迹为过点F 且垂直于l 的一条直线. 四种不同抛物线方程的异同点[熟记常用结论]设AB是过抛物线y2=2px(p>0)焦点F的弦,若A(x1,y1),B(x2,y2),则(1)x1x2=p24,y1y2=-p2;(2)|AF|=p1-cos α,|BF|=p1+cos α,弦长|AB|=x1+x2+p=2psin2α(α为弦AB的倾斜角);(3)1|FA|+1|FB|=2p;(4)以弦AB为直径的圆与准线相切;(5)以AF或BF为直径的圆与y轴相切;(6)过焦点弦的端点的切线互相垂直且交点在准线上.[小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( ) (2)抛物线y 2=4x 的焦点到准线的距离是4.( ) (3)抛物线既是中心对称图形,又是轴对称图形.( )(4)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝⎛⎭⎫a 4,0,准线方程是x =-a4.( )答案:(1)× (2)× (3)× (4)× 二、选填题1.抛物线y =2x 2的焦点坐标是( ) A.⎝⎛⎭⎫18,0 B.⎝⎛⎭⎫12,0 C.⎝⎛⎭⎫0,18 D.⎝⎛⎭⎫0,12 解析:选C 抛物线的标准方程为x 2=12y ,所以焦点坐标是⎝⎛⎭⎫0,18. 2.若点P 到点F (0,2)的距离比它到直线y +4=0的距离小2,则P 的轨迹方程为( ) A .y 2=8x B.y 2=-8x C .x 2=8yD .x 2=-8y解析:选C 点P 到F (0,2)的距离比它到直线y +4=0的距离小2,因此P 到F (0,2)的距离与它到直线y +2=0的距离相等,故P 的轨迹是以F 为焦点,y =-2为准线的抛物线,所以P 的轨迹方程为x 2=8y .3.抛物线的顶点在原点,准线方程为x =-2,则抛物线方程是( ) A .y 2=-8x B.y 2=-4x C .y 2=8xD .y 2=4x解析:选C 由抛物线的顶点在原点,准线方程为x =-2,知p =4,且开口向右,故抛物线方程为y 2=8x .4.焦点在直线2x +y +2=0上的抛物线的标准方程为____________________. 解析:当焦点在x 轴上时,令方程2x +y +2=0中的y =0,得焦点为(-1,0), 故抛物线方程为y 2=-4x ,当焦点在y 轴上时,令方程2x +y +2=0中的x =0,得焦点为(0,-2), 故抛物线方程为x 2=-8y . 答案:y 2=-4x 或x 2=-8y5.若抛物线y =4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是________.解析:M 到准线的距离等于M 到焦点的距离, 又准线方程为y =-116, 设M (x ,y ),则y +116=1,∴y =1516. 答案:1516考点一 抛物线的定义及应用[师生共研过关][典例精析](1)若抛物线y 2=4x 上一点P 到其焦点F 的距离为2,O 为坐标原点,则△OFP 的面积为( )A.12 B .1 C.32D .2(2)设P 是抛物线y 2=4x 上的一个动点,F 是抛物线的焦点.若B (3,2),则|PB |+|PF |的最小值为________.[解析] (1)设P (x P ,y P ),由题可得抛物线焦点为F (1,0),准线方程为x =-1. 又点P 到焦点F 的距离为2, ∴由定义知点P 到准线的距离为2. ∴x P +1=2,∴x P =1. 代入抛物线方程得|y P |=2,∴△OFP 的面积为S =12·|OF |·|y P |=12×1×2=1.(2)如图,过点B 作B Q 垂直准线于点Q ,交抛物线于点P1, 则|P 1Q |=|P 1F |.则有|PB |+|PF |≥|P 1B |+|P 1Q |=|B Q |=4, 即|PB |+|PF |的最小值为4. [答案] (1)B (2)4 [变式发散]1.(变条件)若将本例(2)中“B (3,2)”改为B (3,4),则|PB |+|PF |的最小值为________. 解析:由题意可知点B (3,4)在抛物线的外部.∵|PB |+|PF |的最小值即为B ,F 两点间的距离,F (1,0), ∴|PB |+|PF |≥|BF |=42+22=25,即|PB|+|PF|的最小值为2 5.答案:2 52.(变设问)在本例(2)条件下,点P到点A(-1,1)的距离与点P到直线x=-1的距离之和的最小值为________.解析:如图,易知抛物线的焦点为F(1,0),准线是x=-1,由抛物线的定义知点P到直线x=-1的距离等于点P到点F的距离.于是,问题转化为在抛物线上求一点P,使点P到点A(-1,1)的距离与点P到点F(1,0)的距离之和最小,显然,连接AF与抛物线相交的点即为满足题意的点,此时最小值为[1-(-1)]2+(0-1)2= 5.答案: 5[解题技法]与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.“看到准线想焦点,看到焦点想准线”,这是解决与过抛物线焦点的弦有关问题的重要途径.[提醒]注意灵活运用抛物线上一点P(x,y)到焦点F的距离|PF|=|x|+p2或|PF|=|y|+p2.[过关训练]1.若点A的坐标为(3,2),F是抛物线y2=2x的焦点,点M在抛物线上移动时,使|MF|+|MA|取得最小值的M的坐标为________.解析:过点M作准线的垂线,垂足是N,则|MF|+|MA|=|MN|+|MA|,当A,M,N三点共线时,|MF|+|MA|取得最小值,此时M(2,2).答案:(2,2)2.(2019·襄阳测试)已知抛物线y=12x2的焦点为F,准线为l,M在l上,线段MF与抛物线交于N点,若|MN|=2|NF|,则|MF|=________.解析:如图,过N作准线的垂线NH,垂足为H.根据抛物线的定义可知|NH|=|NF|,在Rt△NHM中,|NM|=2|NH|,则∠NMH=45°.在△MFK中,∠FMK=45°,所以|MF|=2|FK|.而|FK|=1.所以|MF|= 2.答案: 2考点二抛物线的标准方程与几何性质[师生共研过关][典例精析](1)已知抛物线y2=2px(p>0)的准线经过点(-1,1),则该抛物线的焦点坐标为()A.(-1,0)B.(1,0)C.(0,-1) D.(0,1)(2)设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5.若以MF 为直径的圆过点A (0,2),则C 的方程为( )A .y 2=4x 或y 2=8x B.y 2=2x 或y 2=8x C .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x[解析] (1)抛物线y 2=2px (p >0)的准线为x =-p 2且过点(-1,1),故-p2=-1,解得p =2.所以抛物线的焦点坐标为(1,0).(2)由已知得抛物线的焦点F ⎝⎛⎭⎫p 2,0设点M (x 0,y 0),则AF ―→=⎝⎛⎭⎫p 2,-2,AM ―→=⎝⎛⎭⎫y 202p ,y 0-2.由已知得,AF ―→·AM ―→=0,即y 20-8y 0+16=0,因而y 0=4,M ⎝⎛⎭⎫8p ,4. 由|MF |=5,得 ⎝⎛⎭⎫8p -p 22+16=5.又p >0,解得p =2或p =8.故C 的方程为y 2=4x 或y 2=16x .[答案] (1)B (2)C[解题技法]1.求抛物线标准方程的方法(1)定义法:若题目已给出抛物线的方程(含有未知数p ),那么只需求出p 即可. (2)待定系数法:若题目未给出抛物线的方程,对于焦点在x 轴上的抛物线的标准方程可统一设为y 2=ax (a ≠0),a 的正负由题设来定;焦点在y 轴上的抛物线的标准方程可设为x 2=ay (a ≠0),这样就减少了不必要的讨论.2.抛物线性质的应用技巧(1)利用抛物线方程确定及应用其焦点、准线时,关键是将抛物线方程化成标准方程. (2)要结合图形分析,灵活运用平面图形的性质简化运算.[过关训练]1.(2019·武汉调研)如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若|BC |=2|BF |,且|AF |=6,则此抛物线方程为( )A .y 2=9xB .y 2=6xC .y 2=3xD .y 2=3x解析:选B 如图分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设|BF |=a ,则由已知得:|BC |=2a ,由抛物线定义得:|BD |=a ,故∠BCD =30°,在直角三角形ACE 中,因为|AE |=|AF |=6,|AC |=6+3a ,2|AE |=|AC |,所以6+3a =12,从而得a =2,|FC |=3a =6,所以p =|FG |=12|FC |=3,因此抛物线方程为y 2=6x .2.(2018·合肥模拟)已知抛物线x 2=2py (p >0)的焦点为F ,点P 为抛物线上的动点,点M 为其准线上的动点,若△FPM 为边长是4的等边三角形,则此抛物线的方程为________.解析:△FPM 为等边三角形,则|PM |=|PF |,由抛物线的定义得PM 垂直于抛物线的准线,设P ⎝⎛⎭⎫m ,m 22p ,则点M ⎝⎛⎭⎫m ,-p 2.因为焦点F ⎝⎛⎭⎫0,p2,△FPM 是等边三角形,所以⎩⎨⎧m 22p +p2=4,⎝⎛⎭⎫p 2+p 22+m 2=4,解得⎩⎪⎨⎪⎧m 2=12,p =2,因此抛物线方程为x 2=4y .答案:x 2=4y考点三 直线与抛物线的位置关系[师生共研过关][典例精析]设A ,B 为曲线C :y =x 22上两点,A 与B 的横坐标之和为2.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,曲线C 在点M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.[解] (1)设A (x 1,y 1),B (x 2,y 2), 则x 1≠x 2,y 1=x 212,y 2=x 222,x 1+x 2=2,故直线AB 的斜率k =y 1-y 2x 1-x 2=x 1+x 22=1.(2)由y =x 22,得y ′=x .设M (x 3,y 3),由题设知x 3=1,于是M ⎝⎛⎭⎫1,12. 设直线AB 的方程为y =x +m ,故线段AB 的中点为N (1,1+m ),|MN |=⎪⎪⎪⎪m +12. 将y =x +m 代入y =x 22,得x 2-2x -2m =0.由Δ=4+8m >0,得m >-12,x 1,2=1±1+2m .从而|AB |=2|x 1-x 2|=22(1+2m ). 由题设知|AB |=2|MN |,即2(1+2m )=⎪⎪⎪⎪m +12,解得m =72.所以直线AB 的方程为y =x +72.[解题技法]1.直线与抛物线交点问题的解题思路(1)求交点问题,通常解直线方程与抛物线方程组成的方程组. (2)与交点相关的问题通常借助根与系数的关系或用向量法解决. 2.解决抛物线的弦及弦中点问题的常用方法(1)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用焦点弦公式,若不过焦点,则必须用一般弦长公式.(2)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.[提醒] 涉及弦的中点、斜率时,一般用“点差法”求解.[过关训练]1.(2018·全国卷Ⅲ)已知点M (-1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k =________.解析:设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,∴y 21-y 22=4(x 1-x 2), ∴k =y 1-y 2x 1-x 2=4y 1+y 2.设AB 中点为M ′(x 0,y 0),抛物线的焦点为F ,分别过点A ,B 作准线x =-1的垂线,垂足为A ′,B ′,则|MM ′|=12|AB |=12(|AF |+|BF |)=12(|AA ′|+|BB ′|).∵M ′(x 0,y 0)为AB 中点,∴M 为A ′B ′的中点,∴MM ′平行于x 轴, ∴y 1+y 2=2,∴k =2. 答案:22.已知抛物线C :y 2=2px (p >0)的焦点为F ,抛物线C 与直线l 1:y =-x 的一个交点的横坐标为8.(1)求抛物线C 的方程;(2)不过原点的直线l 2与l 1垂直,且与抛物线交于不同的两点A ,B ,若线段AB 的中点为P ,且|OP |=|PB |,求△FAB 的面积.解:(1)易知直线与抛物线的交点坐标为(8,-8), ∴(-8)2=2p ×8,∴2p =8,∴抛物线C 的方程为y 2=8x .(2)直线l 2与l 1垂直,故可设直线l 2:x =y +m ,A (x 1,y 1),B (x 2,y 2),且直线l 2与x 轴的交点为M .由⎩⎪⎨⎪⎧y 2=8x ,x =y +m ,得y 2-8y -8m =0, Δ=64+32m >0,∴m >-2. y 1+y 2=8,y 1y 2=-8m ,∴x 1x 2=y 21y 2264=m 2.由题意可知OA ⊥OB ,即x 1x 2+y 1y 2=m 2-8m =0, ∴m =8或m =0(舍去),∴直线l 2:x =y +8,M (8,0).故S △FAB =S △FMB +S △FMA =12·|FM |·|y 1-y 2|=3(y 1+y 2)2-4y 1y 2=24 5.。
最新高三一轮复习第一次检测考试数学(理科)试题
一、选择题(共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={x∈N|x2+2x﹣3≤0},则集合A的真子集个数为()A. 3B. 4C. 31D. 32【答案】A【解析】【分析】求出集合,由此能求出集合A的真子集的个数.【详解】由题集合,∴集合A的真子集个数为.故选:A.【点睛】本题考查集合真子集的个数的求法,考查真子集等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.2.命题:“,”的否定为A. ,B. ,C. ,D. ,【答案】C【解析】特称命题的否定是全称命题,特称命题“”的否定为全称命题:,故选C.3.若,则()A. B. C. D.【答案】B【解析】分析:先对两边取对数,求出的值,再根据对数的换底公式和运算性质计算,即可求出答案.详解:,,故选B.点睛:本题考查指对互化,对数的换底公式和运算性质,属于基础题.4.设,则等于()A. B. C. 1 D.【答案】D【解析】【分析】原积分化为根据定积分的计算法则计算即可【详解】由题故选:D.【点睛】本题考查了定积分的计算,关键是求出原函数,属于基础题,5.已知曲线f(x)=lnx+在点(1,f(1))处的切线的倾斜角为,则a的值为()A. 1B. ﹣4C. ﹣D. ﹣1【答案】D【解析】分析:求导,利用函数f(x)在x=1处的倾斜角为得f′(1)=﹣1,由此可求a的值.详解: 函数(x>0)的导数,∵函数f(x)在x=1处的倾斜角为∴f′(1)=﹣1,∴1+=﹣1,∴a=﹣1.故选:D.点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点及斜率,其求法为:设是曲线上的一点,则以的切点的切线方程为:.若曲线在点的切线平行于轴(即导数不存在)时,由切线定义知,切线方程为.6.已知偶函数f(x)在[0,+∞)单调递增,若f(2)=﹣2,则满足f(x﹣1)≥﹣2的x的取值范围是()A. (﹣∞,﹣1)∪(3,+∞)B. (﹣∞,﹣1]∪[3,+∞)C. [﹣1,﹣3]D. (﹣∞,﹣2]∪[2,+∞)【答案】B【解析】【分析】根据题意,结合函数的奇偶性与单调性分析可得若,即有,可得,解可得的取值范围,即可得答案.【详解】根据题意,偶函数在单调递增,且,可得,若,即有,可得,解可得:即的取值范围是;故选:B.【点睛】本题考查函数的单调性与奇偶性的综合应用,关键是利用函数的奇偶性与单调性转化原不等式.7.已知定义在R上的奇函数f(x)满足f(x+2)=﹣f(x),若f(﹣1)>﹣2,f(﹣7)=,则实数a的取值范围为()A. B. (﹣2,1) C. D.【答案】C【解析】【分析】由是定义在上的奇函数,且满足,求出函数的周期,由此能求出实数的取值范围.【详解】∵是定义在上的奇函数,且满足,,函数的周期为4,则又,即,即解得故选C.【点睛】本题考查函数的周期性和奇偶性的应用,是基础题.解题时要认真审题,仔细解答.8.若函数f(x)=a x﹣a﹣x(a>0且a≠1)在R上为减函数,则函数y=log a(|x|﹣1)的图象可以是()A. B. C. D.【答案】C【解析】【分析】由函数在上为减函数,由此求得的范围,结合的解析式.再根据对数函数的图象特征,得出结论.【详解】由函数在上为减函数,故.函数是偶函数,定义域为函数的图象,时是把函数的图象向右平移1个单位得到的,故选:C.【点睛】本题主要考查函数的奇偶性和单调性的应用,对数函数的图象特征,函数图象的平移规律,属于中档题.9.已知函数f(x)是定义域为R的周期为3的奇函数,且当x∈(0,1.5)时f(x)=ln(x2﹣x+1),则方程f(x)= 0在区间[0,6]上的解的个数是()A. 5B. 7C. 9D. 11【解析】【分析】要求方程在区间上的解的个数,根据函数是定义域为的周期为3的奇函数,且当时,可得一个周期内函数零点的个数,根据周期性进行分析不难得到结论.【详解】∵时,令,则,解得,又∵是定义域为的的奇函数,∴在区间上,,又∵函数是周期为3的周期函数则方程在区间的解有0,1,1.5,2,3,4,4.5,5,6共9个故选:D.【点睛】本题考查函数零点个数的判断,考查函数的奇偶性,周期性的应用,属中档题. 10.点P在边长为1的正方形ABCD的边上运动,M是CD的中点,则当P沿A﹣B﹣C﹣M运动时,点P经过的路程x与△APM的面积y的函数y=f(x)的图象的形状大致是图中的()A. B. C. D.【答案】A【解析】随着点P的位置的不同,讨论三种情形即在AB上,在BC上,以及在CM上分别建立面积的函数,分段画出图象即可.【详解】:①当点P在AB上时,如图:②当点P在BC上时,如图:③当点P在CM上时,如图,综上①②③,得到的三个函数都是一次函数,由一次函数的图象与性质可以确定y与x的图形.只有A的图象是三个一次函数,且在第二段上y随x的增大而减小,故选:A.【点睛】本题主要考查了分段函数的图象,分段函数问题,应切实理解分段函数的含义,把握分段解决的策略.11.对于任意x∈R,函数f(x)满足f(2-x)=-f(x),且当x≥1时,函数f(x)=lnx,若a =f(2-0.3),b=f(log3π),c=f(-),则a,b,c大小关系是( )A. b>a>cB. b>c>aC. c>a>bD. c>b>a【答案】A【解析】【分析】由判断函数关于点对称,根据时是单调增函数,判断在定义域上单调递增;再由自变量的大小判断函数值的大小.【详解】对于任意函数满足,∴函数关于点对称,当时,是单调增函数,∴在定义域上是单调增函数;由∴∴b>a>c.故选:A.【点睛】本题主要考查了与函数有关的命题真假判断问题,涉及函数的单调性与对称性问题,是中档题.12.设函数f'(x)是函数f(x)(x∈R)的导函数,已知f'(x)<f(x),且f'(x)=f'(4﹣x),f(4)=0,f(2)=1,则使得f(x)﹣2e x<0成立的x的取值范围是()A. (﹣2,+∞) B. (0,+∞) C. (1,+∞) D. (4,+∞)【答案】B【解析】【分析】构造函数,利用的导数判断函数的单调性,求出不等式的解集即可.【详解】设则即函数在上单调递减,因为,即导函数关于直线对称,所以函数是中心对称图形,且对称中心,由于,即函数过点,其关于点(的对称点(也在函数上,所以有,所以而不等式即即所以故使得不等式成立的的取值范围是故选:B.【点睛】本题考查了利用导数判断函数的单调性,并由函数的单调性和对称性解不等式的应用问题,属中档题.二、填空题(共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)13.已知命题p:“存在x∈R,使”,若“非p”是假命题,则实数m的取值范围是_____.【答案】【解析】试题分析:非p即:“对任意x∈R, 4x+2x+1+m0”,如果“非p”是假命题,即m-4x-2x+1,而令t=,y===,,所以m<0,故答案为。
2020届高考高中理科数学一轮专题复习第二章 2.2函数的单调性与最值
§2.2 函数的单调性与最值1.函数的单调性 (1)单调函数的定义(2)单调区间的定义如果函数y =f (x )在区间A 上是增加的或是减少的,那么就称A 为单调区间. 2.函数的最值概念方法微思考1.在判断函数的单调性时,你还知道哪些等价结论?提示 对任意x 1,x 2∈D ,f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在D 上是增函数,减函数类似.2.写出对勾函数y =x +ax (a >0)的递增区间.提示 (-∞,-a ]和[a ,+∞).题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若定义在R 上的函数f (x ),有f (-1)<f (3),则函数f (x )在R 上为增函数.( × ) (2)函数y =f (x )在[1,+∞)上是增函数,则函数的递增区间是[1,+∞).( × ) (3)函数y =1x的递减区间是(-∞,0)∪(0,+∞).( × )(4)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.( × )(5)所有的单调函数都有最值.( × ) 题组二 教材改编2.函数f (x )=x 2-2x 的递增区间是 . 答案 [1,+∞)(或(1,+∞))3.函数y =2x -1在[2,3]上的最大值是 .答案 24.若函数f (x )=x 2-2mx +1在[2,+∞)上是增函数,则实数m 的取值范围是 . 答案 (-∞,2]解析 由题意知,[2,+∞)⊆[m ,+∞),∴m ≤2. 题组三 易错自纠5.函数y =12log (x 2-4)的递减区间为 .答案 (2,+∞)6.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x ,x ≥2,⎝⎛⎭⎫12x -1,x <2,满足对任意的实数x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围为 .答案 ⎝⎛⎦⎤-∞,138 解析 由题意知函数f (x )是R 上的减函数,于是有⎩⎪⎨⎪⎧a -2<0,(a -2)×2≤⎝⎛⎭⎫122-1,由此解得a ≤138,即实数a 的取值范围是⎝⎛⎦⎤-∞,138. 7.函数y =f (x )是定义在[-2,2]上的减函数,且f (a +1)<f (2a ),则实数a 的取值范围是 . 答案 [-1,1)解析 由条件知⎩⎪⎨⎪⎧-2≤a +1≤2,-2≤2a ≤2,a +1>2a ,解得-1≤a <1.8.函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为 .答案 2解析 当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2. 故函数f (x )的最大值为2.题型一 确定函数的单调性命题点1 求函数的单调区间例1 (1)函数y =12log (2x 2-3x +1)的递减区间为( )A.(1,+∞)B.⎝⎛⎦⎤-∞,34 C.⎝⎛⎭⎫12,+∞ D.⎣⎡⎭⎫34,+∞答案 A解析 由2x 2-3x +1>0,得函数的定义域为⎝⎛⎭⎫-∞,12∪(1,+∞). 令t =2x 2-3x +1,x ∈⎝⎛⎭⎫-∞,12∪(1,+∞). 则y =12log t ,∵t =2x 2-3x +1=2⎝⎛⎭⎫x -342-18, ∴t =2x 2-3x +1的递增区间为(1,+∞). 又y =12log t 在(1,+∞)上是减函数,∴函数y =12log (2x 2-3x +1)的递减区间为(1,+∞).(2)设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是 .答案 [0,1)解析 由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1,该函数图像如图所示,其递减区间是[0,1).命题点2 讨论函数的单调性例2 判断并证明函数f (x )=ax 2+1x (其中1<a <3)在[1,2]上的单调性.解 函数f (x )=ax 2+1x (1<a <3)在[1,2]上是增加的.证明:设1≤x 1<x 2≤2,则 f (x 2)-f (x 1)=ax 22+1x 2-ax 21-1x 1 =(x 2-x 1)⎣⎡⎦⎤a (x 1+x 2)-1x 1x 2,由1≤x 1<x 2≤2,得x 2-x 1>0,2<x 1+x 2<4, 1<x 1x 2<4,-1<-1x 1x 2<-14.又因为1<a <3, 所以2<a (x 1+x 2)<12, 得a (x 1+x 2)-1x 1x 2>0,从而f (x 2)-f (x 1)>0, 即f (x 2)>f (x 1),故当a ∈(1,3)时,f (x )在[1,2]上是增加的. 引申探究如何用导数法求解本例?解 f ′(x )=2ax -1x 2=2ax 3-1x 2,因为1≤x ≤2,所以1≤x 3≤8,又1<a <3, 所以2ax 3-1>0,所以f ′(x )>0,所以函数f (x )=ax 2+1x(其中1<a <3)在[1,2]上是增加的.思维升华 确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图像法,图像不连续的单调区间不能用“∪”连接.(4)具有单调性函数的加减.跟踪训练1 (1)下列函数中,满足“任意x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是( ) A.f (x )=2x B.f (x )=|x -1| C.f (x )=1x -xD.f (x )=ln(x +1)答案 C解析 由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A ,D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调;对于f (x )=1x -x ,因为y =1x与y =-x 在(0,+∞)上是减少的,因此f (x )在(0,+∞)上是减函数.(2)函数f (x )=(a -1)x +2在R 上是增加的,则函数g (x )=a |x -2|的递减区间是 .答案 (-∞,2]解析 因为f (x )在R 上是增加的,所以a -1>0,即a >1,因此g (x )的递减区间就是y =|x -2|的递减区间(-∞,2].(3)函数f (x )=|x -2|x 的递减区间是 . 答案 [1,2]解析 f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.画出f (x )图像,由图知f (x )的递减区间是[1,2]. 题型二 函数的最值1.函数y =x 2-1x 2+1的值域为 .答案 [-1,1)解析 由y =x 2-1x 2+1,可得x 2=1+y1-y .由x 2≥0,知1+y1-y≥0,解得-1≤y <1,故所求函数的值域为[-1,1).2.函数y =x +1-x 2的最大值为 . 答案2解析 由1-x 2≥0,可得-1≤x ≤1. 可令x =cos θ,θ∈[0,π],则y =cos θ+sin θ=2sin ⎝⎛⎭⎫θ+π4,θ∈[0,π], 所以-1≤y ≤2,故原函数的最大值为 2.3.函数y =|x +1|+|x -2|的值域为 . 答案 [3,+∞)解析 函数y =⎩⎪⎨⎪⎧-2x +1,x ≤-1,3,-1<x <2,2x -1,x ≥2.作出函数的图像如图所示.根据图像可知,函数y =|x +1|+|x -2|的值域为[3,+∞). 4.当-3≤x ≤-1时,函数y =5x -14x +2的最小值为 .答案 85解析 由y =5x -14x +2,可得y =54-74(2x +1).∵-3≤x ≤-1,∴720≤-74(2x +1)≤74,∴85≤y ≤3.∴所求函数的最小值为85. 5.函数f (x )=⎝⎛⎭⎫13x -log 2(x +2)在区间[-1,1]上的最大值为 . 答案 3解析 由于y =⎝⎛⎭⎫13x 在[-1,1]上是减少的,y =log 2(x +2)在[-1,1]上是增加的,所以f (x )在[-1,1]上是减少的,故f (x )在[-1,1]上的最大值为f (-1)=3.6.若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( ) A.与a 有关,且与b 有关 B.与a 有关,但与b 无关 C.与a 无关,且与b 无关 D.与a 无关,但与b 有关 答案 B解析 方法一 设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点,则m =x 21+ax 1+b ,M =x 22+ax 2+b . ∴M -m =x 22-x 21+a (x 2-x 1),显然此值与a 有关,与b 无关. 故选B.方法二 由题意可知,函数f (x )的二次项系数为固定值,则二次函数图像的形状一定.随着b 的变动,相当于图像上下移动,若b 增大k 个单位,则最大值与最小值分别变为M +k ,m +k ,而(M +k )-(m +k )=M -m ,故与b 无关.随着a 的变动,相当于图像左右移动,则M -m 的值在变化,故与a 有关,故选B.思维升华 求函数最值的五种常用方法及其思路 (1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图像法:先作出函数的图像,再观察其最高点、最低点,求出最值.(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值. (4)分离常数法:形如求y =cx +dax +b(ac ≠0)的函数的值域或最值常用分离常数法求解.(5)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.题型三 函数单调性的应用命题点1 比较函数值的大小例3 已知函数f (x )的图像向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A.c >a >b B.c >b >a C.a >c >b D.b >a >c答案 D解析 根据已知可得函数f (x )的图像关于直线x =1对称,且在(1,+∞)上是减函数,因为a=f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52,且2<52<3,所以b >a >c . 命题点2 解函数不等式例4 已知函数f (x )=ln x +2x ,若f (x 2-4)<2,则实数x 的取值范围是 . 答案 (-5,-2)∪(2,5)解析 因为函数f (x )=ln x +2x 在定义域上是增加的,且f (1)=ln 1+2=2,所以由f (x 2-4)<2得f (x 2-4)<f (1),所以0<x 2-4<1,解得-5<x <-2或2<x < 5. 命题点3 求参数的取值范围例5 (1)(2018·全国Ⅱ)若f (x )=cos x -sin x 在[0,a ]上是减函数,则a 的最大值是( ) A.π4 B.π2 C.3π4 D.π答案 C解析 ∵f (x )=cos x -sin x =-2sin ⎝⎛⎭⎫x -π4, ∴当x -π4∈⎣⎡⎦⎤-π2,π2, 即x ∈⎣⎡⎦⎤-π4,3π4时, y =sin ⎝⎛⎭⎫x -π4是增加的, f (x )=-2sin ⎝⎛⎭⎫x -π4是减少的, ∴⎣⎡⎦⎤-π4,3π4是f (x )在原点附近的递减区间, 结合条件得[0,a ]⊆⎣⎡⎦⎤-π4,3π4, ∴a ≤3π4,即a max =3π4.(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+12a -2,x ≤1,a x -a ,x >1,若f (x )在(0,+∞)上是增加的,则实数a 的取值范围为 . 答案 (1,2]解析 由题意,得12+12a -2≤0,则a ≤2,又y =a x -a (x >1)是增函数,故a >1,所以a 的取值范围为1<a ≤2.(3)若函数f (x )=ln(ax 2+x )在区间(0,1)上是增加的,则实数a 的取值范围为 . 答案 ⎣⎡⎭⎫-12,+∞ 解析 若函数f (x )=ln(ax 2+x )在区间(0,1)上是增加的,则函数g (x )=ax 2+x 在(0,1)上是增加的且g (x )>0恒成立.当a =0时,g (x )=x 在(0,1)上是增加的且g (x )>0,符合题意;当a >0时,g (x )图像的对称轴为x =-12a <0,且有g (x )>0,所以g (x )在(0,1)上是增加的,符合题意;当a <0时,需满足g (x )图像的对称轴x =-12a ≥1,且有g (x )>0,解得a ≥-12,则-12≤a <0.综上,a ≥-12.思维升华 函数单调性应用问题的常见类型及解题策略 (1)比较大小.(2)解不等式.利用函数的单调性将“f ”符号脱掉,转化为具体的不等式求解,应注意函数的定义域.(3)利用单调性求参数.①依据函数的图像或单调性定义,确定函数的单调区间,与已知单调区间比较; ②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的; ③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.跟踪训练2 (1)如果函数f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是 . 答案 ⎣⎡⎭⎫32,2解析 对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0,所以y =f (x )在(-∞,+∞)上是增函数. 所以⎩⎪⎨⎪⎧2-a >0,a >1,(2-a )×1+1≤a ,解得32≤a <2.故实数a 的取值范围是⎣⎡⎭⎫32,2.(2)定义在R 上的奇函数y =f (x )在(0,+∞)上是增加的,且f ⎝⎛⎭⎫12=0,则不等式19(log )f x >0的解集为 . 答案 ⎩⎨⎧x ⎪⎪⎭⎬⎫0<x <13或1<x <3 解析 由题意知,f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12=0, f (x )在(-∞,0)上也是增加的.∴19(log )f x >f ⎝⎛⎭⎫12或19(log )f x >f ⎝⎛⎭⎫-12, ∴19log x >12或-12<19log x <0,解得0<x <13或1<x <3.∴原不等式的解集为⎩⎨⎧x ⎪⎪⎭⎬⎫0<x <13或1<x <3.1.下列函数中,在区间(0,+∞)上为增函数的是( ) A.y =ln(x +2) B.y =-x +1 C.y =⎝⎛⎭⎫12xD.y =x +1x答案 A解析 函数y =ln(x +2)的递增区间为(-2,+∞),所以在(0,+∞)上一定是增函数. 2.函数y =12log (-x 2+x +6)的递增区间为( )A.⎝⎛⎭⎫12,3B.⎝⎛⎭⎫-2,12 C.⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫-∞,12 答案 A解析 由-x 2+x +6>0,得-2<x <3,故函数的定义域为(-2,3),令t =-x 2+x +6,则y =12log t ,易知其为减函数,由复合函数的性法则可知本题等价于求函数t =-x 2+x +6在(-2,3)上的递减区间.利用二次函数的性质可得t =-x 2+x +6在定义域(-2,3)上的递减区间为⎝⎛⎭⎫12,3,故选A. 3.设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( ) A.f (π)>f (-3)>f (-2) B.f (π)>f (-2)>f (-3) C.f (π)<f (-3)<f (-2) D.f (π)<f (-2)<f (-3)答案 A解析 因为f (x )是偶函数, 所以f (-3)=f (3),f (-2)=f (2).又因为函数f (x )在[0,+∞)上是增函数, 所以f (π)>f (3)>f (2), 即f (π)>f (-3)>f (-2).4.已知函数f (x )=⎩⎪⎨⎪⎧(1-2a )x,x ≤1,log a x +13,x >1,当x 1≠x 2时,f (x 1)-f (x 2)x 1-x 2<0,则a 的取值范围是( ) A.⎝⎛⎦⎤0,13 B.⎣⎡⎦⎤13,12 C.⎝⎛⎦⎤0,12 D.⎣⎡⎦⎤14,13答案 A解析 当x 1≠x 2时,f (x 1)-f (x 2)x 1-x 2<0,∴f (x )是R 上的减函数.∵f (x )=⎩⎪⎨⎪⎧(1-2a )x,x ≤1,log a x +13,x >1,∴⎩⎪⎨⎪⎧0<1-2a <1,0<a <1,1-2a ≥13,∴0<a ≤13.5.设f (x )=⎩⎪⎨⎪⎧(x -a )2,x ≤0,x +1x +a ,x >0,若f (0)是f (x )的最小值,则a 的取值范围为( )A.[-1,2]B.[-1,0]C.[1,2]D.[0,2]答案 D解析 ∵当x ≤0时,f (x )=(x -a )2,f (0)是f (x )的最小值,∴a ≥0.当x >0时,f (x )=x +1x +a ≥2+a ,当且仅当x =1时取“=”.要满足f (0)是f (x )的最小值,需2+a ≥f (0)=a 2,即a 2-a -2≤0,解得-1≤a ≤2.∴a 的取值范围是0≤a ≤2.故选D.6.已知定义在R 上的奇函数f (x )在[0,+∞)上是减少的,若f (x 2-2x +a )<f (x +1)对任意的x ∈[-1,2]恒成立,则实数a 的取值范围为( ) A.⎝⎛⎭⎫-∞,134 B.(-∞,-3) C.(-3,+∞) D.⎝⎛⎭⎫134,+∞ 答案 D解析 依题意得f (x )在R 上是减函数,所以f (x 2-2x +a )<f (x +1)对任意的x ∈[-1,2]恒成立,等价于x 2-2x +a >x +1对任意的x ∈[-1,2]恒成立,等价于a >-x 2+3x +1对任意的x ∈[-1,2]恒成立.设g (x )=-x 2+3x +1(-1≤x ≤2),则g (x )=-⎝⎛⎭⎫x -322+134(-1≤x ≤2),当x =32时,g (x )取得最大值,且g (x )max =g ⎝⎛⎭⎫32=134,因此a >134,故选D. 7.已知奇函数f (x )在R 上是增函数.若a =-f ⎝⎛⎭⎫log 215,b =f (log 24.1),c =f (20.8),则a ,b ,c 的大小关系为 . 答案 a >b >c解析 ∵f (x )在R 上是奇函数, ∴a =-f ⎝⎛⎭⎫log 215=f ⎝⎛⎭⎫-log 215=f (log 25). 又f (x )在R 上是增函数, 且log 25>log 24.1>log 24=2>20.8, ∴f (log 25)>f (log 24.1)>f (20.8),∴a >b >c .8.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是增加的,则实数a 的取值范围是 . 答案 ⎣⎡⎦⎤-14,0 解析 当a =0时,f (x )=2x -3在定义域R 上是增加的,故在(-∞,4)上是增加的;当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上是增加的,所以a <0,且-1a ≥4,解得-14≤a <0.综上,实数a 的取值范围是⎣⎡⎦⎤-14,0. 9.记min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,若f (x )=min{x +2,10-x }(x ≥0),则f (x )的最大值为 .答案 6解析 由题意知,f (x )=⎩⎪⎨⎪⎧x +2,0≤x ≤4,10-x ,x >4,易知f (x )max =f (4)=6.10.设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上是增加的,则实数a 的取值范围是 . 答案 (-∞,1]∪[4,+∞) 解析 作函数f (x )的图像如图所示,由图像可知f (x )在(a ,a +1)上是增加的,需满足a ≥4或a +1≤2, 即a ≤1或a ≥4. 11.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)上是增加的; (2)若a >0且f (x )在(1,+∞)上是减少的,求a 的取值范围. (1)证明 当a =-2时,f (x )=xx +2.设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2),所以f (x )在(-∞,-2)上是增加的. (2)解 设1<x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a=a (x 2-x 1)(x 1-a )(x 2-a ).因为a >0,x 2-x 1>0, 所以要使f (x 1)-f (x 2)>0, 只需(x 1-a )(x 2-a )>0恒成立, 所以a ≤1.综上所述,0<a ≤1.12.(2018·河南南阳一中月考)设函数f (x )=ax 2+bx +1(a ,b ∈R ),F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0.(1)若f (-1)=0,且对任意实数x 均有f (x )≥0成立,求F (x )的解析式;(2)在(1)的条件下,当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围. 解 (1)∵f (-1)=0,∴b =a +1.由f (x )≥0恒成立,知a >0且方程ax 2+bx +1=0中Δ=b 2-4a =(a +1)2-4a =(a -1)2≤0,∴a =1.从而f (x )=x 2+2x +1.∴F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0.(2)由(1)可知f (x )=x 2+2x +1,∴g (x )=f (x )-kx =x 2+(2-k )x +1, 由g (x )在[-2,2]上是单调函数, 知-2-k 2≤-2或-2-k 2≥2,得k ≤-2或k ≥6.即实数k 的取值范围为(-∞,-2]∪[6,+∞).13.已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A.(-∞,-1)∪(2,+∞)B.(-∞,-2)∪(1,+∞)C.(-1,2)D.(-2,1) 答案 D解析 ∵当x =0时,两个表达式对应的函数值都为0,∴函数的图像是一条连续的曲线.又∵当x ≤0时,函数f (x )=x 3为增函数,当x >0时,f (x )=ln(x +1)也是增函数,∴函数f (x )是定义在R 上的增函数.因此,不等式f (2-x 2)>f (x )等价于2-x 2>x ,即x 2+x -2<0,解得-2<x <1.14.已知f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0,-x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a的取值范围是 . 答案 (-∞,-2)解析 二次函数y 1=x 2-4x +3的对称轴是x =2, ∴该函数在(-∞,0]上是减少的,∴x 2-4x +3≥3,同样可知函数y 2=-x 2-2x +3在(0,+∞)上是减少的, ∴-x 2-2x +3<3,∴f (x )在R 上是减少的, ∴由f (x +a )>f (2a -x )得到x +a <2a -x , 即2x <a ,∴2x <a 在[a ,a +1]上恒成立, ∴2(a +1)<a ,∴a <-2,∴实数a 的取值范围是(-∞,-2).15.已知函数f (x )=2 020x +ln(x 2+1+x )-2 020-x +1,则不等式f (2x -1)+f (2x )>2的解集为 . 答案 ⎝⎛⎭⎫14,+∞ 解析 由题意知,f (-x )+f (x )=2,∴f (2x -1)+f (2x )>2可化为f (2x -1)>f (-2x ),又由题意知函数f (x )在R 上是增加的,∴2x -1>-2x ,∴x >14,∴原不等式的解集为⎝⎛⎭⎫14,+∞. 16.已知定义在区间(0,+∞)上的函数f (x )是增函数,f (1)=0,f (3)=1. (1)解不等式0<f (x 2-1)<1;(2)若f (x )≤m 2-2am +1对所有x ∈(0,3],a ∈[-1,1]恒成立,求实数m 的取值范围.解 (1)由⎩⎪⎨⎪⎧x 2-1>0,1<x 2-1<3,得2<x <2或-2<x <- 2.∴原不等式的解集为(-2,-2)∪(2,2). (2)∵函数f (x )在(0,3]上是增函数, ∴f (x )在(0,3]上的最大值为f (3)=1,∴不等式f (x )≤m 2-2am +1对所有x ∈(0,3],a ∈[-1,1]恒成立转化为1≤m 2-2am +1对所有a ∈[-1,1]恒成立,即m 2-2am ≥0对所有a ∈[-1,1]恒成立. 设g (a )=-2ma +m 2,a ∈[-1,1],∴需满足⎩⎪⎨⎪⎧g (-1)≥0,g (1)≥0,即⎩⎪⎨⎪⎧2m +m 2≥0,-2m +m 2≥0,解该不等式组,得m ≤-2或m ≥2或m =0, 即实数m 的取值范围为(-∞,-2]∪{0}∪[2,+∞).。
高三理科数学一轮复习考试试题精选()分类汇编集合含答案
广东省2014届高三理科数学一轮复习考试试题精选(1)分类汇编1:集合一、选择题1 .(广东省佛山市南海区2014届普通高中高三8月质量检测理科数学试题 )设集合{}{}>1,|(2)0A x x B x x x ==-<,则B A 等于 ( ) A .{|01}x x << B .{}21<<x x C .{}20<<x x D .{|2}x x > 【答案】B2 .(广东省深圳市宝安区2014届高三上学期调研测试数学理试卷)已知集合{1,2,3,4,5,6},U =集合{1,2,3,4},{3,4,5},P Q ==则()U P C Q = ( )A .{1,2,3,4,6,}B .{1,2,3,4,5}C .{1,2,5}D .{1,2}【答案】D3 .(广东省湛江市第二中学2014届高三理科数学8月考试题 )已知集合{}9|7|<-=x x M ,{}2|9N x y x ==-,且N M 、都是全集U 的子集,则下图韦恩图中阴影部分表示的集合( )A .{}23-≤-<x xB .}{23-≤≤-x xC .}{16≥x xD .}{16>x x【答案】B4 .(广东省南雄市黄坑中学2014届高三上学期第一次月考测试数学(理)试题)设集合},02|{},,02|{22R x x x x N R x x x x M ∈=-=∈=+=,则=⋃N M ( )A .}0{B .}2,0{C .}0,2{-D .}2,0,2{-【答案】D5 .(广东省珠海四中2014届高三一轮复习测试(一)数学理试题)(2013广东)设集合{}2|20,M x x x x =+=∈R ,{}2|20,N x x x x =-=∈R ,则MN =( )A .{}0B .{}0,2C .{}2,0-D .{}2,0,2-【答案】D6 .(广东省广州市仲元中学2014届高三数学(理科)10月月考试题)己知集合[0,)M =+∞,集合{2N x x =>或}1x <-,U R =,则集合UM C N ⋂=( )A .{}|02x x <≤B .{}|02x x ≤<C .{}|02x x ≤≤D .{}|02x x <<【答案】C7 .(广东省广州市执信、广雅、六中2014届高三9月三校联考数学(理)试题)已知全集U R =,集合{}Z x x x A ∈≤=,1|, {}02|2=-=x x x B ,则图中的阴影部分表示的集合为( )A .{}1-B .{}2C .{}2,1D .{}2,0【答案】B8 .(广东省珠海一中等六校2014届高三上学期第二次联考数学(理)试题)设2{0,2},{|320}A B x x x ==-+=,则A B = ( )A .{0,2,4}--B .{0,2,4}-C .{0,2,4}D .{0,1,2}【答案】D9 .(2013-2014学年广东省(宝安中学等)六校第一次理科数学联考试题)设U=R ,集合2{|2,},{|40}xA y y x RB x Z x==∈=∈-≤,则下列结论正确的是 ( )A .(0,)AB =+∞ B .(](),0UCA B =-∞C .(){2,1,0}UCA B =--D .(){1,2}UCA B =【答案】C10.(广东省惠州市2014届高三第一次调研考试数学(理)试题)已知集合{}{}1,2,3,14M N x Z x ==∈<<,则 ( )A .N M ⊆B .N M =C .}3,2{=N MD .)4,1(=N M 【答案】{}{}3,241=<<∈=x Z x N ,故}3,2{=N M ,故选 C .11.(广东省珠海四中2014届高三一轮复习测试(一)数学理试题)已知集合(){,A x y =∣,x y 为实数,且}221x y +=,(){,B x y =∣,x y 为实数,且}y x =,则A B 的元素个数为 ( )A .0B .1C .2D .3【答案】C12.(广东省南雄市黄坑中学2014届高三上学期第二次月考测试数学(理)试题)已知集合2{|10},{|0},A x xB x x x =+>=-<则=B A( )A .{|1}x x >-B .{|11}x x -<<C .{|01}x x <<D .{|10}x x -<<【答案】C13.(广东省珠海市2014届高三9月开学摸底考试数学理试题)已知集合{1}A x x =>,2{20}B x x x =-<,则A B ⋃= ( )A .{0}x x >B .{1}x x >C .{12}x x <<D .{02}x x <<【答案】A14.(广东省韶关市2014届高三摸底考试数学理试题)若集合}1|{2<=x x M ,1{|}N x y x==,则N M = ( )A .NB .MC .φD .{|01}x x <<【答案】解析:D .M ={|x —1〈x<1}, N={|x 0x >}NM ={|01}x x <<15.(广东省兴宁市沐彬中学2014届上期高三质检试题 数学(理科))设集合{|20}A x x =+=,集合2{|40}B x x =-=,则A B =( )A .{2}-B .{2}C .{2,2}-D .∅【答案】A16.(广东省南雄市黄坑中学2014届高三上学期第一次月考测试数学(理)试题)已知集合}2,1,0{},1,0,1{=-=N M ,则如图所示韦恩图中的阴影部分所表示的集合为( )A .}1,0{B .}1,0,1{-C .}2,1{-D .}2,1,0,1{-【答案】C17.(广东省汕头市金山中学2014届高三上学期期中考试数学(理)试题)设集合2{103A x x x =+-≥0},{1B x m =+≤x ≤21}m -,如果有AB B =,则实数m 的取值范围是 ( )A .(,3]-∞B .[3,3]-C .[2,3]D .[2,5]【答案】A18.(广东省珠海四中2014届高三一轮复习测试(一)数学理试题)若集合{}|21A x x =-<<,{}|02B x x =<<,则集合A B = ( ) A .{}|11x x -<< B .{}|21x x -<<C .{}|22x x -<<D .{}|01x x <<【答案】D19.(广东省汕头市金山中学2014届高三上学期开学摸底考试数学(理)试题)设S 是至少含有两个元素的集合,在S 上定义了一个二元运算“*”(即对任意的S b a ∈,,对于有序元素对()b a ,,在S 中有唯一确定的元素b a *与之对应),若对任意的S b a ∈,,有b a b a =**)(,则对任意的S b a ∈,,下列等式中不.恒成立的是 ( )A .[]()a b a a b a =****)(B .b b b b =**)(C .a a b a =**)(D .[]b b a b b a =****)()(【答案】C20.(广东省惠州市2014届高三第一次调研考试数学(理)试题)对于任意两个正整数,m n ,定义某种运算“※”如下:当,m n 都为正偶数或正奇数时,m ※n =m n +;当,m n 中一个为正偶数,另一个为正奇数时,m ※n =mn 。
2019届高考理科数学一轮复习精品学案:第20讲 两角和与差的正弦、余弦和正切(含解析)
第20讲两角和与差的正弦、余弦和正切考试说明 1.会用向量的数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式导出两角差的正弦、正切公式.3.会用两角差的余弦公式导出两角和的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式,了解它们的内在联系.考情分析真题再现■ [2017-2013]课标全国真题再现1.[2016·全国卷Ⅱ]若cos-α=,则sin 2α=()A.B.C.-D.-[解析] D∵cos-α=,∴sin 2α=cos-2α=2cos2-α-1=-.2.[2015·全国卷Ⅰ] sin 20°cos 10°-cos 160°sin 10°=()A.-B.C.-D.[解析] D sin 20°cos10°-cos 160°sin10°=sin20°·cos 10°+cos20°sin10°=sin30°=.3.[2017·全国卷Ⅲ]函数f(x)=sin +cos 的最大值为()A. B.1C. D.[解析] A因为f(x)=+cos x+sin x==sin ,所以函数f(x)的最大值为.4.[2014·全国卷Ⅰ]设α∈,β∈,且tan α=,则()A.3α-β=B.3α+β=C.2α-β=D.2α+β=[解析] C tan α=====tan,因为β∈,所以+∈,又α∈且tan α=tan,所以α=+,即2α-β=.5.[2017·全国卷Ⅰ]已知α∈,tan α=2,则cos= .[答案][解析] 因为α∈,tan α=2,所以sin α=,cos α=,于是cos=(cos α+sin α)=.■ [2017-2016]其他省份类似高考真题1.[2016·四川卷] cos2-sin2= .[答案][解析] 由题可知,cos2-sin2=cos=.2.[2017·江苏卷]若tan=,则tan α=.[答案][解析] tan α=tan===.【课前双基巩固】知识聚焦(1)sin αcos β±cos αsin β(2)cos αcos β∓sin αsin β(3)对点演练1.[解析] sin 75°=sin(45°+30°)=sin 45°cos30°+cos 45°sin30°=×+×=.2.[解析] ∵cos α=-,α∈,∴sin α=,∴sin=sin αcos+cosαsin=×+×=.3.-1[解析] 原式=cos 65°cos115°-sin 65°sin115°=cos(65°+115°)=cos180°=-1.4.7[解析] tan(α-β)==7.5.-[解析] 因为tan+α=tan+α=,所以=,tan α=-,又α∈,π,所以cosα=-=-.6.sin[解析] sin x-cos x=cos sin x-sin cos x=sin.7.[解析] ==tan(45°-15°)=tan 30°=.8.2[解析] 因为α+β=,所以tan(α+β)=-1,即=-1,整理得(1-tan α)(1-tan β)=2,所以[1+tan(π-α)](1-tan β)=(1-tan α)(1-tan β)=2.【课堂考点探究】例1[思路点拨] (1)利用两角和与差的正弦公式展开已知条件即可.(2)法一:由已知利用同角三角函数的基本关系式可求出sinα+的值,进而利用两角差的余弦公式即可计算得解.法二:由已知利用两角和的余弦公式可得sin α=cos α+,代入同角三角函数的基本关系式化简整理可得关于cos α的一元二次方程,解方程并结合α的范围即可得解.(1)A(2)[解析] (1) 由sin(α+β)=2sin(α-β)=,可得sin αcos β+cos αsin β=,①sin αcos β-cos αsin β=,②由①+②解得sin αcos β=.(2)法一:∵α∈0,,cosα+=-,∴α+∈,,sinα+=,∴cos α=cosα+-=cosα+cos+sinα+sin=×+×=.法二:∵cosα+=-,可得cos α-sin α=-,∴sin α=cos α+,又∵sin2α+cos2α=1,∴cosα+2+cos2α=1,整理可得36cos2α+24cos α-11=0,解得cos α=或.∵α∈0,,可得cos α>0,故cos α=.变式题(1)C(2)1[解析] (1)cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β).由cosα=,cos(α-β)=,0<β<α<,可知sin α=,sin(α-β)=,代入上式得cos β=×+×==,所以β=,故选C.(2)由lg(6x2-5x+2)=0,可得6x2-5x+1=0.∵tan α,tan β分别是lg(6x2-5x+2)=0的两个实根,∴tan α+tan β=,tan α·tan β=,∴tan(α+β)===1.例2[思路点拨] (1)将两个条件等式分别平方相加可得;(2)先利用“切化弦”的思想,根据条件求出cos αcos β的值,再利用差角的余弦公式求出sin αsin β的值,即可求cos(α+β)的值.(1)-(2)-[解析] (1)∵sin α+cos β=,sin β-cos α=,∴(sin α+cos β)2=,(sin β-cosα)2=,即sin2α+2sin αcos β+cos2β=①,sin2β-2sin βcos α+cos2α=②,①+②得sin2α+2sin αcos β+cos2β+sin2β-2sin βcosα+cos2α=(sin2α+cos2α)+(cos2β+sin2β)+2(sin αcos β-sin βcosα)=1+1+2sin(α-β)=2+2sin(α-β)=,则sin(α-β)=-.(2)∵tan α-tan β=-==3,α-β=,∴cos αcos β=.又cos(α-β)=cos αcos β+sinαsin β=,∴sin αsin β=-,那么cos(α+β)=cos αcos β-sin αsin β=-.变式题(1)(2)4[解析] (1)sin 42°cos18°-cos 138°cos72°=sin 42°cos18°+cos 42°sin18°=sin(42°+18°)=sin 60°=.(2)(1+tan 20°)(1+tan 25°)=1+tan 20°+tan 25°+tan 20°tan25°=1+tan(20°+25°)(1-tan 20°tan25°)+tan 20°tan25°=2,同理可得(1+tan 21°)(1+tan 24°)=2,所以原式=4.例3[思路点拨] (1)所求式即tan+α,将+α看成(α+β)-β-求解;(2)观察已知角与所求角之间的关系,有+α++β=π+(α+β),进而可用诱导公式及两角和的正弦公式求解.(1)D(2)[解析](1)∵tan(α+β)=,tanβ-=,∴==tan+α=tan(α+β)-β-===.(2)∵<α<,∴<+α<π,又∵cos+α=-,∴sin+α=.∵0<β<,∴<+β<π,又sin+β=,∴cos+β=-.∴sin(α+β)=-sin[π+(α+β)]=-sin+α++β=-sin+αcos+β+sin+βcos+α=-×-×=.变式题(1)D(2)C[解析] (1)∵tan α=,tan(α-β)=-,∴tan(2α-β)===.(2)∵α为锐角,sinα-=,∴0<α-<,∴cosα-==,则cosα-=cosα--=cosα-cos+sinα-sin=×+×=.【备选理由】例1为根据关系式求三角函数值,主要考查两角和的正弦公式的逆用、诱导公式及同角三角函数的基本关系式,求解时要注意角的范围及解的情况;例2为根据函数值求角,需要通过观察已知角和所求角之间的关系合理进行角的变换.1[配合例2使用] [2017·抚州七校联考]若sin x+cos x=,则tan x+等于()A.±B.±C.±2D.±[解析] D由sin x+cos x=,得2sin x+=,即sin x+=,所以cos x+=±,所以tan x+=±,所以tan x+=tan x+=±.2[配合例3使用] [2017·宿迁泗洪中学期中]已知α,β为锐角,tan α=,cos(α+β)=-.(1)求sin α;(2)求2α+β.解:(1)∵∴sin2α=,又∵α为锐角,∴sin α=.(2)∵α,β为锐角,cos(α+β)=-<0.∴α+β∈,π,∴sin(α+β)==.由(1)可知sin α=,cos α=,∴sin(2α+β)=sin[α+(α+β)]=sin αcos(α+β)+cos αsin(α+β)=×+×=0,又∵α∈0,,α+β∈,π,∴2α+β∈,,∴2α+β=π.。
2020高考数学理科大一轮复习导学案:第二章+函数、导数及其应用2.3+Word版含答案【KS5U+
第三节函数的奇偶性与周期性知识点一函数的奇偶性1.判断正误(1)偶函数的图象不一定过原点,奇函数的图象一定过原点.(×)(2)若函数y=f(x+a)是定义在R上的偶函数,则函数y=f(x)关于直线x =a对称.(√)(3)若函数y =f (x +b )是定义在R 上的奇函数,则函数y =f (x )关于点(b,0)中心对称.( √ )2.(必修1P35例5改编)下列函数中为偶函数的是( B ) A .y =x 2sin x B .y =x 2cos x C .y =|ln x |D .y =2-x解析:根据偶函数的定义知偶函数满足f (-x )=f (x )且定义域关于原点对称,A 选项为奇函数,B 选项为偶函数,C 选项定义域为(0,+∞),不具有奇偶性,D 选项既不是奇函数,也不是偶函数.3.(必修1P39A 组第6题改编)已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)等于( A )A .-2B .0C .1D .2解析:f (-1)=-f (1)=-(1+1)=-2. 知识点二 周期性1.周期函数对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有_f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.2.最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.4.判断正误(1)函数f (x )在定义域上满足f (x +a )=-f (x ),则f (x )是周期为2a (a >0)的周期函数.( √ )(2)函数f (x )为R 上的奇函数,且f (x +2)=f (x ),则f (2 014)=0.( √ ) 5.已知定义在R 上的函数f (x )满足f (x )=-f (x +2),当x ∈(0,2]时,f (x )=2x +log 2x ,则f (2 015)=( D )A .5B .12C .2D .-2解析:由f (x )=-f (x +2),得f (x +4)=f (x ),所以函数f (x )是周期为4的周期函数,所以f (2 015)=f (503×4+3)=f (3)=f (1+2)=-f (1)=-(2+0)=-2,故选D.1.函数奇偶性常用结论(1)如果函数f (x )是偶函数,那么f (x )=f (|x |).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.函数周期性常用结论对f (x )定义域内任一自变量的值x : (1)若f (x +a )=-f (x ),则T =2a (a >0). (2)若f (x +a )=1f (x ),则T =2a (a >0).(3)若f (x +a )=-1f (x ),则T =2a (a >0).考向一 函数的奇偶性方向1 函数奇偶性的判断【例1】 (2019·福州市一模)下列函数为偶函数的是( ) A .y =tan(x +π4) B .y =x 2+e |x | C .y =x cos xD .y =ln|x |-sin x【解析】 对于选项A ,易知y =tan(x +π4)为非奇非偶函数;对于选项B ,设f (x )=x 2+e |x |,则f (-x )=(-x )2+e |-x |=x 2+e |x |=f (x ),所以y =x 2+e |x |为偶函数;对于选项C ,设f (x )=x cos x ,则f (-x )=-x cos(-x )=-x cos x =-f (x ),所以y =x cos x 为奇函数;对于选项D ,设f (x )=ln|x |-sin x ,则f (2)=ln2-sin2,f (-2)=ln2-sin(-2)=ln2+sin2≠f (2),所以y =ln|x |-sin x 为非奇非偶函数,故选B.【答案】 B方向2 函数奇偶性的应用【例2】 (1)(2019·贵阳市摸底考试)已知函数f (x )=a -2e x +1(a ∈R )是奇函数,则函数f (x )的值域为( )A .(-1,1)B .(-2,2)C .(-3,3)D .(-4,4)(2)(2019·河南许昌二模)已知函数f (x )=2|x |+1+x 3+22|x |+1的最大值为M ,最小值为m ,则M +m 等于( )A .0B .2C .4D .8【解析】 (1)解法1:由f (x )是奇函数知f (-x )=-f (x ),所以a -2e -x +1=-a +2e x +1,得2a =2e x +1+2e -x +1,所以a =1e x +1+e xe x +1=1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).故选A.解法2:函数f (x )的定义域为R ,且函数f (x )是奇函数,所以f (0)=a -1=0,即a =1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x+1<1,所以函数f(x)的值域为(-1,1).故选A.(2)易知f(x)的定义域为R,f(x)=2·(2|x|+1)+x32|x|+1=2+x32|x|+1,设g(x)=x32|x|+1,则g(-x)=-g(x)(x∈R),∴g(x)为奇函数,∴g(x)max+g(x)min=0.∵M=f(x)max=2+g(x)max,m=f(x)min=2+g(x)min,∴M+m=2+g(x)max+2+g(x)min=4,故选C.【答案】(1)A(2)C1.判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;(2)判断f(x)与f(-x)是否具有等量关系.2.已知函数的奇偶性求参数,一般采用待定系数法求解,根据f(x)±f(-x)=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.1.(方向1)下列函数中,既不是奇函数,也不是偶函数的是( D ) A .y =x +sin2x B .y =x 2-cos x C .y =2x +12xD .y =x 2+sin x解析:对于A ,定义域为R ,f (-x )=-x +sin2(-x )=-(x +sin2x )=-f (x ),为奇函数;对于B ,定义域为R ,f (-x )=(-x )2-cos(-x )=x 2-cos x =f (x ),为偶函数;对于C ,定义域为R ,f (-x )=2-x +12-x=2x+12x =f (x ),为偶函数;y =x 2+sin x 既不是偶函数也不是奇函数.2.(方向2)已知奇函数f (x )=⎩⎪⎨⎪⎧3x -a (x ≥0),g (x )(x <0),则f (-2)的值等于-8.解析:因为函数f (x )为奇函数,所以f (0)=0,则30-a =0,∴a =1.∴当x ≥0时,f (x )=3x -1,则f (2)=32-1=8,因此f (-2)=-f (2)=-8.3.(方向2)(2019·山东省名校联盟)若函数f (x )=x 3(12x -1+a )为偶函数,则a 的值为12.解析:解法1:因为函数f (x )=x 3(12x -1+a )为偶函数,所以f (-x )=f (x ),即(-x )3(12-x -1+a )=x 3(12x -1+a ),所以2a =-(12-x -1+12x -1),所以2a =1,解得a =12.解法2:因为函数f (x )=x 3(12x -1+a )为偶函数,所以f (-1)=f (1),所以(-1)3×(12-1-1+a )=13×(121-1+a ),解得a =12,经检验,当a =12时,函数f (x )为偶函数. 考向二 函数的周期性【例3】 (2018·全国卷Ⅱ)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=( )A .-50B .0C .2D .50【解析】 解法1:∵f (x )是定义域为(-∞,+∞)的奇函数,∴f (-x )=-f (x ),且f (0)=0.∵f (1-x )=f (1+x ),∴f (x )=f (2-x ),f (-x )=f (2+x ),∴f (2+x )=-f (x ),∴f (4+x )=-f (2+x )=f (x ),∴f (x )是周期函数,且一个周期为4,∴f (4)=f (0)=0,f (2)=f (1+1)=f (1-1)=f (0)=0,f (3)=f (1+2)=f (1-2)=-f (1)=-2,∴f (1)+f (2)+f (3)+f (4)+…+f (50)=12×0+f (49)+f (50)=f (1)+f (2)=2,故选C.解法2:由题意可设f (x )=2sin(π2x ),作出f (x )的部分图象如图所示.由图可知,f (x )的一个周期为4,所以f (1)+f (2)+f (3)+…+f (50)=12[f (1)+f (2)+f (3)+f (4)]+f (49)+f (50)=12×0+f (1)+f (2)=2,故选C.【答案】 C(1)若f (x )的图象有两个不同的对称中心,分别为(a ,0),(b ,0),则2|b -a |为f (x )的周期.(2)若f (x )的图象有两条不同的对称轴,分别为直线x =a ,直线x =b ,则2|b -a |为f (x )的周期.(3)若f (x )的图象有一个对称中心(a ,0),一条对称轴为直线x =b ,且a ≠b ,则4|b -a |为f (x )的周期.(2019·安徽省全国名校联考)已知函数y =g (x )满足g (x +2)=-g (x ),若y =f (x )在(-2,0)∪(0,2)上为偶函数,且其解析式为f (x )=⎩⎪⎨⎪⎧log 2x ,0<x <2,g (x ),-2<x <0,则g (-2 017)的值为( B )A .-1B .0 C.12D .-12解析:因为函数y =g (x )满足g (x +2)=-g (x ),所以g (x +4)=-g (x +2)=-[-g (x )]=g (x ),所以4是函数g (x )的周期,所以g (-2 017)=g (-504×4-1)=g (-1)=f (-1)=f (1)=log 21=0. 考向三 函数性质的综合应用方向1 函数的单调性与奇偶性【例4】 (2019·吉林长春模拟)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x (x ≥0),2x -x 2(x <0),函数g (x )=|f (x )|-1,若g (2-a 2)>g (a ),则实数a 的取值范围是( )A .(-2,1)B .(-∞,-2)∪(2,+∞)C .(-2,2)D .(-∞,-2)∪(-1,1)∪(2,+∞)【解析】 由题可知,f (x )为单调递增的奇函数,则g (x )为偶函数,又g (2-a 2)>g (a ),因此|2-a 2|>|a |,即(2-a 2)2>a 2,利用换元法解得a 的取值范围是(-∞,-2)∪(-1,1)∪(2,+∞).故选D.【答案】 D方向2 函数的奇偶性、周期性、对称性【例5】 (1)已知定义在R 上的奇函数f (x )满足f (x )=-f ⎝ ⎛⎭⎪⎫x +32,且f (1)=2,则f (2 018)=________.(2)函数y =f (x )满足对任意x ∈R 都有f (x +2)=f (-x )成立,且函数y =f (x -1)的图象关于点(1,0)对称,f (1)=4,则f (2 016)+f (2 017)+f (2 018)的值为________.(3)(2019·四川广元市统考)已知定义在R 上的函数f (x )满足f (1+x )+f (1-x )=2,g (x )=(x -1)3+1,若函数f (x )图象与函数g (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x 2 018,y 2 018),则∑i =12 018(x i +y i )=( )A .8 072B .6 054C .4 036D .2 018【解析】 (1)∵f (x )=-f ⎝ ⎛⎭⎪⎫x +32, ∴f (x +3)=f ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +32+32=-f ⎝ ⎛⎭⎪⎫x +32=f (x ). ∴f (x )是以3为周期的周期函数.则f (2 018)=f (672×3+2)=f (2)=f (-1)=-f (1)=-2. (2)∵函数y =f (x -1)的图象关于点(1,0)对称, ∴f (x )是R 上的奇函数,又f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=f (x ),故f (x )的周期为4, ∴f (2 017)=f (504×4+1)=f (1)=4,∴f (2 016)+f (2 018)=f (2 016)+f (2 016+2) =f (2 016)-f (2 016)=0, ∴f (2 016)+f (2 017)+f (2 018)=4.(3)由题意知,函数f (x )的图象关于点(1,1)对称,函数g (x )=(x -1)3+1的图象也关于点(1,1)对称.故∑i =12 018x i =(x 1+x 2 018)+(x 2+x 2 017)+…+(x 1 009+x 1 010)=1 009×2=2 018,∑i =12 018y i =(y 1+y 2 018)+(y 2+y 2 017)+…+(y 1 009+y 1 010)=1 009×2=2 018,所以∑i =12 018 (x i +y i )=∑i =12 018x i +∑i =12 018y i =2×2 018=4 036.故选C.【答案】 (1)-2 (2)4 (3)C(1)函数单调性与奇偶性的综合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性的综合.此类问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)单调性、奇偶性与周期性的综合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.1.(方向1)(2019·河北八校一模)设f (x )为奇函数,且在(-∞,0)内是减函数,f (-2)=0,则xf (x )<0的解集为( C )A .(-1,0)∪(2,+∞)B .(-∞,-2)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2)解析:∵f (x )为奇函数,且在(-∞,0)内是减函数,f (-2)=0,∴f (-2)=-f (2)=0,在(0,+∞)内是减函数.若xf (x )<0,则⎩⎪⎨⎪⎧x >0,f (x )<0=f (2)或⎩⎪⎨⎪⎧x <0,f (x )>0=f (-2).根据f (x )在(-∞,0)内是减函数,在(0,+∞)内是减函数,解得:x ∈(-∞,-2)∪(2,+∞).故选C.2.(方向2)(2019·四川成都七中一诊)定义在R 上的奇函数f (x )满足f (x+1)是偶函数,且当x ∈[0,1]时,f (x )=x (3-2x ),则f ⎝ ⎛⎭⎪⎫312=( C )A.12 B .-12 C .-1D .1解析:∵y =f (x )是定义在R 上的奇函数,∴f (-x )=-f (x ),∵函数y =f (x +1)是定义在R 上的偶函数,∴f (-x +1)=f (x +1)=-f (x -1),f (x +2)=-f (x ),可得f (x +4)=-f (x +2)=f (x ),则f (x )的周期是4,∴f ⎝ ⎛⎭⎪⎫312=f ⎝⎛⎭⎪⎫4×4-12=f -12=-f ⎝ ⎛⎭⎪⎫12=-⎣⎢⎡⎦⎥⎤12·(3-1)=-1,故选C.3.(方向2)若定义域为R 的函数f (x )在(4,+∞)上为减函数,且函数y =f (x +4)为偶函数,则( D )A .f (2)>f (3)B .f (2)>f (5)C .f (3)>f (5)D .f (3)>f (6)解析:∵y =f (x +4)为偶函数,∴f (-x +4)=f (x +4),因此y =f (x )的图象关于直线x =4对称,∴f (2)=f (6),f (3)=f (5).又y =f (x )在(4,+∞)上为减函数,∴f (5)>f (6),所以f (3)>f (6).奇、偶函数的一组性质及其应用函数的奇偶性是高考的重点内容之一,考查内容灵活多样,特别是与函数其他性质的综合应用更加突出.这类问题从通性通法的角度来处理,显得较为繁琐.若能灵活利用函数的奇偶性的性质,常能达到化难为易、事半功倍的效果.笔者撷取近年高考题和联赛题为例,归纳出奇、偶函数的一组性质及其应用.性质1 若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (-x )+g (x )=2c .简证 由于函数f (x )是奇函数,所以f (-x )=-f (x ),所以g (-x )+g (x )=f (-x )+c +f (x )+c =2c .典例1 已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg(log 210))=5,则f (lg(lg2))=( )A .-5B .-1C .3D .4【解析】 设g (x )=ax 3+b sin x ,则f (x )=g (x )+4,且函数g (x )为奇函数. 又lg(lg2)+lg(log 210)=lg(lg2·log 210)=lg1=0,所以f (lg(lg2))+f (lg(log 210))=2×4=8,所以f (lg(lg2))=3.故选C.【答案】 C典例2 设函数f (x )=(x +1)2+sin x x 2+1的最大值、最小值分别为M ,N ,则M +N =________.【解析】 f (x )=(x +1)2+sin xx 2+1=x 2+1+2x +sin x x 2+1=2x +sin x x 2+1+1.设g (x )=2x +sin xx 2+1,则f (x )=g (x )+1,且函数g (x )为奇函数.对于一个奇函数来说,其最大值与最小值之和为0,即[g (x )]max +[g (x )]min=0,而M =[g (x )]max +1,N =[g (x )]min +1,所以M +N =2.【答案】 2性质2 若函数f (x )是奇函数,则函数g (x )=f (x -a )+h 的图象关于点(a ,h )对称.简证 函数g (x )=f (x -a )+h 的图象可由f (x )的图象平移得到,不难知结论成立.典例3 (2019·武汉市调研)函数f (x )=x x +1+x +1x +2+x +2x +3的对称中心为( )A .(-4,6)B .(-2,3)C .(-4,3)D .(-2,6)【解析】 设g (x )=-1x -1-1x -1x +1.则g (-x )=-1-x -1-1-x -1-x +1=1x -1+1x +1x +1=-g (x ), 故g (x )为奇函数.易知f (x )=3-(1x +1+1x +2+1x +3)=g (x +2)+3,所以函数f (x )的对称中心为(-2,3).故选B.【答案】B典例4设α,β分别满足方程α3-3α2+5α-4=0,β3-3β2+5β-2=0,则α+β=________.【解析】设g(x)=x3+2x,则g(x)为单调递增的奇函数.设f(x)=x3-3x2+5x,则f(x)=g(x-1)+3,故f(x)关于点(1,3)中心对称.观察题目条件α3-3α2+5α-4=0,β3-3β2+5β-2=0,知f(α)=4,f(β)=2.所以f(α)+f(β)=6,则点(α,4)与点(β,2)关于点(1,3)对称,故α+β=2.【答案】2性质3若函数f(x)为偶函数,则f(x)=f(|x|).简证当x≥0时,|x|=x,所以f(|x|)=f(x);当x<0时,f(|x|)=f(-x),由于函数f(x)为偶函数,所以f(-x)=f(x),故f(|x|)=f(x).综上,若函数f(x)为偶函数,则f(x)=f(|x|).典例5设函数f(x)=ln(1+|x|)-11+x2,则使得f(x)>f(2x-1)成立的x 的取值范围是()A.(1 3,1)B .(-∞,13)∪(1,+∞) C .(-13,13)D .(-∞,-13)∪(13,+∞).【解析】 易知函数f (x )的定义域为R ,且f (x )为偶函数. 当x ≥0时,f (x )=ln(1+x )-11+x 2,易知此时f (x )单调递增.所以f (x )>f (2x -1)⇒f (|x |)>f (|2x -1|),所以|x |>|2x -1|,解得13<x <1.故选A.【答案】 A典例6 已知f (x )是偶函数,且f (x )在[0,+∞)上是增函数,如果f (ax+1)≤f (x -2)在x ∈⎣⎢⎡⎦⎥⎤12,1上恒成立,则实数a 的取值范围是( ) A .[-2,1] B .[-5,0] C .[-5,1]D .[-2,0]【解析】 因为f (x )是偶函数且在[0,+∞)上是增函数,如果f (ax +1)≤f (x -2)在x ∈⎣⎢⎡⎦⎥⎤12,1上恒成立,则|ax +1|≤|x -2|=2-x ,即x -2≤ax +1≤2-x .由ax +1≤2-x ,得ax ≤1-x ,a ≤1x -1,而1x -1在x =1时取得最小值0,故a ≤0.同理,由x -2≤ax +1得a ≥-2,所以a 的取值范围是[-2,0].【答案】D。
高考理科数学一轮复习专题训练:数列(含详细答案解析)
B . 3 2.在正项等比数列{a }中,已知 a 4 = 2 , a = ,则 a 5 的值为( 8= 2 , a = ,可得 8 q 4 = 8 = ,又因为 q > 0 ,所以 q = 1 2 2127B .35063C .28051D . 3502第 7 单元 数列(基础篇)第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等差数列{a n }的前 n 项和为 S n ,若 a 1=12,S 5=90,则等差数列{a n }公差 d =()A .2【答案】C2 C .3D .4【解析】∵a =12,S =90,∴ 5 ⨯12 + 1 5 5 ⨯ 4 2d = 90 ,解得 d=3,故选 C .n 8 1 )1 1 A . B . - C . -1 D .14 4【答案】D【解析】由题意,正项等比数列{a }中,且 a n 48 1 a 1 a 16 41,则 a = a ⋅ q = 2 ⨯ = 1 ,故选 D .5 43.在等差数列{a n}中, a 5+ a = 40 ,则 a + a + a = ( ) 13 8 9 10A .72B .60C .48D .36【答案】B【解析】根据等差数列的性质可知: a 5 + a 13 = 40 ⇒ 2a 9 = 40 ⇒ a 9 = 20 ,a + a + a = 2a + a = 3a = 60 ,故本题选 B .8 9109994.中国古代数学名著《张丘建算经》中记载:“今有马行转迟,次日减半,疾七日,行七百里”.其大意:现有一匹马行走的速度逐渐变慢,每天走的里程数是前一天的一半,连续走了7 天,共走了 700 里,则这匹马第 7 天所走的路程等于()A .700里里 里【答案】A127里【解析】设马每天所走的路程是 a 1, a 2 ,.....a 7 ,是公比为1的等比数列,a 1 - ( )7 ⎪a = a q 6= 7005.已知等差数列{a n } 的前 n 项和 S n 有最大值,且 a=10(a +a )2= 5(a + a ) = 5(a + a ) > 0 , S =2 = 11a < 0 , (a + 2d - 1)2 = (a + d - 1)(a + 4d - 1) ⎩ d = 2这些项的和为 700, S = 7 ⎛ 1 ⎫ 1 ⎝ 2 ⎭1 - 12 = 700 ⇒ a =1 64 ⨯ 700 127 ,7 1 127 ,故答案为 A .a 5< -1 ,则满足 S 6n> 0 的最大正整数 n 的值为()A .6B .7C .10D .12【答案】C【解析】设等差数列{a n } 的公差为 d ,因为等差数列{a n } 的前 n 项和 S n 有最大值,所以 d < 0 ,a又 a 5 < -1 ,所以 a 5 > 0 , a 6 < 0 ,且 a 5 + a 6 > 0 ,6 所以 S1 101 10 5 6 11 所以满足 S n > 0 的最大正整数 n 的值为 10.11(a + a )1 1166.已知等差数列{a n}的公差不为零, Sn为其前 n 项和, S 3 = 9 ,且 a 2 - 1 , a 3 - 1, a 5 - 1构成等比数列,则 S 5 = ( )A .15B . -15C .30D .25【答案】D【解析】设等差数列{a n}的公差为 d (d ≠ 0),⎧⎪3a + 3d = 9⎧a = 1 由题意 ⎨ 1 ,解得 ⎨ 1 ⎪⎩ 1 1 1.∴ S = 5 ⨯1 +5 5 ⨯ 4 ⨯ 22 = 25 .故选 D .7.在等差数列{a n } 中, a 3 , a 9 是方程 x 2 + 24 x + 12 = 0 的两根,则数列{a n } 的前 11 项和等于(A .66B .132C . -66D . -132【答案】D)S = 11⨯ (a + a ) 2 2 2 = 15 ,解得 n = 5 ,( )nC . a = 3n -1D . a =3n【解析】因为 a 3 , a 9 是方程 x 2 + 24 x + 12 = 0 的两根,所以 a 3 + a 9 = -24 ,又 a 3 + a 9 = -24 = 2a 6 ,所以 a 6 = -12 ,11⨯ 2a1 11 = 6 = -132 ,故选 D . 118.我国南宋数学家杨辉 1261 年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就,在“杨辉三角”中,第n 行的所有数字之和为 2n -1 ,若去除所有为 1 的项,依次构成数列 2,3,3,4,6,4,5,10,10,5,…,则此数列的前 15 项和为()A .110B .114C .124D .125【答案】B【解析】由题意, n 次二项式系数对应的杨辉三角形的第 n +1行, 令 x = 1 ,可得二项展开式的二项式系数的和 2n ,其中第 1 行为 2 0 ,第 2 行为 21 ,第 3 行为 22 ,L L 以此类推,即每一行的数字之和构成首项为 1,公比为 2 的对边数列,则杨辉三角形中前 n 行的数字之和为 S = n 1- 2n1- 2 = 2n - 1,若除去所有为 1 的项,则剩下的每一行的数字的个数为1,2,3, 4,L ,可以看成构成一个首项为 1,公差为 2 的等差数列,则T =n n (n + 1)2 ,令 n (n + 1)所以前 15 项的和表示前 7 行的数列之和,减去所有的 1,即 27 - 1 - 13 = 114 ,即前 15 项的数字之和为 114,故选 B .9.已知数列{a }的前 n 项和为 S nn,满足 2S n =3a n -1 ,则通项公式 a n 等于()A . a = 2n- 1n【答案】CB . a= 2nn n: , + , + + , + + + , ,那么数列 {b }= ⎧⎨ 1 ⎩ a an n +1 ⎭n + 1 ⎭C . 4 ⨯ ⎝ 2 n + 1 ⎭D .⎝ 1 + 2 + ⋅⋅⋅ + n n2 a an (n + 1) ⎝ n n + 1 ⎭ = = = 4 ⨯ - ⎪ , ∴ S = 4 ⨯ 1 - + - + - + ⋅⋅⋅ + - = 4 ⨯ 1 - ⎪ 2 2 3 3 4 n n + 1 ⎭ ⎝ ⎝⎪ , 1 1 ⎫【解析】当 n = 1 时, 2S 1 = 3a 1 -1 ,∴ a 1 = 1 ,当 n ≥ 2 且 n ∈ N * 时, 2S n -1 = 3a n -1 - 1 ,则 2S n - 2Sn -1 = 2a n = 3a n - 1 - 3a n -1 + 1 = 3a n - 3a n -1 ,即 a n = 3an -1,∴ 数列 {a }是以1 为首项, 3 为公比的等比数列∴ a nn= 3n -1 ,本题正确选项 C . 10.已知数列 满足,且 ,则( )A .B .C .D .【答案】B【解析】利用排除法,因为,当当当当时,时,时,时, ,排除 A ;,B 符合题意;,排除 C ;,排除 D ,故选 B .11.已知数列为()1 12 1 23 1 2 34 2 3 3 4 4 45 5 5 5⋯ n ⎫ ⎬ 前 项和A .1 - 1 ⎛ n + 1B . 4 ⨯ 1 - 1 ⎫ ⎛ 1 ⎪ - 1 ⎫⎪1 1-2 n + 1【答案】B【解析】由题意可知: a =nn (n + 1)= = , n + 1 n + 1 2∴ b = 1n n n +11 4 ⎛ 1 1 ⎫ n n + 1 ⋅2 2⎛ 1 1 1 1 1 ⎛ n本题正确选项 B .1 ⎫n + 1 ⎭12.已知数列{a }满足递推关系: a , a = ,则 a 2017= (12016B . 12018D . 1=a 2 -= 1 . ⎩ a∴ 1=1}满足 a 2 q ,可设三数为 , a , aq ,可得 ⎪⎨ a⎪ q 求出 ⎨ ,公比 q 的值为 1.=3an n +1 = a 1 n a + 12 n)A .12017C .12019【答案】C【解析】∵ ana + 1 n1, a = ,∴ 1 1 1 a a n +1 n⎧ 1 ⎫∴数列 ⎨ ⎬ 是等差数列,首项为 2,公差为 1.n ⎭a2017= 2 + 2016 = 2018 ,则 a2018 .故选 C .第Ⅱ卷二、填空题:本大题共4 小题,每小题5 分.13.已知等比数列{a n 1 = 12 ,且 a 2a 4 = 4(a3 - 1) ,则 a 5 = _______.【答案】8【解析】∵ a 2a 4 = 4(a 3 - 1) ,∴ a 3 = 4(a 3 -1) ,则 a 3 = 2 ,∴ a = 5 a 2 3 = a122 1 2= 8 ,故答案为 8.14.若三数成等比数列,其积为 8,首末两数之和为 4,则公比 q 的值为_______.【答案】1【解析】三数成等比数列,设公比为⎧a = 2⎩ q = 1⎧ a3 = 8 a q + aq =4 ⎩,15.在数列 {an}中,a 1= 1 , an 3 + a n(n ∈ N *)猜想数列的通项公式为________.=3a4 3 + a 53 + a 6 3a 3a 32 数列的通项公式为 a = 3n + 2 n + 2+ = (m + n) + ⎪ = 10 + + ⎪ ≥ 10 + 2 ⋅ ⎪⎪ = 2 , n m ⎭ 8 ⎝ n m ⎭【答案】3n + 2【解析】由 an 3 + a n, a = 1 ,可得 a = 1 2 3a 1 3 + a 13 3 3= , a = = , a == ,……,∴ 猜想 3 4 2 33,本题正确结果 .n16.已知正项等比数列{a n } 满足 2a 5 + a 4 = a 3 ,若存在两项 a m , a n ,使得 8 a m a n = a 1 ,则9 1+ 的最小值 mn为__________.【答案】2【解析】Q 正项等比数列{a n } 满足 2a 5 + a 4 = a 3 ,∴ 2a 1q 4 +a 1q 3 =a 1q 2 ,整理得 2q 2 +q - 1 = 0 ,又 q > 0 ,解得 q = 12,Q 存在两项 a , a 使得 8 a ⋅ a = a ,∴ 64a 2 q m +n -2 = a 2 ,整理得 m + n = 8 ,m nmn111∴则 9 1 1 ⎛ 9 1 ⎫ 1 ⎛ m 9n ⎫ 1 ⎛ m 9n ⎫ m n 8 ⎝ m n ⎭ 8 ⎝9 1 m 9n+ 的最小值为 2,当且仅当 = 取等号,但此时 m , n ∉ N * .m n n m又 m + n = 8 ,所以只有当 m = 6 , n = 2 时,取得最小值是 2.故答案为 2.三、解答题:本大题共6 个大题,共 70 分,解答应写出文字说明、证明过程或演算步骤.17.(10 分)已知等差数列{a n(1)求 {a}的通项公式;n}的公差不为 0, a 1= 3 ,且 a , a , a 成等比数列.2 4 7(2)求 a 2 + a 4 + a 6 + L + a 2n .【答案】(1) a n = n + 2 ;(2) n 2 + 3n .【解析】(1)Q a 2 , a 4 , a 7成等比数列,∴a42= a a ,2 7即 (a 1 + 3d )2 = (a 1 + d )(a 1 + 6d ) ,化简得 (a 1 - 3d )d = 0 ,∵公差 d ≠ 0 ,∴ a 1 = 3d ,6=n (a +a ) (2)若b= 4 { ⎪ 12 由题意得 ⎨,则 ⎨ , ⎩ 7 ⎪(a + 6d )2 = (a + d )(a + 21d )⎩ 1化简得 ⎨⎧a + 2d = 7(2)证明: b = 42n (2n + 4) n (n + 2) 2 ⎝ n n + 2 ⎭ - + - + - + L +⎪1 + - - = - ⎪ < . ⎪Q a = 3 ,∴ d = 1,∴ a = a + (n - 1)d = n + 2 .1 n1(2)由(1)知 a 2n = 2n + 2 ,故{a 2n } 是首项为 4、公差为 2 的等差数列,所以 a + a + a + L + a2 4 6 n (4 + 2n + 2)2 2n = = n 2 + 3n . 2 218.(12 分)已知公差不为零的等差数列{a n } 满足 S 5 = 35 ,且 a 2 , a 7 , a 22 成等比数列.(1)求数列{a n } 的通项公式;n nn(a - 1)(a + 3) ,且数列 b n }的前 n 项和为 T n ,求证: T < 3n 4.【答案】(1) a n = 2n + 1;(2)见详解.【解析】(1)设等差数列{a n } 的公差为 d ( d ≠ 0 ),⎧ 5 ⨯ 4⎧S = 355a + d = 35 5a 2 = a a2 221 11 ⎩2a 1 = 3d ⎧a = 3 ,解得 ⎨ 1⎩d = 2,所以 a = 3 + 2 (n -1) = 2n +1. nn nn(a -1)(a + 3) =4 11⎛1 1 ⎫ = = - ⎪ ,所以 T = n 1 ⎛ 1 1 1 1 1 1 1 1 1 1 ⎫- + - 2 ⎝ 1 3 2 4 3 5 n - 1 n + 1 n n + 2 ⎭= 1 ⎛ 1 1 1 ⎫ 3 1 ⎛ 1 1 ⎫ 3 + 2 ⎝ 2 n + 1 n + 2 ⎭ 4 2 ⎝ n + 1 n + 2 ⎭ 419.(12 分)已知数列{a n}的前 n 项和为 Sn且 S = 2a - 1 (n ∈ N * ) .n n(1)求数列{a n}的通项公式;(2)求数列{na n}的前 n 项和 T n.【答案】(1) a = 2n- 1 ;(2) T = n ⋅ 2n - 2n + 1 .nn【解析】(1)因为 S = 2a - 1 ,当 n ≥ 2 时, S = 2a - 1 ,7= 2a + 1 , n ∈ N * .+1),数列 ⎨ 15 ≤ T n < ; 即 a ∴ 数列 {a }的通项公式为 a = 2n - 1 n ∈ N * .(2n + 1)(2n + 3) 2⎝ 2n + 1 2n + 3⎪⎭ , - ⎪ + - ⎪ +⋅⋅⋅+⎪⎥ 2 ⎢⎣⎝ 3 5 ⎭ ⎝ 5 7 ⎭ ⎝ 2n + 2n + 3 ⎭⎦ 6 4n + 6整理可得 a n = 2a n -1 ,Q a = S = 2a - 1 ,解得 a = 1 ,1 111所以数列 {a n}为首项为1 ,公比为 2 的等比数列,∴a = 2n -1 .n(2)由题意可得:T = 1⨯ 20 + 2 ⨯ 21 + ⋅⋅⋅ + n ⋅ 2n ,n所以 2T = 1⨯ 21 + 2 ⨯ 22 + ⋅⋅⋅ + (n - 1)2n -1 + n ⋅ 2n ,n两式相减可得 -T = 1 + 21 + 22 + ⋅⋅⋅+ 2n -1 - n ⋅ 2n = n∴ T = n ⋅ 2n - 2n + 1 .n1 - 2n 1 - 2- n ⋅ 2n = 2n - 1 - n ⋅ 2n ,20.(12 分)已知数列{a n}满足 a 1= 1 , an +1n(1)求证数列{a n +1}是等比数列,并求数列{a n } 的通项公式;(2)设 b = log (a n 2 2n +1 ⎧ 1 ⎫ 1 1b b ⎬ 的前 n 项和 T n ,求证:6 ⎩ n n +1 ⎭.【答案】(1)证明见解析, a = 2n - 1(n ∈ N * )(2)见解析. n【解析】(1)由 an +1 = 2a n + 1 ,得 a n +1 + 1 = 2 (a + 1),n+ 1n +1 a + 1n= 2 ,且 a + 1 = 2 ,1∴ 数列 {a +1}是以 2 为首项, 2 为公比的等比数列,n∴ a + 1 = 2 ⨯ 2n -1 = 2n ,n( )nn(2)由(1)得: b = logn2(a2n +1+ 1) = log (22n +1- 1 + 1)= 2n + 1 ,2∴1b bn n +11 1 ⎛ 1 1 ⎫ = = -∴T = n1 ⎡⎛ 1 1 ⎫ ⎛ 1 1 ⎫ ⎛ 1 1 ⎫⎤ 1 1 - = - (n ∈ N * ),8又 0 < 1即 1n (2)设数列满足 b = a sin a π2的前 项和 .⎪⎩n,2 3 L 2 3 L 2 (a + 4) = S + S 2a = d + 4 d = 2 ⎪ ⎩= asin n π + ⎪ = a cos (n π ) , 2 ⎭ ⎝n +1,2n -1,⎪⎩n, 2 3 L 2 3 L a ⋅ a1 1 1 1 1 1 1≤ ,∴- ≤- < 0 ,∴ ≤ - < ,4n + 6 10 10 4n + 6 15 6 4n + 6 61≤ T < .15 621.(12 分)已知等差数列的前 项和为 ,且 是 与 的等差中项.(1)求的通项公式;n ,求n n【答案】(1)⎧⎪- (n + 2), ;(2) T = ⎨n n = 2k - 1(k = 1,,, ) n = 2k (k = 1,,, ) .⎧a = 7⎧a + 2d = 7 ⎧a = 3 【解析】(1)由条件,得 ⎨ 3 ,即 ⎨ 1 , ⎨ 1⎪715⎩1⎩,所以{a n }的通项公式是(2)由(1)知, b = a sinnn.(2n + 1)π 2n n⎛ π ⎫(1)当 n = 2k -1 (k =1,2,3,…)即 n 为奇数时, b = -a , b nnn +1= aT = -a + a - a + L + a n 1 2 3 n -1 - a = -a + (-2) n - 1= -n - 2 ;n 1(2)当 n = 2k (k =1,2,3,…):即 n 为偶数时, b = a , bnnn -1= -aT = -a + a - a +⋯- a n 1 2 3 n -1+ a = 2 ⋅ n n 2= n ,⎧⎪- (n + 2), 综上所述, T = ⎨n22.(12 分)设正项数列n = 2k - 1(k = 1,,, ) n = 2k (k = 1,,, ) .的前 n 项和为 ,已知 .(1)求证:数列 是等差数列,并求其通项公式;(2)设数列的前 n 项和为 ,且 b = 4n nn +1,若对任意 都成立,求实数 的取值范围.9(2)由(1)可得 b = 1 n (n + 1) n n + 1∴ T = 1 - ⎪ + - ⎪ + L + - ⎛ 1 ⎫ ⎛ 1 1 ⎫ ⎛ 1 1 ⎫1 n = 1 -= , ⎪ 2 ⎭ ⎝ 2 3 ⎭⎝ n n + 1 ⎭n + 1 n + 1⎝,即 nλ < n + (-1)n ⋅ 2 对任意⎢⎣ ⎥⎦n 恒成立,令 f (n ) = (n + 2)(n + 1)Q f (n + 1)- f (n ) = n (n + 1)- 2②当 为奇数时, λ < (n - 2)(n + 1)又 (n - 2)(n + 1)= n - - 1 ,易知:f (n ) = n - 在【答案】(1)见证明,【解析】(1)证明:∵;(2),且.,当当即时,时,有,解得 .,即.,于是,即.∵ ,∴为常数,∴数列是 为首项, 为公差的等差数列,∴.1 1= - ,nnn + 1都成立⎡ n (n + 1)+ (-1)n ⋅ 2 (n + 1)⎤⇔ λ <⎢⎥ nmin(n ∈ N *),①当 为偶数时, λ < (n + 2)(n + 1) = n + 2+ 3 ,n nn (n + 1) > 0 ,在 上为增函数,;n 恒成立,2 2 n n n为增函数,,102⨯ 4 ⨯ 3 = 0 ⎧a = -3 ⎪S 4 = 4a 1 + ⎪⎩a = a + 4d = 516 4⎩q3 (a + a + a ) = 120 ∴由①②可知:,综上所述 的取值范围为.第 7 单元 数列(提高篇)第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.记 S 为等差数列{a } 的前 n 项和.已知 S = 0 , a = 5 ,则()n n45A . a n = 2n - 5B . a n = 3n - 10C . S = 2n 2 - 8nD . S = 1n nn 2 - 2n【答案】A2.已知等比数列{a }中, a n 3 ⋅ a = 20 , a = 4 ,则 a 的值是( )13 6 10A .16B .14C .6D .5【答案】D【解析】由等比数列性质可知 a ⋅ a = a 2 = 20 ,3138由 a 6 = 4 ,得 q 4= a 2 8 = a 2620 5= ,∴ a = a q 4 = 5 ,本题正确选项 D .10 63.等比数列{a } 中, a + a + a = 30 , a + a + a = 120 ,则 a + a + a = ( )n123456789A .240B .±240C .480D .±480【答案】C【解析】设等比数列{a } 中的公比为 q ,由 a + a + a = 30 , a + a + a = 120 ,n 1 2 3 4 5 6⎧ 得 ⎨a + a + a = 301 2 31 2 3,解得 q 3 = 4 ,∴ a + a + a = q 3 (a + a + a ) = 480.7 8 9 4 5 6112 , N = 4.我国古代的《洛书》中记载着世界上最古老的一个幻方:如图,将1,2,…,9 填入3 ⨯ 3 的方格内,使三行,三列和两条对角线上的三个数字之和都等于 15.一般地,将连续的正整数1,2,3,L , n 2 填入 n ⨯ n 个方格中,使得每行,每列和两条对角线上的数字之和都相等,这个正方形叫做n 阶幻方.记 n 阶幻方的对角线上的数字之和为 N n ,如图三阶幻方的 N 3 = 15 ,那么 N 9 的值为()A .369B .321C .45D .41【答案】A【解析】根据题意可知,幻方对角线上的数成等差数列,根据等差数列的性质可知对角线的两个数相加正好等于1 + n 2,根据等差数列的求和公式 S = n (1+ n 2 ) 9 9 ⨯ (1+ 92 ) 2 = 369 ,故选 A .5.已知 1, a 1 , a 2 ,9 四个实数成等差数列,1, b 1 , b 2 , b 3 ,9 五个数成等比数列,则b 2 (a 2 - a 1 ) = ( A .8 B .-8 C .±8 D .98【答案】A)【解析】由 1, a 1 , a 2 ,9 成等差数列,得公差 d = a 2 - a 1 = 9 - 1 84 - 1 = 3 ,由 1, b , b , b ,9 成等比数列,得 b 2 = 1⨯ 9 ,∴ b = ±3 ,12322当 b = -3 时,1, b , -3 成等比数列,此时 b 2 = 1⨯ (-3) 无解,2 11所以 b = 3 ,∴ b (a - a 2 2 2 1 ) = 3 ⨯ 8= 8 .故选 A .36.已知数列{a n }是公比不为 1 的等比数列, S n为其前 n 项和,满足 a = 2 ,且16a , 9a , 2a2 1 4 7成等差数列,则 S = ()3A . 5B .6C .7D .9【答案】C【解析】数列{a n } 是公比 q 不为 l 的等比数列,满足 a 2 = 2 ,即 a 1q = 2 ,122 ⨯ 2 + 3)⨯ 2 ; 2 ⨯ 2 + 4 )⨯3 ;22- 5 =,且 A n =7n + 45a7= (10B .172C . 143A . 93【解析】因为 7 = 7 = a + a a 2a A = 13 = 7 ⨯13 + 45 = 17 1 13 2 且16a , 9a , 2a 成等差数列,得18a = 16a + 2a ,即 9a q 3 = 8a + a q 6 ,1 47417111解得 q = 2,a = 1 ,则 S = 1 3 1 - 23 1 - 2= 7 .故选 C .7.将石子摆成如图的梯形形状,称数列 5,9,14,20,L ,为“梯形数”.根据图形的构成,此数列的第 2016 项与 5 的差,即 a 2016- 5 = ()A . 2018⨯ 2014B . 2018⨯ 201C .1011⨯ 2015D .1010⨯ 2012【答案】C【解析】由已知的图形我们可以得出图形的编号与图中石子的个数之间的关系为:n =1 时, a = 2 + 3 = 11(n =2 时, a = 2 + 3 + 4 = 2…,由此我们可以推断:1 (a = 2 + 3 + L + (n + 2 ) = 1n⎡⎣2 + (n + 2)⎤⎦ ⨯ (n + 1),∴ a 1⨯ ⎡⎣2 + (2016 + 2)⎤⎦ ⨯ (2016 + 1)- 5 = 1011⨯ 2015 .故选 C .20168.已知两个等差数列{a }和 {b }的前 n 项和分别为 A 和 BnnnnB n + 3 b n 7)17D .15【答案】B771131313(a + a )1 131 13= 2 b 2b b + b 13(b + b ) B 13 + 3 2,故答案选 B .9.已知数列{ }的前 n 项和为 , , ( ),则 ( )A.32B.64C.128D.25613,∴ S B .C . 1a - 1 a - 1,n⎧B . 2019 ) =+ = + = + =2 ,1 1 + 1 + a 2a 2【答案】B【解析】由,得,又,∴- 1 n +1 S - 1n= 2 ,即数列{则∴10.数列1}是以 1 为首项,以 2 为公比的等比数列,,则 ..故选 B .满足: ,若数列 是等比数列,则 的值是()A .1 【答案】B2 D .【解析】数列为等比数列 ⇒ a- 1λa - 2上式恒成立,可知 ⎨λ =q⎩-2 = -q⇒ λ = 2 ,本题正确选项 B .11.已知函数 f (x ) =2( 1 + x 2x ∈ R ),若等比数列满足 a a1 2019= 1 ,则A .2019【答案】A ( )2 C .2D . 1 2【解析】∴ f (a )+ f (a12019,1 + a2 1 + a 2 1 + a 2 1 + a 21 2019 1 1 1为等比数列,则,14b b3B . 16 C . 115D . 2b b= = - ⎭ 数列 的前 项和 T = - + - ⎪ ⎪ , 2 ⎝ 3 5 5 72n + 1 2n + 3 ⎭ 2 ⎝ 3 2n + 3 ⎭可得 λ ≤ 12,即12.已知是公比不为 1 的等比数列,数列.满足: , , 成等比数列,c =1n2n 2n +2,若数列的前 项和对任意的恒成立,则 的最大值为( )A .115【答案】C【解析】由 , ,成等比数列得 a 2 =a a ,2 2nb n又是公比不为 1 的等比数列,设公比为 q ,则 a 2 q2b n-2 = a 2 q 2n ,整理得 b = n + 1,c =111n n2n 2n +21 1 ⎛ 1 1 ⎫ (2n + 1)(2n + 3)2 ⎝ 2n + 1 2n +3 ⎪ ,1 ⎛ 1 1 1 11 1 ⎫ 1 ⎛ 1 1 ⎫+ ⋅⋅⋅ +- = - n数列 是单调递增数列,则当 n =1 时取到最小值为1151 ,即 的最大值为,故选 C .1515,第Ⅱ卷二、填空题:本大题共4 小题,每小题5 分.13.已知{a n } 是等差数列, a 2 + a 4 + a 6 + a 8 = 16 ,则 S 9 = _________.【答案】36【解析】{a n } 是等差数列, a 2 + a 4 + a 6 + a 8 = 16 , a 2 + a 8 = a 4 + a 6 = 2a 5 ,得出 a 5 = 4 ,又由 S = 9 ⋅ (a 1 + a 9 )9 = 9a = 36 .514.在数列 {a }中, a n 1= 1,an +1- a = 2n + 1 ,则数列的通项 a = ________.n n15x【答案】 n 2【解析】当 n ≥ 2 时,a = (a - a ) + (ann n -1n -1- a n -2) + (an -2- a n -3) + L + (a - a ) + (a - a ) + a ,3 2 2 1 1⇒ a = (2n - 1) + (2n - 3) + (2 n - 5) + L + 5 + 3 + 1 = n当 n = 1 , a 也适用,所以 a = n 2 .1nn (2n - 1 + 1) 2= n 2 ,15.设数列{a n } 的前 n 项和为 S n ,且 ∀n ∈ N *, a n +1a = ________.n【答案】 n - 6(n ∈ N * ) (答案不唯一)> a , S ≥ S .请写出一个满足条件的数列{a } 的通项公式n n 6 n【解析】 ∀n ∈ N * , a n +1> a ,则数列{a } 是递增的, ∀n ∈ N * , S ≥ S ,即 S 最小,n n n 6 6只要前 6 项均为负数,或前 5 项为负数,第 6 项为 0,即可,所以,满足条件的数列{a n } 的一个通项公式 a n = n - 6(n ∈ N * ) (答案不唯一).16.已知函数 f ( x ) = x 2 cosπx2,数列 {a }中, a = f (n )+ f (n + 1)(n ∈ N * ) ,则数列{a }的n n n前 40 项之和 S 40 = __________.【答案】1680【解析】函数 f (x ) = x 2 cos π 2且数列 {a }中, a = f (n )+ f (n +1),n n可得 a = f (1)+ f (2) = 0 - 4 = -4 ; a = f (2)+ f (3) = -4 + 0 = -4 ;12a = f (3)+ f (4) = 0 +16 = 16 ; a = f (4)+ f (5) = 16 ;3 4a = f (5)+ f (6) = 0 - 36 = -36 ; a = f (6)+ f (7) = -36 ;…,5 6可得数列 {a n 即有数列 {a n}为 -4 , -4 , 16 ,16 , -36 , -36 , 64 , 64 , -100 , -100 ,…, }的前 40 项之和:S = (-4 - 4 +16 +16)+ (-36 - 36 + 64 + 64)+ (-100 -100 +144 +144)+ 40⋅⋅⋅+ (-1444 -1444 +1600 +1600) = 24 + 56 + 88 +⋅⋅⋅+ 31216= ⨯10 ⨯ (24 + 312 ) = 1680 , ( a b a 1 - 22n 2 + n (n ∈ N * ).2 2 222212本题正确结果1680 .三、解答题:本大题共6 个大题,共 70 分,解答应写出文字说明、证明过程或演算步骤.17.10 分)已知数列{a n}是等比数列,数列 {b }是等差数列,且满足: n 1= b = 1 , + b = 4a , - 3b = -5 .1 2 3 2 3 2(1)求数列{a n }和 {b }的通项公式;n(2)设 c n = a n + b n ,求数列 {c n}的前 n 项和 S n .【答案】(1) a = 2n -1 , n ∈ N * , b = 2n - 1,n ∈ N * ;(2) S = 2n + n 2 - 1 .nn n【解析】(1)设 {an}的公比为 q , {b }的公差为 d ,由题意 q > 0 ,n⎧(1+ d ) + (1+ 2d ) = 4q ⎧-4q + 3d = -2由已知,有 ⎨ ,即 ⎨⎩q 2 - 3(1+ d ) = -5 ⎩ q 2 - 3d = -2⇒ q 2 - 4q + 4 = 0 ⇒ d = q = 2 ,所以 {a n }的通项公式为 an= 2n -1 , n ∈ N * , {b }的通项公式为 b = 2n - 1,n ∈ N * .n n(2) c = a + b = 2n -1 + 2n - 1 ,分组求和,分别根据等比数列求和公式与等差数列求和公式得到nnn1 - 2nn (1+ 2n - 1)S =+= 2n + n 2 - 1 .n18.(12 分)己知数列{a }的前 n 项和为 S n(1)求 {a}的通项公式;nn且 S = n 1 12 2(2)设 b n =1a an n +1,求数列 {b n}的前 100 项和.【答案】(1) a n = n ;(2) T100 =100 101.【解析】(1)当 n ≥ 2 时, S =n两式相减得 a n = S n - S n -1 = n , n 2 + n , S = (n - 1)2 + (n - 1)= n 2 + n- n ,17当 n =1时, a = S = + = 1,满足 a = n ,\ a = n . 2 2骣 1 骣 1 骣1 1 1 1 1001 - + - +L + - +2 = - , n +1 =2 n∈ N * ). ⎧⎬(2)若数列{b }满足: ba + 1 3n4 4 == 3 +n⎩ a n +1⎭a + 1 = 3n ,所以 a =1 - 1 . 3n ( )⇒ S = 2n - 144(2)令 b = 2n + 1,求数列 {b }的前 n 项和 T 及 T 的最小值.a + 2 nn1 11 1 n n(2)由(1)可知 b n =1 1 1= - ,n (n + 1) n n + 1所以数列 {b n}的前 100 项和 T100= b +b +?1 2b100= 琪 琪 琪 琪 - = 1 - = .桫 2桫 3 ? 99 100100 101 101 10119.(12 分)已知数列{a }满足: a n 1 3a -2a n - 3 ( 3a + 4 n(1)证明数列 ⎨ 1 ⎫ 为等差数列,并求数列{a n }的通项公式;⎩ a n + 1⎭nn =3n (n ∈ N * ),求 {b }的前 n 项和 S . nn n【答案】(1)证明见解析, a = n1 2n - 1 9- 1;(2) S = ⨯ 3n +2 + .n【解析】(1)因为 an +1+ 1 = -2a - 3 a + 1 1 3a + 4 1 n + 1 = n ,所以 , 3a + 4 3a + 4 a + 1 a a + 1 n n n +1 n +1 n⎧ 1 ⎫所以 ⎨ ⎬ 是首项为 3,公差为 3 的等差数列,所以n1 n(2)由(1)可知: a =n 1 3n- 1,所以由 b = n 3n a + 1 nn ∈ N * ⇒ b = n ⋅ 3n +1 , nS = 1 ⨯ 32 + 2 ⨯ 33 + L + (n - 1) ⨯ 3n + n ⨯ 3n +1 ①;n3S = 1 ⨯ 33 + 2 ⨯ 34 + L + (n - 1) ⨯ 3n +1 + n ⨯ 3n +2 ②,n①-②得 -2S = 32 + 33 + L + 3n +1 - n ⨯ 3n +2 = n 32 (3n - 1)3 - 1 - n ⨯ 3n +2n9⨯ 3n +2+ .20.(12 分)已知数列{a n}的前 n 项和为 Sn,且 S n = 2a n - 2n -1 .(1)求数列{a n}的通项公式;n nn185 ⨯ 2n -1 (2)Q b = 2n + 1 1 1 1 ⎛ 3 5 7 2n + 1 ⎫ ,则 T n = ⎪ , a + 2 52n -1 5 ⎝ 20 21 22 2n -1 ⎭ T = ⎪ 两式作差得 1 - T = ⨯ ⎢3 + ⎛ 1 ⎫ 1 ⎡ ⎛ 2 2 2 ⎫ 2n + 1⎤ 2n + 5 + +⋅⋅⋅+ - = 1 -2n ⎥⎦ ⎝ 2 ⎭ n 5 ⎣21 22 2n -1 ⎭ 5 ⨯ 2n 5 ⨯ 2n -1 5 ⨯ 2n 5 ⨯ 2n -1 5 ⨯ 2n 5 ⎧( ⎧ n - 1)2n + , n 是奇数 3 - 3n ⎪b n = 2 2 , n 是奇数2 , b = ⎨ ;(2) T = ⎨ .3n ⎪(n - 1)2n + 1 + , n 是偶数 n -2 ⎪b = 2 2 , n 是偶数n n【答案】(1)a = 5 ⨯ 2n -1- 2 (n ∈ N *);(2) T = 2 - 2n +5 3,最小值 . 5【解析】(1)当 n =1 时, a 1 = S 1 = 2a 1 - 2 - 1 ,解得 a 1 = 3 ,当 n ≥ 2 时, a n = S n - S n -1 = 2a n - 2a n -1 - 2 ,解得 a n = 2 a n -1 + 2 .则 a + 2 = 2 (an n -1+ 2),故 {a n + 2}是首项为 a 1 + 2 = 5 ,公比为 2 的等比数列,∴ a = 5 ⨯ 2n -1 - 2 (n ∈ N * ). n = ⨯ (2n + 1)⨯ + + + ⋅⋅⋅ +nn1 1 ⎛2 n 5 ⎝3 5 7 2n - 1 2n + 1 ⎫+ + + ⋅⋅⋅ + +21 22 23 2n -1 2n ⎭⎪ ⎪⎝,所以 T = 2 - n 2n + 5 5 ⨯ 2n -1,2n + 5 2n + 7 2n + 5 -2n - 3令 c = ,有 c - c =- = < 0 ,对 n ∈ N * 恒成立, n n +1 n则数列{c n }是递减数列,故{T n } 为递增数列,则 (T n )min 3= T = . 121.(12 分)已知正项数列且.的前 项和为 ,且 , ,数列 满足 ,(1)求数列(2)令【答案】(1), 的通项公式;,求数列 的前 项和 .n +1 ⎪⎪ n n⎩ n ⎪⎩ 2【解析】(1)当时, ,即 ,,19⎧⎪S + S = a 2 由 ⎨ ,可得= a 2 (n ≥ 2) ,⎪⎩ n由 ⎨ 两式相除,得 n +1 = 2 (n ≥ 2 ),⎧b b = 2n b⎪⎩b n -1b n = 2n -1 (n ≥ 2)综上:b = ⎨ n ⎪b = 2 n -22 , n 是偶数 ⎩ ⎧ 3n ⎪⎪ 2 , 的前 项和为 B ,∴ B = ⎨ , -3n + 1 ⎪ , n 是奇数 ⎧(n - 1)2n + , n 是奇数 ⎪⎪ 2综上: T = ⎨ .3n ⎪(n - 1)2n + 1 + , n 是偶数n +1 n n +1 S + S n -1 n即,又是公差为 ,首项为 的等差数列,,由题意得:,n n +1 b n -1是奇数时,是公比是 ,首项 的等比数列,∴ b = 2nn +1 2 ,同理 是偶数时是公比是 ,首项的等比数列,∴ b = 2nn -2 2 ,n ⎧ n +1⎪b = 2 2 , n 是奇数n.(2)令,即 ,⎧⎪ A = 1⋅ 20 + 2 ⋅ 21 + 3 ⋅ 22 + ⋅⋅⋅ + n ⋅ 2n -1的前 项和为 ,则 ⎨ n⎪⎩2 A n = 1⋅ 21 + 2 ⋅ 22 + 3 ⋅ 23 + ⋅⋅⋅ + n ⋅ 2n,两式相减得 - A = 20 + 21 + 22 + 2n -1 - n ⋅ 2n = n,1 - 2n 1 - 2- n ⋅ 2n ,令n n⎪⎩ 2n 是偶数3 - 3nn⎪⎩ 220ln 22 ln 32 ln n 2 (n - 1)(2n + 1) (当 x ≥ a 时, f '( x ) = 1 - = ,此时要考虑 a 与 1 的大小.(2)由(1)可知当 a = 1 , x > 1 时, x -1 - ln x > 0 ,即 ln x > 1 - x ,所以 ln x = n - 1 - = n - 1 - - ⎪ < n - 1 - + + L + ⎝ 2 n 2 ⎭ ⎝ 2 ⨯ 3 3 ⨯ 4 n(n + 1) ⎭ 1 ⎫ n - 1 = (n - 1) - n + 1 ⎭ 2(n + 1) ⎛ 122.(12 分)已知函数 f ( x ) =| x - a | - ln x(a > 0) .(1)讨论 f ( x ) 的单调性;(2)比较 + +⋯+ 与 的大小 n ∈ N * 且 n > 2) ,并证明你的结论.22 32 n 2 2(n + 1)【答案】(1)见解析;(2)见解析.⎧ x - ln x - a, 【解析】(1)函数 f ( x ) 可化为 f ( x ) = ⎨⎩a - x - ln x,x ≥ a0 < x < a ,当 0 < x < a 时, f '( x ) = -1 - 1 x< 0 ,从而 f ( x ) 在 (0, a) 上总是递减的,1 x - 1x x①若 a ≥ 1 ,则 f '( x ) ≥ 0 ,故 f ( x ) 在 [a, +∞ ) 上递增;②若 0 < a < 1 ,则当 a ≤ x < 1 时, f '( x ) < 0 ;当 x > 1 时, f '( x ) > 0 ,故 f ( x ) 在 [a,1) 上递减,在 (1, +∞) 上递增,而 f ( x ) 在 x = a 处连续,所以当 a ≥ 1 时, f ( x ) 在 (0, a) 上递减,在[a, +∞ ) 上递增;当 0 < a < 1 时, f ( x ) 在 (0,1) 上递减,在[1, +∞ ) 上递增.1< 1 - .x x所以 ln 22 ln 32 ln n 2 1 1 1+ + L + < 1 - + 1 - + L 1 -22 32 n 2 22 32 n 2⎛ 1 1 + ⎝ 22 32 + L + 1 ⎫ 1 1 ⎫ ⎛ 1 ⎪ ⎪2n 2 - 2 - n + 1 (n - 1)(2n + 1) = = .2(n + 1) 2(n + 1)21。
2020版高考数学理科(人教B版)一轮复习高考大题专项2 高考中的三角函数与解三角形
高考大题专项二 高考中的三角函数与解三角形1.(2018北京,理15)在△ABC 中,a=7,b=8,cos B=-17.(1)求∠A ;(2)求AC 边上的高.2.在△ABC 中,已知A=45°,cos B=45.(1)求cos C 的值;(2)若BC=10,D 为AB 的中点,求CD 的长.3.(2018河南安阳一模,17)已知在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足a+2a cos B=c. (1)求证:B=2A ;(2)若△ABC 为锐角三角形,且c=2,求a 的取值范围.4.如图,在梯形ABCD 中,已知∠A=π2,∠B=2π3,AB=6,在AB 边上取点E ,使得BE=1,连接EC ,ED.若∠CED=2π3,EC=√7.(1)求sin ∠BCE 的值; (2)求CD 的长.5.(2018河北唐山三模,17)在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,a-b=b cos C. (1)求证:sin C=tan B ;(2)若a=1,C 为锐角,求c 的取值范围.6.已知在△ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 的面积是△ADC 面积的2倍. (1)求sinBsinC ;(2)若AD=1,DC=√22,求BD 和AC 的长.7.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知4cos 2B -C2-4sin B sin C=3. (1)求A ;(2)若(bc-4√3)cos A+ac cos B=a 2-b 2,求△ABC 的面积.8.在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边.若a cos B=3,b cos A=1,且A-B=π6, (1)求边c 的长; (2)求角B 的大小.高考大题专项二 高考中的三角函数与解三角形1.解 (1)在△ABC 中,∵cos B=-17,∴B ∈(π2,π),∴sin B=√1-cos 2B =4√37.由正弦定理,得asinA=bsinB⇒7sinA=4√37,∴sin A=√32.∵B ∈(π2,π), ∴A ∈(0,π2),∴A=π3.(2)在△ABC 中,sin C=sin(A+B )=sin A cos B+sin B cos A=√32×(-17)+12×4√37=3√314.如图所示,在△ABC 中,过点B 作BD ⊥AC 于点D.∵sin C=ℎBC ,∴h=BC·sin C=7×3√314=3√32,∴AC 边上的高为3√32.2.解 (1)∵cos B=45,且B ∈(0°,180°),∴sin B=√1-cos 2B =35.cos C=cos(180°-A-B )=cos(135°-B ) =cos 135°cos B+sin 135°sin B=-√22×45+√22×35=-√210.(2)由(1)可得sin C=√1-cos 2C=√1-(-√210)2=710√2.由正弦定理得BC sinA =AB sinC ,即√22=AB710√2,解得AB=14.在△BCD 中,BD=7,CD 2=72+102-2×7×10×45=37,所以CD=√37.3.解 (1)∵a+2a cos B=c ,由正弦定理知,sin A+2sin A cos B=sin C=sin(A+B )=sin A cos B+cos A sin B ,即sin A=cos A sin B-sin A cos B=sin(B-A ).因为A ,B ∈(0,π),所以A+(B-A )≠π,所以A=B-A ,B=2A.(2)由(1)知A=B 2,C=π-A-B=π-3B 2.由△ABC 为锐角三角形,得{ 0<B2<π2,0<B <π2,0<π-3B 2<π2,得π3<B<π2.由a+2a cos B=2得a=21+2cosB .∵B ∈(π3,π2),∴cos B ∈(0,12). ∴a=21+2cosB ∈(1,2).4.解 (1)在△CBE 中,由正弦定理得CEsinB=BE sin∠BCE ,sin ∠BCE=BEsinB CE =1×√32√7=√2114. (2)在△CBE 中,由余弦定理得CE 2=BE 2+CB 2-2BE·CB cos 2π3,即7=1+CB 2+CB ,解得CB=2.由余弦定理得CB 2=BE 2+CE 2-2BE·CE cos ∠BEC ,cos ∠BEC=2√77,sin ∠BEC=√217,sin ∠AED=sin 2π3+∠BEC =√32×2√77−12×√217=√2114,cos ∠AED=5√714, 在Rt △ADE 中,AE=5,AE DE =cos ∠AED=5√714,DE=2√7,在△CED 中,由余弦定理得CD 2=CE 2+DE 2-2CE·DE cos 2π3=49,∴CD=7.5.解 (1)由a-b=b cos C ,根据正弦定理得sin A-sin B=sin B cos C ,即sin(B+C )=sin B+sin B cos C ,sin B cos C+cos B sin C=sin B+sin B cos C ,sin C cos B=sin B , 得sin C=tan B.(2)由余弦定理得c 2=a 2+b 2-2ab cos C=b 2+2b-1=(b+1)2-2,由a-b=b cos C 知b=a 1+cosC=11+cosC, 由C 为锐角,得0<cos C<1, 所以12<b<1.从而有12<c<√2.所以c 的取值范围是(12,√2).6.解 (1)S △ABD =12AB·AD sin ∠BAD ,S △ADC =12AC·AD sin ∠CAD.因为S △ABD =2S △ADC ,∠BAD=∠CAD ,所以AB=2AC.由正弦定理可得sinBsinC =ACAB =12.(2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD=√2.在△ABD 和△ADC 中,由余弦定理知,AB 2=AD 2+BD 2-2AD·BD cos ∠ADB , ① AC 2=AD 2+DC 2-2AD·DC cos ∠ADC. ②因为cos ∠ADB=-cos ∠ADC , 所以①+2×②得AB 2+2AC 2=3AD 2+BD 2+2DC 2=6.由(1)知AB=2AC ,所以AC=1.7.解 (1)4×1+cos (B -C )2-4sin B sin C=2+2cos B cos C-2sin B cos C=2+2cos(B+C ) =2-2cos A=3,cos A=-12,∵0<A<π,∴A=2π3.(2)∵(bc-4√3)·b 2+c 2-a 22bc +ac ·a 2+c 2-b 22ac =a 2-b 2, ∴b 2+c 2-a 22-4√3·b 2+c 2-a 22bc +a 2+c 2-b 22=a 2-b 2,∴b 2+c 2-a 2-4√3·b 2+c 2-a 22bc =0,∵A=2π3,∴b 2+c 2-a 2≠0,∴1-4√32bc =0,bc=2√3,S △ABC =12bc sin A=12×2√3×√32=32.8.解 (1)a cos B=3,a ×a 2+c 2-b 22ac =3,化为a 2+c 2-b 2=6c ,①b cos A=1,b ×b 2+c 2-a 22bc =1,化为b 2+c 2-a 2=2c.②解由①②组成的方程组得2c 2=8c ,即c=4.(2)将(1)得到的c=4代入①可得a 2-b 2=8.又A-B=π6,∴A=B+π6,C=π-(A+B )=π-(2B +π6),可得sinC=sin (2B +π6).由正弦定理可得asinA =bsinB =4sinC ,∴a=4sin (B+π6)sin (2B+π6),b=4sinBsin (2B+π6).∴a 2-b 2=8⇔16sin 2(B +π6)-16sin 2B=8sin 2(2B +π6),∴1-cos (2B +π3)-(1-cos 2B )=sin 2(2B +π6),即cos 2B-cos 2B+π3=sin 2(2B +π6), ∴sin (2B +π6)=sin 2(2B +π6),∴sin (2B +π6)=0或sin 2B+π6=1,B ∈(0,5π12),解得B=π6.。
2019年高考数学(理科)一轮复习通用版:“算法初步、复数、推理与证明”双基过关检测
“算法初步、复数、推理与证明”双基过关检测一、选择题1.若z =i(3-2i)(其中i 为复数单位),则z =( )A .3-2iB .3+2iC .2+3iD .2-3i解析:选D 由z =i(3-2i)=2+3i ,得z =2-3i.2.已知i 为虚数单位,a 为实数,复数z =a -3i 1-i在复平面上对应的点在y 轴上,则a 为( )A .-3B .-13 C.13D .3 解析:选A ∵z =a -3i 1-i =(a -3i )(1+i )(1-i )(1+i )=a +3-(3-a )i 2, 又复数z =a -3i 1-i在复平面上对应的点在y 轴上, ∴⎩⎪⎨⎪⎧a +3=0,3-a ≠0,解得a =-3. 3.分析法又称执果索因法,若用分析法证明“设a >b >c ,且a +b +c =0,求证:b 2-ac <3a ”索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0 解析:选C b 2-ac <3a ⇔b 2-ac <3a 2⇔(a +c )2-ac <3a 2⇔a 2+2ac +c 2-ac -3a 2<0⇔-2a 2+ac +c 2<0⇔2a 2-ac -c 2>0⇔(a -c )(2a +c )>0⇔(a -c )(a -b )>0.4.利用数学归纳法证明“(n +1)(n +2)·…·(n +n )=2n ×1×3×…×(2n -1),n ∈N *”时,从“n =k ”变到“n =k +1”时,左边应增乘的因式是( )A .2k +1B .2(2k +1)C.2k +1k +1D.2k +3k +1解析:选B 当n =k (k ∈N *)时,左式为(k +1)(k +2) ·…·(k +k );当n =k +1时,左式为(k +1+1)(k +1+2)·…·(k +1+k -1)(k +1+k )(k +1+k +1),则左边应增乘的式子是(2k +1)(2k +2)k +1=2(2k +1). 5.(2017·北京高考)执行如图所示的程序框图,输出的s 值为()A .2B.32C.53D.85解析:选C 运行该程序,k =0,s =1,k <3;k =0+1=1,s =1+11=2,k <3; k =1+1=2,s =2+12=32,k <3; k =1+2=3,s =32+132=53,此时不满足循环条件,输出s , 故输出的s 值为53. 6.若数列{a n }是等差数列,b n =a 1+a 2+…+a n n,则数列{b n }也为等差数列.类比这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( )A .d n =c 1+c 2+…+c n nB .d n =c 1·c 2·…·c n nC .d n = nc n 1+c n 2+…+c n n n D .d n =n c 1·c 2·…·c n解析:选D 因为数列{a n }是等差数列,所以b n =a 1+a 2+…+a n n =a 1+(n -1)·d 2(d 为等差数列{a n }的公差),{b n }也为等差数列,因为正项数列{c n }是等比数列,设公比为q ,则d n=n c 1·c 2·…·c n =n c 1·c 1q ·…·c 1q n -1=c 1q 12n-,所以{d n }也是等比数列.7.执行如图所示的程序框图,若输出的结果是99199,则判断框内应填的内容是( )A .n <98?B .n <99?C .n <100?D .n <101?解析:选B 由14n 2-1=1(2n -1)(2n +1)=1212n -1-12n +1, 可知程序框图的功能是计算并输出S =12⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1=12⎝⎛⎭⎫1-12n +1=n 2n +1的值.由题意令n 2n +1=99199,解得n =99, 即当n <99时,执行循环体,若不满足此条件,则退出循环,输出S 的值.8.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是( )A .(7,5)B .(5,7)C .(2,10)D .(10,1)解:选B 依题意,把“整数对”的和相同的分为一组,不难得知第n 组中每个“整数对”的和均为n +1,且第n 组共有n 个“整数对”,这样的前n 组一共有n (n +1)2个“整数对”, 注意到10×(10+1)2<60<11×(11+1)2, 因此第60个“整数对”处于第11组(每个“整数对”的和为12的组)的第5个位置, 结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7).二、填空题9.M =1210+1210+1+1210+2+…+1211-1与1的大小关系为__________.解析:因为M =1210+1210+1+1210+2+…+1211-1 =1210+1210+1+1210+2+…+1210+(210-1)所以M <1.答案:M <110.若复数z =a +i i(其中i 为虚数单位)的实部与虚部相等,则实数a =________. 解析:因为复数z =a +i i =a i +i 2i 2=1-a i , 所以-a =1,即a =-1.答案:-111.下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =________.解析:a =14,b =18.第一次循环:14≠18且14<18,b =18-14=4;第二次循环:14≠4且14>4,a =14-4=10;第三次循环:10≠4且10>4,a =10-4=6;第四次循环:6≠4且6>4,a =6-4=2;第五次循环:2≠4且2<4,b =4-2=2;第六次循环:a =b =2,跳出循环,输出a =2.答案:212.设n 为正整数,f (n )=1+12+13+…+1n ,计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,观察上述结果,可推测一般的结论为________.解析:∵f (21)=32,f (22)>2=42,f (23)>52,f (24)>62,∴归纳得f (2n )≥n +22(n ∈N *). 答案:f (2n )≥n +22(n ∈N *) 三、解答题13.若a >b >c >d >0且a +d =b +c , 求证:d +a <b +c .证明:要证d +a <b +c ,只需证(d +a )2<(b +c )2,即证a +d +2ad <b +c +2bc ,因为a +d =b +c ,所以只需证ad <bc ,即证ad <bc , 设a +d =b +c =t ,则ad -bc =(t -d )d -(t -c )c =(c -d )(c +d -t )<0, 故ad <bc 成立,从而d +a <b +c 成立.14.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n (n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.解:(1)由已知得⎩⎨⎧a 1=1+2,3a 1+3d =9+32,所以d =2,故a n =2n -1+2,S n =n (n +2).(2)证明:由(1),得b n =S n n =n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r ,即(q +2)2=(p +2)(r +2), 所以(q 2-pr )+2(2q -p -r )=0.因为p ,q ,r ∈N *,所以⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0, 所以⎝⎛⎭⎫p +r 22=pr ,(p -r )2=0. 所以p =r ,这与p ≠r 矛盾,所以数列{b n }中任意不同的三项都不可能成为等比数列.。
2023届河南省中原名校高三一轮复习检测联考卷数学(理)试题(解析版)
中原名校联考高三一轮复习检测理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合{}{}122|,2|-==++-==x y y B x x y x A ,则=B A () A.{}20|≤≤x x B.{}20|≤<x x C.{}1|-≥x x D.{}1|->x x2.已知复数z 满足()()i i z 212=++,则其共轭复数z 在复平面上所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.2020年春节前后,一场突如其来的新冠肺炎疫情在全国蔓延.疫情就是命令,防控就是责任.在党中央的坚强领导和统一指挥下,全国人民众志成城,团结一心,掀起了一场坚决打赢疫情防控阻击战的人民战争.折线图展示了2月14日至29日全国新冠肺炎疫情变化情况,根据该折线图,下列结论正确的是()A.16天中每日新增确诊病例数量呈下降趋势且19日的降幅最大B.16天中每日新增确诊病例数量的中位数与新增疑似病例数量的中位数相同C.16天中新增确疹、新增疑似、新增治愈病例数量的极差均大于2000D.19日至29日每日新增治愈病例数量均大于新增确诊与新增疑似病例数量之和4.已知抛物线px y 22=的焦点为()0,1F ,准线为l ,P 为该抛物线上一点,l PA ⊥,垂足为A ,若直线AF 的倾斜角为32π,则PAF ∆的面积为() A.32 B.34 C.8 D.385.人类对于地震的认识还十分有限,比如还无法准确预报地震,以做好地震前的人员疏散和重要设施的保护工作.科学家通过观测研究发现,地震释放的能量E (单位:焦耳)与地震时里氏震级M 之间的关系为.4.18.4lg M E +=则2011年3月11日日本东北部海域发生的里氏9.0级地震与2008年5月12日我国汶川发生的里氏8.0级地震所释放出来的能量的比为()A.5.110B.1.5C.5.1lgD.5.110-6.函数x x x f cos )(+=的大致图象是()7.已知()3112⎪⎭⎫ ⎝⎛--x mx 的展开式中的常数项为8,则实数m 的值为() A.-3 B.3 C.-2 D.28.将曲线x x f y 2cos )(=上各点的横坐标伸长到原来的2倍,纵坐标不变,再把所得到的曲线向右平移4π个单位,得到曲线x y 2cos =,则⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛36ππf f 的值是() A.2 B.-2 C.32 D.32-9.已知()()αββαβαβ,53sin cos cos sin =---为第三象限的角,则=⎪⎭⎫ ⎝⎛+4cos πα( )A. 1027B.1027-C.102D.102- 10.现有一个封闭的棱长为2的正方体容器,当按如图所示水平放置时,水面的高度正好为棱长的一半.若将正方体绕下底面(底面与水平面平行)的某条棱任意旋转,则容器里水平的最大高度为()A.1B.2C.3D.2211.设b a ,为非零向量,则命题“b a b a +=+”是命题“a 与b 共线”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分又不必要条件12.高斯是德国著名的数学家,近代数学奠基者之一,享有数学王子的美誉.为了纪念数学家高斯,人们把函数R x x y ∈=],[称为高斯函数,其中][x 表示不超过x 的最大整数.设{}][x x x -=,则函数{}12)(--=x x x x f 的所有零点之和为()A.-1B.0C.1D.2二、填空题:本题共4小题,每小题5分,共20分.13.谈祥柏先生是我国著名的数学科普作家,他写的《数学百草园》《好玩的数学》《故事中的数学》等书,题材广泛,妙趣横生,深受广大读者喜爱.《好玩的数学》中《五分钟内挑出埃及分数》这篇文章首先告诉我们,古埃及人喜欢使用分子为1的分数(称为埃及分数).如用两个埃及分数31与151的和表示52等.从1011,1001,41,31,21,⋅⋅⋅这100个埃及分数中选出不同的3个,使它们的和为1,这3个分数是.(按从大到小的顺序排列)14.数列{}()2,1:2121>+===--n F F F F F F n n n n ,最初记载于意大利数学家斐波那契在1202年所著的《算盘全书》之中.若数列{}n F 的每项除以2所得的余数按原来项的顺序构成新的数列{}n a ,则数列{}n a 的前50项的和=50S .15.已知F 为双曲线()0,012222>>=-b a by a x C :的右焦点,B A ,是双曲线C 的一条渐近线上关于原点对称的两点,0=⋅BF AF 且线段AF 的中点在双曲线C 上,则双曲线C 的离心率=e .16.已知三棱锥ABC P -的四个顶点在球O 的表面上,⊥PA 平面4,2,32,6====BC AC AB PA ABC ,,则球O 的表面积为;若D 是BC 的中点,过D 作球的截面,则截面面积的最小值是 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个题考生都必作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(本小题满分12分)设ABC ∆的内角C B A ,,的对边分别为c b a ,,.已知向量()B a c m sin ,-=,()C A a b n sin sin ,+-=,且m ∥n .(1)求角C 的值;(2)若a b c 336=+,求A sin 的值.18.(本小题满分12分)如图所示,在四棱锥ABCD P -中,⊥PA 平面ABCD ,AD CD AD ,⊥∥BC , .3,2====BC CD AD PA 过点A 作四棱锥ABCD P -的截面AEFG ,分别交PB PC PD ,,于点G F E ,,.已知E PB PG ,3:2:=为PD 的中点.(1) 求证:AG ∥平面PCD ;(2) 求AF 与平面PAB 所成角的正弦值.19.(本小题满分12分)为了普及传染病防治知识,增强学生的健康意识和疾病防犯意识,提高自身保护能力,校委会在全校学生范围内,组织了一次传染病及个人卫生相关知识有奖竞赛(满分100分),竞赛奖励规则如下:得分在[)80,70内的学生获三等奖,得分在[)90,80内的学生获二等奖,得分在[]100,90内的学生获一等奖,其它学生不得奖.教务处为了解学生对相关知识的掌握情况,随机抽取了100名学生的竞赛成绩,并以此为样本绘制了如图所示的频率分布直方图.(1)现从该样本中随机抽取两名学生的竞赛成绩,求这两名学生恰有一名学生获奖的概率.(2)若该校所有参赛学生的成绩X 近似地服从正态分布()2,σμN ,其中μσ,15=为样本平均数的估计值,利用所得正态分布模型解决以下问题:①若该校共有10000名学生参加了竞赛,试估计参赛学生中超过79分的学生人数(结果四舍五入到整数);②若从所有参赛学生中(参赛学生人数大于10000)随机抽取3名学生进行座谈,设其中竞赛成绩在64分以上的学生人数为ξ,求随机变量ξ的分布列和数学期望.附:若随机变量X 服从正态分布()2,σμN ,则(),6827.0≈+≤<-σμσμX P (),9545.022≈+≤<-σμσμX P ().9973.033≈+≤<-σμσμX P20.(本小题满分12分)设A 为椭圆12:22=+y x L 上的一个动点,21,F F 分别为椭圆的左、右焦点,AC AB ,分别为过21,F F 的弦,且.,222111C F AF B F AF λλ==(1)求证:21λλ+为定值;(2)求AC F 1∆的面积S 的最大值.21.(本小题满分12分)设n 是正整数,().12x ne n x n x xf ⎪⎭⎫ ⎝⎛-+= (1)求证:当1≤x 时,().112x e x x ≤-- (2)求证:当n x ≤时,().n x f ≥(二)选考题:共10分.请在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在极坐标系中,已知圆C 的圆心⎪⎭⎫ ⎝⎛4,2πC ,半径.3=r (1)求圆C 的极坐标方程;(2)若⎪⎭⎫⎢⎣⎡∈4,0πα,直线l 的参数方程为()为参数t t y t x ⎩⎨⎧+=+=ααsin 2cos 2,直线l 交圆于B A ,两点,求AB 的取值范围.23. [选修4-5:不等式选讲](10分)已知函数()().31R a a x x f ∈-= (1)当2=a 时,解不等式()131≥+-x f x ; (2)设不等式x x f x ≤+-)(31的解集为M ,若M ⊆⎥⎦⎤⎢⎣⎡21,31,求实数a 的取值范围.中原名校联考高三一轮复习检测数学(理)参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.B【解析】由022≥++-x x ,得022≤--x x ,21≤≤-x ,即{}21|≤≤-=x x A ,由021>=-x y ,得{}0|>=x x B ,故{}20|≤<=x x B A .2. C 【解析】因为()()()i i i i i i i z +=-+-=+=+11112122,所以z =1+i ,1z i =--,其对应的点位于第三象限.3. C【解析】对于A ,从折线图可以看出,19日至20日新增确诊病例数量呈上升趋势,故A 错误;对于B ,从折线图可以看出,每日新增确诊病例数量的中位数位于500—1000之间,每天新增疑似病例数量的中位数位于1000—1500之间,所以每日新增确诊病例数量的中位数小于每日新增疑似病例数量的中位数,故B 错;对于C ,从折线图可以看出,16天中每日新增确疹病例数量最低在250以下,最高在2500以上,极差大于2000,而每日新增疑似病例数量最低在250以下,最高在2250以上,极差大于2000,每日治愈病例数量最低在1500以下,最高在3500以上,极差大于2000,故C 正确;对于D ,从折线图可以看出,20日新增治愈病例数量小于新增确诊与新增疑似病例数量之和,故D 错误.4. B【解析】由题意,知2=p ,抛物线方程为x y 42=,设准线与x 轴的交点为K (图略),则2=KF .因为直线AF 的倾斜角为32π,所以3π=∠AFK ,则4=AF .由抛物线的定义可知||||PF PA =且3π=∠PAF ,所以△PAF 是边长为4的正三角形, .34234421=⨯⨯⨯=∆PAF S 5. A 【解析】由lg 4.8 1.5E M =+,可得M E 5.18.410+=,设日本东北部海域发生的里氏9.0级地震-与我国汶川发生的里氏8.0级地震所释放出来的能量分别为21,E E ,则.1010105.185.18.495.18.421==⨯+⨯+E E6. A【解析】因为()x f 的定义域为R ,()x x x f cos +-=-,)()(x f x f ≠-且)()(x f x f -≠-,故该函数既不是奇函数又不是偶函数,排除B 、C ;又当2π=x 时,x x x =+cos ,即)(x f 的图象与直线x y =的图象的交点中有一个点的坐标为2π,排除D ,故只能选A. 7. D【解析】由二项式定理,得311⎪⎭⎫ ⎝⎛-x 的通项rr r x C T ⎪⎭⎫ ⎝⎛-=+131,则()3112⎪⎭⎫ ⎝⎛--x mx 展开式中的常数项为()m x C mx C 32121303+=⎪⎭⎫⎝⎛-⋅-+⨯,所以832=+m ,解得.2=m 8. D【解析】将曲线x y 2cos =的图象向左平移4π个单位,得到曲线 x x x y 2sin 22cos 42cos -=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=ππ的图象,再将所得曲线上的所有点的横坐标缩短到原来的21,得到曲线x y 4sin -=.由题意,得x x f x 2cos )(4sin =-,所以 x xx x x x x f 2sin 22cos 2cos 2sin 22cos 4sin )(-=-=-=,则.3232sin 23sin 236-=--=⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛ππππf f9. D【解析】由题知,()()()[]53sin sin sin cos cos sin =-=--=---αβαβββαβαβ,所以53sin -=α,又α为第三象限的角,则().102sin cos 224sin sin 4cos cos 4cos -=-=-=⎪⎭⎫ ⎝⎛+ααπαπαπα 10. B【解析】因为正方体的面对角线的长为22,故将正方体绕下底面(底面与水平面平行)的某条棱任意旋转的最大高度是22.又因为容器里水的体积正好是容器体积的一半,所以容器时水面的最大高度是面对角线长度的一半,即容器中水面的最大高度为.2 11. Ab a b a +=+a 与b 共线且方向相同,故充分性成立;但当a 与b 共线且b a b a +≠+,故必要性不成立.因此,命题b a b a =+”是命题“a 与b 共线”的充分而不必要条件.)12. A【解析】因为{}][x x x -=,当x 为整数时,{}().1,0--==x x f x 令()01=--=x x f ,得.1-=x 当x 不为整数时,{}{}.11][][],[1][+-=+-=---=---=-x x x x x x x x 因为{}12)(--=x x x x f ,所以 (){}{}(){}1211212--=-++--=-+-⋅-=-x x x x x x x x x x f ,此时)()(x f x f =-,即)(x f 为偶函数,图象关于y 轴对称,故x 不为整数时,对称区间的零点之和为0,所以所有零点之和为 1.二、填空题:本题共4小题,每小题5分,共20分. 13.61,31,21【解析】因和为1,故3个数中必有一个大于31,也必有一个小于31,在这个原则下验算得1613121=++,所以3个埃及分数按从大到小的顺序依次为61,31,21. 14.34【解析】斐波那契数列{}n F 为1,1,2,3,5,8,13,21,34,…将数{}n F 的每一项除以2所得余数构成-的新数列{}n a 为1,1,0,1,1,0,1,1,0,…这是一个周期数列,周期为3,又216350⋅⋅⋅⋅⋅⋅=÷,故数列{}n a 的前50项的和为.3411216=++⨯ 15. 15-【解析】因为F 为双曲线()0,012222>>=-b a by a x C :的右焦点,所以()0,c F .由题知双曲线的一条渐过线的方程为x a b y =,不妨设()0,000>⎪⎭⎫ ⎝⎛x x a b x A ,则⎪⎭⎫ ⎝⎛--00,x a b x B ,所以⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛--=0000,,,x a b x c BF x a b x c AF ,则()()020222202200=-=-+-=⋅x a c c x a b x c x c BF AF ,由此得.220a x =因此点A 的坐标为()b a A ,,线段AF 的中点坐标为⎪⎭⎫⎝⎛+2,2b c a ,因为它在双曲线上,所以1222222=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+b b a c a ,化简得512=⎪⎭⎫ ⎝⎛+a c ,解得.15-==a c e16. 52π 4π【解析】由已知得222BC AC AB =+,则AC AB ⊥.因为⊥PA 平面ABC ,所以可将三棱锥ABC P -补成以AP AC AB ,,分别为长、宽、高的长方体,则三棱锥ABC P -的外接球直径为长方体的体对角线的长,即()13262322222222=++=++=AP AC AB R (R 为外接球的半径),所以13=R ,所以球O 的表面积为.5242ππ=R 因为D AC AB ,⊥为BC 中点,所以D 为ABC Rt ∆的外接圆圆心,且⊥OD 平面ABC ,所以过点D 作球O 的截面,面积最小的截面即为ABC ∆的外接圆面,外接圆的半径为22==BCr ,所以面积的最小值为.42ππ=r 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个题考生都必作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.(1)因为m ∥n ,所以()()()B a b C A a c sin sin sin -=+-,……………(2分)由正弦定理,得()()()b a b c a a c -=+-,化简得ab c b a =-+222,……………(4分)所以,.2122cos 222==-+=ab ab ab c b a C 又()π,0∈C ,所以.3π=C ………………………………………(6分) (2)由(1)知A B -=32π, 由题设及正弦定理,得A A C sin 332sin 3sin 6=⎪⎭⎫⎝⎛-+π, 整理,得0sin 21cos 2322=-+A A ,即.223sin =⎪⎭⎫ ⎝⎛-πA ……………………(8分) 因为320π<<A ,所以333πππ<-<-A ,.223cos =⎪⎭⎫ ⎝⎛-πA …………………(10分) 故.4263sin 3cos 3cos 3sin 33sin sin +=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=ππππππA A A A…………………………………………………………………………………………(12分)18.(1)如图所示,在PC 上取点H ,且满足3:2:=PC PH ,……………………(2分)连接HD GH ,,则GH ∥BC ,所以AD ∥GH ,且GH AD =,所以四边形ADHG 是平行四边形.则AG ∥.HD ………………………(4分)又因为⊂HD 平面AG PCD ,不在平面PCD 内, 所以AG ∥平面PCD .…………………………………(6分)(2)过点A 作AM ∥CD 交BC 于点M ,易证AD AP AM ,,两两垂直,所以以M 为原点,AM 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,建立平面直角坐标系,xyz A -则有()()()().0,1,2,1,1,0,32,32,34,0,2,2,2,0,0-⎪⎭⎫⎝⎛-B E GC P ………………(8分) 设平面AEFG 的法向量为()z y x n ,,=,则有⎪⎩⎪⎨⎧=⋅=⋅,0,0AE n AG n即⎪⎩⎪⎨⎧=+=+-,0,0323234z y z y x 令1=z ,解得⎪⎩⎪⎨⎧=-=-=.1,1,1z y x 所以,()1,1,1--=n 是平面AEFG 的一个法向量.因为点F 在PC 上,所以()().22,2,21λλλλλ-=-+=AP AC AF 因为⊂AF 平面AEFG ,所以02222=-+--=⋅λλλn AF ,解得31=λ,所以.34,32,32⎪⎭⎫⎝⎛=AF ……………………………………(10分)设平面PAB 的法向量为()1111,,z y x n =,则有⎪⎩⎪⎨⎧=⋅=⋅,0,011AB n AP n 即⎩⎨⎧=-=,02,02111y x z 令11=x ,解得⎪⎩⎪⎨⎧===.0,2,1111z y x所以,()0,2,11=n 是平面PAB 的一个法向量,1030cos 1=n AF ,即AF 与平面PAB 所成角的正弦值为.1030………………………………(12分)19.(1)由样本频率分布直方图,得样本中获一等奖的有6人,获二等奖的有8人,获三等 奖的有16人,共有30人获奖,70人没有获奖.……………………………………(2分)从该样本中随机抽取两名学生的竞赛成绩,基本事件总数为.2100C 设“抽取两名学生中有一名学生获奖”的事件为A ,则事件A 包含的基本事件的个数为130170C C .……(4分)因为每个基本事件出现的可能性相等,所以().33142100130170==C C C A P 即抽取的两名学生中恰有一名学生获奖的概率为.3314………………………………(6分) (2)由样本频率分布直方图得样本平均数估计值+⨯⨯=10006.035μ+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯10008.08510016.07510034.06510018.05510012.045,6410006.095=⨯⨯所有参赛学生的成绩近似地服从正态分布().15,642N ……(8分)①因为79=+σμ,所以()15865.026827.0179=-≈>X P ,参赛学生中成绩超过79分的人数约为.15871000015865.0=⨯②由64=μ,得()2164=>X P ,即从所有学生中随机抽取1名学生,该生的成绩在64分以上的概率为21,所以随机变量ξ服从二项分布⎪⎭⎫⎝⎛21,3B ,随机变量ξ的可能值为0,1,2,3,且()812112103003=⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛==C P ξ,()832112112113=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛==C P ξ, ()832112121223=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛==C P ξ,().812112130333=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛==C P ξ所以随机变量ξ的分布列为ξ0 1 2 3P8183 83 81……………………………(10分)随机变量ξ的数学期望().23813832831810=⨯+⨯+⨯+⨯=ξE ……………………(12分) 20.(1)易求得()().0,1,0,121F F -设点C B A ,,三点的坐标依次为()()()332211,,,,,y x C y x B y x A ,由C F AF B F AF 222111,λλ==,得()()2211,1,1y x y x +=---λ,()()3311,1,1y x y x -=--λ……………………(2分)由此得()()11,11321211-=-+=--x x x x λλ,进而得.11,11213112+-=-+-=λλx x x x…………………………………(4分)由椭圆的性质可知,22211++=x x λ,将11112-+-=λx x 代入,得3211+=x λ; 同理得31222x x --=λ,将11213+-=λx x 代入,得.3212+-=x λ 因此,632321121=+-+=+x x λλ为定值.……………………(6分) (2)因为.213131211y y y y F F S AC F -=-⋅⋅=∆………………………………………(8分) 设直线AC 的方程为1+=my x ,与椭圆方程联立得().012222=-++my y m………………………………(10分)从而21111222222222231≤+++⋅=++=-m m m m y y ,当且仅当0=m 时,即直线AC 的方程为1=x 时,AC F 1∆的面积S 取到最大值.2……………(12分)21.(1)记()xe x x x g -+=1)(2,则()()xex x g -='2.易知,当()0,∞-∈x 时,()0<'x g ;当()2ln ,0∈x 时,()0>'x g ,当(]1,2ln ∈x 时,()0<'x g .……………(2分)所以,)(x g 在()0,∞-上单调递减,在()2ln ,0上单调递增,在(]1,2ln 上单调递减,进而知)(x f 的最小值()()(){}minmin 0,1 1.f x g g ⎡⎤==⎣⎦故()1≥x g ,即()112≥-+xe x x ,().112x e x x≤--…………………………………(4分)(2)由()x ne n x n x xf ⎪⎭⎫ ⎝⎛-+=12,得 ().121112112⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+='--n xn n x n x e x n n x n n x n e x x f当1=n 时,由(1)知()1)(≥=x g x f ,命题成立.………………………(6分)当2≥n 时,令()11n xx h x e n -⎛⎫=- ⎪⎝⎭,则()12211()1111.n n n xxx x x x x h x e e n e n n n n n ----⎛⎫⎛⎫⎛⎫⎛⎫'=-+⋅--⋅-=⋅⋅- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭易知,当()1,∞-∈x 时,()0h x '>,当[]n x ,1∈时,()0h x '<.所以,在区间()1,∞-上函数()h x 单调递增,在区间[]n ,1上函数()h x 单调递减.所以,当1=x 时,()h x 取得最大值11(1)1.n h e n -⎛⎫=- ⎪⎝⎭……………………………(8分)由于熟知结论n n 111ln -<⎪⎭⎫ ⎝⎛-,得nn e -⎪⎭⎫⎝⎛-<11,于是.21111111≤-=⎪⎭⎫⎝⎛-<⎪⎭⎫⎝⎛---n n n n e n …………………………(10分)因此,0121>⎪⎭⎫⎝⎛---n xn x e ,故当()0,∞-∈x 时,()0<'x f ,()x f 单调递减,当(]n x ,0∈时,()0>'x f ,()x f 单调递增,即()x f 的最小值为()n f =0.所以,n e n x n x x n≥⎪⎭⎫⎝⎛-+12,即().n x f ≥………………………………………(12分)(二)选考题:共10分.请在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.(1)因为点⎪⎭⎫⎝⎛4,2πC 的直角坐标为()1,1, 所以圆C 的直角坐标方程为()()31122=-+-y x ,…………………(2分)化为极坐标方程即为().01sin cos 22=-+-θθρρ………………………………(4分)(2)将⎩⎨⎧+=+=ααsin 2cos 2t y t x 代入圆C 的直角坐标方程()()31122=-+-y x ,并化简得().01sin cos 22=-++ααt t …………………………(6分)设点B A ,对应的参数分别为21,t t ,则().1,sin cos 22121-=+-=+t t t t αα 所以,().2sin 2242122121α+=-+=-=t t t t t t AB …………………………(8分)因为⎪⎭⎫⎢⎣⎡∈4,0πα,所以3222,2,02<≤⎪⎭⎫⎢⎣⎡∈AB πα,即AB 的取值范围是[).32,22……………………………………(10分)23.(1)当2=a 时,原不等式化为3213≥-+-x x ,………………(2分) ①当31≤x 时,3231≥-+-x x ,解得0≤x ,所以0≤x ; ②当231<<x 时,3213≥-+-x x ,解得1≥x ,所以21<≤x ; ③当2≥x 时,3213≥-+-x x ,解得23≥x ,所以2≥x .……………………(4分)综上所述,当2=a 时,不等式的解集为{}10|≥≤x x x 或.……………………(6分)(2)不等式x x f x ≤+-)(31可化为x a x x 313≤-+-,依题意该不等式在 ⎥⎦⎤⎢⎣⎡∈21,31x 上恒成立.………………………………(8分)所以x a x x 313≤-+-,即1≤-a x ,即11+≤≤-a x a .故⎪⎩⎪⎨⎧≥+≤-,211,311a a 解得3421≤≤-a ,即实数a 的取值范围是.34,21⎥⎦⎤⎢⎣⎡-………………(10分)高三数学(理)参考答案第21页(共21页)。
高考理科数学一轮复习最值范围证明问题专题练习题
课时作业56 最值、范围、证明问题第一次作业 基础巩固练1.已知动圆C 与圆C 1:(x -2)2+y 2=1相外切,又与直线l :x =-1相切. (1)求动圆圆心轨迹E 的方程;(2)若动点M 为直线l 上任一点,过点P (1,0)的直线与曲线E 相交于A ,B 两点,求证:k MA +k MB =2k MP .解:(1)由题知,动圆C 的圆心到点(2,0)的距离等于到直线x =-2的距离,所以由抛物线的定义可知,动圆C 的圆心轨迹是以(2,0)为焦点,x =-2为准线的抛物线,所以动圆圆心轨迹E 的方程为y 2=8x .(2)证明:由题知当直线AB 的斜率为0时,不符合题意,所以可设直线AB 的方程为x=my +1,联立⎩⎪⎨⎪⎧x =my +1,y 2=8x ,消去x ,得y 2-8my -8=0,Δ=64m 2+32>0恒成立,设A (x 1,y 1),B (x 2,y 2),M (-1,t ),则y 1+y 2=8m ,y 1·y 2=-8,x 1+x 2=8m 2+2,x 1·x 2=1, 而2k MP =2·t-1-1=-t , k MA +k MB =y 1-t x 1+1+y 2-tx 2+1=y 1x 2+y 2x 1+y 1+y 2-t x 1+x 2-2tx 1x 2+x 1+x 2+1=18y 1y 2y 1+y 2+y 1+y 2-t x 1+x 2-2tx 1x 2+x 1+x 2+1=-t8m 2+48m 2+4=-t , 所以k MA +k MB =2k MP .2. 如图,已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,右焦点为F (1,0),过点A 且斜率为1的直线交椭圆E 于另一点B ,交y 轴于点C ,AB →=6BC →.(1)求椭圆E 的方程;(2)过点F 作直线l 与椭圆E 交于M ,N 两点,连接MO (O 为坐标原点)并延长交椭圆E 于点Q ,求△MNQ 面积的最大值及取最大值时直线l 的方程.解:(1)由题知A (-a,0),C (0,a ),故B ⎝ ⎛⎭⎪⎫-a 7,6a 7, 代入椭圆E 的方程得149+36a 249b 2=1,结合a 2-b 2=1,得a 2=4,b 2=3,故椭圆E 的方程为x 24+y 23=1.(2)由题知,直线l 不与x 轴重合,故可设l :x =my +1,代入x 24+y 23=1得(3m 2+4)y2+6my -9=0,设M (x 1,y 1),N (x 2,y 2),则y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4,连接ON ,由Q 与M 关于原点对称知,S △MNQ =2S △MON =|y 1-y 2|=y 1+y 22-4y 1y 2=12m 2+13m 2+4 =123m 2+1+1m 2+1,∵m 2+1≥1, ∴3m 2+1+1m 2+1≥4,∴S △MNQ ≤3,当且仅当m =0时,等号成立,∴△MNQ 面积的最大值为3,此时直线l 的方程为x =1.3.(2019·河南洛阳统考)已知抛物线C :x 2=2py (p >0),过焦点F 的直线交C 于A ,B两点,D 是抛物线的准线l 与y 轴的交点.(1)若AB ∥l ,且△ABD 的面积为1,求抛物线的方程;(2)设M 为AB 的中点,过M 作l 的垂线,垂足为N .证明:直线AN 与抛物线相切. 解:(1)∵AB ∥l ,∴|FD |=p ,|AB |=2p . ∴S △ABD =p 2=1.∴p =1,故抛物线C 的方程为x 2=2y .(2)证明:显然直线AB 的斜率存在,设其方程为y =kx +p2,A ⎝⎛⎭⎪⎫x 1,x 212p ,B ⎝ ⎛⎭⎪⎫x 2,x 222p . 由⎩⎪⎨⎪⎧y =kx +p 2,x 2=2py消去y 整理得,x 2-2kpx -p 2=0.∴x 1+x 2=2kp ,x 1x 2=-p 2. ∴M ⎝⎛⎭⎪⎫kp ,k 2p +p 2,N ⎝ ⎛⎭⎪⎫kp ,-p 2.∴k AN =x 212p +p 2x 1-kp =x 212p +p 2x 1-x 1+x 22=x 21+p 22p x 1-x 22=x 21-x 1x 22p x 1-x 22=x 1p.又x 2=2py ,∴y ′=x p.∴抛物线x 2=2py 在点A 处的切线斜率k =x 1p. ∴直线AN 与抛物线相切.4.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为F 2(1,0),且该椭圆过定点M ⎝⎛⎭⎪⎫1,22.(1)求椭圆E 的标准方程;(2)设点Q (2,0),过点F 2作直线l 与椭圆E 交于A ,B 两点,且F 2A →=λF 2B →,λ∈[-2,-1],以QA ,QB 为邻边作平行四边形QACB ,求对角线QC 长度的最小值.解:(1)由题易知c =1,1a 2+12b 2=1,又a 2=b 2+c 2,解得b 2=1,a 2=2, 故椭圆E 的标准方程为x 22+y 2=1.(2)设直线l :x =ky +1,由⎩⎪⎨⎪⎧x =ky +1,x 22+y 2=1得(k 2+2)y 2+2ky -1=0,Δ=4k 2+4(k 2+2)=8(k 2+1)>0. 设A (x 1,y 1),B (x 2,y 2), 则可得y 1+y 2=-2k k 2+2,y 1y 2=-1k 2+2.QC →=QA →+QB →=(x 1+x 2-4,y 1+y 2)=⎝ ⎛⎭⎪⎫-4k 2+1k 2+2,-2k k 2+2, ∴|QC →|2=|QA →+QB →|2=16-28k 2+2+8k 2+22,由此可知,|QC →|2的大小与k 2的取值有关. 由F 2A →=λF 2B →可得y 1=λy 2,λ=y 1y 2,1λ=y 2y 1(y 1y 2≠0).从而λ+1λ=y 1y 2+y 2y 1=y 1+y 22-2y 1y 2y 1y 2=-6k 2-4k 2+2,由λ∈[-2,-1]得⎝ ⎛⎭⎪⎫λ+1λ∈⎣⎢⎡⎦⎥⎤-52,-2,从而-52≤-6k 2-4k 2+2≤-2,解得0≤k 2≤27. 令t =1k 2+2,则t ∈⎣⎢⎡⎦⎥⎤716,12,∴|QC →|2=8t 2-28t +16=8⎝ ⎛⎭⎪⎫t -742-172,∴当t =12时,|QC |min =2.5.(2019·合肥模拟)已知中心在原点,焦点在y 轴上的椭圆C ,其上一点P 到两个焦点F 1,F 2的距离之和为4,离心率为32. (1)求椭圆C 的方程;(2)若直线y =kx +1与曲线C 交于A ,B 两点,求△OAB 面积的取值范围.解:(1)设椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0),由条件知,⎩⎪⎨⎪⎧2a =4,e =c a =32,a 2=b 2+c 2,解得a =2,c =3,b =1, 故椭圆C 的方程为y 24+x 2=1.(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2+y 24=1,y =kx +1得(k 2+4)x 2+2kx -3=0, 故x 1+x 2=-2k k 2+4,x 1x 2=-3k 2+4,设△OAB 的面积为S , 由x 1x 2=-3k 2+4<0, 知S =12×1×|x 1-x 2|=12x 1+x 22-4x 1x 2=2k 2+3k 2+42,令k 2+3=t ,知t ≥3,∴S =21t +1t+2. 对函数y =t +1t(t ≥3),知y ′=1-1t 2=t 2-1t2>0,∴y =t +1t 在t ∈[3,+∞)上单调递增,∴t +1t ≥103,∴0<1t +1t+2≤316,∴0<S ≤32. 故△OAB 面积的取值范围为⎝ ⎛⎦⎥⎤0,32. 第二次作业 高考·模拟解答题体验1.(2019·四川成都七中模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,且离心率为22,过左焦点F 1的直线l 与C 交于A ,B 两点,△ABF 2的周长为4 2. (1)求椭圆C 的方程;(2)当△ABF 2的面积最大时,求l 的方程. 解:(1)由椭圆的定义知4a =42,a =2, 由e =c a知c =ea =1,b 2=a 2-c 2=1. 所以椭圆C 的方程为x 22+y 2=1.(2)由(1)知F 1(-1,0),F 2(1,0),|F 1F 2|=2,设A (x 1,y 1),B (x 2,y 2),l :x =my -1, 联立x =my -1与x 22+y 2=1,得(m 2+2)y 2-2my -1=0,|y 1-y 2|=22m 2+1m 2+2,S △ABF 2=22m 2+1m 2+22=221m 2+1+1m 2+1+2,当m 2+1=1,m =0时,S △ABF 2最大为2,l :x =-1.2.(2019·广东佛山模拟)已知中心在坐标原点,焦点在x 轴上的椭圆M 的离心率为12,椭圆上异于长轴顶点的任意点A 与左、右两焦点F 1,F 2构成的三角形中面积的最大值为 3.(1)求椭圆M 的标准方程;(2)若A 与C 是椭圆M 上关于x 轴对称的两点,连接CF 2与椭圆的另一交点为B ,求证:直线AB 与x 轴交于定点P ,并求PA →·F 2C →的取值范围.解:(1)由题意知c a =12,12·2c ·b =3,a 2=b 2+c 2,解得c =1,a =2,b = 3.所以椭圆M 的标准方程是x 24+y 23=1.(2)证明:设A (x 1,y 1),B (x 2,y 2),C (x 1,-y 1),直线AB :y =kx +m . 将y =kx +m ,代入x 24+y 23=1得,(4k 2+3)x 2+8kmx +4m 2-12=0. 则x 1+x 2=-8km 4k 2+3,x 1x 2=4m 2-124k 2+3.因为B ,C ,F 2共线,所以kBF 2=kCF 2, 即kx 2+m x 2-1=-kx 1+m x 1-1, 整理得2kx 1x 2+(m -k )(x 1+x 2)-2m =0, 所以2k 4m 2-124k 2+3-(m -k )8km 4k 2+3-2m =0,解得m =-4k .所以直线AB :y =k (x -4),与x 轴交于定点P (4,0).因为y 21=3-34x 21,所以PA →·F 2C →=(x 1-4,y 1)·(x 1-1,-y 1)=x 21-5x 1+4-y 21=74x 21-5x 1+1=74⎝ ⎛⎭⎪⎫x 1-1072-187.因为-2<x 1<2,所以PA →·F 2C →的取值范围是⎣⎢⎡⎭⎪⎫-187,18. 3.(2019·广东华南师大附中模拟)已知点C 是圆F :(x -1)2+y 2=16上任意一点,点F ′与圆心F 关于原点对称.线段CF ′的中垂线与CF 交于P 点.(1)求动点P 的轨迹方程E ;(2)设点A (4,0),若直线PQ ⊥x 轴且与曲线E 交于另一点Q ,直线AQ 与直线PF 交于点B ,证明:点B 恒在曲线E 上,并求△PAB 面积的最大值.解:(1)由题意得,F 点坐标为(1,0),因为P 为CF ′中垂线上的点,所以|PF ′|=|PC |.又|PC |+|PF |=4,所以|PF ′|+|PF |=4>|FF ′|=2,由椭圆的定义知,2a =4,c =1,所以动点P 的轨迹方程E 为x 24+y 23=1.(2)设P 点坐标为(m ,n )(n ≠0),则Q 点的坐标为(m ,-n ),且3m 2+4n 2=12, 所以直线QA :y =n4-m (x -4),即nx -(4-m )y -4n =0,直线PF :y =nm -1(x -1),即nx -(m -1)y -n =0.联立方程组⎩⎪⎨⎪⎧nx -4-m y -4n =0,nx -m -1y -n =0,解得x B =5m -82m -5,y B =3n2m -5,则x 2B 4+y 2B3=5m -8242m -52+3n 232m -52=25m 2-80m +64+12n 242m -52=16m 2-80m +10042m -52=1,所以点B 恒在椭圆E 上.设直线PF :x =ty +1,P (x 1,y 1),B (x 2,y 2),则由⎩⎪⎨⎪⎧x =ty +1,3x 2+4y 2=12,消去x 整理得(3t 2+4)y 2+6ty -9=0,所以y 1+y 2=-6t 3t 2+4,y 1y 2=-93t 2+4, 所以|y 1-y 2|=y 1+y 22-4y 1y 2=-6t 3t 2+42+363t 2+4=12t 2+13t 2+4, 从而S △PAB =12|FA ||y 1-y 2|=18t 2+13t 2+4 =18t 2+13t 2+1+1=183t 2+1+1t 2+1.令μ=t 2+1(μ≥1),则函数g (μ)=3μ+1μ在[1,+∞)上单调递增,故g (μ)min=g (1)=4,所以S △PAB ≤184=92,即当t =0时,△PAB 的面积取得最大值,且最大值为92.4.(2019·河北邢台模拟)已知椭圆W :y 2a 2+x 2b 2=1(a >b >0)的焦距与椭圆Ω:x 24+y 2=1的短轴长相等,且W 与Ω的长轴长相等,这两个椭圆在第一象限的交点为A ,直线l 与直线OA (O 为坐标原点)垂直,且l 与W 交于M ,N 两点.(1)求W 的方程;(2)求△MON 的面积的最大值.解:(1)由题意可得⎩⎪⎨⎪⎧a 2=4,a 2-b 2=1,∴⎩⎪⎨⎪⎧a 2=4,b 2=3,故W 的方程为y 24+x 23=1.(2)联立⎩⎪⎨⎪⎧ y 24+x 23=1,x24+y 2=1,得⎩⎪⎨⎪⎧x 2=3613,y 2=413,∴y 2x 2=19. 又A 在第一象限,∴k OA =y x =13.故可设l 的方程为y =-3x +m .联立⎩⎪⎨⎪⎧y =-3x +m ,y 24+x23=1,得31x 2-18mx +3m 2-12=0. 设M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=18m 31,x 1x 2=3m 2-1231.∴|MN |=1+-32×x 1+x 22-4x 1x 2=10×4331-m231.又O 到直线l 的距离为d =|m |10,则△MON 的面积S =12d ·|MN |=23|m |31-m 231,∴S =23m 231-m 231≤331(m 2+31-m 2)=3,当且仅当m 2=31-m 2,即m 2=312时,满足Δ>0,故△MON 的面积的最大值为 3.5.(2018·天津卷)设椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,上顶点为B ,已知椭圆的离心率为53,点A 的坐标为(b,0),且|FB |·|AB |=6 2.(1)求椭圆的方程;(2)设直线l :y =kx (k >0)与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若|AQ ||PQ |=524sin ∠AOQ (O 为原点),求k 的值.解:(1)设椭圆的焦距为2c ,由已知有c 2a 2=59,又由a 2=b 2+c 2,可得2a =3b .由已知可得,|FB |=a ,|AB |=2b ,由|FB |·|AB |=62,可得ab =6,从而a =3,b =2. 所以,椭圆的方程为x 29+y 24=1.(2)设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2). 由已知有y 1>y 2>0, 故|PQ |sin ∠AOQ =y 1-y 2. 又因为|AQ |=y 2sin ∠OAB ,而∠OAB =π4,故|AQ |=2y 2.由|AQ ||PQ |=524sin ∠AOQ ,可得5y 1=9y 2. 由方程组⎩⎪⎨⎪⎧y =kx ,x 29+y24=1,消去x ,可得y 1=6k 9k 2+4.易知直线AB 的方程为x +y -2=0,由方程组⎩⎪⎨⎪⎧y =kx ,x +y -2=0,消去x ,可得y 2=2kk +1.由5y 1=9y 2,可得5(k +1)=39k 2+4,两边平方,整理得56k 2-50k +11=0,解得k =12,或k =1128. 所以,k 的值为12或1128.。
高三一轮复习前六章综合测试题(带详细答案)
高三理科数学测试题一、选择题(每小题 5 分,共 12 小题 60 分)1、若复数 满足 ,其中 为虚数单位,则 ( )A.向左平移个单位长度B.向左平移个单位长度C.向右平移个单位长度D.向右平移个单位长度9、 已知 在区间是定义在上的奇函数, 且, 当时,, 则函数上的零点个数是( ) B. 的高,先在河岸上选一点 ,测得 方向走 米到位置 C. ,使在 ,则塔 塔底 的高度为( ) D. 的正东方向上,测得点 的仰角为 ,再由点 沿A.B.C.D.A. 10、如图,为测得河对岸塔 北偏东2、已知两个集合, C. 上的两条光滑曲线,则这两条曲线及 C. 满足 B. ,若 B. ,若 B. ,则 B. 的最小值是( C. ,且 C. ) C. ,则 C. , 数列,则等于( ) D. 所围成的平面图形的面积为( ) A. 米 中, ) B. 上的函数 的导函数 满足 C. D. B. , 米 , C. 米 ,点 在边 上,若 D. 米 ,则 D.A. 3、若 A. 4、 已知各项不为 0 的等差数列 A. 5、已知函数 A. 6、已知函数 A. 7、若 A. 8、已知函数 与B. 是 B.11、在矩形 , 则 ( ) 的值为( A. ) 12、已知定义在是等比数列, 且 D. ,则实数 的取值范围是( D. 的取值范围是( D. )且,其中 为自然对数的底数,则不等式 A.的解集是( ) B. C. D.D. 的图象经过恰当的平移后得到奇函数二、填空题(每小题 5 分,共 4 小题 20 分)13、已知条件 14、已知等差数列 满足: ,条件 ,则非 是非 的__________条件. ,且它的前 项和 有最大值,则当 取到最小正值时, __________的部分图象如图所示,若函数的图象,则这个平移可以是( ) 15、已知满足约束条件 ,若目标函数 中 ,且最大值为 ,则实数 __________.16、有下列 4 个说法 ①集合 ②方程 ③函数 ④ , 的解的个数为 3 个; 与函数 时,函数 的图象关于直线 的值域为 ; 对称; ,若 ,则 ;其中正确的题号为__________.(写出所有正确说法的题号)三、解答题(第 17 题 10 分,第 18 题 12 分,第 19 题 12 分,第 20 题 12 分,第 21 题 12 分,第 22 题 12 分,共 6 小 题 70 分)17、已知 (1)求函数 的最小正周期和对称中心; ,设函数 .(2)当时,求函数的值域;18、已知数列 (1)求数列 (2)设 19、 在 (1)若 (2)若的各项均为正数,前 项和为 的通项; , 中, 设边 ,求 ,求 所对的角为 的值; 面积的最大值.,且,.,求 , 且. 都不是直角, .20、某工厂去年某产品的年产量为万只,每只产品的销售价为元,固定成本为 元.今年,工厂第一次投入万元(科技成本),并计划以后每年比上一年多投入 成本为 万元. (1)求 的值,并求出 的表达式; 中, (万元(科技成本),预计产量年递增 且万只,第 次投入后,每只产品的固定, 为常数,) , 若产品销售价保持不变, 第 次投入后的年利润为(2)问从今年算起第几年利润最高?最高利润为多少万元? 21、设各项均为正数的等比数列 (1)求数列 (2)若 (3)是否存在正整数 ,使得 大值,若不存在,说明理由. 22、已知函数 (1)当 (2)若 时,求函数 对任意 为常数 . 的单调区间; 恒成立,求实数 的取值范围; 的通项公式; ,求证: ; 对任意正整数 均成立?若存在,求出 的最 ,(3)若,,求证.高三理科数学测试题 答案解析第 1 题答案 C 第 1 题解析 由 得 ,即 ,第 6 题解析 画出 的图像如图:.第 2 题答案 B 第 2 题解析 由题意得 . , 或 ,故∵ ∴ 第 7 题答案 D 第 7 题解析 由,且 , ∴ , ∴,∴且 .当, 时等号成立, ∴ .,得,则,所以 ,当 ,即第 3 题答案 C 第 3 题解析 由定积分的几何意义可得 与 是 上的两条光滑曲线,则这两条曲线及 ,故答案为 C. 第 8 题答案 C 第 8 题解析 第 4 题答案 C 第 4 题解析 因为 所以 第 5 题答案 C 第 5 题解析 由函数 的解析式可得 ,即 为奇函数,且在 . 第 9 题答案 第 6 题答案 B B 第 9 题解析 上为单调递增函数,由 可知 ,故选 C. ,因为 是奇函数,所以 , ,则 , ,所以 ,故选 C。
2023年高考数学(理科)一轮复习—— 离散型随机变量的均值与方差
P(X=100)=21×14×14=312,
∴X 的分布列为
X 20 40 50 70 100
P
3 8
9 32
1 8
3 16
1 32
∴E(X)=20×38+40×392+50×18+70×136+100×312=1465.
索引
考点二 二项分布的均值与方差
例2 (2021·东北三省三校联考)随着经济的发展,轿车已成为人们上班代步的一 种重要工具.现将某人三年以来每周开车从家到公司的时间之和统计如图所示.
第十一章 计数原理、概率、随机变量及其分布
考试要求 1.理解取有限个值的离散型随机变量的均值、方差的概念;2.能计算 简单离散型随机变量的均值、方差,并能解决一些简单实际问题.
内容 索引
知识诊断 基础夯实
考点突破 题型剖析
分层训练 巩固提升
知识诊断 基础夯实
ZHISHIZHENDUANJICHUHANGSHI
话费,求 X 的分布列与数学期望.
索引
解 ①由题意知 P(ξ<μ)=P(ξ≥μ)=12,获赠话费 X 的可能取值为 20,40,50,
70,100, P(X=20)=12×34=38,P(X=40)=21×34×34=392,
P(X=50)=12×14=18,P(X=70)=21×34×14+12×14×43=136,
索引
P(X=4)=1304=1080100. 故 X 的分布列为
X0
1
2
3
4
P
2 401 10 000
1 029 2 500
1 323 5 000
189 2 500
81 10 000
故 E(X)=0×120400010+1×12 052090+2×15 302030+3×2158090+4×1080100 =65或E(X)=4×130=65.
2019届高三理科数学一轮复习《充分条件和必要条件》专题测试
2019届高三理科数学一轮复习《充分条件和必要条件》一、选择题(本大题共12小题)1.若两个集合A、B是非空集合,则“AA=⋃”的()BBA=⋂”是“AA. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件2.设,则“”是“”的( )A. 必要不充分条件B. 充分不必要条件C. 充分必要条件D. 既不充分也不必要条件3.在中,角所对边分别为,若是钝角三角形,则p是q的()条件A. 充分非必要B. 必要非充分C. 充要条件D. 既不充分也不必要4.设{ a n}是等比数列,则“a1<a2<a3是“数列{ a n}是递增数列”的()条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要5.若实数,则“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6.“”是“函数有零点”的()条件A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要7.若集合A={1,}、B={3,4}, 则“m= 2 ”是“A∩ B={4}”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8.在中,角对应的边分别为.若则“”是" ”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件9.“”是“”的()A. 必要不充分条件B. 充分不必要条件C. 充分必要条件D. 既不充分也不必要条件10.若a、b、c是常数,则“a>0且b2-4 ac<0”是“对任意x∈R,有ax2+ bx+ c>0”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 必要条件11.“x>5”的一个必要而不充分条件是()A. B. C. D.12.“是函数在区间内单调递增”的()A. 充分必要条件B. 必要不充分条件C. 充分不必要条件D. 既不充分也不必要条件二、填空题(本大题共4小题)13.有下列四个命题:①命题“若则互为倒数”的逆命题;②命题“面积相等的三角形全等”的否定;③命题“若则有实根”的否命题;④命题“直线和直线垂直的充要条件是”,其中是真命题的序号是_____________14.“函数在上是单调递增函数”是“函数在上是单调递增函数”的条件(填“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”);15.若<<是不等式m-1<x<m+1成立的一个充分非必要条件,则实数m的取值范围是______ .16.“”是“”的___________条件. (选填“充要”、“充分不必要”、“必要不充分”“既不充分也不必要”)三、解答题(本大题共6小题)17.命题p:实数满足,其中;命题q:实数满足或,且是的必要不充分条件,求的取值范围.18.已知集合 .(1)能否相等?若能,求出实数的值;若不能,试说明理由;(2)若命题,命题,且是充分不必要条件,求实数的取值范围 .19.已知命题:,命题:.(1)若,求实数的值;(2)若是的充分条件,求实数的取值范围.20.集合A==-+,,,B={x| x+m2≥1}.若“x∈A”是“x∈B”的充分不必要条件,求实数m的取值范围.21.已知p:,q:,若是的必要不充分条件,求实数m的取值范围。
高考理科数学一轮复习合情推理与演绎推理专题练习题
课时作业39 合情推理与演绎推理一、选择题1.(1)已知a 是三角形一边的长,h 是该边上的高,则三角形的面积是12ah ,如果把扇形的弧长l ,半径r 分别看成三角形的底边长和高,可得到扇形的面积为12lr ;(2)由1=12,1+3=22,1+3+5=32,可得到1+3+5+…+2n -1=n 2,则(1)(2)两个推理过程分别属于( A )A .类比推理、归纳推理B .类比推理、演绎推理C .归纳推理、类比推理D .归纳推理、演绎推理解析:(1)由三角形的性质得到扇形的性质有相似之处,此种推理为类比推理;(2)由特殊到一般,此种推理为归纳推理,故选A.2.已知数列{a n }的前n 项和为S n ,则a 1=1,S n =n 2a n ,试归纳猜想出S n 的表达式为( A ) A .S n =2nn +1B .S n =2n -1n +1C .S n =2n +1n +1D .S n =2n n +2解析:S n =n 2a n =n 2(S n -S n -1),∴S n =n 2n 2-1S n -1,S 1=a 1=1,则S 2=43,S 3=32=64,S 4=85.∴猜想得S n =2nn +1.故选A. 3.下面图形由小正方形组成,请观察图①至图④的规律,并依此规律,写出第n 个图形中小正方形的个数是( C )A .n (n +1)B .n n -12C .n n +12D .n (n -1)解析:由题图知第1个图形的小正方形个数为1,第2个图形的小正方形个数为1+2,第3个图形的小正方形个数为1+2+3,第4个图形的小正方形个数为1+2+3+4,…,则第n 个图形的小正方形个数为1+2+3+…+n =n n +12.4.观察下列各式:55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,…,则52 018的末四位数字为( B )A .3 125B .5 625C .0 625D .8 125解析:55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,…,可得59与55的后四位数字相同,由此可归纳出5m +4k与5m (k ∈N *,m =5,6,7,8)的后四位数字相同,又2 018=4×503+6,所以52 018与56的后四位数字相同,为5 625,故选B.5.(2019·山西孝义调研)我们知道:在平面内,点(x 0,y 0)到直线Ax +By +C =0的距离公式d =|Ax 0+By 0+C |A 2+B 2,通过类比的方法,可求得:在空间中,点(2,4,1)到直线x +2y+2z +3=0的距离为( B )A .3B .5 C.5217D .3 5解析:类比平面内点到直线的距离公式,可得空间中点(x 0,y 0,z 0)到直线Ax +By +Cz +D =0的距离公式为d =|Ax 0+By 0+Cz 0+D |A 2+B 2+C 2,则所求距离d =|2+2×4+2×1+3|12+22+22=5,故选B.6.给出以下数对序列:(1,1)(1,2)(2,1)(1,3)(2,2)(3,1)(1,4)(2,3)(3,2)(4,1)……记第i行的第j个数对为a ij,如a43=(3,2),则a nm=( A )A.(m,n-m+1) B.(m-1,n-m)C.(m-1,n-m+1) D.(m,n-m)解析:由前4行的特点,归纳可得:若a nm=(a,b),则a=m,b=n-m+1,∴a nm=(m,n-m+1).7.(2019·惠州市调研考试)《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:依次类推,则六十四卦中的“屯”卦,符号为“”,其表示的十进制数是( B ) A .33 B .34 C .36D .35解析:由题意类推,可知六十四卦中的“屯”卦的符号“”表示的二进制数为100010,转化为十进制数为0×20+1×21+0×22+0×23+0×24+1×25=34.故选B.二、填空题8.已知f (n )=1+12+13+…+1n (n ∈N *),经计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,f (32)>72,…,观察上述结果,可归纳出的一般结论为f (2n )≥n +22(n ∈N *).解析:本题考查归纳推理.由归纳推理可得f (2n)≥n +22(n ∈N *).9.如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作……根据以上操作,若要得到100个小三角形,则需要操作的次数是33.解析:由题意可知,第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7个;第三次操作后,三角形共有4+3+3=10个……由此可得第n 次操作后,三角形共有4+3(n -1)=3n +1个.当3n +1=100时,解得n =33.10.在正项等差数列{a n }中有a 41+a 42+…+a 6020=a 1+a 2+…+a 100100成立,则在正项等比数列{b n }中,类似的结论为20b 41b 42b 43…b 60=100b 1b 2b 3…b 100.解析:结合等差数列和等比数列的性质,类比题中的结论可得,在正项等比数列{b n }中,类似的结论为20b 41b 42b 43…b 60=100b 1b 2b 3…b 100.11.(2019·安徽界首模拟)埃及数学中有一个独特现象:除23用一个单独的符号表示以外,其他分数都要写成若干个单分数和的形式.例如25=13+115可以这样理解:假定有两个面包,要平均分给5个人,如果每人12,不够,每人13,余13,再将这13分成5份,每人得115,这样每人分得13+115.形如2n (n =5,7,9,11,…)的分数的分解:25=13+115,27=14+128,29=15+145……按此规律,211=16+166;2n =1n +12+1nn +12(n =5,7,9,11,…). 解析:27=14+128表示两个面包分给7个人,每人13,不够,每人14,余14,再将这14分成7份,每人得128,其中4=7+12,28=7×7+12;29=15+145表示两个面包分给9个人,每人14,不够,每人15,余15,再将这15分成9份,每人得145,其中5=9+12,45=9×9+12,按此规律,211表示两个面包分给11个人,每人15,不够,每人16,余16,再将这16分成11份,每人得166,所以211=16+166,其中6=11+12,66=11×11+12.由以上规律可知,2n =1n +12+1nn +12.12.(2019·潍坊市统一考试)“干支纪年法”是中国历法上自古以来就一直使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为甲子、乙丑、丙寅、……、癸酉,甲戌、乙亥、丙子、……、癸未,甲申、乙酉、丙戌、…、癸巳,……、癸亥,60个为一周,周而复始,循环记录.2014年是“干支纪年法”中的甲午年,那么2020年是“干支纪年法”中的( C )A .己亥年B .戊戌年C .庚子年D .辛丑年解析:由题意知2014年是甲午年,则2015到2020年分别为乙未年、丙申年、丁酉年、戊戌年、己亥年、庚子年.13.(2019·福建宁德一模)我国古代数学名著《孙子算经》中有如下问题:“今有三女,长女五日一归,中女四日一归,少女三日一归.问:三女何日相会?”意思是:“一家出嫁的三个女儿中,大女儿每五天回一次娘家,二女儿每四天回一次娘家,小女儿每三天回一次娘家.三个女儿从娘家同一天走后,至少再隔多少天三人再次相会?”假如回娘家当天均回夫家,若当地风俗正月初二都要回娘家,则从正月初三算起的一百天内,有女儿回娘家的天数有( C )A .58B .59C .60D .61解析:小女儿、二女儿和大女儿回娘家的天数分别是33,25,20,小女儿和二女儿、小女儿和大女儿、二女儿和大女儿回娘家的天数分别是8,6,5,三个女儿同时回娘家的天数是1,所以有女儿在娘家的天数是:33+25+20-(8+6+5)+1=60.故选C.14.(2019·安徽质量检测)某参观团根据下列约束条件从A,B,C,D,E五个镇选择参观地点:①若去A镇,也必须去B镇;②D,E两镇至少去一镇;③B,C两镇只去一镇;④C,D两镇都去或者都不去;⑤若去E镇,则A,D两镇也必须去.则该参观团至多去了( C )A.B,D两镇B.A,B两镇C.C,D两镇D.A,C两镇解析:若去A镇,根据①可知一定去B镇,根据③可知不去C镇,根据④可知不去D 镇,根据②可知去E镇,与⑤矛盾,故不能去A镇;若不去A镇,根据⑤可知也不去E镇,再根据②知去D镇,再根据④知去C镇,再根据③可知不去B镇,再检验每个条件都成立,所以该参观团至多去了C,D两镇.故选C.尖子生小题库——供重点班学生使用,普通班学生慎用15.(2019·益阳、湘潭调研考试)《数书九章》中给出了“已知三角形三边长求三角形面积的求法”,填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代人具有很高的数学水平,其求法是“以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积”.若把这段文字写成公式,即S=14[c2a2-c2+a2-b222],现有周长为22+5的△ABC满足sin A sin B sin C=(2-1)5(2+1),用上面给出的公式求得△ABC的面积为( B )A.32B.34C.52D.54解析:由正弦定理得sin A sin B sin C=a b c=(2-1)5(2+1),可设三角形的三边分别为a=(2-1)x,b=5x,c=(2+1)x,由题意得(2-1)x+5x+(2+1)x=(22+5)x=22+5,则x=1,故由三角形的面积公式可得△ABC的面积S=1 4[2+122-12-3+22+3-22-522]=34,故选B.16.(2019·重庆市质量调研)某学生的素质拓展课课表由数学、物理和体育三门学科组成,且各科课时数满足以下三个条件:①数学课时数多于物理课时数;②物理课时数多于体育课时数;③体育课时数的两倍多于数学课时数.则该学生的素质拓展课课表中课时数的最小值为12.解析:解法1:设该学生的素质拓展课课表中的数学、物理、体育的课时数分别为x,y,z ,则由题意,得⎩⎪⎨⎪⎧x -y ≥1,y -z ≥1,2z -x ≥1,x ,y ,z ∈N *,则该学生的素质拓展课课表中的课时数为x +y +z .设x +y +z =p (x -y )+q (y -z )+r (2z -x )=(p -r )x +(-p +q )y +(-q +2r )z ,比较等式两边的系数,得⎩⎪⎨⎪⎧p -r =1,-p +q =1,-q +2r =1,解得p =4,q =5,r =3,则x +y +z =4(x -y )+5(y-z )+3(2z -x )≥4+5+3=12,所以该学生的素质拓展课课表中的课时数的最小值为12.解法2:设该学生的素质拓展课课表中的数学、物理、体育的课时数分别为x ,y ,z ,则2z >x >y >z .由题意,知z 的最小值为3,由此易知y 的最小值为4,x 的最小值为5,故该学生的素质拓展课课表中的课时数x +y +z 的最小值为12.。
2023年高考数学一轮复习 新课标版 理科 作业 题组层级快练1-10
题组层级快练(一)1.下列各组集合中表示同一集合的是( ) A .M ={(3,2)},N ={(2,3)} B .M ={2,3},N ={3,2}C .M ={(x ,y )|x +y =1},N ={y |x +y =1}D .M ={2,3},N ={(2,3)} 答案 B2.集合M ={x ∈N |x (x +2)≤0}的子集个数为( ) A .1 B .2 C .3 D .4答案 B解析 ∵M ={x ∈N |x (x +2)≤0}={x ∈N |-2≤x ≤0}={0},∴M 的子集个数为21=2.故选B.3.(2021·全国高考Ⅱ卷)设集合U ={1,2,3,4,5,6},A ={1,3,6},B ={2,3,4},则A ∩(∁U B )=( ) A .{3} B .{1,6} C .{5,6} D .{1,3}答案 B解析 由题设可得∁U B ={1,5,6},故A ∩(∁U B )={1,6},故选B.4.(2022·江苏海安市摸底)若A =⎩⎨⎧⎭⎬⎫x |x 2∈Z ,B =⎩⎨⎧⎭⎬⎫y |y +12∈Z ,则A ∪B 等于( ) A .B B .A C .∅ D .Z答案 D解析 A ={x |x =2n ,n ∈Z }为偶数集,B ={y |y =2n -1,n ∈Z }为奇数集,∴A ∪B =Z . 5.已知集合A ={1,3,m },B ={1,m },A ∪B =A ,则m =( ) A .0或 3 B .0或3 C .1或 3 D .1或3答案 B解析 ∵A ={1,3,m },B ={1,m },A ∪B =A , ∴m =3或m =m . ∴m =3或m =0或m =1.当m=1时,与集合中元素的互异性矛盾,故选B.6.(2022·石家庄二中模拟)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=() A.[0,1] B.(0,1]C.[0,1) D.(-∞,1]答案 A解析集合M={0,1},集合N={x|0<x≤1},所以M∪N={x|0≤x≤1}=[0,1].7.(2022·湖北八校联考)已知集合A={x||x|≤2,x∈R},B={x|x≤4,x∈Z},则A∩B=() A.(0,2) B.[0,2]C.{0,2} D.{0,1,2}答案 D解析由已知得A={x|-2≤x≤2},B={0,1,…,16},所以A∩B={0,1,2}.8.(2022·广东中山一中模拟)已知i为虚数单位,集合P={-1,1},Q={i,i2},若P∩Q ={z i},则复数z等于()A.1 B.-1C.i D.-i答案 C解析因为Q={i,i2}={i,-1},P={-1,1},所以P∩Q={-1},所以z i=-1,所以z=i,故选C.9.集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为() A.0 B.1C.2 D.4答案 D10.设集合M={y|y=2sin x,x∈[-5,5]},N={x|y=log2(x-1)},则M∩N=() A.{x|1<x≤5} B.{x|-1<x≤0}C.{x|-2≤x≤0} D.{x|1<x≤2}答案 D解析∵M={y|y=2sin x,x∈[-5,5]}={y|-2≤y≤2},N={x|y=log2(x-1)}={x|x>1},∴M∩N={y|-2≤y≤2}∩{x|x>1}={x|1<x≤2}.11.(2022·清华附中诊断性测试)已知集合A={x|log2(x-2)>0},B={y|y=x2-4x+5,x∈A},则A∪B=()A.[3,+∞) B.[2,+∞)C.(2,+∞) D.(3,+∞)答案 C解析 ∵log 2(x -2)>0,∴x -2>1,即x >3,∴A =(3,+∞),此时y =x 2-4x +5=(x -2)2+1>2, ∴B =(2,+∞),∴A ∪B =(2,+∞).故选C.12.(2022·山东聊城模拟)已知集合M ,N ,P 为全集U 的子集,且满足M ⊆P ⊆N ,则下列结论中不正确的是( ) A .∁U N ⊆∁U P B .∁U P ⊆∁U M C .(∁U P )∩M =∅ D .(∁U M )∩N =∅答案 D解析 根据已知条件画出Venn 图结合各选项知,只有D 不正确.13.(2022·西安市经开一中模拟)集合A ={x |x <-1或x ≥3},B ={x |ax +1≤0},若B ⊆A ,则实数a 的取值范围是( ) A.⎣⎡⎭⎫-13,1 B.⎣⎡⎦⎤-13,1 C .(-∞,-1)∪[0,+∞) D.⎣⎡⎭⎫-13,0∪(0,1) 答案 A 解析 ∵B ⊆A ,∴①当B =∅时,即ax +1≤0无解,此时a =0,满足题意. ②当B ≠∅时,即ax +1≤0有解,当a >0时,可得x ≤-1a ,要使B ⊆A ,则需要⎩⎪⎨⎪⎧a >0,-1a <-1,解得0<a <1.当a <0时,可得x ≥-1a,要使B ⊆A ,则需要⎩⎪⎨⎪⎧a <0,-1a ≥3,解得-13≤a <0,综上,实数a 的取值范围是⎣⎡⎭⎫-13,1.故选A. 14.集合A ={0,|x |},B ={1,0,-1},若A ⊆B ,则A ∩B =________,A ∪B =________,∁B A =________.答案 {0,1} {1,0,-1} {-1}解析 因为A ⊆B ,所以|x |∈B ,又|x |≥0,结合集合中元素的互异性,知|x |=1,因此A ={0,1},则A ∩B ={0,1},A ∪B ={1,0,-1},∁B A ={-1}.15.设全集U =A ∪B ={x ∈N *|lg x <1},若A ∩(∁U B )={m |m =2n +1,n =0,1,2,3,4},则集合B =________.答案{2,4,6,8}解析U={1,2,3,4,5,6,7,8,9},A∩(∁U B)={1,3,5,7,9},∴B={2,4,6,8}.16.(2022·安徽省示范高中测试)已知集合A={x|x-a≤0},B={1,2,3},若A∩B≠∅,求实数a的取值范围.答案[1,+∞)解析集合A={x|x≤a},集合B={1,2,3},若A∩B≠∅,则1,2,3这三个元素至少有一个在集合A中,若2或3在集合A中,则1一定在集合A中,因此只要保证1∈A即可,所以a≥1.17.已知集合A={x|1<x<k},集合B={y|y=2x-5,x∈A},若A∩B={x|1<x<2},则实数k 的值为()A.5 B.4.5C.2 D.3.5答案 D解析B=(-3,2k-5),由A∩B={x|1<x<2},知k=2或2k-5=2,因为k=2时,2k-5=-1,A∩B=∅,不合题意,所以k=3.5.故选D.18.已知M,N为R的两个不等的非空子集,若M∩(∁R N)=∅,则下列结论不正确的是() A.∃x0∈N,使得x0∈M B.∃x0∈N,使得x0∉MC.∀x∈M,都有x∈N D.∀x∈N,都有x∈M答案 D解析对于D,∵M∩(∁R N)=∅,∴M是N的真子集或M,N相等,又M,N不相等且非空,∴M是N的非空真子集.∴不能保证∀x∈N,都有x∈M.【】题组层级快练(二)1.已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则q是p的( )A.逆命题B.否命题C.逆否命题D.否定答案 B解析 命题p :“正数a 的平方不等于0”可写成“若a 是正数,则它的平方不等于0”,从而q 是p 的否命题. 2.有下列四个命题:①“若x +y =0,则x ,y 互为相反数”的逆命题; ②“若a >b ,则a 2>b 2”的逆否命题; ③“若x ≤-3,则x 2+x -6>0”的否命题; ④“若a b 是无理数,则ab 是无理数”的逆命题. 其中真命题的个数是( ) A .0 B .1 C .2 D .3答案 B3.(2022·河南杞县中学月考)命题“若x 2+3x -4=0,则x =4”的逆否命题及其真假性为( )A .“若x =4,则x 2+3x -4=0”为真命题B .“若x ≠4,则x 2+3x -4≠0”为真命题C .“若x ≠4,则x 2+3x -4≠0”为假命题D .“若x =4,则x 2+3x -4=0”为假命题 答案 C解析 根据逆否命题的定义可以排除A 、D 两项,因为x 2+3x -4=0,所以x =-4或1,故原命题为假命题,即逆否命题为假命题.4.命题“若m >-1,则m >-4”以及它的逆命题、否命题、逆否命题中,假命题的个数为( ) A .1 B .2 C .3 D .4答案 B解析 原命题为真命题,从而其逆否命题也为真命题;逆命题“若m >-4,则m >-1”为假命题,故否命题也为假命题.故选B. 5.下列命题中为真命题的是( ) A .命题“若x >y ,则x >|y |”的逆命题 B .命题“若x 2≤1,则x ≤1”的否命题 C .命题“若x =1,则x 2-x =0”的否命题 D .命题“若a >b ,则1a <1b ”的逆否命题答案 A解析 A 中原命题的逆命题是“若x >|y |,则x >y ”,由x >|y |≥y 可知其是真命题;B 中原命题的否命题是“若x 2>1,则x >1”,是假命题,因为x 2>1⇔x >1或x <-1;C 中原命题的否命题是“若x ≠1,则x 2-x ≠0”,是假命题;D 中原命题的逆否命题是“若1a ≥1b ,则a ≤b ”是假命题,举例:a =1,b =-1.故选A.6.(2020·天津)设a ∈R ,则“a >1”是“a 2>a ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 求解二次不等式a 2>a 可得a >1或a <0, 据此可知“a >1”是“a 2>a ”的充分不必要条件.故选A. 7.(2022·苏锡常镇一模)“0<x <π4”是“0<sin x <π4”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A8.“(m -1)(a -1)>0”是“log a m >0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 B解析 (m -1)(a -1)>0等价于⎩⎪⎨⎪⎧m >1,a >1或⎩⎪⎨⎪⎧m <1,a <1,而log a m >0等价于⎩⎪⎨⎪⎧m >1,a >1或⎩⎪⎨⎪⎧0<m <1,0<a <1,所以条件具有必要性,但不具有充分性,比如m =0,a =0时,不能得出log a m >0.故选B. 9.王昌龄是盛唐著名的边塞诗人,被誉为“七绝圣手”,其《从军行》传诵至今,“青海长云暗雪山,孤城遥望玉门关.黄沙百战穿金甲,不破楼兰终不还”,由此推断,其中最后一句“攻破楼兰”是“返回家乡”的( ) A .必要条件 B .充分条件C .充要条件D .既不充分也不必要条件答案 A解析 设p :攻破楼兰,q :返回家乡,由已知綈p ⇒綈q ,得q ⇒p ,故p 是q 的必要条件.10.(2022·衡水中学调研卷)如果x ,y 是实数,那么“x ≠y ”是“cos x ≠cos y ”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件答案 C解析 “x ≠y ”不能推出“cos x ≠cos y ”,但“cos x ≠cos y ”一定有“x ≠y ”. 11.设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 C解析 方法一:当a >b >0时,a >b ⇔a |a |>b |b |;当a >0>b 时,a >b ⇔a |a |>b |b |;当b <a <0时,a >b ⇔a |a |>b |b |,∴选C.方法二:构造函数f (x )=x |x |,则f (x )在定义域R 上为奇函数.因为f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,所以函数f (x )在R 上单调递增,所以a >b ⇔f (a )>f (b )⇔a |a |>b |b |.选C.12.(2021·全国甲卷)等比数列{a n }的公比为q ,前n 项和为S n .设甲:q >0,乙:{S n }是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件 答案 B解析 当a 1<0,q >1时,a n =a 1q n -1<0,此时数列{S n }递减,所以甲不是乙的充分条件.当数列{S n }递增时,有S n +1-S n =a n +1=a 1q n >0,若a 1>0,则q n >0(n ∈N *),即q >0;若a 1<0,则q n <0(n ∈N *),不存在.所以甲是乙的必要条件.13.(2022·西安一模)设命题p :“x 2 +x -6<0”,命题q :“|x |<1”,那么p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 p :-3<x <2;q :-1<x <1,易知选B. 14.(1)“x >y >0”是“1x <1y ”的________条件.(2)“tan θ≠1”是“θ≠π4”的________条件.(3)在△ABC 中,“A =B ”是“tan A =tan B ”的________条件. 答案 (1)充分不必要 (2)充分不必要 (3)充要 解析 (1)1x <1y⇒xy ·(y -x )<0,即x >y >0或y <x <0或x <0<y ,则“x >y >0”是“1x <1y”的充分不必要条件.(2)题目即判断θ=π4是tan θ=1的什么条件,显然是充分不必要条件.(3)△ABC 中,若A =B ,则A ,B 只能为锐角,∴tan A =tan B ,则充分性成立;若tan A =tan B ,则只能tan A =tan B >0,∴A ,B 为锐角,∴A =B ,必要性成立.15.(1)(2022·菏泽模拟)命题“所有无理数的平方都是有理数”的否定是________. (2)若“x >1”是“不等式2x >a -x 成立”的必要不充分条件,则实数a 的取值范围是________. 答案 (1)存在一个无理数,它的平方不是有理数 (2)(3,+∞)解析 (1)全称命题的否定为特称命题,可得命题“所有无理数的平方都是有理数”的否定是:存在一个无理数,它的平方不是有理数.(2)2x >a -x ,即2x +x >a .设f (x )=2x +x ,则函数f (x )为增函数.由题意知“2x +x >a 成立,即f (x )>a 成立”能得到“x >1”,反之不成立.∵当x >1时,f (x )>3,∴a >3.16.(2021·贵阳模拟)下列不等式: ①x <1;②0<x <1;③-1<x <0;④-1<x <1.其中可以作为“x 2<1”的一个充分条件的所有序号为________. 答案 ②③④17.(2022·潍坊一中月考)若a ,b 都是实数,试从①ab =0;②a +b =0;③a (a 2+b 2)=0;④ab >0中选出适合的条件,用序号填空. (1)“a ,b 都为0”的必要条件是________; (2)“a ,b 都不为0”的充分条件是________; (3)“a ,b 至少有一个为0”的充要条件是________. 答案 (1)①②③ (2)④ (3)①解析 ①ab =0⇔a =0或b =0,即a ,b 至少有一个为0;②a +b =0⇔a ,b 互为相反数,则a ,b 可能均为0,也可能为一正一负; ③a (a 2+b 2)=0⇔a =0或⎩⎪⎨⎪⎧a =0,b =0; ④ab >0⇔⎩⎪⎨⎪⎧a >0,b >0或⎩⎪⎨⎪⎧a <0,b <0,则a ,b 都不为0.18.设命题p :2x -1x -1<0,命题q :x 2-(2a +1)x +a (a +1)≤0,若p 是q 的充分不必要条件,求实数a 的取值范围.答案 ⎣⎡⎦⎤0,12 解析2x -1x -1<0⇒(2x -1)(x -1)<0⇒12<x <1,x 2-(2a +1)x +a (a +1)≤0⇒a ≤x ≤a +1, 由题意得⎝⎛⎭⎫12,1[a ,a +1],故⎩⎪⎨⎪⎧a ≤12,a +1≥1,且等号不能同时取到,解得0≤a ≤12.【】题组层级快练(三)1.(2022·湖北宜昌一中月考)下列命题中是假命题的是( ) A .∃x 0∈R ,log 2x 0=0 B .∃x 0∈R ,cos x 0=1 C .∀x ∈R ,x 2>0 D .∀x ∈R ,2x >0答案 C解析 因为log 21=0,cos 0=1,所以A 、B 项均为真命题,因为02=0,所以C 项为假命题,因为2x >0,所以D 项为真命题.2.命题“所有奇数的立方都是奇数”的否定是( ) A .所有奇数的立方都不是奇数 B .不存在一个奇数,它的立方是偶数 C .存在一个奇数,它的立方不是奇数 D .不存在一个奇数,它的立方是奇数 答案 C解析 全称命题的否定是特称命题,即“存在一个奇数,它的立方不是奇数”. 3.命题“∀x ∈R ,⎝⎛⎭⎫13x>0”的否定是( ) A .∃x 0∈R ,⎝⎛⎭⎫13x 0<0 B .∀x ∈R ,⎝⎛⎭⎫13x≤0 C .∀x ∈R ,⎝⎛⎭⎫13x <0 D .∃x 0∈R ,⎝⎛⎭⎫13x 0≤0答案 D解析 全称命题“∀x ∈R ,⎝⎛⎭⎫13x>0”的否定是把量词“∀”改为“∃”,并把结论进行否定,即把“>”改为“≤”.故选D.4.命题“∃x0∈∁R Q,x03∈Q”的否定是()A.∃x0∉∁R Q,x03∈Q B.∃x0∈∁R Q,x03∉QC.∀x∉∁R Q,x3∈Q D.∀x∈∁R Q,x3∉Q答案 D解析该特称命题的否定为“∀x∈∁R Q,x3∉Q”.5.已知命题p:若x>y,则-x<-y;命题q:若x>y,则x2>y2.在命题①p∧q;②p∨q;③p∧(綈q);④(綈p)∨q中,真命题是()A.①③B.①④C.②③D.②④答案 C解析若x>y,则-x<-y成立,即命题p为真命题,若x>y,则x2>y2不一定成立,即命题q为假命题,则綈p是假命题,綈q为真命题,故p∨q与p∧(綈q)是真命题,故选C. 6.(2022·河北保定模拟)命题“∀x∈R,f(x)·g(x)≠0”的否定是()A.∀x∈R,f(x)=0且g(x)=0 B.∀x∈R,f(x)=0或g(x)=0C.∃x0∈R,f(x0)=0且g(x0)=0 D.∃x0∈R,f(x0)=0或g(x0)=0答案 D解析根据全称命题与特称命题互为否定的关系可得命题“∀x∈R,f(x)·g(x)≠0”的否定是“∃x0∈R,f(x0)=0或g(x0)=0”.故选D.7.若命题p:x∈A∩B,则綈p:()A.x∈A且x∉B B.x∉A或x∉BC.x∉A且x∉B D.x∈A∪B答案 B8.(2022·潍坊一模)已知命题p,q,“綈p为真”是“p∧q为假”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析因为綈p为真,所以p为假,那么p∧q为假,所以“綈p为真”是“p∧q为假”的充分条件;反过来,若“p∧q为假”,则“p真q假”或“p假q真”或“p假q假”,所以由“p∧q为假”不能推出“綈p为真”.综上可知,“綈p为真”是“p∧q为假”的充分不必要条件.9.(2022·江南十校联考)已知命题p:复数z满足(1-i)z=1+i,则|z|=1,命题q:复数z=1-2i 在复平面内对应的点位于第二象限.则下列命题为真命题的是( ) A .p ∧q B .p ∨q C .綈p D .q答案 B解析 由(1-i)z =1+i ,得z =i ,从而|z |=1,故命题p 为真命题;复数z =1-2i 在复平面内对应的点位于第四象限,故命题q 为假命题.故p ∧q 为假命题,p ∨q 为真命题,綈p 为假命题.故选B.10.(2022·湖南邵阳高三大联考)若命题“∃x 0∈R ,x 02+2mx 0+m +2<0”为假命题,则m 的取值范围是( ) A .(-∞,-1)∪[2,+∞) B .(-∞,-1)∪(2,+∞) C .[-1,2] D .(-1,2)答案 C解析 命题的否定是“∀x ∈R ,x 2+2mx +m +2≥0”,该命题为真命题,所以Δ=4m 2-4(m +2)≤0,解得-1≤m ≤2.故选C.11.(2022·山东聊城期末)下列命题是真命题的是( ) A .∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数 B .∃α0,β0∈R ,使cos(α0+β0)=cos α0+cos β0C .向量a =(2,1),b =(-1,0),则a 在b 的方向上的投影为2D .“|x |≤1”是“x ≤1”的既不充分又不必要条件 答案 B解析 当φ=π2时,f (x )=cos 2x ,为偶函数,故A 为假命题;令α0=π4,β0=-π2,则cos(α0+β0)=cos ⎝⎛⎭⎫-π4=22,cos α0+cos β0=22+0=22,cos(α0+β0)=cos α0+cos β0成立,故B 为真命题;a 在b 的方向上的投影为a ·b |b |=-2+01=-2,故C 为假命题;由|x |≤1,可得-1≤x ≤1,故充分性成立,若x ≤1,|x |≤1不一定成立,故“|x |≤1”是“x ≤1”的充分不必要条件,D 为假命题.12.(2019·课标全国Ⅲ,文)记不等式组⎩⎪⎨⎪⎧x +y ≥6,2x -y ≥0表示的平面区域为D .命题p :∃(x ,y )∈D ,2x +y ≥9;命题q :∀(x ,y )∈D ,2x +y ≤12.下面给出了四个命题: ①p ∨q ②綈p ∨q ③p ∧綈q ④綈p ∧綈q 这四个命题中,所有真命题的编号是( ) A .①③B .①②C.②③D.③④答案 A解析方法一:作出不等式组表示的平面区域D,如图中阴影部分所示,直线2x+y=9和直线2x+y=12均穿过了平面区域D,不等式2x+y≥9表示的区域为直线2x+y=9及其右上方的区域,所以命题p为真命题;不等式2x+y≤12表示的区域为直线2x+y=12及其左下方的区域,所以命题q为假命题.所以命题p∨q和p∧綈q为真命题.故选A.方法二:在不等式组表示的平面区域D内取点(7,0),点(7,0)的坐标满足不等式2x+y≥9,所以命题p为真命题;点(7,0)的坐标不满足不等式2x+y≤12,所以命题q为假命题.所以命题p∨q和p∧綈q为真命题.故选A.13.已知命题p:∃x0∈R,mx02+1≤0;命题q:∀x∈R,x2+mx+1>0.若p∨q为假命题,则实数m的取值范围为()A.{m|m≥2} B.{m|m≤-2}C.{m|m≤-2或m≥2} D.{m|-2≤m≤2}答案 A解析由p:∃x0∈R,mx02+1≤0,可得m<0;由q:∀x∈R,x2+mx+1>0,可得Δ=m2-4<0,解得-2<m<2.因为p∨q为假命题,所以p与q都是假命题,若p是假命题,则有m≥0;若q是假命题,则有m≤-2或m≥2,故实数m的取值范围为{m|m≥2}.故选A.14.已知命题p:1x2-x-2>0,则綈p对应的x的集合为________.答案{x|-1≤x≤2}解析p:1x2-x-2>0⇔x>2或x<-1,∴綈p:-1≤x≤2.15.(1)已知命题“∀x∈R,sin x-a≥0”是真命题,则a的取值范围是________.答案(-∞,-1]解析由题意,对∀x∈R,a≤sin x成立.由于对∀x∈R,-1≤sin x≤1,所以a≤-1. (2)若命题“∃x0∈R,x02+(a-1)x0+1≤0”为假命题,则实数a的取值范围为________.答案(-1,3)解析由“∃x0∈R,x02+(a-1)x0+1≤0”为假命题,得“∀x∈R,x2+(a-1)x+1>0”为真命题,所以Δ=(a-1)2-4<0,解得-1<a<3,所以a的取值范围为(-1,3).16.(2014·课标全国Ⅰ)不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D ,有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2; p 2:∃(x ,y )∈D ,x +2y ≥2; p 3:∀(x ,y )∈D ,x +2y ≤3; p 4:∃(x ,y )∈D ,x +2y ≤-1. 其中的真命题是( ) A .p 2,p 3 B .p 1,p 4 C .p 1,p 2 D .p 1,p 3答案 C解析 画出可行域如图中阴影部分所示,由图可知,当目标函数z =x +2y 经过可行域内的点A (2,-1)时,z 取得最小值0,故x +2y ≥0,因此p 1,p 2是真命题,选C.17.若f (x )=x 2-2x ,g (x )=ax +2(a >0),∀x 1∈[-1,2],∃x 0∈[-1,2],使g (x 1)=f (x 0),则实数a 的取值范围是________. 答案 ⎝⎛⎦⎤0,12 解析 由于函数g (x )在定义域[-1,2]内是任意取值的,且必存在x 0∈[-1,2],使得g (x 1)=f (x 0),因此问题等价于函数g (x )的值域是函数f (x )值域的子集.在[-1,2]上,函数f (x )的值域是[-1,3],函数g (x )的值域是[2-a ,2+2a ],则有2-a ≥-1且2+2a ≤3,即a ≤12.又a >0,故a 的取值范围是⎝⎛⎦⎤0,12. 【】题组层级快练(四)1.设集合P ={x |0≤x ≤2},Q ={y |0≤y ≤2},则图中能表示P 到Q 的函数的是( )答案 D解析 A 、B 中都有一个x 对应2个y 的情形,C 中1<x ≤2时,没有y 与之对应. 2.下列各组函数中,表示同一函数的是( ) A .f (x )=x +2,x ∈R 与g (x )=x +2,x ∈Z B .f (x )=x -1与g (x )=x 2-1x +1C .f (u )=1+u1-u与f (v )=1+v1-vD .y =f (x )与y =f (x +1) 答案 C3.函数y =|x |(x -1) 的定义域为( ) A .{x |x ≥1} B .{x |x ≥1或x =0} C .{x |x ≥0} D .{x |x =0}答案 B解析 由题意得|x |(x -1)≥0,∴x -1≥0或|x |=0. ∴x ≥1或x =0.4.已知f (x 5)=lg x ,则f (2)等于( ) A .lg 2 B .lg 32 C .lg132D.15lg 2 答案 D 解析 令x 5=t ,则x =t 15(t >0),∴f (t )=lg t 15=15lg t .∴f (2)=15lg 2.故选D.5.(2021·皖南八校联考)下列函数中,与函数y =13x定义域相同的函数为( )A .y =1sin xB .y =ln xxC .y =x e xD .y =sin xx答案 D解析 y =13x的定义域为{x |x ≠0},而y =1sin x 的定义域为{x |x ≠k π,k ∈Z },y =ln xx 的定义域为{x |x >0},y =x e x 的定义域为R ,y =sin xx的定义域为{x |x ≠0},故选D.6.(2022·德州一中模拟)已知函数f (x )=x [x ],其中[x ]表示不超过x 的最大整数,如[-1.2]=-2,[-3]=-3,[2.1]=2,则f (-2)的值为( ) A .-2 2 B .2 2 C .- 2 D. 2答案 B解析 ∵[-2]=-2,∴f (-2)=-2×(-2)=2 2.故选B.7.已知函数f (x )对任意实数x 满足f (2x -1)=2x 2,若f (m )=2,则m =( ) A .1 B .0 C .1或-3 D .3或-1 答案 C解析 本题考查函数的概念与解析式的求解.令2x -1=t ,t ∈R ,可得x =12(t +1),故f (t )=2×14×(t +1)2=12(t +1)2,故f (m )=12(m +1)2=2,故m =1或m =-3.8.(2022·福州模拟)已知函数f (x )的定义域为(-1,1),则函数g (x )=f ⎝⎛⎭⎫x 2+f (x -1)的定义域为( ) A .(-2,0) B .(-2,2) C .(0,2) D.⎝⎛⎭⎫-12,0 答案 C9.设x ∈R ,定义符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则函数f (x )=|x |sgn x 的大致图象是( )答案 C解析 函数f (x )=|x |sgn x =⎩⎪⎨⎪⎧x ,x >0,0,x =0,x ,x <0,故函数f (x )=|x |sgn x 的图象为直线y =x .故选C.10.(2022·江南十校模拟)函数f (x )=⎩⎪⎨⎪⎧x 2-4x -3,x ≤2,log 2(x -1),x >2,则不等式f (x )>2的解集是( )A .(-∞,-1)B .(-∞,-1)∪(5,+∞)C .(5,+∞)D .(-∞,1)∪(3,+∞)答案 B解析 当x ≤2时,f (x )=x 2-4x -3>2,即x 2-4x -5>0,解得x <-1或x >5,故x <-1; 当x >2时,f (x )=log 2(x -1)>2,即log 2(x -1)>log 24,解得x >5,故x >5. 综上所述,不等式f (x )>2的解集是(-∞,-1)∪(5,+∞).11.(2022·烟台调研)函数f (x )=⎩⎪⎨⎪⎧e x -3,x <1,ln x ,x ≥1,则关于函数f (x )的说法不正确的是( )A .定义域为RB .值域为(-3,+∞)C .在R 上为增函数D .只有一个零点答案 B解析 f (x )=⎩⎪⎨⎪⎧e x -3,x <1,ln x ,x ≥1,∴f (x )的定义域为R ,值域为(-3,e -3)∪[0,+∞),且e -3<0,∴f (x )在R 上为增函数,且f (1)=0,∴f (x )只有一个零点.故A 、C 、D 正确,B 不正确.12.已知函数f (x )=⎩⎪⎨⎪⎧x +b ,x <1,2x -1,x ≥1,若f (f (-1))=3,则b =________.答案 3解析 ∵f (-1)=b -1,∴f (b -1)=3,当b -1≥1即b ≥2时,2b -1-1=3,解得b =3,当b -1<1即b <2时,b -1+b =3,解得b =2(舍),综上有b =3. 13.已知f ⎝⎛⎭⎫x -1x =x 2+1x 2,则f (3)=________. 答案 11解析 ∵f ⎝⎛⎭⎫x -1x =⎝⎛⎭⎫x -1x 2+2, ∴f (x )=x 2+2(x ∈R ),∴f (3)=32+2=11. 14.已知函数f (x ),g (x )分别由下表给出:则f (g (1))的值为________;满足f (g (x ))>g (f (x ))的x 的值是________.答案 1 215.已知f (2x +1)=x 2-2x ,则f (3)=________,f (x )=________. 答案 -1 14x 2-32x +54解析 令2x +1=3,则x =1,∴f (3)=12-2×1=-1.令t =2x +1,∴x =t -12,∴f (t )=⎝⎛⎭⎫t -122-2·t -12=14(t 2-2t +1)-t +1=14t 2-32t +54,∴f (x )=14x 2-32x +54. 16.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,求c 和A 的值.答案 c =60,A =16解析 因为组装第A 件产品用时15分钟,所以c A =15①,所以必有4<A ,且c 4=c2=30②,联立①②解得c =60,A =16.17.(名师原创)将正整数12分解成两个正整数的乘积有1×12,2×6,3×4三种,其中3×4是这三种分解中两数差的绝对值最小的,我们称3×4为12的最佳分解.当p ×q (p ≤q 且p ,q ∈N *)是正整数n 的最佳分解时,我们规定函数f (n )=p q ,例如:f (12)=34.关于函数f (n )有下列叙述:①f (7)=17;②f (24)=38;③f (28)=47;④f (144)=916,其中正确的为________.(填序号) 答案 ①③解析 对于①,∵7=1×7,∴f (7)=17,①正确;对于②,∵24=1×24=2×12=3×8=4×6,∴f (24)=46=23,②不正确;对于③,∵28=1×28=2×14=4×7,∴f (28)=47,③正确;对于④,∵144=1×144=2×72=3×48=4×36=6×24=8×18=9×16=12×12,∴f (144)=1212=1,④不正确.18.如图,在矩形ABCD 中,BA =3,CB =4,点P 在线段AD 上移动,CQ ⊥BP ,Q 为垂足.设BP =x ,CQ =y ,试求y 关于x 的函数表达式,并画出函数的图象.答案 y =12x (3≤x ≤5),图象见解析解析 由题意,得△CQB ∽△BAP ,所以CQ BA =CB BP ,即y 3=4x .所以y =12x .连接BD ,因为BA ≤BP ≤BD ,而BA =3,CB =AD =4,所以BD =32+42=5,所以3≤x ≤5.故所求的函数表达式为y =12x(3≤x ≤5).如图所示,曲线MN 就是所求的函数图象.【】专题层级快练(五)1.(2022·上海市杨浦区高三期末)下列函数中,值域为(0,+∞)的是( ) A .y =x 2 B .y =2xC .y =2xD .y =|log 2x |答案 C解析 函数y =x 2的值域为[0,+∞),故排除A ; 函数y =2x 的值域为{y |y ≠0},故排除B ;函数y =2x 的值域为(0,+∞),故C 满足条件; 函数y =|log 2x |的值域为[0,+∞),故排除D.故选C. 2.函数y =1-|x |1+|x |的值域为( )A .(-1,1)B .[-1,1)C .(-1,1]D .[-1,1]答案 C解析 方法一(分离常数法): y =1-|x |1+|x |=-1+21+|x |, ∵|x |≥0,∴|x |+1≥1,∴0<2|x |+1≤2.∴-1<-1+21+|x |≤1.即函数值域为(-1,1]. 方法二(反解法):由y =1-|x |1+|x |,得|x |=1-y 1+y .∵|x |≥0,∴1-y1+y≥0,∴-1<y ≤1, 即函数值域为(-1,1].故选C.3.函数y =2--x 2+4x 的值域是( ) A .[-2,2] B .[1,2] C .[0,2] D .[-2,2]答案 C解析 要使函数有意义,则有-x 2+4x ≥0, ∴x 2-4x ≤0,∴0≤x ≤4,即x ∈[0,4]. ∵-x 2+4x =-(x -2)2+4, ∴0≤-(x -2)2+4≤4,即0≤-x 2+4x ≤2,∴-2≤--x 2+4x ≤0, ∴0≤2--x 2+4x ≤2, ∴0≤y ≤2,即y ∈[0,2].故选C. 4.函数y =1+x -1-2x 的值域为( ) A.⎝⎛⎭⎫-∞,32 B.⎝⎛⎦⎤-∞,32 C.⎝⎛⎭⎫32,+∞ D.⎣⎡⎭⎫32,+∞ 答案 B解析 设1-2x =t ,则t ≥0,x =1-t 22,所以y =1+1-t 22-t =12(-t 2-2t +3)=-12(t +1)2+2,因为t ≥0,所以y ≤32.所以函数y =1+x -1-2x 的值域为⎝⎛⎦⎤-∞,32.故选B. 5.(2022·昆明第一中学摸底)函数y =ln x +1ln x 的值域为( )A .(-∞,-2]B .[2,+∞)C .(-∞,-2]∪[2,+∞)D .[-2,2] 答案 C解析 当x >1时,y =ln x +1ln x≥2ln x ·1ln x=2,当且仅当x =e 时等号成立;当0<x <1时,y =ln x +1ln x=-⎣⎡⎦⎤(-ln x )+⎝⎛⎭⎫-1ln x ≤-2(-ln x )·⎝⎛⎭⎫-1ln x =-2,当且仅当x =1e时等号成立, 所以函数的值域为(-∞,-2]∪[2,+∞).故选C.6.(2022·山东菏泽模拟)已知函数f (x )=log 2x 的值域是[1,2],则函数φ(x )=f (2x )+f (x 2)的定义域为( ) A .[2,2] B .[2,4] C .[4,8] D .[1,2]答案 A解析 ∵f (x )的值域为[1,2],∴1≤log 2x ≤2, ∴2≤x ≤4,∴f (x )的定义域为[2,4], ∴φ(x )=f (2x )+f (x 2)的自变量x 满足⎩⎪⎨⎪⎧2≤2x ≤4,2≤x 2≤4,解得2≤x ≤2.∴φ(x )的定义域为[2,2].故选A.7.定义运算a *b ,a *b =⎩⎪⎨⎪⎧a (a ≤b ),b (a >b ),例如1*2=1,则函数y =1*2x 的值域为( )A .(0,1)B .(-∞,1)C .[1,+∞) D.(]0,1答案 D解析 当1≤2x ,即x ≥0时,函数y =1*2x =1,当1>2x ,即x <0时,函数y =1*2x =2x ,由图知,函数y =1*2x 的值域为(0,1].故选D. 8.下列函数中,值域为[2,+∞)的是( ) A .y =x 2-x +94B .y =x +1x (x ≥2)C .y =e sin xD .y =(x +1)-23答案 A解析 ∵y =x 2-x +94=⎝⎛⎭⎫x -122+2≥2,∴A 满足题意.∵y =x +1x ,当x ≥2时为增函数,∴y ≥52,∴排除B.∵-1≤sin x ≤1,∴y =e sin x ∈⎣⎡⎦⎤1e ,e ,∴排除C. ∵y =(x +1)-23=13(x +1)2,值域为(0,+∞),∴排除D.9.若对函数f (x )=ax 2+bx +c (a ≠0)作x =h (t )的代换,则不能改变函数f (x )的值域的代换是( ) A .h (t )=10t B .h (t )=t 2 C .h (t )=sin t D .h (t )=log 2t答案 D10.下列函数中,同一 同的是( ) A .y =x +1+1 B .y =|ln x | C .y =13x -1D .y =x +1x -1答案 D解析 对于A ,定义域为[-1,+∞),值域为[1,+∞),不满足题意;对于B ,定义域为(0,+∞),值域为[0,+∞),不满足题意;对于C ,定义域为(-∞,0)∪(0,+∞),值域为(-∞,-1)∪(0,+∞),不满足题意;对于D ,y =x +1x -1=1+2x -1,定义域为(-∞,1)∪(1,+∞),值域也是(-∞,1)∪(1,+∞). 11.(1)函数y =10x +10-x10x -10-x的值域为________.(2)(2022·广东梅州市检测)函数y =x 2+41-2x 2的值域是________. 答案 (1)(-∞,-1)∪(1,+∞) (2)⎣⎡⎦⎤12,4 解析 (1)由y =10x +10-x 10x -10-x ,得x ≠0,y +1y -1=102x . ∵102x >0且不为1,∴y +1y -1>0且不为1.∴y <-1或y >1.即函数值域为(-∞,-1)∪(1,+∞). (2)令t =1-2x 2,则x 2=1-t 22, 由x 2≥0和二次根式的非负性,得0≤t ≤1, 则y =1-t 22+4t =-12t 2+4t +12,易得函数的值域为⎣⎡⎦⎤12,4.12.函数y =x 4+x 2+1的值域是________;y =x 4-x 2+1的值域是________. 答案 [1,+∞) ⎣⎡⎭⎫34,+∞13.(2022·沧衡八校联盟)函数f (x )=⎩⎪⎨⎪⎧x 2-x +1,x <1,1x ,x >1的值域为________.答案 (0,+∞) 解析 当x <1时,f (x )=x 2-x +1=⎝⎛⎭⎫x -122+34≥34; 当x >1时,f (x )=1x∈(0,1),综上可得,f (x )=⎩⎪⎨⎪⎧x 2-x +1,x <1,1x ,x >1的值域为(0,+∞).14.函数y =x 2+x +1x +1的值域为________.答案 (-∞,-3]∪[1,+∞) 解析 方法一(判别式法):由y =x 2+x +1x +1,得x 2+(1-y )x +1-y =0.∵x ∈(-∞,-1)∪(-1,+∞),∴Δ=(1-y )2-4(1-y )≥0.解得y ≤-3或y ≥1. 当y =-3时,x =-2;当y =1时,x =0, ∴函数的值域为(-∞,-3]∪[1,+∞). 方法二(分离常数法):y =x 2+x +1x +1=(x +1)2-(x +1)+1x +1=(x +1)+1x +1-1,当x >-1时,(x +1)+1x +1≥2,当且仅当x =0时取等号;当x <-1时,(x +1)+1x +1≤-2,当且仅当x =-2时取等号, ∴y ≥1或y ≤-3.∴函数的值域为(-∞,-3]∪[1,+∞).15.(2022·江西省顶级名校模拟)若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x >2(a >0且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________. 答案 (1,2]解析 当x ≤2时,f (x )=6-x ≥4,当x >2时,f (x )=3+log a x ,当a >1时,3+log a x >3+log a 2≥4,解得1<a ≤2;当0<a <1时,3+log a x <3+log a 2<3,不合题意,故实数a 的取值范围是1<a ≤2. 16.已知函数f (x )=lg[(a 2-1)x 2+(a +1)x +1]. (1)若f (x )的定义域为R ,求实数a 的取值范围;(2)若f (x )的值域为R ,求实数a 的取值范围. 答案 (1)(-∞,-1]∪⎝⎛⎭⎫53,+∞ (2)⎣⎡⎦⎤1,53 解析 (1)依题意(a 2-1)x 2+(a +1)x +1>0对一切x ∈R 恒成立,当a 2-1≠0时,其充要条件是⎩⎪⎨⎪⎧a 2-1>0,Δ=(a +1)2-4(a 2-1)<0,即⎩⎪⎨⎪⎧a >1或a <-1,a >53或a <-1. ∴a <-1或a >53.若a 2-1=0,则a =±1,当a =-1时,f (x )=0,满足题意;当a =1时,f (x )=lg(2x +1),不合题意. ∴a ≤-1或a >53.即a 的取值范围为(-∞,-1]∪⎝⎛⎭⎫53,+∞. (2)当a 2-1=0时,a =1或-1,检验得a =1满足题意. 当a 2-1≠0时,若f (x )的值域为R ,则⎩⎪⎨⎪⎧a 2-1>0,Δ=(a +1)2-4(a 2-1)≥0,解得1<a ≤53. 综上得a 的取值范围为⎣⎡⎦⎤1,53.17.(2022·山东枣庄市三中月考)已知函数f (x )=32x -2·3x +2,定义域为M ,值域为[1,2],则下列说法中不正确的是( ) A .M =[0,log 32] B .M ⊆(-∞,log 32] C .log 32∈M D .0∈M答案 A解析 令t =3x (t >0),则原函数等价于g (t )=t 2-2t +2=(t -1)2+1(t >0), 由g (t )=1,得t =1,即3x =1,得x =0; 由g (t )=2,得t =0(舍)或2,即x =log 32.根据g (t )的图象特征,知0∈M ,log 32∈M ,M ⊆(-∞,log 32].A 错误,故选A.18.(2022·沧州七校联考)设函数f (x )=2x 1+2x -12,[x ]表示不超过x 的最大整数,则函数y =[f (x )]的值域为( ) A .{0} B .{-1,0} C .{-1,0,1}D .{-2,0}解析 ∵f (x )=1-12x +1-12=12-12x +1,又2x >0,∴-12<f (x )<12.∴y =[f (x )]的值域为{-1,0}.【】题组层级快练(六)1.下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =x +1 B .y =(x -1)2 C .y =2-x D .y =log 0.5(x +1)答案 A解析 A 中,函数y =x +1在[-1,+∞)上为增函数,所以函数在(0,+∞)上为增函数,故正确;B 中,函数y =(x -1)2在(-∞,1)上为减函数,在[1,+∞)上为增函数,故错误;C 中,函数y =2-x=⎝⎛⎭⎫12x在R 上为减函数,故错误;D 中,函数y =log 0.5(x +1)在(-1,+∞)上为减函数,故错误.2.若函数y =x 2+bx +c (x ∈[0,+∞))是单调函数,则实数b 的取值范围是( ) A .b ≥0 B .b ≤0 C .b >0 D .b <0答案 A3.函数f (x )=x -2x -1( )A .在(-1,+∞)上单调递增B .在(1,+∞)上单调递增C .在(-1,+∞)上单调递减D .在(1,+∞)上单调递减 答案 B 解析 f (x )=1-1x -1,∴f (x )的图象可由y =-1x 的图象沿x 轴向右平移一个单位长度,再向上平移一个单位长度得到,如图所示. 4.函数f (x )=x |x -2|的单调递减区间是( ) A .[1,2] B .[-1,0] C .[0,2]D .[2,+∞)解析 f (x )=x |x -2|=⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2,其图象如图,结合图象可知函数的单调递减区间是[1,2].故选A.5.函数f (x )=log 0.5(x +1)+log 0.5(x -3)的单调递减区间是( ) A .(3,+∞) B .(1,+∞) C .(-∞,1) D .(-∞,-1)答案 A解析 由已知易得⎩⎪⎨⎪⎧x +1>0,x -3>0,即x >3,又0<0.5<1,∴f (x )在(3,+∞)上单调递减.6.若函数f (x )=x 2-2x +m 在[3,+∞)上的最小值为1,则实数m 的值为( ) A .-3 B .-2 C .-1 D .1答案 B解析 ∵f (x )=(x -1)2+m -1在[3,+∞)上为增函数,且f (x )在[3,+∞)上的最小值为1,∴f (3)=1,即3+m =1,∴m =-2.故选B.7.已知f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( ) A .(-1,1) B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)答案 C解析 由已知得⎪⎪⎪⎪1x >1⇒-1<x <0或0<x <1.故选C.8.(2022·广东省佛山市佛山一中月考)已知函数f (x )是定义域为[0,+∞)的减函数,且f (2)=-1,则满足f (2x -4)>-1的实数x 的取值范围是( ) A .(3,+∞) B .(-∞,3) C .[2,3) D .[0,3)答案 C解析 f (x )在定义域[0,+∞)上是减函数,且f (2)=-1,∴f (2x -4)>-1可化为f (2x -4)>f (2),∴⎩⎪⎨⎪⎧2x -4≥0,2x -4<2,解得2≤x <3. 9.(2022·昆明诊断考试)已知函数f (x )=e x +e -x ,则( ) A .f (-2)<f (e)<f (5) B .f (e)<f (-2)<f (5) C .f (5)<f (e)<f (-2)D .f (-2)<f (5)<f (e)解析 因为f (x )定义域为R ,且f (-x )=e -x +e x =f (x ),所以函数f (x )为偶函数.又当x >0时,f ′(x )=e x -1e x >0,所以函数f (x )在(0,+∞)上单调递增.因为2<5<e ,所以f (2)<f (5)<f (e),又f (-2)=f (2),所以f (-2)<f (5)<f (e).故选D.10.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月二氧化碳的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.以下判断正确的是( ) A .该单位每月二氧化碳的处理量为200吨时,才能使每吨的平均处理成本最低 B .该单位每月最低可获利20 000元 C .该单位每月不获利,也不亏损D .每月需要国家至少补贴40 000元才能使该单位不亏损 答案 D解析 显然x >0,所以每吨的平均处理成本y x =12x +80 000x -200≥212x ·80 000x-200=2×200-200=200,当且仅当12x =80 000x 即x =400时,取等号.所以A 错误.设该单位每月获利为S 元,则S =100x -y =100x -(12x 2-200x +80 000)=-12(x -300)2-35 000,因为400≤x ≤600,所以当x =400时,S 有最大值-40 000.所以每月需要国家至少补贴40 000元才能使该单位不亏损.D 正确.B 、C 错误. 11.在给出的下列4个条件中,①⎩⎪⎨⎪⎧0<a <1,x ∈(-∞,0); ②⎩⎪⎨⎪⎧0<a <1,x ∈(0,+∞); ③⎩⎪⎨⎪⎧a >1,x ∈(-∞,0); ④⎩⎪⎨⎪⎧a >1,x ∈(0,+∞). 能使函数y =log a 1x 2为减函数的是________(把你认为正确的条件编号都填上).答案 ①④解析 利用复合函数的性质知①④正确.12.函数y =x -x (x ≥0)的最大值为________. 答案 14解析 令t =x ,则t ≥0, 所以y =t -t 2=-⎝⎛⎭⎫t -122+14, 所以当t =12,即x =14时,y max =14.13.函数f (x )=-ax +b (a >0)在⎣⎡⎦⎤12,2上的值域为⎣⎡⎦⎤12,2,则a =________,b =________. 答案 1 52解析 因为f (x )=-ax+b (a >0)在⎣⎡⎦⎤12,2上是增函数,所以f ⎝⎛⎭⎫12=12,f (2)=2. 即⎩⎨⎧-2a +b =12,-a2+b =2,解得a =1,b =52.14.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________. 答案 -6解析 画图知函数f (x )的单调递增区间为⎣⎡⎭⎫-a 2,+∞,故3=-a2,解得a =-6. 15.(2022·西安五校联考)若函数f (x )=e x -e -x ,则不等式f (2x +1)+f (x -2)>0的解集为________. 答案 ⎝⎛⎭⎫13,+∞ 解析 由f (x )定义域为R ,且f (-x )=-f (x ),知f (x )=e x -e -x 为奇函数,又易证在定义域R 上,f (x )是增函数,则不等式f (2x +1)+f (x -2)>0等价于f (2x +1)>-f (x -2)=f (-x +2),则2x +1>-x +2,即x >13,故不等式的解集为⎝⎛⎭⎫13,+∞.16.(2021·《高考调研》原创题)若log 5x +log 51y >e -x -e -y ,则( )A .(x -1)2>(y -1)2B .(x -1)2<(y -1)2C .x 2<y 2D .x 2>y 2答案 D解析 由log 5x +log 51y >e -x -e -y ,得log 5x -e -x >log 5y -e -y ,令f (t )=log 5t -e -t ,∵y =log 5t为(0,+∞)上的增函数,y =-e-t为R 上的增函数,∴f (t )为(0,+∞)上的增函数,∴由f (x )>f (y ),得x >y >0,∴x 2>y 2.故选D.17.(2021·沧州七校联考)已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是( ) A.⎝⎛⎭⎫0,34 B.⎣⎡⎭⎫0,34 C.⎝⎛⎦⎤0,34 D.⎣⎡⎦⎤0,34 答案 D解析 当a =0时,f (x )=-12x +5, 在(-∞,3)上是减函数; 当a ≠0时,由⎩⎪⎨⎪⎧a >0,-4(a -3)4a ≥3,得0<a ≤34.综上,a 的取值范围是⎣⎡⎦⎤0,34.【】题组层级快练(七)1.(2022·合肥质检)下列函数中,既是偶函数,又在(0,+∞)上单调递减的函数是( ) A .y =|x |+1 B .y =-x 2+1 C .y =ln x 2 D .y =cos x x答案 B2.(2022·唐山市高三测试)设函数f (x )=x (e x +e -x ),则f (x )( ) A .是奇函数,且在(0,+∞)上单调递增 B .是偶函数,且在(0,+∞)上单调递增 C .是奇函数,且在(0,+∞)上单调递减 D .是偶函数,且在(0,+∞)上单调递减 答案 A解析 方法一:由条件可知,f (x )定义域为R ,且f (-x )=-x (e -x +e x )=-x (e x +e -x )=-f (x ),故f (x )为奇函数.f ′(x )=e x +e -x +x (e x -e -x ),当x >0时,e x >e -x ,所以x (e x -e -x )>0,又e x +e -x >0,所以f ′(x )>0,所以f (x )在(0,+∞)上单调递增.故选A.方法二:根据题意知f (-1)=-f (1),所以排除B 、D.易知f (1)<f (2),所以排除C.故选A.3.(2022·浙江宁波十校联考)已知函数f (x )=x 3+sin x +1(x ∈R ).若f (m )=2,则f (-m )的值为( ) A .3 B .0 C .-1 D .-2答案 B解析 把f (x )=x 3+sin x +1变形为f (x )-1=x 3+sin x .令g (x )=f (x )-1=x 3+sin x ,x ∈R ,则g (x )为奇函数,有g (-m )=-g (m ),所以f (-m )-1=-[f (m )-1],得到f (-m )=-(2-1)+1=0.4.(2022·南昌市联考)函数f (x )=9x +13x 的图象( )A .关于x 轴对称B .关于y 轴对称C .关于坐标原点对称D .关于直线y =x 对称答案 B解析 因为f (x )=9x +13x =3x +3-x ,易知f (x )为偶函数,所以函数f (x )的图象关于y 轴对称.5.已知f (x )为奇函数,当x >0时,f (x )=x (1+x ),那么当x <0时,f (x )=( ) A .-x (1-x ) B .x (1-x ) C .-x (1+x ) D .x (1+x )答案 B解析 当x <0时,则-x >0,∴f (-x )=(-x )(1-x ).又f (-x )=-f (x ),∴f (x )=x (1-x ). 6.(2022·皖南八校联考)设f (x )是定义在R 上周期为2的奇函数,当0≤x ≤1时,f (x )=x 2-x ,则f ⎝⎛⎭⎫-52=( ) A .-14B .-12C.14D.12答案 C解析 因为f (x )是定义在R 上周期为2的奇函数,所以f ⎝⎛⎭⎫-52=-f ⎝⎛⎭⎫52=-f ⎝⎛⎭⎫12.又当0≤x ≤1时,f (x )=x 2-x ,所以f ⎝⎛⎭⎫12=⎝⎛⎭⎫122-12=-14,则f ⎝⎛⎭⎫-52=14. 7.已知定义在R 上的函数f (x )满足f (-x )=-f (x ),f (3-x )=f (x ),则f (2 019)=( ) A .-3 B .0 C .1 D .3答案 B解析 由题意得f (x )为奇函数,f (0)=0,由f (3-x )=f (x ),可得f (x +3)=f (-x )=-f (x ),。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A 级 基础达标演练 (时间:40分钟 满分:60分)一、选择题(每小题5分,共25分)1.(2010·山东)函数y =2x -x 2的图象大致是( ).解析 在同一坐标系中作出y =2x 与y =x 2的图象可知,当x ∈(-∞,m )∪(2,4),y <0,;当x ∈(m,2)∪(4,+∞)时,y >0,(其中m <0),故选A. 答案 A2.(2012·合肥模拟)已知函数f (x )是(-∞,+∞)上的偶函数,若对于任意的x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2]时,f (x )=log 2(x +1),则f (-2 010)+f (2 011)的值为( ). A .-2 B .-1 C .1 D .2 解析 ∵f (x )是偶函数, ∴f (-2 010)=f (2 010). ∵当x ≥0时,f (x +2)=f (x ), ∴f (x )是周期为2的周期函数,∴f (-2 010)+f (2 011)=f (2 010)+f (2 011) =f (0)+f (1)=log 21+log 22=0+1=1. 答案 C3.(2012·人大附中月考) 设函数y =x 3与y =⎝⎛⎭⎫12x -2的图象的交点为(x 0,y 0),则x 0所在的区间是( ). A .(0,1) B .(1,2) C .(2,3)D .(3,4)解析 (数形结合法)如图所示.由1<x <2,可知1<x 3<8; -1<x -2<0,1<⎝⎛⎭⎫12x -2<2. 答案 B4.(2011·四川)函数y =⎝⎛⎭⎫12x+1的图象关于直线y =x 对称的图象大致是( ).解析 函数y =⎝⎛⎭⎫12x +1的图象如图;作其关于直线y =x 的对称图象,可知选A.答案 A5.(2010·辽宁)设2a =5b =m ,且1a +1b =2,则m =( ).A.10 B .10 C .20D .100解析 由已知条件a =log 2m ,b =log 5m ,又1a +1b =2,则log m 2+log m 5=2,即log m 10=2,解得m =10. 答案 A二、填空题(每小题4分,共12分)6.若直线y =2a 与函数y =|a x -1|(a >0,且a ≠1)的图象有两个公共点,则a 的取值范围是________. 解析 (数形结合法)由图象可知0<2a <1,∴0<a <12.答案 ⎝⎛⎭⎫0,12 7.若3a =0.618,a ∈[k ,k +1),k ∈Z ,则k =________. 解析 ∵3-1=13,30=1,13<0.618<1,∴k =-1.答案 -18.若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是________.解析 令a x -x -a =0即a x =x +a ,若0<a <1,显然y =a x 与y =x +a 的图象只有一个公共点; 若a >1,y =a x 与y =x +a 的图象如图所示.答案 (1,+∞) 三、解答题(共23分) 9.(11分)设函数f (x )=2|x+1|-|x -1|,求使f (x )≥22的x 的取值范围.解 y =2x 是增函数,f (x )≥2 2 等价于|x +1|-|x -1|≥32.①(1)当x ≥1时,|x +1|-|x -1|=2,∴①式恒成立. (2)当-1<x <1时,|x +1|-|x -1|=2x , ①式化为2x ≥32,即34≤x <1.(3)当x ≤-1时,|x +1|-|x -1|=-2,①式无解. 综上,x 取值范围是⎣⎡⎭⎫34,+∞. 10.(12分)已知f (x )=e x -e -x ,g (x )=e x +e -x (e =2.718 28…)(1)求[f (x )]2-[g (x )]2的值;(2)若f (x )f (y )=4,g (x )g (y )=8,求g x +y g x -y 的值.解 (1)[f (x )]2-[g (x )]2=(e x -e -x )2-(e x +e -x )2=(e 2x -2+e-2x)-(e 2x +2+e-2x)=-4.(2)f (x )f (y )=(e x -e -x )(e y -e -y ) =e x +y +e-x -y-e x -y -e-x +y=[e x +y +e-(x +y )]-[e x -y +e-(x -y )]=g (x +y )-g (x -y )∴g (x +y )-g (x -y )=4① 同理,由g (x )g (y )=8,可得g (x +y )+g (x -y )=8, ②由①②解得g (x +y )=6,g (x -y )=2, ∴g x +y g x -y =3. B 级 综合创新备选(时间:30分钟 满分:40分)一、选择题(每小题5分,共10分)1.(2011·杭州模拟)定义运算:a *b =⎩⎪⎨⎪⎧a a ≤b b a >b ,如1]( ).A .RB .(0,+∞)C .(0,1]D .[1,+∞)解析 f (x )=2x *2-x=⎩⎪⎨⎪⎧2xx ≤0 ,2-x x >0 ,∴f (x )在(-∞,0]上是增函数,在(0,+∞)上是减函数,∴0<f (x )≤1. 答案 C2.(2012·上饶质检)设函数f (x )=2x 1+2x -12,[x ]表示不超过x 的最大整数,则函数y =[f (x )]的值域是( ).A .{0,1}B .{0,-1}C .{-1,1}D .{1,1} 解析 由f (x )=2x 1+2x -12=1-11+2x -12=12-11+2x, 由于(2x +1)在R 上单调递增,所以-11+2x 在R 上单调递增,所以f (x )为增函数,由于2x >0,当x →-∞,2x →0,∴f (x )>-12,当x →+∞,11+2x →0,∴f (x )<12,∴-12<f (x )<12,∴y =[f (x )]={0,-1}. 答案 B二、填空题(每小题4分,共8分)3.(2012·安庆模拟)若f (x )=a -x 与g (x )=a x -a (a >0且a ≠1)的图象关于直线x =1对称,则a=________.解析 g (x )上的点P (a,1)关于直线x =1的对称点P ′(2-a,1)应在f (x )=a -x 上,∴1=a a -2.∴a-2=0,即a =2. 答案 24.(★)若曲线|y |=2x +1与直线y =b 没有公共点,则b 的取值范围是________.解析 (数形结合法)曲线|y |=2x +1即为y =2x +1或y =-(2x +1),作出曲线的图象(如图),要使该曲线与直线y =b 没有公共点,须-1≤b ≤1.答案 -1≤b ≤1【点评】 本题采用数形结合法,准确画出函数|y |=2x +1的图象,由图象观察即得b 的取值范围.三、解答题(共22分)5.(10分)已知f (x )=10x -10-x10x +10-x.(1)判断函数奇偶性;(2)证明:f (x )是定义域内的增函数.(1)解 ∵f (x )的定义域为R ,且f (-x )=10-x -10x10-x +10x=-f (x ),∴f (x )是奇函数.(2)证明 法一 f (x )=10x -10-x 10x +10-x =102x -1102x+1=1-2102x +1. 令x 2>x 1,则f (x 2)-f (x 1)=⎝⎛⎭⎫1-2102x 2+1-⎝⎛⎭⎫1-2102x 1+1=2·102x 2-102x 1102x 2+1 102x 1+1 .当x 2>x 1时,102x 2-102x 1>0. 又∵102x 1+1>0,102x 2+1>0, 故当x 2>x 1时,f (x 2)-f (x 1)>0, 即f (x 2)>f (x 1).所以f (x )是增函数. 法二 考虑复合函数的增减性. 由f (x )=10x -10-x 10x +10-x =1-2102x+1. ∵y 1=10x 为增函数, ∴y 2=102x +1为增函数,y 3=2102x+1为减函数,y 4=-2102x +1为增函数,f (x )=1-2102x +1为增函数.∴f (x )=10x -10-x10x +10-x在定义域内是增函数.6.(12分)若函数y =a ·2x -1-a2x -1为奇函数.(1)求a 的值; (2)求函数的定义域;(3)求函数的值域.解 ∵函数y =a ·2x -1-a 2x-1,∴y =a -12x -1. (1)由奇函数的定义,可得f (-x )+f (x )=0,即 a -12-x -1+a -12x -1=0, ∴2a +1-2x 1-2x =0,∴a =-12. (2)∵y =-12-12x -1,∴2x -1≠0,即x ≠0.∴函数y =-12-12x -1的定义域为{x |x ≠0}.(3)∵x ≠0,∴2x -1>-1.∵2x -1≠0,∴0>2x -1>-1或2x -1>0. ∴-12-12x -1>12或-12-12x -1<-12.即函数的值域为{y |y >12或y <-12}.。