河南省武陟一中2020届高考数学模拟试题 理(无答案)新人教A版
2020年高考理科数学模拟试题含答案及解析5套)
绝密 ★ 启用前2020年高考模拟试题(一)理科数学时间:120分钟 分值:150分注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4、考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知a ,b 都是实数,那么“22a b>”是“22a b >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件2.抛物线22(0)x py p =>的焦点坐标为( )A .,02p ⎛⎫⎪⎝⎭B .1,08p ⎛⎫⎪⎝⎭C .0,2p ⎛⎫ ⎪⎝⎭D .10,8p ⎛⎫ ⎪⎝⎭此卷只装订不密封 班级 姓名 准考证号 考场号 座位号3.十字路口来往的车辆,如果不允许掉头,则行车路线共有( ) A .24种B .16种C .12种D .10种4.设x ,y 满足约束条件36020 0,0x y x y x y ⎧⎪⎨⎪+⎩---≤≥≥≥,则目标函数2z x y =-+的最小值为( )A .4-B .2-C .0D .25.《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(网格纸上小正方形的边长为1),则该“阳马”最长的棱长为( )A .5B .34C .41D .526. ()()()()sin ,00,xf x x x=∈-ππU 大致的图象是( ) A . B . C . D .7.函数()sin cos (0)f x x x ωωω=->在,22ππ⎛⎫- ⎪⎝⎭上单调递增,则ω的取值不可能为( )A .14B .15C .12D .348.运行如图所示的程序框图,设输出数据构成的集合为A ,从集合A 中任取一个元素a ,则函数ay x =,()0,x ∈+∞是增函数的概率为( )A .35B .45C .34D .37开始输出y结束是否3x =-3x ≤22y x x=+1x x =+9.已知A ,B 是函数2xy =的图象上的相异两点,若点A ,B 到直线12y =的距离相等,则点A ,B 的横坐标之和的取值范围是( ) A .(),1-∞-B .(),2-∞-C .(),3-∞-D .(),4-∞-10.在四面体ABCD 中,若AB CD ==,2AC BD ==,AD BC ==体ABCD 的外接球的表面积为( ) A .2πB .4πC .6πD .8π11.设1x =是函数()()32121n n n f x a x a x a x n +++=--+∈N 的极值点,数列{}n a 满足11a =,22a =,21log n n b a +=,若[]x 表示不超过x 的最大整数,则122320182019201820182018b b b b b b ⎡⎤+++⎢⎥⎣⎦L =( ) A .2017B .2018C .2019D .202012.已知函数()()e exx af x a =+∈R 在区间[]0,1上单调递增,则实数a 的取值范围( ) A .()1,1- B .()1,-+∞ C .[]1,1-D .(]0,+∞第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.命题“00x ∃>,20020x mx +->”的否定是__________.14.在ABC △中,角B 2π3C =,BC =,则AB =__________.15.抛物线24y x =的焦点为F ,过F 的直线与抛物线交于A ,B 两点,且满足4AFBF =,点O 为原点,则AOF △的面积为__________.16.已知函数()()2cos 2cos 0222x xxf x ωωωω=+>的周期为2π3,当π03x ⎡⎤∈⎢⎥⎣⎦,时,函数()()g x f x m=+恰有两个不同的零点,则实数m 的取值范围是__________.三、解答题:共70分。
2020年河南高三一模数学试卷(理科)
2020年河南高三一模数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分)1.已知集合,,则( ).A. B. C. D.2.下列命题中正确的是( ).A.若,则B.若,,则C.若,,则D.若,,则3.设方程的根为,表示不超过的最大整数,则( ).A.B.C.D.4.在中,已知,,,则等于( ).A.或B.C.D.5.下列四个结论:①命题“,”的否定是“,”.②若是真命题,则可能是真命题.③“且”是“”的充要条件.④当时,幂函数在区间上单调递减.其中正确的是( ).A.①④B.②③C.①③D.②④6.已知正项等比数列的前项和为,若,,则( ).A.B.C.D.7.的展开式中的系数为( ).A.B.C.D.8.直线与曲线有且仅有个公共点,则实数的取值范围是( ).A.B.C.D.9.某校有人参加某次模拟考试,其中数学考试成绩近似服从正态分布,试卷满分分,统计结果显示数学成绩优秀(高于分)的人数占总人数的,则此次数学考试成绩在分到分之间的人数约为( ).A.B.C.D.10.已知椭圆:的右焦点为,短轴的一个端点为,直线:与椭圆相交于、两点.若,点到直线的距离不小于,则椭圆离心率的取值范围为( ).A.B.C.D.11.若函数与都在区间上单调递减,则的最大值为( ).A.B.C.D.12.已知关于的方程恰有四个不同的实数根,则当函数时,实数的取值范围是( ).A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分)13.若平面向量、满足,平行于轴,,则 .14.实数,满足约束条件:,则的取值范围为 .15.半径为的球面上有,,,四点,且,,两两垂直,则,与面积之和的最大值为 ·16.如图,,分别是椭圆的左、右顶点,圆的半径为,过点作圆的切线,切点为,在轴的上方交椭圆于点,则.三、解答题(本大题共5小题,每小题12分,共60分)(1)(2)17.数列中,,当时,其前项和满足.求的表达式.设,求数列的前项和.(1)(2)18.在如图所示的三棱柱中,平面,,,的中点为,若线段上存在一点使得平面.求的长.求二面角的大小.19.部门在同一上班高峰时段对甲、乙两座地铁站各随机抽取了名乘客,统计其乘车等待时间(指乘客从进站口到乘上车的时间,乘车等待时间不超过分钟).将统计数据按,,,,分组,制成频率分布直方图:(1)(2)频率组距乘车等待时间甲站(分钟)频率组距乘车等待时间乙站(分钟)假设乘客乘车等待时间相互独立.在上班高峰时段,从甲站的乘客中随机抽取人,记为;从乙站的乘客中随机抽取人,记为.用频率估计概率,求“乘客,乘车等待时间都小于分钟”的概率.从上班高峰时段,从乙站乘车的乘客中随机抽取人,表示乘车等待时间小于分钟的人数,用频率估计概率,求随机变量的分布列与数学期望.(1)(2)20.已知为坐标原点,椭圆:的左、右焦点分别为,,离心率,椭圆上的点到焦点的最短距离为.求椭圆的标准方程.设为直线上任意一点,过的直线交椭圆于点,,且,求的最小值.(1)(2)21.已知函数,.若存在极小值,求实数的取值范围.设是的极小值点,且,证明:.四、选做题(本大题共2小题,选做1题,共10分)(1)(2)22.在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.求的普通方程和的直角坐标方程.已知直线的极坐标方程为,是与的交点,是与的交点,且,均异于原点,,求的值.【答案】解析:,;∴;∴.故选:.解析:构造函数,由于函数与在定义域上都是单调递增函数,故在定义域上单调递增,由,.则函数的零点在之间,故,.解析:由正弦定理知,,∵,∴或又∵,∴,(1)(2)23.已知函数.当,求不等式 的解集.设对恒成立,求的取值范围.C1.或C2.B3.C4.∴∴故选.解析:①命题“,”的否定是“,”.满足命题的否定形式,正确.②若是真命题,是真命题,则是假命题.所以②不正确.③“且”可得“”成立,“”得不到“且”所以③不正确.④当时,幂函数在区间上单调递减,正确,反例:,可知:时,函数是增函数,在上单调递减,所以④正确.故选.解析:正项等比数列的前项和为,,,∴,解得,,∴.故选:.解析:∵,二项展开式的通项为,二项展开式的通项为,令,得,A 5.B 6.C 7.所以,展开式中的系数为.故选:.解析:如图所示,直线过点,圆的圆心坐标,,直线与曲线有且只有个公共点,设为,,则,,直线与曲线相切时,或(舍去),直线与曲线有且仅有个公共点,则实数的取值范围是.故选.解析:∵,∴,∴,∴此次数学考试成绩在分到分之间的人数约为.故选.解析:C 8.C 9.C 10.设椭圆的左焦点为,根据椭圆的对称性可得:,,∴,解得,∵点到直线的距离不小于,∴,解得,又,∴,∴,∴离心率,故选.解析:函数在上单调递增,在上单调递减,在上单调递增,与在区间上单调递减,在上单调递增,所以:这两个函数在区间单调递减,故:即所求的最大值.故选.解析:B 11.B 12.函数,由得,得或,此时为增函数,由得,得,此时为减函数,即当时,函数取得极小值,极小值为,当时,函数取得极大值,极大值为当,,且,作出函数的图象如图:设,则当 时方程有个根,当时,方程有个根,当或时,方程有个根,则方程等价为,若恰有四个不同的实数根,等价为有两个不同的根,当,方程不成立,即,其中或设,则满足,得,即,即,即实数的取值范围是.故选:.解析:方法一:由题设得或,则或.故填或方法二:设,则由及得.又由平行于轴,得,于是,解得:或,从而得,或.方法三:设,那么,由或.解析:作出不等式组表示的平面区域如下图:xyO 其中,因为表示与点连线斜率,由图可得:当点在点处时,它与点连线斜率最小为,所以的取值范围为.故答案为:.解析:或13.14.15.如图所示,将四面体置于一个长方体模型中,则该长方体外接球的半径为,不妨设,﹐,则有:,即.记,从而有,即,从而.当且仅当,即该长方体为正方体时等号成立.从而最大值为.16.解析:连结、,可得是边长为的等边三角形,∴,可得直线的斜率,直线的斜率,因此直线的方程为,直线的方程为,设,联解、的方程可得.(1)(2)∵圆与直线相切于点,∴,可得,直线的斜率,因此直线的方程为,代入椭圆,消去,得,解之得或.直线交椭圆于与点,∴设,可得.由此可得.故答案为:.解析:由和得,即,由题意知,上式两边同除以得.是首项为,公差为的等差数列,..适合,...解析:(1).(2).17.(1).(2).18.(1)(2)由题意知,,两两垂直.以点为原点,,,分别为轴,轴,轴建立建立空间直角坐标系.设,则,,,,,,设,由题意,,,所以,故,设面的法向量为,则,,所以,取,由面,则得,,所以.由()得平面的一个法向量为,设平面的法向量为,,,则,取,,,(1)(2)则.故二面角所成角的大小为.解析:设表示事件“乘客乘车等待时间小于分钟”,表示事件“乘客乘车等待时间小于分钟”,表示事件“乘客,乘车等待时间都小于分钟”,由题意知,乘客乘车等待时间小于分钟的频率为:,故的估计值为,乘客乘车等待时间小于分钟的频率为,故的估计值为,又,故事件的概率为.由可知,乙站乘客乘车等待时间小于分钟的频率为,所以乙站乘客乘车等待时间小于分钟的概率为,显然,的可能取值为,,,且,所以;;;;故随机变量的分布列为:,(1).(2)的分布列为:.19.(1)(2).解析:,而,又,得,,故椭圆的标准方程为.由()知,∵,故,设,∴,直线的斜率为,当时,直线的方程为,也符合方程,当时,直线的斜率为,直线的方程为,设,,将直线的方程与椭圆的方程联立,得,消去,得,,,,,(1).(2).20.(1)(2),当且仅当,即时,等号成立,∴的最小值为.解析:,令,则,所以在上是增函数,又因为当时,,当时,,所以,当时,,,函数在区间上是增函数,不存在极值点,当时,的值域为,必存在使,所以当时,,,单调递减,当时,,,单调递增,所以存在极小值点,综上可知实数的取值范围是.由()知,即,所以,,由,得,令,显然在区间上单调递减,又,所以由,得,令,,当时,,函数单调递增;(1).(2)证明见解析.21.(1)(2)(1)当时,,函数单调递减;所以,当时,函数取最小值,所以,即,即,所以,,所以,即.解析:对于,所以的直角坐标方程为.由,得,又,,所以的直角坐标方程为.由知曲线的普通方程为,所以其极坐标方程为.设点,的极坐标分别为,,则,,所以,所以,即,解得,又,所以.解析:当时,,即,当时,原不等式化为,得,即;当时,原不等式化为,得,即;当时,原不等式化为,得,即.综上,原不等式的解集为.(1),.(2).22.(1).(2).23.(2)因为,所以可化为,所以,即对恒成立,则,所以的取值范围是.。
2020-2021学年河南省高三第一次模拟考试数学(理)试题及答案解析
高中毕业班第一次模拟考试数 学(理科)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.考生作答时,将答案答在答题卡上(答题注意事项见答题卡),在本试题卷上答题无效.考试结束后,将本试题卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U =N ﹡,集合A ={1,2,3,5},B ={2,4,6},则图中的阴影部分表示的集合为A .{2}B .{2,4,6}C .{l ,3,5}D .{4,6}2.已知i 是虚数单位,复数z 满足(i -1)z =i ,则z 的虚部是A .12B .-12C .12iD .-12i 3.若cos (2π2,则cos (π-2α)= A .-59 B .59C . -29 D .29 4.在区间上任选两个数x 和y ,则y <sinx 的概率为A .24π B .1-24πC .22πD .1-22π5.将函数y =cos (2x +6π)图象上的点P (4π,t )向右平移m (m >0)个单位长度得到点P ',若P '位于函数y =cos2x 的图象上,则A .t =-12,m 的最小值为12πB .t =32-,m 的最小值为12π C .t =-12,m 的最小值为6π D .t =32-,m 的最小值为6π 6.执行如图所示的程序框图,若输入m =4,t =3,则输出y =A .61B .62C .183D .1847.在31()n x x -的展开式中,所有项的二项式系数之和为4096,则其常数项为A .-1 10B .110C .220D .-2208.已知M 是抛物线C :2y =2px (p >0)上一点,F 是抛物线C 的焦点.若|MF |=p ,K 是抛物线C 的准线与x 轴的交点,则∠MKF =A .15°B .30°C .45°D .60°9.函数f (x )=|x |+2a x (其中a ∈R )的图象不可能是10.已知P 为矩形ABCD 所在平面内一点,AB =4,AD =3,PA 5PC =5PB uu r ·PD uu u r =A.-5 B.-5或0 C.5 D.0 11.某几何体的三视图如图所示,则该几何体的体积为A.16B.13C.1 D.212.已知函数f(x)=(22x-x-1)x e,则方程e2+tf(x)-9e=0(t∈R)的根的个数为A.2 B.3C.4 D.5第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题.每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.双曲线22221x ya b-=(a>0,b>0)的一条渐近线与直线x-y+3=0平行,则此双曲线的离心率为______________.14.若实数x,y满足100,2,x yxy⎧⎪⎨⎪⎩-+≤>≤则221yx+的取值范围是_______________15.《孙子算经》是我国古代内容极其丰富的数学名著,书中有如下问题:“今有圆窖,周五丈四尺,深一丈八尺.问受粟几何?”其意思为:“有圆柱形容器,底面圆周长五丈四尺,高一丈八尺,求此容器能装多少斛米.”则该圆柱形容器能装米_________斛.(古制1丈=10尺,1斛=1.62立方尺,圆周率π≈3)16.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >b ,a >c .△ABC 的外接圆半径为1,a =3.若边BC 上一点D 满足BD =2DC ,且∠BAD =90°,则△ABC 的面积 为______________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知数列{n a }的前n 项和为n S ,且满足n a =2n S +1(n ∈N ﹡).(Ⅰ)求数列{n a }的通项公式;(Ⅱ)若n b =(2n -1)·n a ,求数列{n b }的前n 项和n T .18.(本小题满分12分)某市为了制定合理的节电方案,供电局对居民用电情况进行了调查,通过抽样,获得了某年200户居民每户的月均用电量(单位:度),将数据按照分成9组,制成了如图所示的频率分布直方图.(Ⅰ)求直方图中m 的值并估计居民月均用电量的中位数;(Ⅱ)从样本里月均用电量不低于700度的用户中随机抽取4户,用X 表示月均用电量不低于800度的用户数,求随机变量X 的分布列及数学期望.19.(本小题满分12分)如图,在三棱柱ABC -A 1B 1C 1中,CA =CB ,侧面ABB 1A 1是边长为2的正方形,点E ,F 分别在线段AA 1,A 1B 1上,且AE =12, A 1F =34,CE ⊥EF (Ⅰ)证明:平面ABB 1A 1⊥平面ABC ;(Ⅱ)若CA ⊥CB ,求直线AC 1与平面CEF 所成角的正弦值.20.(本小题满分12分)已知圆O : 221x y +=过椭圆C :22221y x a b +=(a >b >0)的短轴端点,P ,Q 分别是圆O 与椭圆C 上任意两点,且线段PQ 长度的最大值为3.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点(0,t)作圆O 的一条切线交椭圆C 于M ,N 两点,求△OMN 的面积的最大值.21.(本小题满分12分)已知函数f (x )=2x +2ax +bcosx 在点(2π、f (2π))处的切线方程为y =34π. (Ⅰ)求a ,b 的值,并讨论f (x )在上的增减性;(Ⅱ)若f (x 1)=f (x 2),且0<x 1<x 2<π,求证:12()2x x f '+<0. (参考公式cos θ-cos ϕ=-2sin 2θϕ+sin 2θϕ-)请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22.(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为12x t y ⎧⎪⎪⎨⎪⎪⎩==1(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=2sin θ.(Ⅰ)判断直线l 与圆C 的交点个数;(Ⅱ)若圆C 与直线l 交于A ,B 两点,求线段AB 的长度.23.(本小题满分10分)选修4—5:不等式选讲已知函数f (x )=|x +2|-|x -2|+m (m ∈R ).(Ⅰ)若m =1,求不等式f (x )≥0的解集;(Ⅱ)若方程f (x )=x 有三个实根,求实数m 的取值范围.。
河南省焦作市武陟县第一高中分校2020年高一数学理月考试题含解析
河南省焦作市武陟县第一高中分校2020年高一数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 定义在R上的函数既是偶函数,又是周期函数. 若的最小正周期,且当时,,则()A. B. C.D.参考答案:B略2. 设向量a=(cos25o,sin25o),b=(sin20o,cos20o),若t是实数,且c=a+tb,则|c|的最小值为( ).(A) (B) 1(C) (D)参考答案:C3. 定义域为R的函数f(x)=(x)+bf(x)+c=0恰有5个不同的实数解x1,x2,x3,x4,x5,则f(x1+x2+x2+x4+x5)等于()A.0 B.21g2 C.31g2 D.1参考答案:C【考点】根的存在性及根的个数判断.【分析】分情况讨论,当x=2时,f(x)=1,则由f2(x)+bf(x)+c=0得1+b+c=0,求出x1=1;当x>2时,f(x)=lg(x﹣2),由f2(x)+bf(x)+c=0得[lg(x﹣2)]2+blg (x﹣2)﹣b﹣1=0,解得lg(x﹣2)=1,或lg(x﹣2)=b,从而求出x2和x3;当x<2时,f(x)=lg(2﹣x),由f2(x)+bf(x)+c=0得[lg(2﹣x)]2+blg(2﹣x)﹣b﹣1=0),解得lg(2﹣x)=1,或lg(2﹣x)=b,从而求出x4和x5,5个不同的实数解x1、x2、x3、x4、x5都求出来后,就能求出f(x1+x2+x3+x4+x5)的值.【解答】解:当x=2时,f(x)=1,则由f2(x)+bf(x)+c=0得1+b+c=0.∴x1=2,c=﹣b﹣1.当x>2时,f(x)=lg(x﹣2),由f2(x)+bf(x)+c=0得[lg(x﹣2)]2+blg(x﹣2)﹣b﹣1=0,解得lg(x﹣2)=1,x2=12或lg(x﹣2)=b,x3=2+10b.当x<2时,f(x)=lg(2﹣x),由f2(x)+bf(x)+c=0得[lg(2﹣x)]2+blg(2﹣x)﹣b﹣1=0),解得lg(2﹣x)=1,x4=﹣8或lg(2﹣x)=b,x5=2﹣10b.∴f(x1+x2+x3+x4+x5)=f(2+12+2+10b﹣8+2﹣10b)=f(10)=lg|10﹣2|=lg8=3lg2.故选C.4. 化简的值是()A. B. C. D.参考答案:D 解析:5. 设x,y满足约束条件,则的最小值为()A. 3B. 4C. 5D. 10参考答案:B【分析】结合题意画出可行域,然后运用线性规划知识来求解【详解】如图由题意得到可行域,改写目标函数得,当取到点时得到最小值,即故选B【点睛】本题考查了运用线性规划求解最值问题,一般步骤:画出可行域,改写目标函数,求出最值,需要掌握解题方法6. 已知集合A=,B={x≥a},且,则实数a的取值范围是()A.a≥-1 B.a≤-1 C.a≥1 D.a≤1参考答案:B7. “”是“函数的图像关于直线对称”的()条件A. 充分非必要B. 必要非充分C. 充要D. 既不充分又非必要参考答案:A【分析】根据充分必要条件的判定,即可得出结果.【详解】当时,是函数的对称轴,所以“”是“函数的图像关于直线对称”的充分条件,当函数的图像关于直线对称时,,推不出,所以“”是“函数的图像关于直线对称”的不必要条件,综上选.【点睛】本题主要考查了充分条件、必要条件,余弦函数的对称轴,属于中档题.8. 点M(2,-3,1)关于坐标原点对称的点是()A.(-2,3,-1)B.(-2,-3,-1)C.(2,-3,-1)D.(-2,3,1)参考答案:A略9. 若偶函数f(x)在(﹣∞,﹣1]上是增函数,则()A.f(﹣1.5)<f(﹣1)<f(2)B.f(﹣1)<f(﹣1.5)<f(2)C.f(2)<f (﹣1)<f(﹣1.5)D.f(2)<f(﹣1.5)<f(﹣1)参考答案:D【考点】奇偶性与单调性的综合.【专题】函数的性质及应用.【分析】由函数的奇偶性、单调性把f(2)、f(﹣1.5)、f(﹣1)转化到区间(﹣∞,﹣1]上进行比较即可.【解答】解:因为f(x)在(﹣∞,﹣1]上是增函数,又﹣2<﹣1.5<﹣1≤﹣1,所以f(﹣2)<f(﹣1.5)<f(﹣1),又f(x)为偶函数,所以f(2)<f(﹣1.5)<f(﹣1).故选D.【点评】本题考查函数的奇偶性、单调性的综合运用,解决本题的关键是灵活运用函数性质把f(2)、f(﹣1.5)、f(﹣1)转化到区间(﹣∞,﹣1]上解决.10. 如果一组数的平均数是,方差是,则另一组数的平均数和方差分别是 ( )A. B.C. D.参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11. 若曲线与直线有两个交点,则的取值范围是__________________.参考答案:略12. 为了了解2100名学生早晨到校时间,计划采用系统抽样的方法从全体学生中抽取容量为100的样本,则分段间隔为.参考答案:21根据系统抽样的特征,得:从2100名学生中抽取100个学生,分段间隔为,故答案是21.13. 已知函数关于的方程有两个不同的实根,则实数的取值范围是__________参考答案:14. 设实数,记,则M 的最大值为。
2020年河南省焦作市武陟中学高二数学理联考试卷含解析
2020年河南省焦作市武陟中学高二数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知函数在处的导数为1,则等于A. 3B.C.D.参考答案:B略2. 在R上定义运算:x y=x(1-y).若不等式(x-a)(x+a)<1对任意实数x都成立,则( )A.-1<a<1 B.0<a<2参考答案:C3. 椭圆上一点与椭圆的两个焦点、的连线互相垂直,则△的面积为()A. B. C. D.参考答案:D 解析:,相减得4. 设为定义在R上的奇函数,当时,(b为常数),则等于()A.3 B.-1 C.1 D.-3参考答案:D略5. 已知奇函数在时,在上的值域为()A. B. C. D.参考答案:C6. 展开式中的系数是A、 B、 C、 D、参考答案:D略7. 已知各项为正数的等比数列中,,,则公比()A.4 B.3 C.2 D.参考答案:C,,,,,故选C.8. 对于大于1的自然数的三次幂可用奇数进行以下方式的“分裂”:,,,…,仿此,若的“分裂数”中有一个是61,则的值是()A. 6B.7C. 8D. 9参考答案:C9. 在长为10cm的线段AB上任取一点C,现作一矩形,邻边长分别等于AC,CB的长,则该矩形面积不小于9cm2的概率为()A.B.C.D.参考答案:A【考点】几何概型.【分析】根据几何概型的概率公式,设AC=x,则BC=10﹣x,由矩形的面积S=x(10﹣x)≥9可求x的范围,利用几何概率的求解公式可求.【解答】解:设AC=x,则BC=10﹣x,矩形的面积S=x(10﹣x)≥9,∴x2﹣10x+9≤0解得1≤x≤9,由几何概率的求解公式可得,矩形面积不小于9cm2的概率为P==.故选:A.10. 如图,由四个边长为1的等边三角形拼成一个边长为2的等边三角形,各项点依次为,A1,A2,A3,…A n则的值组成的集合为( )A.{﹣2,﹣1,0,1,2}B.C.D.参考答案:D【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】通过观察图形知道向量分成以下三个类型:①小三角形边上的向量,②大三角形边上的向量,③大三角形中线向量,这样求出每种情况下的值,从而求得答案.【解答】解:对向量分成以下几种类型:边长为1的小三角形边上的向量,只需找一个小三角形A1A2A4,它其它小三角形边上的向量相等;大三角形A1A3A6边上的向量,和它的中线上的向量,所以有:,,,,,,,,,,,,,,,;∴所有值组成的集合为{1,﹣1,}.故选:D.【点评】考查相等向量,相反向量的概念,向量数量积的计算公式,等边三角形中线的特点.二、填空题:本大题共7小题,每小题4分,共28分11. 已知函数f(x)=x2﹣4x+c只有一个零点,且函数g(x)=x(f(x)+mx﹣5)在(2,3)上不是单调函数,则实数m的取值范围是.参考答案:﹣【考点】利用导数研究函数的单调性;二次函数的性质.【分析】根据题意可得c=4,进而得出g(x)=x(f(x)+mx﹣5)=x2+(m﹣4)x2﹣x,函数在(2,3)上不是单调函数,等价于g'(x)=0在(2,3)上只有一根,利用二次函数的性质求解即可.【解答】解:∵函数f(x)=x2﹣4x+c只有一个零点,∴c=4,∴g(x)=x(f(x)+mx﹣5)=x2+(m﹣4)x2﹣x,∵在(2,3)上不是单调函数,∴g'(x)=0在(2,3)上只有一根,∵g'(x)=3x2+2(m﹣4)x﹣1,g'(0)=﹣1,∴g'(2)<0,g'(3)>0,∴﹣.12. 不等式的解集为_________参考答案:略13. 点到直线的距离是________________.参考答案:解析:14. 若是方程的两个实根,则=参考答案:10015. 已知.若是的充分不必要条件,则实数的取值范围是_____________.参考答案:略16. 已知椭圆的右焦点为,过点的直线交椭圆于两点.若的中点坐标为,则的方程为_________________.参考答案:略17. 已知直线y=mx(m∈R)与函数的图象恰好有三个不同的公共点,则实数m的取值范围是.参考答案:(,+∞)【考点】I3:直线的斜率;3O:函数的图象;53:函数的零点与方程根的关系.【分析】画出函数的图象,根据条件可得当直线y=mx和y=x2相交,把直线y=mx代入y=x2,利用判别式△大于零,求得实数m的取值范围.【解答】解:根据直线y=mx(m∈R)与函数的图象恰好有三个不同的公共点,在同一个坐标系中,画出直线y=mx(m∈R)与函数的图象.则由图象可得,当直线y=mx和y=x2(x>0)相交时,直线y=mx和函数f(x)的图象(图中红线)有3个交点.由可得 x2﹣2mx+2=0,再由判别式△=4m2﹣8>0,求得m>,或 m<﹣(舍去).故m的范围为(,+∞),故答案为(,+∞).三、解答题:本大题共5小题,共72分。
2020年河南高考模拟题理数(附答案)
2020年高中毕业年级第一次质量预测数学(理科)参考答案一、选择题1-12BDACB CBCDB DA 二、填空题13.10;x y -+=14.4;15.;53016.{}.66,2,0--三、解答题17.解析:(I)222(sinsin )()sin .R A B a c C -=-∴2222(sinsin )()sin 2,R R A B a c C R ⋅-=-⋅即:222.a c b ac +-=……3分∴2221cos .22a c b B ac+-==因为0,B π<<所以3B π∠=……6分(II)若12,8b c ==,由正弦定理,sin sin b c B C=,3sin 3C =,由b c >,故C ∠为锐角,6cos 3C =……9分3613323sin sin()sin().323236A B C C π+=+=+=⋅+⋅=……12分18.解析:(I )如图所示:连接OM ,在ABC ∆中:2,22AB BC AC ===,则90,2ABC BO ∠=︒,OB AC ⊥.……2分在MAC ∆中:2M A M C A C ===O 为AC 的中点,则OM AC ⊥,且 6.O M ……4分在MOB ∆中:2,6,22BO OM MB =222BO OM MB +=根据勾股定理逆定理得到OB OM⊥,AC OM 相交于O ,故OB ⊥平面AMC ………………….6分(Ⅱ)因为,,OB OC OM 两两垂直,建立空间直角坐标系 㜠Ꮉ婈Ӭ如图所示.因为2M A M B M C A C ====,2AB BC ==则(0,2,0),(2,0,0),2,0),6)A B C M -……8分由23BN BC = 所以,222(,33N 设平面MAN 的法向量为(,,)m x y z = ,则252252(,,0)(,,)0,33332,6)(,,)260AN n x y z x y AM n x y z z ⎧⋅=⋅=+=⎪⎨⎪⋅=⋅==⎩ 令3y =(53,3,1)m =-- ……10分因为BO ⊥平面AMC ,所以(2,0,0)OB = 为平面AMC 的法向量,所以(53,3,1)m =-- 与(2,0,0)OB = 所成角的余弦为5653cos ,79279m OB < 所以二面角的正弦值为253279|sin ,|1(797979m OB -<>=-= .……12分19.(I )由题意知1b =,22c a =.……1分又因为222a b c =+解得,2a =.……3分所以椭圆方程为2212y x +=.……4分(Ⅱ)设过点1(,0)3-直线为13x ty =-,设()11,A x y ,()22,B x y 由221312x ty x y ⎧=-⎪⎪⎨⎪+=⎪⎩得()2291812160t ty y +--=,且>0∆.则12212212,918616,918y y y t y t t ⎧+=⎪⎪+⋯⋯⎨⎪=-⎪+⎩分又因为()111,CA x y =- ,()221,CB x y =- ,()()212121212121244416(1)(1)13339CA CB x x y y ty ty y y t y y t y y ⎛⎫⎛⎫⋅=--+=--+=+-++ ⎪⎪⎝⎭⎝⎭ ()22216412161091839189t t t t t -=+-⋅+=++,……10分所以C A C B ⊥ .因为线段AB 的中点为M ,所以||2||AB CM =.……12分20.解析:(I)该混合样本达标的概率是28(39=,……2分所以根据对立事件原理,不达标的概率为81199-=.……4分(II)(i )方案一:逐个检测,检测次数为4.方案二:由(1)知,每组两个样本检测时,若达标则检测次数为1,概率为89;若不达标则检测次数为3,概率为19.故方案二的检测次数记为ξ2,ξ2的可能取值为2,4,6.其分布列如下,2ξ246p 64811681181可求得方案二的期望为26416119822()246818181819E ξ=⨯+⨯+⨯==方案四:混在一起检测,记检测次数为ξ4,ξ4可取1,5.其分布列如下,4ξ15p 64811781可求得方案四的期望为46417149()15818181E ξ=⨯+⨯=.比较可得42()()4E E ξξ<<,故选择方案四最“优”.……9分(ii)方案三:设化验次数为3η,3η可取2,5.3η25p3p 31p -3333()25(1)53E p p p η=+-=-;方案四:设化验次数为4η,4η可取1,54η15p4p 41p -4444()5(1)54E p p p η=+-=-;由题意得34343()()53544E E p p p ηη<⇔-<-⇔<.故当304p <<时,方案三比方案四更“优”.……12分21解析:(I)()ln x e f x x x x=--,定义域(0,)+∞,221(1)(1)()()1x x e x x x e f x x x x---'=--=,由1x e x x ≥+>,()f x 在(0,1]增,在(1,)+∞减,max ()(1)1f x f e ==-……4分(II)1()()e 1x f x x bx x++-≥e e ln e 1x x x x x x bx x x⇔-+-++-≥ln e 10x x x x bx ⇔-++--≥e ln 1x x x x b x --+⇔≥min e ln 1(,x x x x b x--+⇔≥……6分令e ln 1()x x x x x x ϕ--+=,2ln ()x x e x x xϕ+'=令2()ln x h x x e x =+,()h x 在(0,)+∞单调递增,0,()x h x →→-∞,(1)0h e =>()h x 在(0,1)存在零点0x ,即02000()ln 0x h x x e x =+=0001ln 2000000ln 1ln 0(ln )()x x x x x e x x e e x x +=⇔=-=……9分由于x y xe =在(0,)+∞单调递增,故0001ln ln ,x x x ==-即001x e x =()x ϕ在0(0,)x 减,在0(,)x +∞增,000000min00e ln 111()2x x x x x x x x x ϕ--++-+===所以2b ≤.……12分22.解析:(I)将点3(1,)2P 代入曲线E 的方程,得1cos ,3,2a αα=⎧⎪⎨=⎪⎩解得24a =,……2分所以曲线E 的普通方程为22143x y +=,极坐标方程为22211(cos sin )143ρθθ+=.……5分(Ⅱ)不妨设点,A B 的极坐标分别为1212()(00,2A B πρθρθρρ+>>,,,,,则22221122222211(cos sin )1,4311(cos ()sin ()1,4232ρθρθππρθρθ⎧+=⎪⎪⎨⎪+++=⎪⎩即22212222111cos sin ,43111sin cos ,43θθρθθρ⎧=+⎪⎪⎨⎪=+⎪⎩……8分2212111174312ρρ+=+=,即22117||||12OA OB +=……10分23.解:(I)由()f x m ≥,得,不等式两边同时平方,得221)(21)x x ≥(-+,……3分即3(2)0x x +≤,解得20x -≤≤.所以不等式()f x m ≥的解集为{|20}x x -≤≤.……5分(Ⅱ)设g (x )=|x -1|-|2x +1|,……8分()0()f n g n m ≥⇔≥-因为(2)(0)0g g -==,(3)1,(4)2,(1) 3.g g g -=--=-=-又恰好存在4个不同的整数n ,使得()0f n ≥,所以2 1.m -<-≤-故m 的取值范围为[1,2).……10分12,,21()3,1,22,1,x x g x x x x x ⎧+≤-⎪⎪⎪=--<≤⎨⎪-->⎪⎪⎩。
2020年河南省新乡市武陟第一中学高二数学理月考试卷含解析
2020年河南省新乡市武陟第一中学高二数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知f(x)=x3+x,若a,b,c∈R,且a+b>0,a+c>0,b+c>0,则f(a)+f(b)+f(c)的值() A.一定大于0 B.一定等于0C.一定小于0 D.正负都有可能参考答案:A2. 若命题“”为真,“”为真,则A.p真q真 B.p假q假 C.p真q假 D.p假q真参考答案:D3. 设P,Q分别为圆x2+(y﹣3)2=5和椭圆+y2=1上的点,则P,Q两点间的最大距离是()A.2B. +C.4+D.3参考答案:D【考点】椭圆的简单性质.【专题】计算题;转化思想;综合法;圆锥曲线的定义、性质与方程.【分析】先求出椭圆上的点与圆心的距离,P,Q两点间的最大距离是椭圆上的点与圆心的距离加上圆的半径.【解答】解:∵设P,Q分别为圆x2+(y﹣3)2=5和椭圆+y2=1上的点,∴圆心C(0,3),圆半径r=,设椭圆上的点为(x,y),则椭圆上的点与圆心的距离为:d===≤2,∴P,Q两点间的最大距离是2+=3.故选:D.【点评】本题考查两点间距离的最大值的求法,是中档题,解题时要认真审题,注意两点间距离公式的合理运用.4.(A)(B)(C)(D)参考答案:D5. 已知F为双曲线C:(a>0,b>0)的左焦点,直线l经过点F,若点A(a,0),B (0,b)关于直线l对称,则双曲线C的离心率为()A.B.C.D.参考答案:C【考点】KC:双曲线的简单性质.【分析】由题意可得AB为直线l的垂直平分线,运用中点坐标公式和垂直的条件,可得l的方程,令y=0,可得左焦点坐标,结合双曲线的a,b,c的关系和离心率公式,可得e的方程,解方程可得离心率.【解答】解:点A(a,0),B(0,b)关于直线l对称,可得AB为直线l的垂直平分线,AB的中点为(,),AB的斜率为﹣,可得直线l的方程为y﹣=(x﹣),令y=0,可得x=a﹣,由题意可得﹣c=a﹣,即有a(a+2c)=b2=c2﹣a2,由e=,可得e2﹣2e﹣2=0,解得e=1+(1﹣舍去),故选:C.6. 某商品的销售量(件)与销售价格(元/件)存在线性相关关系,根据一组样本数据,用最小二乘法建立的回归方程为则下列结论正确的是()(A)与具有正的线性相关关系(B)若表示变量与之间的线性相关系数,则(C)当销售价格为10元时,销售量为100件(D)当销售价格为10元时,销售量为100件左右参考答案:D7. 设a,b∈R,则“(a﹣b)a2<0”是“a<b”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件参考答案:A【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件定义判断,结合不等式求解.【解答】解:∵a,b∈R,则(a﹣b)a2<0,∴a<b成立,由a<b,则a﹣b<0,“(a﹣b)a2≤0,所以根据充分必要条件的定义可的判断:a,b∈R,则“(a﹣b)a2<0”是a<b的充分不必要条件,故选:A【点评】本题考查了不等式,充分必要条件的定义,属于容易题.8. 若函数在上既是奇函数又是减函数,则函数的图像是( )参考答案:D略9. 某产品的广告费用ξ与销售额ψ的统计数据如下表根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为( )A.65.5万元B.63.6万元C.67.7万元D.72.0万元参考答案:A略10. 圆的半径为( )A. B. C. D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 若圆锥的表面积是,侧面展开图的圆心角是,则圆锥的体积是_______。
2020年河南省高考数学模拟试卷(理科)(4月份)
2020年河南省高考数学模拟试卷(理科) (4月份)第1页(共23页)一项是符合题目要求的.价有所下降,相比二手房而言, 新房市场依然强劲,价格持续升高.已知销售人员主要靠售 房提成领取工资.现统计郑州市某新房销售人员一年的工资情况的结果如图所示, 若近几年 来该销售人员每年的工资总体情况基本稳定,则下列说法正确的是 ( )A .月工资增长率最高的为 8月份B .该销售人员一年有 6个月的工资超过4000元C .由此图可以估计,该销售人员 2020年6, 7, 8月的平均工资将会超过 5000元D .该销售人员这一年中的最低月工资为 1900元6. (5分)九连环是我国古代至今广为流传的一种益智游戏,它由九个铁丝圆环相连成串,、选择题:本题共 12小题,每小题5分,共60分.在每小题给出的四个选项中,只有1. (5分)已知集合 {x|x ・・0} , B {x|y lg(x 2 x)},则 A |2.3. A . [0 , ) (5分)已知复数 (5 分)2019 年, B . (1,) C . {0}U [1, (,0】U (1,) — (i 为复数单位) (i 1) B . 2 ,则 |z| ( ) 河南省郑州市总体来说,二手房房 54. ( 5分)已知(x 1) 2 a 0 a 1 x a 2x 3 a 3X 4 5 a 4X a 5X ,贝U a 2 a 4的值为 C . 15 D . 165. ( 5分)已知双曲线 2 2 C:a 話 1(a 0,b 0)的一个焦点为F ,过F 作x 轴的垂线分别 交双曲线的两渐近线于 A , B 两点,若 AOB的面积为2b 2,则双曲线C 的离心率为( )按一定规则移动圆环的次数,决定解开圆环的个数.在某种玩法中,用 则解下5个环所需的最少移动次数为 ( )7. (5分)已知某个几何体的三视图如图所示,根据图中标出的数据,可得出这个几何体的表面积是( ) uuiur uuuu于点O ,点M 是线段BC 上一点,则 OM gDM 的最小值为(10 . ( 5分)已知ABCD 为正方形,其内切圆I 与各边分别切于事件B :豆子落在四边形 EFGH 夕卜,则P (B|A )( )n (n, 9,n N *)个圆环所需的多少移动次数,数列{a n }满足a i 1,且a n2a n i 1,n 为偶数2a n i 2,n 为奇数 a n 表示解下B . 10C . 16D . 22B . 8 4.6C . 426D . 4.6(5分)已知函y sin( 0)在区间( 齐)上单调递增,则 的取值范围是( 1A . (0,—] 2 1 [-,1] 2 1 2 (-,一] 3 3 2[-,2] 3(5分)已知平行四边形 ABCD 中, AB AD 2, DAB 60 对角线AC 与,G , H ,连接 EF ,FG , GH , HE .现向正方形 ABCD 内随机抛掷一枚豆子, 记事件 A :豆子落在圆I 内,C. 1 -11. (5分)已知定义在R上的奇函数f (x),对任意实数x,恒有f(x 3) f (x),且当3 2x (0,㊁]时,f(x) x 6x 8,贝U f (0) f (1) f ( 2) f (2020)(C.12. (5分)如图,在四棱锥P ABCD中, PA PB PC PD 2 ,底面ABCD是边长为2E作棱锥的截面, 分别与侧棱PB , PD交于M , 的正方形.点E是PC的中点,过点A ,( )A .辽3B .二3二、填空题:本题共4小题,每小题5分,共20 分.13. (5分)已知函数f (x) (x 2) lnx,则函数f (x)在x 1处的切线方程为14. (5分)已知数列{a n}为公差不为零的等差数列,其前n项和为£,且印,a2 , a4成等比数列,S515,则a415. (5分)现有灰色与白色的卡片各八张.分别写有数字1至U &甲、乙.丙、丁四个人每人面前摆放四张,并按从小到大的顺序自左向右排列(当灰色卡片和白色卡片数字相同时,白色卡片摆在灰色卡片的右侧)卡片是(填写字母)..如图,甲面面的四张卡片已经翻开,则写有数字4的灰色X216. (5分)设F , F2是椭圆C:—4y2 1的两个焦点,过F! , F2分别作直线h , I2 .且h //I2 ,。
【数学】河南省2020届高三普通高等学校招生模拟考试试题(理)(解析版)
【解析】P是双曲线 1(a>0,b>0)上一点,且在x轴上方,F1,F2分别是双曲线的左、右焦点,|F1F2|=12,c=6,
△PF1F2的面积为24 ,可得P的纵坐标y为: ,y=4 .直线PF2的斜率为﹣4 ,
所以P的横坐标x满足: ,解得x=5,则P(5,4 ),
|PF1| 13,
|PF2| 7,
C.充要条件D.既不充分又不必要条件
【答案】D
【解析】当 时,
若 时, 与 的关系可能是 ,也可能是 ,即 不一定成立,故 为假命题;
若 时, 与 的关系可能是 ,也可能是 与 异面,即 不一定成立,故 也为假命题;
故 是 的既不充分又不必要条件
故选:D
7.已知函数 若 ,则 的取值范围是
A. B.
A. 2B. 1C. D.
【答案】C
【解析】由 ,得:点 是 的外心,
又外心是中垂线的交点,则有: ,
即 ,
又 , , ,
所以 ,解得: ,
即 ,
故选: .
11.已知 是双曲线 上一点,且在 轴上方, , 分别是双曲线的左、右焦点, ,直线 的斜率为 , 的面积为 ,则双曲线的离心率为
A. 3B. 2C. D.
【答案】50
【解析】先分类,若甲同学选了牛,则乙同学有 种选法,丙同学有 种选法,共有 种选法;
若甲同学选了马,则乙同学有 种选法,丙同学有 种选法,共有 种选法.
故三位同学的选法共有 (种)
14.已知正数 满足 ,则当 ________时, 取得最小值,最小值为________.
【答案】(1). (2).
所以2a=13﹣7,a=3,
所以双曲线的离心率为:e 2.
故选B.
【含高考模拟卷13套】河南省武陟一中西区2020-2021学年高三5月月考数学试题含解析
河南省武陟一中西区2020-2021学年高三5月月考数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12F F 、,圆222x y b +=与双曲线在第一象限内的交点为M ,若123MF MF =.则该双曲线的离心率为A .2B .3C D2.已知等差数列{}n a 中,468a a +=则34567a a a a a ++++=( ) A .10B .16C .20D .243.双曲线2214x y -=的渐近线方程是( )A .y x =±B .y x =C .2x y =±D .2y x =±4.已知数列{}n a 为等差数列,n S 为其前n 项和,56104a a a +=+,则21S =( ) A .7B .14C .28D .845.若集合{}10A x x =-≤≤,01xB x x ⎧⎫=<⎨⎬-⎩⎭,则A B =( )A .[)1,1-B .(]1,1-C .()1,1-D .[]1,1-6.已知变量的几组取值如下表:若y 与x 线性相关,且ˆ0.8yx a =+,则实数a =( ) A .74B .114C .94D .1347.设复数z 满足()117i z i +=-,则z 在复平面内的对应点位于( )A .第一象限B .第二象限C .第三象限D .第四象限8.已知等差数列{}n a 的公差不为零,且11a ,31a ,41a 构成新的等差数列,n S 为{}n a 的前n 项和,若存在n 使得0n S =,则n =( ) A .10B .11C .12D .139.由曲线y =x 2与曲线y 2=x 所围成的平面图形的面积为( ) A .1B .13C .23D .4310.下边程序框图的算法源于我国古代的中国剩余定理.把运算“正整数N 除以正整数m 所得的余数是n ”记为“(mod )N n m ≡”,例如71(mod 2)≡.执行该程序框图,则输出的n 等于( )A .16B .17C .18D .1911.如图所示,已知某几何体的三视图及其尺寸(单位:cm ),则该几何体的表面积为( )A .15π2cmB .21π2cmC .24π2cmD .33π2cm12.设数列{}()*n a n N ∈的各项均为正数,前n 项和为nS,212log 1log n n a a +=+,且34a =,则6S =( )A .128B .65C .64D .63二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武陟一中2020届高三高考模拟数学(理)试题
1. 已知集合{11}A x x =+<,1{|()20}2
x
B x =-≥,则=B
C A R I ( )
A .(2,1)--
B (2,1)--
C (1,0)-
D [1,0)- 2.若复数z 满足:34iz i =+,则z = ( )
A .1
B .2
C 5
D .5 3.下列函数中,既是偶函数又在区间(1,2)上单调递增的是 ( )
4
5.若下框图所给的程序运行结果为35S =,那么判断框中应填入的关于k 的条件是( ) A 7k = B 6k > C 6k < D 6k ≤ 若(2
)n
x x
-的展开式中第2项与6. 第4
项的二项式系数相等,则直线
y=nx 与曲线2
x y =围成的封闭区域面积为( )
A .
223 B .12 C .323
D .36 7. 已知3
sin()45
x π-=,则sin2x 的值为( )
A 1925
B 1625
C 1425
D 725
8.如图是一个组合几何体的三视图,则该几何体的体积是( ) 273
64π 273
128π+ C. 36128π+
D. 1264π+
9.双曲线22221(0,0)x y a b a b
-=>>的左、右焦点分别是12F F ,,过1F 作倾斜角为30o
的直线交双曲线右
支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( ) A. 3 B. 5 C. 6 D. 2
10.设函数()f x )定义为如下数表,且对任意自然数n 均有1n x +=02014(),6,n f x x x =若则的值为( ) A .1 B .2
C .4
D .5 11.设函数
()3sin(2)cos(2)()2
f x x x π
ϕϕϕ=+++<
,
且其图象关于直线0x =对称,则下列结论正确的是( ) A .()y f x =的最小正周期为π,且在(0,)2
π
上为增函数
B .()y f x =的最小正周期为
2π,且在(0,)4
π
上为增函数 C .()y f x =的最小正周期为π,且在(0,)2
π
上为减函数
D .()y f x =的最小正周期为2π,且在(0,)4
π
上为减函数
12.函数21
()3cos log 22
f x x x π=--的零点个数为 ( )
A.3
B.2
C.5
D.4
第Ⅱ卷
本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须回答。
第22题~第24题为选考题,考生根据要求做答。
二.填空题:本大题共4小题,每小题5分。
13.平面向量a →
、b →
的夹角为60︒
,(2,0)a →=,1b →=, 则2a b →→
+=
14.设,x y 满足约束条件1,3,0,x y x y y -≥-⎧⎪
+<⎨⎪>⎩
, 则z x y =-的取值范围为________.
15.函数sin (3sin 4cos )()y x x x x R =+∈的最大值为M ,最小正周期为T ,则有序数对(,)M T 为 .
16.给出下列五个命题:①不等式x2-4ax +3a2<0的解集为{x|a <x <3a};②若函数y =f(x +1)为偶函数,则y =f(x)的图象关于x =1对称;③若不等式|x -4|+|x -3|<a 的解集为空集,必有a≥1;④函数y =f(x)的图像与直线x =a 至多有一个交点;⑤若角α,β满足cosα·cosβ=1,则sin(α+β)=0.其中所有正确命题的序号是_________________
三、解答题:解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分12分)
已知数列{}n a 的前n 项和为n S ,且*
(1)()n S n n n N =+∈, (Ⅰ)求数列{}n a 的通项公式n a
(Ⅱ)数列{}
n
b的通项公式
1
1
n
n n
b
a a
+
=
g
,求数列{}
n
b的前n项和为
n
T
18.(本小题满分12分)
某市教育局为了了解高三学生体育达标情况,在某学校的高三学生体育达标成绩中随机抽取100个进行调研,按成绩分组:第l组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示:若要在成绩较高的第3,4,5组中用分层抽样抽取6名学生进行复查:
(I)已知学生甲和学生乙的成绩均在第四组,求学生甲和学生乙至少有一人被选中复查的概率;
(Ⅱ)在已抽取到的6名学生中随机抽取3名学生接受篮球项目的考核,设第三组中有三名学生接受篮球项目的考核,求暑的分布列和数学期望
19.(本小题满分12分)
20.(本小题满分12分)
已知抛物线E:y2=2px(p>0)的准线与x轴交于点M,过点M作圆C:(x-2)2+y2=1的两条切线,切点为A,B,|AB|=
42
3
.
(Ⅰ)求抛物线E的方程;
(Ⅱ)过抛物线E上的点N作圆C的两条切线,切点分别为P,Q,若P,Q,O(O为原点)三点共线,求点N的坐标.
21.(本小题满分12分)设函数
()(1)ln(1),(1,0)
f x x a x x x a
=-++>-≥.
(Ⅰ)求
()
f x的单调区间;
(Ⅱ)当1
a=时,若方程()
f x t=在
1
[,1]
2
-
上有两个实数解,求实数t的取值范围;
(Ⅲ)证明:当0
m n
>>时,(1)(1)
n m
m n
+<+.
请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分。
做答时请写清题号。
22.(本小题满分10分)选修4-1:几何证明选讲
如图,在△ABC中,CD是∠ACB的角平分线,△ADC的外接圆交BC于点E,AB=2AC
(I)求证:BE=2AD;(Ⅱ)当AC=3,EC=6时,求AD的长.
23.(本小题满分10分)选修4—4:坐标系与参数方程
(I )写出直线l 和曲线C 的普通方程;
(II )设直线l 和曲线C 交于A ,B 两点,定点P (—2,—3),求|PA|·|PB|的值.
24.(本小题满分10分)选修4-5:不等式选讲 已知函数()|3|,()f x x a a R =-∈
(I )当a=1时,解不等式()5|21|;f x x >--
(II )若存在6x x f ,x 000π+∈)(使R 成立,求a 的取值范围.。