第5章最小二乘法
机器视觉第5章 尺寸测量技术
![机器视觉第5章 尺寸测量技术](https://img.taocdn.com/s3/m/688b942b49649b6649d7470c.png)
直线拟合的哈夫变换方法
直线函数:y=px+q
图像空间XY:(x, y) 参数空间PQ:(p, q)
Y (x2, y2)
(x1, y1)
O
X
Q
q=-x1p+y1
q’
q=-x2p+y2
O
p’
P
点--线对偶性:
图像空间中共线的点,对应在参
数空间中相交的线。
参数空间中相交于一点的所有直
Hough变换的基本思想:依次检查图像上的每个棋子(特定 像素)。对每个棋子,找到所有包含它的容器(直线),并 为每个容器的计数器加1。遍历结束后,统计每个容器 所包含的棋子数量。当图像上某个直线包含的特定像素 足够多时,就可以认为直线存在。
第5章 尺寸测量技术
L4
A L1
B L8
L6
L7
L2
L3
Hough变换时,依次对像素A、B进行处理
像素A的处理结果:L1、L2、L3、L4等直线的计数器加1; 像素B的处理结果:L2、L6、L7、L8等直线的计数器加1; 最终结果:除L2外,其余直线区域的计数器值均为1。
根据图像大小设定阈值T,规定若某个直线计数器内包含 的特定像素数量>T,则认为此直线存在。
第5章 尺寸测量技术
5.5 角度测量
在工业零件视觉检测的应用中,经常需要对工件中的一些 角度进行测量。
螺母正视图中每条边相互的夹角大小及是否相等 零件底面与侧面的垂直度检测
角度检测的关键是对所测角度的两条边线的提取,然后利 用斜率计算公式得到两条线的夹角。
可采用以上介绍的方法,得出两条直线方程
第5章 尺寸测量技术
Hough算法的改进
第五章 最小二乘法辨识
![第五章 最小二乘法辨识](https://img.taocdn.com/s3/m/ac5d13f11a37f111f1855b7c.png)
服从正态分
❖ 4)有效性
❖ 定理4:假设 (k) 是均值为零,方差为 2I 的正态
白噪声,则最小二乘参数估计量
^
是有效估计
量,即参数估计误差的协方差达到Cramer-Rao不
等式的下界
E (^
^
)(
)T
2E
(
T N
N
) 1
M 1
❖ 其中M为Fisher信息矩阵。
4、适应算法
❖ 随着更多观测数据的处理,递推最小二乘法对线性 定常系统的参数估计并非越来越精确,有时会发现
❖ 现举例说明最小二乘法的估计精度 ❖ 例5.1:设单输入-单输出系统的差分方程为
y(k) a1y(k 1) a2 y(k 2) b1u(k 1) b2u(k 2) (k)
❖ 设 u(k)是幅值为1的伪随机二位式序列,噪声 (k)是 一个方差 2可调的正态分布 N(0, 2 )随机序列。
❖ 为了克服数据饱和现象,可以用降低旧数据影响的 办法来修正算法。而对于时变系统,估计k时刻的 参数最好用k时刻附近的数据估计较准确。否则新 数据所带来的信息将被就数据所淹没。
❖ 几种算法:渐消记忆法,限定记忆法与振荡记忆法
❖ 矩阵求逆引理:设A为 n n 矩阵,B和C为 n m 矩阵,
并且A, A和 BCT I CT都A是1B 非奇异矩阵,则有矩
阵恒等式
A BCT 1 A1 A1B(I CT A1B)1CT A1
❖
令
A
PN1
,B
N 1
,C
T N 1
,根据引理有
PN1
T N 1 N 1
1
❖ 算法中,^ N 为2n+1个存贮单元(ai ,bi ,i 1,2, , n), 而 PN 是 (2n 1) (2n 1)维矩阵,显然,将 N 换成 PN 后,存贮量大为减少(因为n为模型的阶数,一般 远远小于N)
高中高三数学《最小二乘法》教案、教学设计
![高中高三数学《最小二乘法》教案、教学设计](https://img.taocdn.com/s3/m/1dbbfb3cf4335a8102d276a20029bd64783e62be.png)
a.作业难度适中,既要涵盖基础知识的巩固,也要涉及一定程度的拓展和提高。
b.鼓励学生在完成作业过程中,积极思考、主动探究,培养解决问题的能力。
c.注重培养学生的数学表达和写作能力,要求学生在解题报告中清晰阐述思路和方法。
3.作业布置要求:
a.学生按时完成作业,保持字迹工整,书写规范。
3.介绍相关系数的概念和意义,通过实例讲解,让学生理解相关系数如何衡量两个变量之间的线性关系。
4.针对本节课的重点和难点,采用举例、讲解、练习等多种教学方法,帮助学生理解和掌握最小二乘法。
(三)学生小组讨论
1.将学生分成若干小组,每组选择一个实际问题,如身高与体重的关系、温度与用电量的关系等,运用最小二乘法进行分析。
b.鼓励学生在完成作业时,互相讨论、交流,共同解决问题。
c.教师在批改作业时,要关注学生的解题过程,及时发现学生的错误和薄弱环节,并进行针对性的指导。
4.作业评价:
a.作业评价以鼓励为主,关注学生的进步,提高学生的自信心。
b.对于学生在作业中表现出的创新思维和优秀成果,教师要给予充分肯定和表扬。
c.针对学生在作业中的共性问题,教师要及时进行讲解和辅导,确保学生掌握本节课的内容。
三、教学重难点和教学设想
(一)教学重难点
1.最小二乘法的推导及其在实际问题中的应用是本章节的教学重点。学生需要理解最小二乘法的原理,掌握其计算步骤,并能运用该方法解决实际问题。
2.相关系数的理解和计算是教学难点。学生对相关系数的概念及其在实际问题中的应用容易产生混淆,需要教师进行详细讲解和引导。
3.数学建模能力的培养是本章节的另一个重点。学生需要学会从实际问题中抽象出数学模型,运用最小二乘法求解,并分析结果。
最小二乘法抛物线拟合公式
![最小二乘法抛物线拟合公式](https://img.taocdn.com/s3/m/a5b5228451e2524de518964bcf84b9d529ea2c5b.png)
最小二乘法抛物线拟合公式好的,以下是为您生成的文章:在咱们学习数学的这条“漫漫征途”上,有一个神秘而有趣的“家伙”叫做最小二乘法抛物线拟合公式。
这玩意儿听起来好像很复杂,让人摸不着头脑,但其实啊,它就像我们生活中的一把“万能钥匙”,能解决不少难题呢!我记得有一次,我带着学生们去做一个实验,测量一个物体下落的高度和时间。
大家兴致勃勃地拿着尺子和秒表,认真地记录着每一组数据。
可当数据摆在眼前的时候,大家都傻了眼,这一堆数字到底能说明啥呀?这时候,我就给他们引出了最小二乘法抛物线拟合公式。
咱们先来看看这个公式到底长啥样:对于一组数据(x₁, y₁),(x₂, y₂),...,(xₙ, yₙ),要拟合的抛物线方程为 y = ax² + bx + c ,那么最小二乘法就是要找到 a、b、c 使得∑(yₙ - (axₙ² + bxₙ + c))² 最小。
说起来有点绕,咱举个简单的例子。
比如说我们有这样五组数据(1,2),(2,5),(3,10),(4,17),(5,26)。
咱们要通过最小二乘法来找到最合适的抛物线。
首先,把这五组数据代入到抛物线方程里,就得到了五个方程:2 = a + b + c5 = 4a + 2b + c10 = 9a + 3b + c17 = 16a + 4b + c26 = 25a + 5b + c接下来就是解这个方程组啦。
这可不是一件轻松的事儿,得一步一步来,仔细计算,不能马虎。
经过一番“苦战”,咱们算出 a = 1,b = 0,c = 1 ,所以拟合出来的抛物线方程就是 y = x² + 1 。
这时候再回头看看咱们一开始的那些数据,是不是发现这个抛物线把这些点都“串”起来啦,就像串糖葫芦一样!最小二乘法抛物线拟合公式在实际生活中的应用可多啦!比如说在经济学中,预测商品的销售趋势;在物理学中,分析物体的运动轨迹;在工程学中,设计桥梁的拱形结构等等。
矩阵论-第五章-广义逆及最小二乘
![矩阵论-第五章-广义逆及最小二乘](https://img.taocdn.com/s3/m/1b20db85ba4cf7ec4afe04a1b0717fd5360cb204.png)
第五章 广义逆及最小二乘解在应用上见得最频繁的、大约莫过于线性方程组了。
作一番调查或整理一批实验数据,常常归结为一个线性方程组:Ax b =然而是否是相容方程呢?倘若不是,又如何处理呢?最小二乘解是常见的一种处理方法。
其实它不过是最小二乘法的代数形式而已。
广义逆从1935年Moore 提出以后,未得响应。
据说: (S.L.Campbell & C.D.Meyer.Jr Generalized Inverses of Linear Transformations 1979 P9)原因之一,可能是他给出的定义,有点晦涩。
其后,1955年Penrose 给出了现在大都采用的定义以后,对广义逆的研究起了影响,三十年来,广义逆无论在理论还是应用上都有了巨大发展,一直成为了线性代数中不可缺少的内容之一。
为了讨论的顺利进行,我们在第一节中先给出点准备,作出矩阵的奇值分解。
§5.1 矩阵的酉交分解、满秩分解和奇值分解在线行空间中,知道一个线性变换在不同基偶下的矩阵表示是相抵的或等价的。
用矩阵的语言来说,就是:若 ,m n A B C ×∈,倘有非异矩阵()P m n ×,()Q n n ×存在,使B PAQ =则称A 与B 相抵的或等价的。
利用初等变换容易证明m n A C ×∈,秩为r ,则必有P ,Q ,使000r m nI PAQ C ×⎛⎞=∈⎜⎟⎝⎠(5.1-1) 其中r I 是r 阶单位阵。
在酉空间中,上面的说法,当然也成立,如果加上P ,Q 是酉交阵的要求,情形又如何呢?下面就来讨论这个问题。
定理 5.1.1 (酉交分解) m n A C ×∈,且秩为r ,则(),(),,H H m n U m n V n n U U I V V I ∃××==,使00r HU AV Δ⎛⎞=×⎜⎟⎝⎠(m n) (5.1-2) 其中r Δ为r 阶非异下三角阵。
第五章 线性参数最小二乘法处理(1)
![第五章 线性参数最小二乘法处理(1)](https://img.taocdn.com/s3/m/74380f2af78a6529647d53e1.png)
光电效应
1 E = hν = m υ0 2 + A 2
1 eU 0 = m υ0 2 2
h A U0 = ν e e
2
光电效应
频率νi(×1014Hz) 8.214 7.408 6.879 5.490 5.196 截止电压U0i(V) 1.790 1.436 1.242 0.688 0.560
3
光电效应
SLOPE函数
频率ν i(Hz) 8.214E+14 7.408E+14 6.879E+14 5.490E+14 5.196E+14 截止电压U0i(V) 1.790E+00 1.436E+00 1.242E+00 6.880E-01 5.600E-01
4.02964E-15
2.000E+00 1.800E+00 1.600E+00
1
i 2
e
i 2 ( 2 i 2 )
di
( i 1, 2,
, n)
由概率论可知,各测量数据同时出现在相应区域的概率
为ቤተ መጻሕፍቲ ባይዱ
P Pi
i 1
n
1
1 2 n
2
e n
i 1
n
i 2 (2 i 2 )
d 1d 2
d n
12
第一节 最小二乘原理
1.400E+00
y = 4E-15x - 1.5314
1.200E+00 1.000E+00 8.000E-01 6.000E-01
4.000E-01
2.000E-01 0.000E+00 0.000E+00 5.000E+14 1.000E+15
线性参数的最小二乘法处理
![线性参数的最小二乘法处理](https://img.taocdn.com/s3/m/f14d1658ad02de80d4d84015.png)
W1、 +1″, +10″, +1″, +12″,
W2、 +6″, +4″,
W3、
W4„
Wn
+2″ , -3″ , +4″ +12″, +4″ +3″, +4″
+12″, +12″, +12″
W12
2
12
W22
2 2
W32
32
最小值
3
即 ∑(PW2)=(P1W21)+(P2W22)+(P3W32)
的测量结果 yi 最接近真值,最为可靠,即: yi=∠i+Wi 由于改正数 Wi 的二次方之和为最小,因此称为最小二乘法。 二 最小二乘法理 现在我们来证明一下,最小二乘法和概率论中最大似然方法(算术平均值方法) 是一致的。 (一)等精度测量时 (1)最大似然方法 设 x1,x2„xn 为某量 x 的等精度测量列,且服从正态分布,现以最大似然法和最小 二乘法分别求其最或是值(未知量的最佳估计量) 在概率论的大数定律与中心极限定理那一章我们讲过,随着测量次数的增加,测 量值的算术平均值也稳定于一个常数,即
2 i 1
n
曾给出: vi2
i 1
n
n n 1 n 2 ,由此可知 x vi2 / i2 为最小,这就是最小二乘法的基本 i n i 1 i 1
含义。引入权的符号 P ,最小二乘法可以写成下列形式:
Pv
i 1
n
2 i i
最小
在等精度测量中, 1 2 ... , P1 P2 ... Pn 即: 最小二乘法可以写成下列形式:
第五章-异方差性-答案说课讲解
![第五章-异方差性-答案说课讲解](https://img.taocdn.com/s3/m/66d702ae0722192e4436f64f.png)
第五章-异方差性-答案第五章 异方差性一、判断题1. 在异方差的情况下,通常预测失效。
( T )2. 当模型存在异方差时,普通最小二乘法是有偏的。
( F )3. 存在异方差时,可以用广义差分法进行补救。
(F )4. 存在异方差时,普通最小二乘法会低估参数估计量的方差。
(F )5. 如果回归模型遗漏一个重要变量,则OLS 残差必定表现出明显的趋势。
( T )二、单项选择题1.Goldfeld-Quandt 方法用于检验( A )A.异方差性B.自相关性C.随机解释变量D.多重共线性2.在异方差性情况下,常用的估计方法是( D )A.一阶差分法B.广义差分法C.工具变量法D.加权最小二乘法3.White 检验方法主要用于检验( A )A.异方差性B.自相关性C.随机解释变量D.多重共线性4.下列哪种方法不是检验异方差的方法( D )A.戈德菲尔特——匡特检验B.怀特检验C.戈里瑟检验D.方差膨胀因子检验5.加权最小二乘法克服异方差的主要原理是通过赋予不同观测点以不同的权数,从而提高估计精度,即( B )A.重视大误差的作用,轻视小误差的作用B.重视小误差的作用,轻视大误差的作用C.重视小误差和大误差的作用D.轻视小误差和大误差的作用6.如果戈里瑟检验表明,普通最小二乘估计结果的残差与有显著的形式的相关关系(满足线性模型的全部经典假设),则用加权最小二乘法估计模型参数时,权数应为( B )A. B. C. D. 7.设回归模型为,其中()2i2i x u Var σ=,则b 的最有效估计量为( D )i e i x i i i v x e +=28715.0i v i x 21i x i x 1ix 1i i i u bx y +=A. B. C. D. ∑=i i x y n 1b ˆ 8.容易产生异方差的数据是( C )A. 时间序列数据B.平均数据C.横截面数据D.年度数据9.假设回归模型为i i i u X Y ++=βα,其中()2i 2i X u Var σ=,则使用加权最小二乘法估计模型时,应将模型变换为( C )。
第5章-1 曲线拟合(线性最小二乘法)讲解
![第5章-1 曲线拟合(线性最小二乘法)讲解](https://img.taocdn.com/s3/m/7ad1b8e976a20029bd642d8e.png)
求所需系数,得到方程: 29.139a+17.9b=29.7076 17.9a+11b=18.25
通过全选主元高斯消去求得:
a=0.912605
b=0.174034
所以线性拟合曲线函数为: y=0.912605x+0.174034
练习2
根据下列数据求拟合曲线函数: y=ax2+b
x 19 25 31 38 44 y 19.0 32.3 49.0 73.3 97.8
∑xi4 a + ∑xi2 b = ∑xi 2yi
∑xi2 a + n b = ∑yi
7277699a+5327b=369321.5 5327a+5b=271.4
曲线拟合的最小二乘法
1.曲线拟合的意思
Y
.
.
.
.
y=ax+b y=ax2+bx+c
X
y=ax+b y=ax2+bx+c 就是未知函数的拟合曲线。
2最小二乘法原理
观测值与拟合曲线值误差的平方和为最小。
yi y0 y1 y2 y3 y4…… 观测值 y^i y^0 y^1 y^2 y^3 y^4…… 拟合曲线值
拟合曲线为: y=(-11x2-117x+56)/84
x
yHale Waihona Puke 1.61 1.641.63 1.66
1.6 1.63
1.67 1.7
1.64 1.67
1.63 1.66
1.61 1.64
1.66 1.69
1.59 1.62
最小二乘估计课件(43张)
![最小二乘估计课件(43张)](https://img.taocdn.com/s3/m/7cdcd3361fd9ad51f01dc281e53a580217fc506b.png)
30
2.已知变量 x,y 有如下对应数据:
x
1
2
3
4
y
1
3
4
5
(1)作出散点图;
(2)用最小二乘法求关于 x,y 的回归直线方程.
栏目导航
[解] (1)散点图如下图所示.
31
栏目导航
(2) x =1+2+4 3+4=52, y =1+3+4 4+5=143,
4
i∑=1xiyi=1+6+12+20=39, i∑=41x2i =1+4+9+16=30, b=393-0-4×4×52×521243=1130,
(1)判断它们是否有相关关系,若有相关关系,请作一条拟合直 线;
(2)用最小二乘法求出年龄关于脂肪的线性回归方程.
栏目导航
25
[思路探究] (1)作出散点图,通过散点图判断它们是否具有相关 关系,并作出拟合直线;
(2)利用公式求出线性回归方程的系数 a,b 即可.
栏目导航
26
[解] (1)以 x 轴表示年龄,y 轴表示脂肪含量(百分比),画出散 点图,如下图.
32
栏目导航
a=143-1130×52=0, 故所求回归直线方程为 y=1130x.
33
栏目导航
34
1.求回归直线的方程时应注意的问题 (1)知道 x 与 y 呈线性相关关系,无需进行相关性检验,否则应首先进 行相关性检验.如果两个变量之间本身不具有相关关系,或者说,它们之
间的相关关系不显著,即使求出回归方程也是毫无意义的,而且用其估计
栏目导航
8
2.下表是 x 与 y 之间的一组数据,则 y 关于 x 的线性回归方程 y
=bx+a 必过( )
x
《数值分析》第5章 曲线拟合与函数插值
![《数值分析》第5章 曲线拟合与函数插值](https://img.taocdn.com/s3/m/1ab5af2bf46527d3240ce0bd.png)
例如用函数
y Aebx
(5.8)
去拟合一组给定的数据,其中 A和 b是待定参这数时. ,可以在 (5.8) 式两端取
对数,得
ln y ln A bx
记 y ln y,a ln A,则上式可写成 y a b. x这样,仍可用最小二乘法解出
和 a (从而b 也就确定了 和 A) ,于b 是得到拟合函数
区间 [a,b]上是存在的,但往往不知道其具体的解析表达式,只能通过观察、
测量或实验得到一些离散点上的函数值.
我们希望对这种理论上存在的函数用一个比较简单的表达式近似地给出整体 上的描述.
此外,有些函数虽然有明确的解析表达式,但却过于复杂而不便于进行理论 分析和数值计算,我们同样希望构造一个既能反映函数特性又便于计算的简 单函数,近似替代原来的函数.
图5-1 人口增长的线性模型
5.1.1 最小二乘问题
设人口 y 与年份 x之间的函数关系为
y a bx
(5.1)
其中 a和 b 是待定参数. 由图5-1可知, (xi , yi并) 不是严格地落在一条直线上,
因此,不论怎样选择 和 a,都b不可能使所有的数据点
(x均i ,满yi )足关系
式 (5.1) .
s0 10, s1 545, s2 29785, u0 18.09, u1 987.78
于是正规方程组为
10 545 a 18.09 545 29785 b 987.78
5.1.2 最小二乘拟合多项式
解得 a 0.570,4 b 0.02,27于是 A ea 1.76,90所求拟合函数为
21 91
441
a1
163
91 441 2275 a2 777
解得 a0 26.8,a1 14.08,57 a2 ,2因此所求拟合多项式为
第五章 测量误差
![第五章 测量误差](https://img.taocdn.com/s3/m/6d248cc676eeaeaad1f330eb.png)
(2)水准路线高差的中误差
如果在这段水准路线当中一共观测了n站,则总高 差为: 设每站的高差中误差均为m站 ,则 mh = 取3倍中误差为限差,则普通水准路线的容许误差为: m容= 3
2.水平角观测的误差分析
用DJ6经纬仪进行测回法观测水平角,那么用盘左 盘右观测同一方向的中误差为±6” ,即 =±6”。 假设盘左瞄准A点时读数为A左,盘右瞄准A时读数 为A右,那么瞄准A方向一个测回的平均读数应为
求真误差的方差: 由方差的性质可得:
中误差为标准差σ的估计值,而标准差的平方就等 于方差,故
二、线性函数
1、倍数函数 设有函数 Z=Kx 式中 x—直接观测值,其中误差为mx; K—常数 Z—观测值x的函数 若对x作n次同精度观测,其真误差列为 设对应的函数的真误差列为 。 观测值与函数间的真误差关系式为:
三、非线性函数 设有非线性函数 z=f(x1、x2、…、xn) 式中,x1、x2、…、xn为独立观测值,其相应的中
误差分别为m1、m2、…、mn,对其全微分得到
四、误差传播定律的应用 1.水准测量的误差分析
(1)一个测站的高差中误差 每站的高差为:h=a-b;a、b为水准仪在前后水准 尺上的读数,读数的中误差m读,m读≈±3mm,则 每个测站的高差中误差为
二、中误差(均方差)
1.测量工作中,用标准差来衡量观测的精度,我 们称之为中误差,用m表示。 设在相同的观测条件下,对未知量进行重复独立 观测,观测值为:l1,l2,…,ln,其真误差为Δ 1,
Δ 2,…,Δ n ,则真误差的方差
式中当n→∞,E(Δ ) = 0 ,根据数学期望的定义 E(Δ 2)就是Δ 2的算术平均值。
将上式平方,得 按上式求和,并除以n,得
(完整版)5线性参数的最小二乘法处理(精)
![(完整版)5线性参数的最小二乘法处理(精)](https://img.taocdn.com/s3/m/72229d21ae1ffc4ffe4733687e21af45b307fe34.png)
一、等精度测量线性参数的LSM处理的正规方 程。
❖ 线性参数的误差方程式为:
l1 a11x1 a12 x2 ... a1t xt v1
l2 a21x1 a22 x2 ... a2t xt v2
……
ln an1x1 an2 x2 ... ant xt vn
v2
第三节 精度估计
❖ 一、测量数据的精度估计
❖ (一)等精度测量数据的精度估计
❖ 对包含t个未知数的线性参数方程,进行n次独立的 等精度测量。
❖ 可以证明
❖
[V V ] ~ 2 n t
2
E[V V
2
]
n
t
❖取
s 2 v v
nt
s
v
2 i
nt
❖ V1=3-(1.28×1+0.418×2)=0.884 ❖ V2=5-(1.28×1+0.418×10)=-0.46 ❖ V3=8-(1.28×1+0.418×20)=-1.64 ❖ V4=15-(1.28×1+0.418×30)=1.18 ❖ V5=18-(1.28×1+0.418×40)=0
L
8
15
18
AT A 1052 3100024 AT L 134698
( AT
A)1
1 4616
3004 102
1502
X
( AT A)1 AT L
1 4616
3004 102
1502134698 01..42188
❖ 正规方程为: ❖ 5x+102y=49 ❖ 102x+3004y=1386 ❖ 解该方程得到 ❖ x=1.28 ❖ y=0.418
i
第五章线性参数的最小二乘法处理
![第五章线性参数的最小二乘法处理](https://img.taocdn.com/s3/m/be5ecf4ee518964bcf847cc5.png)
5-1
最小二乘法(least square method)
1805年,勒让德(Legendre)应用“最小二乘法”, 确定了慧星的轨道和地球子午线段。 1809年,高斯(Gauss)论证其解的最佳性。
经典最小二乘法(即代数最小二乘法)
现代最小二乘法(即矩阵最小二乘法)
(n=t)
正规方程:误差方程按最小二乘法原理转化得到的 有确定解的代数方程组。
5-18
第二节、正规方程
一、等精度测量线性参数最小二乘法的正规方程 二、不等精度测量线性参数最小二乘法的正规方程 三、非线性参数最小二乘法处理的正规方程(略) 四二节
正规方程
一、等精度测量线性参数最小二乘处理的正规方程
误差方程
a11 , a12 , , a1t a , a ,, a 2t A 21 22 a n1 , a n 2 , , a nt
系数矩阵
误差方程
v1 l1 (a11 x1 a12 x 2 a1t xt ) v 2 l 2 (a 21 x1 a 22 x 2 a 2t xt ) v n l n (a n1 x1 a n 2 x 2 a nt xt )
相应的估计值
y1 a11 x1 a12 x 2 a1t xt y 2 a 21 x1 a 22 x 2 a 2t xt y n a n1 x1 a n 2 x 2 a nt xt
其误差方程:
v1 l1 (a11 x1 a12 x 2 a1t xt ) v 2 l 2 (a 21 x1 a 22 x 2 a 2t xt ) v n l n (a n1 x1 a n 2 x 2 a nt xt )
广义最小二乘法
![广义最小二乘法](https://img.taocdn.com/s3/m/1b624216591b6bd97f192279168884868762b8f9.png)
广义最小二乘法第五章广义最小二乘法当计量经济学模型同时存在序列相关和异方差,而且随机误差项的方差-协方差矩阵未知时我们可以考虑使用广义最小二乘法(gls)。
即下列模型:y=xβ+μ满足这样一些条件:e(μ)=0cov(μμ')=δ2ωω=11ω1221ω221ωn2...ω1n...ω2nωnn设立ω=dd'用d左乘y=xβ+μ的两边,得到一个新的模型d-1y=d-1xβ+d-1μy=x**-1β+μ*(1)该模型具备同方差性和随机误差相互独立性。
因为可以证明:e(μ*μ*')=δ2i于是需用普通最轻二乘法估算(1)式,获得的参数估计结果为ˆ=(x*'x*)-1x*'y*β=(x'ωx)x'ωy整个过程最重要的一步就是要估计ω,当模型存在一阶自相关时。
我们取-1-1-1ρn-1ρn-2ρn-1ρn-21案例四:广义最小二乘法在这里我们举例子去表明广义最轻二乘法的应用领域。
在探讨这个问题时所使用的数据如下表中5.1右图:首先我们计算ρ,我们可以直接根据ols估计出来的dw来计算,ols估计出来的结果为下表5.2:可以根据ρ=1-dw/2,dw=0.8774,因此ρ=0.5613,在这个基础上,我们可以得出结论这个方差-协方差矩阵。
方差协方差矩阵可以由以下一个程序去赢得:!p=0.5613matrix(17,17)fac1for!i=1to17fac1(!i,!i)=1for!j=1to17for!i=!j+1to17fac1(!i,!j)=!p^(!i-!j)fac1(!j,!i)=fac1(!i,!j)得到的矩阵结果为下表5.3下面再展开cholosky水解,获得d,展开cholosky水解时所用至的命令如下:1sym(17,17)fact1matrixfact1=@cholesky(fact)得到的fact1矩阵如下解fact1的逆矩阵就可以将数据展开切换,获得m2和gdp,解逆矩阵时使用的命令如下:matrix(17,17)fact2**fact2=@inverse(fact)得到的fact1矩阵的逆矩阵fact2如下m2*=m2*fact2gdp*=gdp*fact这样就可以获得一组转换后的数据,数据如下再对这组数据进行普通最小二乘法就可以得到这个方程的广义最小二乘法的估计结果,结果如下:可以看见,采用广义最轻二乘法后,序列有关的情况获得提升。
最小二乘法与曲线拟合公开课获奖课件百校联赛一等奖课件
![最小二乘法与曲线拟合公开课获奖课件百校联赛一等奖课件](https://img.taocdn.com/s3/m/c23b4310777f5acfa1c7aa00b52acfc789eb9fdd.png)
N
2 aikait
i 1
(k,t 1,2,, n)
故
N
ai21
i 1 N
M
2
i
1
ai1ai 2
N
i 1
ai1ain
N
ai1ai2
i 1
N
ai22
i 1
N
ai2ain
i 1
N
ai1ai3
i 1
N
ai2ai3
i 1
N
ai3ain
i 1
N
ai1ain
i 1 N
i 1
ai 2 ain
令
n
i aij x j bi
(i 1,2,, N )
称 i为偏差。 j1
工程实际中旳许多问题都能够归结为矛盾方程组,
实际中需要谋求矛盾方程组旳一组解,以使得偏差旳 N
绝对值之和 尽i 量地小。为了便于分析
i 1
计算和应用,常采用使偏差旳平方和
Q
N
2 i
N
n
2 aij x j bi
这组数据。“最佳”旳原则是:使得(x)在xi旳
偏差
i (xi ) yi (i 1,2,, N )
旳平方和
N
N
Q
2 i
(xi ) yi 2
i 1
i 1
到达最小。
因为拟合曲线y=(x)不一定过点(xi,yi),所以,把 点(xi,yi)带入y=(x) ,便得到以a0,a1,…,am为未知
引理2:设非齐次线性方程组 Ax
旳b 系数矩阵
A=(aij)N×n,若rankA=n,则
((12))矩n阶阵线AT性A是方对程称组正AT 定Ax矩 阵有AT;唯b 一旳解。
最小二乘法拟合相对旋转四元数的集合_概述说明以及解释
![最小二乘法拟合相对旋转四元数的集合_概述说明以及解释](https://img.taocdn.com/s3/m/9d8d3b7df011f18583d049649b6648d7c1c7082f.png)
最小二乘法拟合相对旋转四元数的集合概述说明以及解释引言部分的内容:1.1 概述本文旨在介绍最小二乘法拟合相对旋转四元数的集合。
旋转四元数是一种用于表示三维空间中旋转变换的数学工具,而相对旋转四元数集合则是一组连续变化的旋转变换序列。
通过最小二乘法,我们可以将这个相对旋转四元数集合拟合成一组连续变化的曲线,进而利用这个曲线来描述和模拟实际应用场景中的旋转变换。
1.2 文章结构本文分为五个部分,如下所示:第一部分是引言部分,主要包括概述、文章结构和目的。
第二部分是最小二乘法拟合相对旋转四元数的集合概述,详细介绍了最小二乘法和旋转四元数的基本概念以及相对旋转四元数集合的应用场景。
第三部分是最小二乘法拟合相对旋转四元数的原理解释,探讨了最小二乘法在曲线拟合中的应用,并说明了如何将旋转四元数集合拟合成一组连续变化的曲线,并解释了算法的步骤。
第四部分是实验结果与讨论,介绍了数据收集和处理方法,并对最小二乘法拟合相对旋转四元数的结果进行了分析和评价。
同时,对实验结果进行了讨论和解释,深入探讨了其应用的效果和局限性。
最后一部分是结论与展望,总结了本文的研究发现,提出了研究的局限性和改进方向,并展望了未来的工作方向。
1.3 目的本文的目的是介绍最小二乘法拟合相对旋转四元数的集合及其应用。
通过详细解释最小二乘法在曲线拟合中的原理,并结合旋转四元数集合的特点,探索如何将其拟合成连续变化曲线。
通过实验结果与讨论,评估该方法在模拟旋转变换过程中的可行性和有效性。
最后,在结论与展望中总结研究结果,并提出未来研究工作的展望。
2. 最小二乘法拟合相对旋转四元数的集合概述2.1 什么是最小二乘法:最小二乘法是一种常用的数学优化方法,通过最小化误差的平方和来拟合数据。
它在很多领域中被广泛应用,包括曲线拟合、回归分析等。
2.2 旋转四元数的基本概念:旋转四元数是一种表示三维空间中旋转的数学工具,由实部和虚部构成。
它们可以用来描述物体在三维空间中的姿态变化,并且能够保持旋转操作的代数特性。
Eviews数据统计与分析教程5章 基本回归模型OLS估计-普通最小二乘法
![Eviews数据统计与分析教程5章 基本回归模型OLS估计-普通最小二乘法](https://img.taocdn.com/s3/m/53fe6e48011ca300a6c390e9.png)
选择工作文件窗口工具栏中的“Object”| “New Object”| “Equation”选项,在下图所示的对话框中输入方程变量。
EViews统计分析基础教程
一、普通最小二乘法(OLS)
2.方程对象
EViews5.1提供了8种估计方法: “LS”为最小二乘法; “TSLS”为两阶段最小二乘法; “GMM”为广义矩法; “ARCH”为自回归条件异方差; “BINARY”为二元选择模型,其中包括Logit模型、Probit 模型和极端值模型; “ORDERED”为有序选择模型; “CENSORED”截取回归模型; “COUNT”为计数模型。
五、 线性回归模型的检验
3.异方差性检验
异方差性的后果 :
当模型出现异方差性时,用OLS(最小二乘估计法)得到的 估计参数将不再有效;变量的显著性检验(t检验)失去意 义;模型不再具有良好的统计性质,并且模型失去了预测 功能。
EViews统计分析基础教程
五、 线性回归模型的检验
4.序列相关检验
方法:
EViews统计分析基础教程
四、 线性回归模型的基本假定
线性回归模型必须满足以下几个基本假定:
假定1:随机误差项u具有0均值和同方差,即 E ( ui ) = 0 i=1,2,…,n Var ( ui ) = σ2 i=1,2,…,n 其中,E表示均值,也称为期望,在这里随机误差项u的 均值为0。Var表示随机误差项u的方差,对于每一个样本 点i,即在i=1,2,…,n的每一个数值上,解释变量y对 被解释变量x的条件分布具有相同的方差。当这一假定条 件不成立是,称该回归模型存在异方差问题。
EViews统计分析基础教程
四、 线性回归模型的基本假定
系统辨识第5章 线性动态模型参数辨识 最小二乘法
![系统辨识第5章 线性动态模型参数辨识 最小二乘法](https://img.taocdn.com/s3/m/6963f55a53ea551810a6f524ccbff121dd36c583.png)
度函数
,则称uS(uk()为) “持续激励”信号。
● 定义4 一个具有谱密度 Fn (为z 1的) 平f1z稳1 信f2号z 2u(k)称fn为z nn 阶
“持续激励”Fn信(e号j ),2 S若u (对) 一0 切形如 Fn (e j ) 0
的滤波器,关系式
,意味着
。
● 定理2 设输入信号u(kR)u是(0)平稳R随u (1机) 信号,Ru (如n 果1)相关函数矩阵
式中
zL H L nL
nzHLLL[[zn(h(hh11TT)T),((,(zL12n())()22)),,,,znz(((LzLzL)(()]10]))1)
z(1 na ) z(2 na )
z(L na )
u(0) u(1)
u(L 1)
u(1 nb )
u(2
nb
)
u(L nb )
5.2 最小二乘法的基本概念
● 两种算法形式
① 批处理算法:利用一批观测数据,一次计算或经反复迭代,
以获得模型参数的估计值。
②
递推算法:在上次模型参数估计值
ˆ
(k
1)的基础上,根据当
前获得的数据提出修正,进而获得本次模型参数估计值ˆ (k ),
广泛采用的递推算法形式为
(k ) (k 1) K (k )h(k d )~z (k )
z(k ) h (k ) n(k )
式中z(k)为模型输出变量,h(k)为输入数据向量, 为模型参
数向量,n(k)为零均值随机噪声。为了求此模型的参数估计值, 可以利用上述最小二乘原理。根据观测到的已知数据序列
和{z(k)} ,{h极(k小)} 化下列准则函数
L
J ( ) [z(k ) h (k ) ]2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5-37) 这正是不等精度测量时加权算术平均值原理所给出的结果。
对于等精度测量有
则由最小二乘法所确定的估计量为
此式与等精度测量时算术平均值原理给出的结果相同。 由此可见,最小二乘法原理与算术平均值原理
是一致的,算术平均值原理可以看做是最小二乘 法原理的特例。
第三节 精度估计
用矩阵表示的正规方程与等精度测量情况类似,可表示为
即
(5-27)
上述正规方程又可写成 (5-28)
该方程的解,即参数的最小二乘法处理为 (5-29)
令
则有
(5-30)
例5—2
• 某测量过程有误差方程式及相应的标准差如下:
试求x1,x2的最小二乘法处理正规方程的解。 解: (1)首先确定各式的权
(2)用表格计算给出正规方程常数项和系数
三、线性参数最小二乘法的正规方程
为了获得更可取的结果,测量次数n总要多于未 知参数的数目t,即所得误差方程式的数目总是要 多于未知数的数目。因而直接用一般解代数方程 的方法是无法求解这些未知参数的。
最小二乘法则可以将误差方程转化为有确定解 的代数方程组(其方程式数目正好等于未知数的个 数),从而可求解出这些未知参数。这个有确定解 的代数方程组称为最小二乘法估计的正规方程(或 称为法方程)。
将ti,li,值代人上式,可得残余误差为
(二)不等精度测量数据的精度估计
不等精度测量数据的精度估计与等精度测量数据的精 度估计相似,只是公式中的残余误差平方和变为加权的 残余误差平方和,测量数据的单位权方差的无偏估计为
(5-44) 通常习惯写成
测量数据的单位权标准差为
(5-45)
(5-46)
二、最小二乘估计量的精度估计
1.线性参数的最小二乘法处理的基 本程序
线性参数的最小二乘法处理程序可归结为: (1)根据具体问题列出误差方程式; (2)按最小二乘法原理,利用求极值的方法将误差方程 转化为正规方程; (3)求解正规方程,得到待求的估计量; (4)给出精度估计。 对于非线性参数,可先将其线性化,然后按上述线性参 数的最小二乘法处理程序去处理。
建立正规方程是待求参数最小二乘法处 理的基本环节。
2.等精度测量的线性参数最小二乘法处理
的正规方程
线性参数的误差方程式为 最小二乘法处理的正规方程为
这是一个t元线性方 程组.当其系数行 列式不为零时,有 唯一确定的解,由 此可解得欲求的估
计量
(5-19)
线性参数正规方程的矩阵形式
正规方程(5—19)组,还可表示成如下形式
最小二乘法也可使用。
设X和Y两个物理量之间的函数关系为
假定此函数关系f已知,但其中a1,a2,…,ak等 参数还未求出,现对于X和Y有一批观测数据:
{xi,yi} ,i=1,2,…,n,要利用这批数据 在一定法则之下作出这些参数a1,a2,…,ak的估 计。
一般根据测量的实际情况,可假设变量X的测量没有误 差(或与Y的误差相比很小,可略去),而变量Y的测量有 误差,故关于Y的观测值yi可以写成
最大似然法要求上式取极大值,这就相当于要求指 数项中的
=最小 这就说明了在观测值服从正态分布的条件下,最 小二乘估计与最大似然估计是一致的。
观测值不服从正态分布时的最小二乘估计
实质上,按最小二乘条件给出最终结果能充分 地利用误差的抵偿作用,可以有效地减小随机误 差的影响,因而所得结果具有最可信赖性。
(3)求出待求估计量 求解正规方程解得待求估计量
即
由正规方程,有
按矩阵形式解算
则
所以
(4)给出实验结果 铜棒长度yt随温度t的线性变化规律为
3.不等精度测量的线性参数最小二乘法处理的 正规方程
• 不等精度测量时线性参数的误差方程仍如上述式 (5—9)一样,但在进行最小二乘法处理时,要取加权残 余误差平方和为最小,即
• 最小二乘法的产生是为了解决从一组测量 值中寻求最可信赖值的问题。
一、问题背景
• 在测量的实验数据处理中,经常需要根据两个 量的一批观测数据(xi,yi),i=1,2,…,n求出这 两个变量Y与X之间所满足的一个函数关系式Y= f(X)。
• 若变量间的函数形式根据理论分析或以往的经 验已经确定好了,而其中有一些参数是未知的, 则可通过观测的数据来确定这些参数;
(2)解是观测值的线性组合,且有最小方差。这称为高 斯—马尔可夫定理; (3) 加权的残差平方和的期望值是
当σ2=1,即取wi=1/σi2,这时称
为χ2 量。期望值为n-k。
第二节 线性参数的最小二乘法
一般情况下,最小二乘法可以用于线性参数 的处理,也可用于非线性参数的处理。由于测 量的实际问题中大量的是属于线性的,而非线 性参数借助于级数展开的方法可以在某一区域 近似地化成线性的形式。
二、最小二乘法准则与正规方程
在参数估计问题中,最小二乘法的法则是: 所选取的参数估计值aˆ1 ,aˆ2 ,…,aˆk 应使变量Y的诸观测 值yi与其真值的估计值(又叫拟合值),即f(xi;a1,a2,…ak) 之差的平方和为最小。 用式子表示时,记残差νi为
最小二乘法就是要求
=最小 在这个条件下,利用数学中求极值的方法可以求出 参数 aˆ1 ,aˆ2 ,…,aˆk 。这样求出的参数叫参数的最小 二乘估计。
• 若变量间的具体函数形式尚未确定,则需要通 过观测数据来确定函数形式及其中的参数。
一、问题背景
• 在多数估计和曲线拟合的问题中,不论是参 数估计还是曲线拟合,都要求确定某些(或一个) 未知量,使得所确定的未知量能最好地适应所 测得的一组观测值,即对观测值提供一个好的 拟合。
• 解决这类问题最常用的方法就是最小二乘法。 • 在一些情况下,即使函数值不是随机变量,
对测量数据最小二乘法处理的最终结果, 不仅要给出待求量的最可信赖的估计量,而 且还要确定其可信赖程度,即应给出所得估 计量的精度。
一、测量数据的精度估计
为了确定最小二乘估计量X1,X2,…,Xt的 精度,首先需要给出直接测量所得测量数据的 精度。测量数据的精度也以标准差σ来表示。因 为无法求得σ的真值,因而只能依ˆ 据有限ˆ次的测 量结果给出σ的估计值 ,所谓给出精度估计, 实际上是求出估计值 。
例5—1
在不同温度下,测定铜棒的长度如下表,试估计0℃时 的铜棒长度y0和铜的线膨胀系数α。
解: (1)列出误差方程
式中, li——在温度ti下铜棒长度的测得值; α——铜的线膨胀系数。
令y0=a,αy0=b为两个待估计参量,则误差方程可写为
(2) 列出正规方程
为计算方便,将数据列表如下:
将表中计算出的相应系数值代人上面的正规方程得
最小二乘法的几何意义
从几何图形上可看出,最小二乘法就是要在穿过各 观测点(xi,yi)之间找出这样一条估计曲线,使各观测 点到该曲线的距离的平方和为最小。
Y
X
三、最小二乘法与最大似然法的关系
如果假定各观测值是相互独立且服从正态分布, 期望值是μ(xi;a1,a2,…,ak),方差是σi2, 则观测值的似然函数为
n
前面已证明
2 i
/
2
是自由度为(n-t)的χ2变量。
i 1
根据χ2变量的性质,有
(5-39) 取
(5-40) 可以证明它是σ2的无偏估计量
因为
习惯上,式5-40的这个估计量也写成σ2,即 (5-41)
因而测量数据的标准差的估计量为 (5-43)
例5.3
• 试求例5.1中铜棒长度的测量精度。 已知残余误差方程为
这里y0i表示xi对于的Y的变量真值,△i表示相应的测量 误差。
假设诸观测值相互独立且服从正态分布。在等精度观测的 情况下,即认为各误差服从相同的正态分布N(0, σy)。
现在的问题是一个参数估计问题:需要给出a1,a2,…, ak的估计值 , aˆ1 aˆ2 ,…,aˆk 。
解决这类问题最常用的方法就是最小二乘法。在一些情况 下,即使函数值不是随机变量,最小二乘法也可使用。
最小二乘法所确定的估计量X1,X2,…,Xt的 精度取决于测量数据的精度和线性方程组所给出 的函数关系。对给定的线性方程组,若已知测量 数据l1,l2,…,ln的精度,就可求得最小二乘估 计量的精度。
下面首先讨论等精度测量时最小二乘估计量的精度估计。 设有正规方程
现要给出由此方程所确定的估计量xl,x2,…,xt 的精度。为此,利用不定乘数法求出xl,x2,…,xt 的表达式,然后再找出估计量xl,x2,…,xt的精度 与测量数据l1,l2,…,ln精度的关系,即可得到估计 量精度估计的表达式。
假若观测值不服从正态分布,则最小二乘估计 并不是最大似然估计。但应该指出,在有些问题 中观测值虽然不服从正态分布,但当样本容量很 大时,似然函数也趋近于正态分布,因此,这时 使用最小二乘法和最大似然法实质也是一致的。
不服从正态分布时最小二乘法的统计学性质
若观测值是服从正态分布的,这时最小二乘法和最大似 然法实际上是一回事。但观测值不服从正态分布或其分布 未知时,这时用最小二乘法显得缺乏理论的验证。但应该 指出,作为一种公理来使用,最小二乘法仍然是可以接受 的,而且可以证明,所得到的估计仍然具有一些很好的统 计性质,这些性质是: (1)解是无偏的,即
表示成矩阵形式为
线性参数正规方程的矩阵形式
又因
(5-21)
有 即 若令 则正规方程又可写成 若矩阵C是满秩的,则有
(5-22)
(5-22) (5-23)
Xˆ 的数学期望
因 可见 Xˆ 是X的无偏估计。
式中Y、X为列向量(n ×1阶矩阵和t×l阶矩阵)
其中矩阵元素Y1,Y2,…,Yn为直接量的真值,而 Xl,X2,…,Xn为待求量的真值。
(3)给出正规方程 (4)求解正规方程组
解得最小二乘法处理结果为